SparseMultiSet.h revision 321369
1//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SparseMultiSet class, which adds multiset behavior to
11// the SparseSet.
12//
13// A sparse multiset holds a small number of objects identified by integer keys
14// from a moderately sized universe. The sparse multiset uses more memory than
15// other containers in order to provide faster operations. Any key can map to
16// multiple values. A SparseMultiSetNode class is provided, which serves as a
17// convenient base class for the contents of a SparseMultiSet.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ADT_SPARSEMULTISET_H
22#define LLVM_ADT_SPARSEMULTISET_H
23
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/SparseSet.h"
27#include <cassert>
28#include <cstdint>
29#include <cstdlib>
30#include <iterator>
31#include <limits>
32#include <utility>
33
34namespace llvm {
35
36/// Fast multiset implementation for objects that can be identified by small
37/// unsigned keys.
38///
39/// SparseMultiSet allocates memory proportional to the size of the key
40/// universe, so it is not recommended for building composite data structures.
41/// It is useful for algorithms that require a single set with fast operations.
42///
43/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
44/// fast clear() as fast as a vector.  The find(), insert(), and erase()
45/// operations are all constant time, and typically faster than a hash table.
46/// The iteration order doesn't depend on numerical key values, it only depends
47/// on the order of insert() and erase() operations.  Iteration order is the
48/// insertion order. Iteration is only provided over elements of equivalent
49/// keys, but iterators are bidirectional.
50///
51/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
52/// offers constant-time clear() and size() operations as well as fast iteration
53/// independent on the size of the universe.
54///
55/// SparseMultiSet contains a dense vector holding all the objects and a sparse
56/// array holding indexes into the dense vector.  Most of the memory is used by
57/// the sparse array which is the size of the key universe. The SparseT template
58/// parameter provides a space/speed tradeoff for sets holding many elements.
59///
60/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
61/// sparse array uses 4 x Universe bytes.
62///
63/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
64/// lines, but the sparse array is 4x smaller.  N is the number of elements in
65/// the set.
66///
67/// For sets that may grow to thousands of elements, SparseT should be set to
68/// uint16_t or uint32_t.
69///
70/// Multiset behavior is provided by providing doubly linked lists for values
71/// that are inlined in the dense vector. SparseMultiSet is a good choice when
72/// one desires a growable number of entries per key, as it will retain the
73/// SparseSet algorithmic properties despite being growable. Thus, it is often a
74/// better choice than a SparseSet of growable containers or a vector of
75/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
76/// the iterators don't point to the element erased), allowing for more
77/// intuitive and fast removal.
78///
79/// @tparam ValueT      The type of objects in the set.
80/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
81/// @tparam SparseT     An unsigned integer type. See above.
82///
83template<typename ValueT,
84         typename KeyFunctorT = identity<unsigned>,
85         typename SparseT = uint8_t>
86class SparseMultiSet {
87  static_assert(std::numeric_limits<SparseT>::is_integer &&
88                !std::numeric_limits<SparseT>::is_signed,
89                "SparseT must be an unsigned integer type");
90
91  /// The actual data that's stored, as a doubly-linked list implemented via
92  /// indices into the DenseVector.  The doubly linked list is implemented
93  /// circular in Prev indices, and INVALID-terminated in Next indices. This
94  /// provides efficient access to list tails. These nodes can also be
95  /// tombstones, in which case they are actually nodes in a single-linked
96  /// freelist of recyclable slots.
97  struct SMSNode {
98    static const unsigned INVALID = ~0U;
99
100    ValueT Data;
101    unsigned Prev;
102    unsigned Next;
103
104    SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
105
106    /// List tails have invalid Nexts.
107    bool isTail() const {
108      return Next == INVALID;
109    }
110
111    /// Whether this node is a tombstone node, and thus is in our freelist.
112    bool isTombstone() const {
113      return Prev == INVALID;
114    }
115
116    /// Since the list is circular in Prev, all non-tombstone nodes have a valid
117    /// Prev.
118    bool isValid() const { return Prev != INVALID; }
119  };
120
121  using KeyT = typename KeyFunctorT::argument_type;
122  using DenseT = SmallVector<SMSNode, 8>;
123  DenseT Dense;
124  SparseT *Sparse = nullptr;
125  unsigned Universe = 0;
126  KeyFunctorT KeyIndexOf;
127  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
128
129  /// We have a built-in recycler for reusing tombstone slots. This recycler
130  /// puts a singly-linked free list into tombstone slots, allowing us quick
131  /// erasure, iterator preservation, and dense size.
132  unsigned FreelistIdx = SMSNode::INVALID;
133  unsigned NumFree = 0;
134
135  unsigned sparseIndex(const ValueT &Val) const {
136    assert(ValIndexOf(Val) < Universe &&
137           "Invalid key in set. Did object mutate?");
138    return ValIndexOf(Val);
139  }
140  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
141
142  /// Whether the given entry is the head of the list. List heads's previous
143  /// pointers are to the tail of the list, allowing for efficient access to the
144  /// list tail. D must be a valid entry node.
145  bool isHead(const SMSNode &D) const {
146    assert(D.isValid() && "Invalid node for head");
147    return Dense[D.Prev].isTail();
148  }
149
150  /// Whether the given entry is a singleton entry, i.e. the only entry with
151  /// that key.
152  bool isSingleton(const SMSNode &N) const {
153    assert(N.isValid() && "Invalid node for singleton");
154    // Is N its own predecessor?
155    return &Dense[N.Prev] == &N;
156  }
157
158  /// Add in the given SMSNode. Uses a free entry in our freelist if
159  /// available. Returns the index of the added node.
160  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
161    if (NumFree == 0) {
162      Dense.push_back(SMSNode(V, Prev, Next));
163      return Dense.size() - 1;
164    }
165
166    // Peel off a free slot
167    unsigned Idx = FreelistIdx;
168    unsigned NextFree = Dense[Idx].Next;
169    assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
170
171    Dense[Idx] = SMSNode(V, Prev, Next);
172    FreelistIdx = NextFree;
173    --NumFree;
174    return Idx;
175  }
176
177  /// Make the current index a new tombstone. Pushes it onto the freelist.
178  void makeTombstone(unsigned Idx) {
179    Dense[Idx].Prev = SMSNode::INVALID;
180    Dense[Idx].Next = FreelistIdx;
181    FreelistIdx = Idx;
182    ++NumFree;
183  }
184
185public:
186  using value_type = ValueT;
187  using reference = ValueT &;
188  using const_reference = const ValueT &;
189  using pointer = ValueT *;
190  using const_pointer = const ValueT *;
191  using size_type = unsigned;
192
193  SparseMultiSet() = default;
194  SparseMultiSet(const SparseMultiSet &) = delete;
195  SparseMultiSet &operator=(const SparseMultiSet &) = delete;
196  ~SparseMultiSet() { free(Sparse); }
197
198  /// Set the universe size which determines the largest key the set can hold.
199  /// The universe must be sized before any elements can be added.
200  ///
201  /// @param U Universe size. All object keys must be less than U.
202  ///
203  void setUniverse(unsigned U) {
204    // It's not hard to resize the universe on a non-empty set, but it doesn't
205    // seem like a likely use case, so we can add that code when we need it.
206    assert(empty() && "Can only resize universe on an empty map");
207    // Hysteresis prevents needless reallocations.
208    if (U >= Universe/4 && U <= Universe)
209      return;
210    free(Sparse);
211    // The Sparse array doesn't actually need to be initialized, so malloc
212    // would be enough here, but that will cause tools like valgrind to
213    // complain about branching on uninitialized data.
214    Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
215    Universe = U;
216  }
217
218  /// Our iterators are iterators over the collection of objects that share a
219  /// key.
220  template<typename SMSPtrTy>
221  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
222                                             ValueT> {
223    friend class SparseMultiSet;
224
225    SMSPtrTy SMS;
226    unsigned Idx;
227    unsigned SparseIdx;
228
229    iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
230      : SMS(P), Idx(I), SparseIdx(SI) {}
231
232    /// Whether our iterator has fallen outside our dense vector.
233    bool isEnd() const {
234      if (Idx == SMSNode::INVALID)
235        return true;
236
237      assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
238      return false;
239    }
240
241    /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
242    bool isKeyed() const { return SparseIdx < SMS->Universe; }
243
244    unsigned Prev() const { return SMS->Dense[Idx].Prev; }
245    unsigned Next() const { return SMS->Dense[Idx].Next; }
246
247    void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
248    void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
249
250  public:
251    using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
252    using value_type = typename super::value_type;
253    using difference_type = typename super::difference_type;
254    using pointer = typename super::pointer;
255    using reference = typename super::reference;
256
257    reference operator*() const {
258      assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
259             "Dereferencing iterator of invalid key or index");
260
261      return SMS->Dense[Idx].Data;
262    }
263    pointer operator->() const { return &operator*(); }
264
265    /// Comparison operators
266    bool operator==(const iterator_base &RHS) const {
267      // end compares equal
268      if (SMS == RHS.SMS && Idx == RHS.Idx) {
269        assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
270               "Same dense entry, but different keys?");
271        return true;
272      }
273
274      return false;
275    }
276
277    bool operator!=(const iterator_base &RHS) const {
278      return !operator==(RHS);
279    }
280
281    /// Increment and decrement operators
282    iterator_base &operator--() { // predecrement - Back up
283      assert(isKeyed() && "Decrementing an invalid iterator");
284      assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
285             "Decrementing head of list");
286
287      // If we're at the end, then issue a new find()
288      if (isEnd())
289        Idx = SMS->findIndex(SparseIdx).Prev();
290      else
291        Idx = Prev();
292
293      return *this;
294    }
295    iterator_base &operator++() { // preincrement - Advance
296      assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
297      Idx = Next();
298      return *this;
299    }
300    iterator_base operator--(int) { // postdecrement
301      iterator_base I(*this);
302      --*this;
303      return I;
304    }
305    iterator_base operator++(int) { // postincrement
306      iterator_base I(*this);
307      ++*this;
308      return I;
309    }
310  };
311
312  using iterator = iterator_base<SparseMultiSet *>;
313  using const_iterator = iterator_base<const SparseMultiSet *>;
314
315  // Convenience types
316  using RangePair = std::pair<iterator, iterator>;
317
318  /// Returns an iterator past this container. Note that such an iterator cannot
319  /// be decremented, but will compare equal to other end iterators.
320  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
321  const_iterator end() const {
322    return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
323  }
324
325  /// Returns true if the set is empty.
326  ///
327  /// This is not the same as BitVector::empty().
328  ///
329  bool empty() const { return size() == 0; }
330
331  /// Returns the number of elements in the set.
332  ///
333  /// This is not the same as BitVector::size() which returns the size of the
334  /// universe.
335  ///
336  size_type size() const {
337    assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
338    return Dense.size() - NumFree;
339  }
340
341  /// Clears the set.  This is a very fast constant time operation.
342  ///
343  void clear() {
344    // Sparse does not need to be cleared, see find().
345    Dense.clear();
346    NumFree = 0;
347    FreelistIdx = SMSNode::INVALID;
348  }
349
350  /// Find an element by its index.
351  ///
352  /// @param   Idx A valid index to find.
353  /// @returns An iterator to the element identified by key, or end().
354  ///
355  iterator findIndex(unsigned Idx) {
356    assert(Idx < Universe && "Key out of range");
357    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
358    for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
359      const unsigned FoundIdx = sparseIndex(Dense[i]);
360      // Check that we're pointing at the correct entry and that it is the head
361      // of a valid list.
362      if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
363        return iterator(this, i, Idx);
364      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
365      if (!Stride)
366        break;
367    }
368    return end();
369  }
370
371  /// Find an element by its key.
372  ///
373  /// @param   Key A valid key to find.
374  /// @returns An iterator to the element identified by key, or end().
375  ///
376  iterator find(const KeyT &Key) {
377    return findIndex(KeyIndexOf(Key));
378  }
379
380  const_iterator find(const KeyT &Key) const {
381    iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
382    return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
383  }
384
385  /// Returns the number of elements identified by Key. This will be linear in
386  /// the number of elements of that key.
387  size_type count(const KeyT &Key) const {
388    unsigned Ret = 0;
389    for (const_iterator It = find(Key); It != end(); ++It)
390      ++Ret;
391
392    return Ret;
393  }
394
395  /// Returns true if this set contains an element identified by Key.
396  bool contains(const KeyT &Key) const {
397    return find(Key) != end();
398  }
399
400  /// Return the head and tail of the subset's list, otherwise returns end().
401  iterator getHead(const KeyT &Key) { return find(Key); }
402  iterator getTail(const KeyT &Key) {
403    iterator I = find(Key);
404    if (I != end())
405      I = iterator(this, I.Prev(), KeyIndexOf(Key));
406    return I;
407  }
408
409  /// The bounds of the range of items sharing Key K. First member is the head
410  /// of the list, and the second member is a decrementable end iterator for
411  /// that key.
412  RangePair equal_range(const KeyT &K) {
413    iterator B = find(K);
414    iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
415    return make_pair(B, E);
416  }
417
418  /// Insert a new element at the tail of the subset list. Returns an iterator
419  /// to the newly added entry.
420  iterator insert(const ValueT &Val) {
421    unsigned Idx = sparseIndex(Val);
422    iterator I = findIndex(Idx);
423
424    unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
425
426    if (I == end()) {
427      // Make a singleton list
428      Sparse[Idx] = NodeIdx;
429      Dense[NodeIdx].Prev = NodeIdx;
430      return iterator(this, NodeIdx, Idx);
431    }
432
433    // Stick it at the end.
434    unsigned HeadIdx = I.Idx;
435    unsigned TailIdx = I.Prev();
436    Dense[TailIdx].Next = NodeIdx;
437    Dense[HeadIdx].Prev = NodeIdx;
438    Dense[NodeIdx].Prev = TailIdx;
439
440    return iterator(this, NodeIdx, Idx);
441  }
442
443  /// Erases an existing element identified by a valid iterator.
444  ///
445  /// This invalidates iterators pointing at the same entry, but erase() returns
446  /// an iterator pointing to the next element in the subset's list. This makes
447  /// it possible to erase selected elements while iterating over the subset:
448  ///
449  ///   tie(I, E) = Set.equal_range(Key);
450  ///   while (I != E)
451  ///     if (test(*I))
452  ///       I = Set.erase(I);
453  ///     else
454  ///       ++I;
455  ///
456  /// Note that if the last element in the subset list is erased, this will
457  /// return an end iterator which can be decremented to get the new tail (if it
458  /// exists):
459  ///
460  ///  tie(B, I) = Set.equal_range(Key);
461  ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
462  ///    isBegin = (--I) == B;
463  ///    if (test(I))
464  ///      break;
465  ///    I = erase(I);
466  ///  }
467  iterator erase(iterator I) {
468    assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
469           "erasing invalid/end/tombstone iterator");
470
471    // First, unlink the node from its list. Then swap the node out with the
472    // dense vector's last entry
473    iterator NextI = unlink(Dense[I.Idx]);
474
475    // Put in a tombstone.
476    makeTombstone(I.Idx);
477
478    return NextI;
479  }
480
481  /// Erase all elements with the given key. This invalidates all
482  /// iterators of that key.
483  void eraseAll(const KeyT &K) {
484    for (iterator I = find(K); I != end(); /* empty */)
485      I = erase(I);
486  }
487
488private:
489  /// Unlink the node from its list. Returns the next node in the list.
490  iterator unlink(const SMSNode &N) {
491    if (isSingleton(N)) {
492      // Singleton is already unlinked
493      assert(N.Next == SMSNode::INVALID && "Singleton has next?");
494      return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
495    }
496
497    if (isHead(N)) {
498      // If we're the head, then update the sparse array and our next.
499      Sparse[sparseIndex(N)] = N.Next;
500      Dense[N.Next].Prev = N.Prev;
501      return iterator(this, N.Next, ValIndexOf(N.Data));
502    }
503
504    if (N.isTail()) {
505      // If we're the tail, then update our head and our previous.
506      findIndex(sparseIndex(N)).setPrev(N.Prev);
507      Dense[N.Prev].Next = N.Next;
508
509      // Give back an end iterator that can be decremented
510      iterator I(this, N.Prev, ValIndexOf(N.Data));
511      return ++I;
512    }
513
514    // Otherwise, just drop us
515    Dense[N.Next].Prev = N.Prev;
516    Dense[N.Prev].Next = N.Next;
517    return iterator(this, N.Next, ValIndexOf(N.Data));
518  }
519};
520
521} // end namespace llvm
522
523#endif // LLVM_ADT_SPARSEMULTISET_H
524