1//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SparseMultiSet class, which adds multiset behavior to
10// the SparseSet.
11//
12// A sparse multiset holds a small number of objects identified by integer keys
13// from a moderately sized universe. The sparse multiset uses more memory than
14// other containers in order to provide faster operations. Any key can map to
15// multiple values. A SparseMultiSetNode class is provided, which serves as a
16// convenient base class for the contents of a SparseMultiSet.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ADT_SPARSEMULTISET_H
21#define LLVM_ADT_SPARSEMULTISET_H
22
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/SparseSet.h"
26#include <cassert>
27#include <cstdint>
28#include <cstdlib>
29#include <iterator>
30#include <limits>
31#include <utility>
32
33namespace llvm {
34
35/// Fast multiset implementation for objects that can be identified by small
36/// unsigned keys.
37///
38/// SparseMultiSet allocates memory proportional to the size of the key
39/// universe, so it is not recommended for building composite data structures.
40/// It is useful for algorithms that require a single set with fast operations.
41///
42/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
43/// fast clear() as fast as a vector.  The find(), insert(), and erase()
44/// operations are all constant time, and typically faster than a hash table.
45/// The iteration order doesn't depend on numerical key values, it only depends
46/// on the order of insert() and erase() operations.  Iteration order is the
47/// insertion order. Iteration is only provided over elements of equivalent
48/// keys, but iterators are bidirectional.
49///
50/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
51/// offers constant-time clear() and size() operations as well as fast iteration
52/// independent on the size of the universe.
53///
54/// SparseMultiSet contains a dense vector holding all the objects and a sparse
55/// array holding indexes into the dense vector.  Most of the memory is used by
56/// the sparse array which is the size of the key universe. The SparseT template
57/// parameter provides a space/speed tradeoff for sets holding many elements.
58///
59/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
60/// sparse array uses 4 x Universe bytes.
61///
62/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
63/// lines, but the sparse array is 4x smaller.  N is the number of elements in
64/// the set.
65///
66/// For sets that may grow to thousands of elements, SparseT should be set to
67/// uint16_t or uint32_t.
68///
69/// Multiset behavior is provided by providing doubly linked lists for values
70/// that are inlined in the dense vector. SparseMultiSet is a good choice when
71/// one desires a growable number of entries per key, as it will retain the
72/// SparseSet algorithmic properties despite being growable. Thus, it is often a
73/// better choice than a SparseSet of growable containers or a vector of
74/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
75/// the iterators don't point to the element erased), allowing for more
76/// intuitive and fast removal.
77///
78/// @tparam ValueT      The type of objects in the set.
79/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
80/// @tparam SparseT     An unsigned integer type. See above.
81///
82template<typename ValueT,
83         typename KeyFunctorT = identity<unsigned>,
84         typename SparseT = uint8_t>
85class SparseMultiSet {
86  static_assert(std::numeric_limits<SparseT>::is_integer &&
87                !std::numeric_limits<SparseT>::is_signed,
88                "SparseT must be an unsigned integer type");
89
90  /// The actual data that's stored, as a doubly-linked list implemented via
91  /// indices into the DenseVector.  The doubly linked list is implemented
92  /// circular in Prev indices, and INVALID-terminated in Next indices. This
93  /// provides efficient access to list tails. These nodes can also be
94  /// tombstones, in which case they are actually nodes in a single-linked
95  /// freelist of recyclable slots.
96  struct SMSNode {
97    static const unsigned INVALID = ~0U;
98
99    ValueT Data;
100    unsigned Prev;
101    unsigned Next;
102
103    SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
104
105    /// List tails have invalid Nexts.
106    bool isTail() const {
107      return Next == INVALID;
108    }
109
110    /// Whether this node is a tombstone node, and thus is in our freelist.
111    bool isTombstone() const {
112      return Prev == INVALID;
113    }
114
115    /// Since the list is circular in Prev, all non-tombstone nodes have a valid
116    /// Prev.
117    bool isValid() const { return Prev != INVALID; }
118  };
119
120  using KeyT = typename KeyFunctorT::argument_type;
121  using DenseT = SmallVector<SMSNode, 8>;
122  DenseT Dense;
123  SparseT *Sparse = nullptr;
124  unsigned Universe = 0;
125  KeyFunctorT KeyIndexOf;
126  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
127
128  /// We have a built-in recycler for reusing tombstone slots. This recycler
129  /// puts a singly-linked free list into tombstone slots, allowing us quick
130  /// erasure, iterator preservation, and dense size.
131  unsigned FreelistIdx = SMSNode::INVALID;
132  unsigned NumFree = 0;
133
134  unsigned sparseIndex(const ValueT &Val) const {
135    assert(ValIndexOf(Val) < Universe &&
136           "Invalid key in set. Did object mutate?");
137    return ValIndexOf(Val);
138  }
139  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
140
141  /// Whether the given entry is the head of the list. List heads's previous
142  /// pointers are to the tail of the list, allowing for efficient access to the
143  /// list tail. D must be a valid entry node.
144  bool isHead(const SMSNode &D) const {
145    assert(D.isValid() && "Invalid node for head");
146    return Dense[D.Prev].isTail();
147  }
148
149  /// Whether the given entry is a singleton entry, i.e. the only entry with
150  /// that key.
151  bool isSingleton(const SMSNode &N) const {
152    assert(N.isValid() && "Invalid node for singleton");
153    // Is N its own predecessor?
154    return &Dense[N.Prev] == &N;
155  }
156
157  /// Add in the given SMSNode. Uses a free entry in our freelist if
158  /// available. Returns the index of the added node.
159  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
160    if (NumFree == 0) {
161      Dense.push_back(SMSNode(V, Prev, Next));
162      return Dense.size() - 1;
163    }
164
165    // Peel off a free slot
166    unsigned Idx = FreelistIdx;
167    unsigned NextFree = Dense[Idx].Next;
168    assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
169
170    Dense[Idx] = SMSNode(V, Prev, Next);
171    FreelistIdx = NextFree;
172    --NumFree;
173    return Idx;
174  }
175
176  /// Make the current index a new tombstone. Pushes it onto the freelist.
177  void makeTombstone(unsigned Idx) {
178    Dense[Idx].Prev = SMSNode::INVALID;
179    Dense[Idx].Next = FreelistIdx;
180    FreelistIdx = Idx;
181    ++NumFree;
182  }
183
184public:
185  using value_type = ValueT;
186  using reference = ValueT &;
187  using const_reference = const ValueT &;
188  using pointer = ValueT *;
189  using const_pointer = const ValueT *;
190  using size_type = unsigned;
191
192  SparseMultiSet() = default;
193  SparseMultiSet(const SparseMultiSet &) = delete;
194  SparseMultiSet &operator=(const SparseMultiSet &) = delete;
195  ~SparseMultiSet() { free(Sparse); }
196
197  /// Set the universe size which determines the largest key the set can hold.
198  /// The universe must be sized before any elements can be added.
199  ///
200  /// @param U Universe size. All object keys must be less than U.
201  ///
202  void setUniverse(unsigned U) {
203    // It's not hard to resize the universe on a non-empty set, but it doesn't
204    // seem like a likely use case, so we can add that code when we need it.
205    assert(empty() && "Can only resize universe on an empty map");
206    // Hysteresis prevents needless reallocations.
207    if (U >= Universe/4 && U <= Universe)
208      return;
209    free(Sparse);
210    // The Sparse array doesn't actually need to be initialized, so malloc
211    // would be enough here, but that will cause tools like valgrind to
212    // complain about branching on uninitialized data.
213    Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
214    Universe = U;
215  }
216
217  /// Our iterators are iterators over the collection of objects that share a
218  /// key.
219  template<typename SMSPtrTy>
220  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
221                                             ValueT> {
222    friend class SparseMultiSet;
223
224    SMSPtrTy SMS;
225    unsigned Idx;
226    unsigned SparseIdx;
227
228    iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
229      : SMS(P), Idx(I), SparseIdx(SI) {}
230
231    /// Whether our iterator has fallen outside our dense vector.
232    bool isEnd() const {
233      if (Idx == SMSNode::INVALID)
234        return true;
235
236      assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
237      return false;
238    }
239
240    /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
241    bool isKeyed() const { return SparseIdx < SMS->Universe; }
242
243    unsigned Prev() const { return SMS->Dense[Idx].Prev; }
244    unsigned Next() const { return SMS->Dense[Idx].Next; }
245
246    void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
247    void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
248
249  public:
250    using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
251    using value_type = typename super::value_type;
252    using difference_type = typename super::difference_type;
253    using pointer = typename super::pointer;
254    using reference = typename super::reference;
255
256    reference operator*() const {
257      assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
258             "Dereferencing iterator of invalid key or index");
259
260      return SMS->Dense[Idx].Data;
261    }
262    pointer operator->() const { return &operator*(); }
263
264    /// Comparison operators
265    bool operator==(const iterator_base &RHS) const {
266      // end compares equal
267      if (SMS == RHS.SMS && Idx == RHS.Idx) {
268        assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
269               "Same dense entry, but different keys?");
270        return true;
271      }
272
273      return false;
274    }
275
276    bool operator!=(const iterator_base &RHS) const {
277      return !operator==(RHS);
278    }
279
280    /// Increment and decrement operators
281    iterator_base &operator--() { // predecrement - Back up
282      assert(isKeyed() && "Decrementing an invalid iterator");
283      assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
284             "Decrementing head of list");
285
286      // If we're at the end, then issue a new find()
287      if (isEnd())
288        Idx = SMS->findIndex(SparseIdx).Prev();
289      else
290        Idx = Prev();
291
292      return *this;
293    }
294    iterator_base &operator++() { // preincrement - Advance
295      assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
296      Idx = Next();
297      return *this;
298    }
299    iterator_base operator--(int) { // postdecrement
300      iterator_base I(*this);
301      --*this;
302      return I;
303    }
304    iterator_base operator++(int) { // postincrement
305      iterator_base I(*this);
306      ++*this;
307      return I;
308    }
309  };
310
311  using iterator = iterator_base<SparseMultiSet *>;
312  using const_iterator = iterator_base<const SparseMultiSet *>;
313
314  // Convenience types
315  using RangePair = std::pair<iterator, iterator>;
316
317  /// Returns an iterator past this container. Note that such an iterator cannot
318  /// be decremented, but will compare equal to other end iterators.
319  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
320  const_iterator end() const {
321    return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
322  }
323
324  /// Returns true if the set is empty.
325  ///
326  /// This is not the same as BitVector::empty().
327  ///
328  bool empty() const { return size() == 0; }
329
330  /// Returns the number of elements in the set.
331  ///
332  /// This is not the same as BitVector::size() which returns the size of the
333  /// universe.
334  ///
335  size_type size() const {
336    assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
337    return Dense.size() - NumFree;
338  }
339
340  /// Clears the set.  This is a very fast constant time operation.
341  ///
342  void clear() {
343    // Sparse does not need to be cleared, see find().
344    Dense.clear();
345    NumFree = 0;
346    FreelistIdx = SMSNode::INVALID;
347  }
348
349  /// Find an element by its index.
350  ///
351  /// @param   Idx A valid index to find.
352  /// @returns An iterator to the element identified by key, or end().
353  ///
354  iterator findIndex(unsigned Idx) {
355    assert(Idx < Universe && "Key out of range");
356    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
357    for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
358      const unsigned FoundIdx = sparseIndex(Dense[i]);
359      // Check that we're pointing at the correct entry and that it is the head
360      // of a valid list.
361      if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
362        return iterator(this, i, Idx);
363      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
364      if (!Stride)
365        break;
366    }
367    return end();
368  }
369
370  /// Find an element by its key.
371  ///
372  /// @param   Key A valid key to find.
373  /// @returns An iterator to the element identified by key, or end().
374  ///
375  iterator find(const KeyT &Key) {
376    return findIndex(KeyIndexOf(Key));
377  }
378
379  const_iterator find(const KeyT &Key) const {
380    iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
381    return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
382  }
383
384  /// Returns the number of elements identified by Key. This will be linear in
385  /// the number of elements of that key.
386  size_type count(const KeyT &Key) const {
387    unsigned Ret = 0;
388    for (const_iterator It = find(Key); It != end(); ++It)
389      ++Ret;
390
391    return Ret;
392  }
393
394  /// Returns true if this set contains an element identified by Key.
395  bool contains(const KeyT &Key) const {
396    return find(Key) != end();
397  }
398
399  /// Return the head and tail of the subset's list, otherwise returns end().
400  iterator getHead(const KeyT &Key) { return find(Key); }
401  iterator getTail(const KeyT &Key) {
402    iterator I = find(Key);
403    if (I != end())
404      I = iterator(this, I.Prev(), KeyIndexOf(Key));
405    return I;
406  }
407
408  /// The bounds of the range of items sharing Key K. First member is the head
409  /// of the list, and the second member is a decrementable end iterator for
410  /// that key.
411  RangePair equal_range(const KeyT &K) {
412    iterator B = find(K);
413    iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
414    return make_pair(B, E);
415  }
416
417  /// Insert a new element at the tail of the subset list. Returns an iterator
418  /// to the newly added entry.
419  iterator insert(const ValueT &Val) {
420    unsigned Idx = sparseIndex(Val);
421    iterator I = findIndex(Idx);
422
423    unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
424
425    if (I == end()) {
426      // Make a singleton list
427      Sparse[Idx] = NodeIdx;
428      Dense[NodeIdx].Prev = NodeIdx;
429      return iterator(this, NodeIdx, Idx);
430    }
431
432    // Stick it at the end.
433    unsigned HeadIdx = I.Idx;
434    unsigned TailIdx = I.Prev();
435    Dense[TailIdx].Next = NodeIdx;
436    Dense[HeadIdx].Prev = NodeIdx;
437    Dense[NodeIdx].Prev = TailIdx;
438
439    return iterator(this, NodeIdx, Idx);
440  }
441
442  /// Erases an existing element identified by a valid iterator.
443  ///
444  /// This invalidates iterators pointing at the same entry, but erase() returns
445  /// an iterator pointing to the next element in the subset's list. This makes
446  /// it possible to erase selected elements while iterating over the subset:
447  ///
448  ///   tie(I, E) = Set.equal_range(Key);
449  ///   while (I != E)
450  ///     if (test(*I))
451  ///       I = Set.erase(I);
452  ///     else
453  ///       ++I;
454  ///
455  /// Note that if the last element in the subset list is erased, this will
456  /// return an end iterator which can be decremented to get the new tail (if it
457  /// exists):
458  ///
459  ///  tie(B, I) = Set.equal_range(Key);
460  ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
461  ///    isBegin = (--I) == B;
462  ///    if (test(I))
463  ///      break;
464  ///    I = erase(I);
465  ///  }
466  iterator erase(iterator I) {
467    assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
468           "erasing invalid/end/tombstone iterator");
469
470    // First, unlink the node from its list. Then swap the node out with the
471    // dense vector's last entry
472    iterator NextI = unlink(Dense[I.Idx]);
473
474    // Put in a tombstone.
475    makeTombstone(I.Idx);
476
477    return NextI;
478  }
479
480  /// Erase all elements with the given key. This invalidates all
481  /// iterators of that key.
482  void eraseAll(const KeyT &K) {
483    for (iterator I = find(K); I != end(); /* empty */)
484      I = erase(I);
485  }
486
487private:
488  /// Unlink the node from its list. Returns the next node in the list.
489  iterator unlink(const SMSNode &N) {
490    if (isSingleton(N)) {
491      // Singleton is already unlinked
492      assert(N.Next == SMSNode::INVALID && "Singleton has next?");
493      return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
494    }
495
496    if (isHead(N)) {
497      // If we're the head, then update the sparse array and our next.
498      Sparse[sparseIndex(N)] = N.Next;
499      Dense[N.Next].Prev = N.Prev;
500      return iterator(this, N.Next, ValIndexOf(N.Data));
501    }
502
503    if (N.isTail()) {
504      // If we're the tail, then update our head and our previous.
505      findIndex(sparseIndex(N)).setPrev(N.Prev);
506      Dense[N.Prev].Next = N.Next;
507
508      // Give back an end iterator that can be decremented
509      iterator I(this, N.Prev, ValIndexOf(N.Data));
510      return ++I;
511    }
512
513    // Otherwise, just drop us
514    Dense[N.Next].Prev = N.Prev;
515    Dense[N.Prev].Next = N.Next;
516    return iterator(this, N.Next, ValIndexOf(N.Data));
517  }
518};
519
520} // end namespace llvm
521
522#endif // LLVM_ADT_SPARSEMULTISET_H
523