SparseMultiSet.h revision 288943
1//===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SparseMultiSet class, which adds multiset behavior to
11// the SparseSet.
12//
13// A sparse multiset holds a small number of objects identified by integer keys
14// from a moderately sized universe. The sparse multiset uses more memory than
15// other containers in order to provide faster operations. Any key can map to
16// multiple values. A SparseMultiSetNode class is provided, which serves as a
17// convenient base class for the contents of a SparseMultiSet.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ADT_SPARSEMULTISET_H
22#define LLVM_ADT_SPARSEMULTISET_H
23
24#include "llvm/ADT/SparseSet.h"
25
26namespace llvm {
27
28/// Fast multiset implementation for objects that can be identified by small
29/// unsigned keys.
30///
31/// SparseMultiSet allocates memory proportional to the size of the key
32/// universe, so it is not recommended for building composite data structures.
33/// It is useful for algorithms that require a single set with fast operations.
34///
35/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
36/// fast clear() as fast as a vector.  The find(), insert(), and erase()
37/// operations are all constant time, and typically faster than a hash table.
38/// The iteration order doesn't depend on numerical key values, it only depends
39/// on the order of insert() and erase() operations.  Iteration order is the
40/// insertion order. Iteration is only provided over elements of equivalent
41/// keys, but iterators are bidirectional.
42///
43/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
44/// offers constant-time clear() and size() operations as well as fast iteration
45/// independent on the size of the universe.
46///
47/// SparseMultiSet contains a dense vector holding all the objects and a sparse
48/// array holding indexes into the dense vector.  Most of the memory is used by
49/// the sparse array which is the size of the key universe. The SparseT template
50/// parameter provides a space/speed tradeoff for sets holding many elements.
51///
52/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
53/// sparse array uses 4 x Universe bytes.
54///
55/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
56/// lines, but the sparse array is 4x smaller.  N is the number of elements in
57/// the set.
58///
59/// For sets that may grow to thousands of elements, SparseT should be set to
60/// uint16_t or uint32_t.
61///
62/// Multiset behavior is provided by providing doubly linked lists for values
63/// that are inlined in the dense vector. SparseMultiSet is a good choice when
64/// one desires a growable number of entries per key, as it will retain the
65/// SparseSet algorithmic properties despite being growable. Thus, it is often a
66/// better choice than a SparseSet of growable containers or a vector of
67/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
68/// the iterators don't point to the element erased), allowing for more
69/// intuitive and fast removal.
70///
71/// @tparam ValueT      The type of objects in the set.
72/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
73/// @tparam SparseT     An unsigned integer type. See above.
74///
75template<typename ValueT,
76         typename KeyFunctorT = llvm::identity<unsigned>,
77         typename SparseT = uint8_t>
78class SparseMultiSet {
79  static_assert(std::numeric_limits<SparseT>::is_integer &&
80                !std::numeric_limits<SparseT>::is_signed,
81                "SparseT must be an unsigned integer type");
82
83  /// The actual data that's stored, as a doubly-linked list implemented via
84  /// indices into the DenseVector.  The doubly linked list is implemented
85  /// circular in Prev indices, and INVALID-terminated in Next indices. This
86  /// provides efficient access to list tails. These nodes can also be
87  /// tombstones, in which case they are actually nodes in a single-linked
88  /// freelist of recyclable slots.
89  struct SMSNode {
90    static const unsigned INVALID = ~0U;
91
92    ValueT Data;
93    unsigned Prev;
94    unsigned Next;
95
96    SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
97
98    /// List tails have invalid Nexts.
99    bool isTail() const {
100      return Next == INVALID;
101    }
102
103    /// Whether this node is a tombstone node, and thus is in our freelist.
104    bool isTombstone() const {
105      return Prev == INVALID;
106    }
107
108    /// Since the list is circular in Prev, all non-tombstone nodes have a valid
109    /// Prev.
110    bool isValid() const { return Prev != INVALID; }
111  };
112
113  typedef typename KeyFunctorT::argument_type KeyT;
114  typedef SmallVector<SMSNode, 8> DenseT;
115  DenseT Dense;
116  SparseT *Sparse;
117  unsigned Universe;
118  KeyFunctorT KeyIndexOf;
119  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
120
121  /// We have a built-in recycler for reusing tombstone slots. This recycler
122  /// puts a singly-linked free list into tombstone slots, allowing us quick
123  /// erasure, iterator preservation, and dense size.
124  unsigned FreelistIdx;
125  unsigned NumFree;
126
127  unsigned sparseIndex(const ValueT &Val) const {
128    assert(ValIndexOf(Val) < Universe &&
129           "Invalid key in set. Did object mutate?");
130    return ValIndexOf(Val);
131  }
132  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
133
134  // Disable copy construction and assignment.
135  // This data structure is not meant to be used that way.
136  SparseMultiSet(const SparseMultiSet&) = delete;
137  SparseMultiSet &operator=(const SparseMultiSet&) = delete;
138
139  /// Whether the given entry is the head of the list. List heads's previous
140  /// pointers are to the tail of the list, allowing for efficient access to the
141  /// list tail. D must be a valid entry node.
142  bool isHead(const SMSNode &D) const {
143    assert(D.isValid() && "Invalid node for head");
144    return Dense[D.Prev].isTail();
145  }
146
147  /// Whether the given entry is a singleton entry, i.e. the only entry with
148  /// that key.
149  bool isSingleton(const SMSNode &N) const {
150    assert(N.isValid() && "Invalid node for singleton");
151    // Is N its own predecessor?
152    return &Dense[N.Prev] == &N;
153  }
154
155  /// Add in the given SMSNode. Uses a free entry in our freelist if
156  /// available. Returns the index of the added node.
157  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
158    if (NumFree == 0) {
159      Dense.push_back(SMSNode(V, Prev, Next));
160      return Dense.size() - 1;
161    }
162
163    // Peel off a free slot
164    unsigned Idx = FreelistIdx;
165    unsigned NextFree = Dense[Idx].Next;
166    assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
167
168    Dense[Idx] = SMSNode(V, Prev, Next);
169    FreelistIdx = NextFree;
170    --NumFree;
171    return Idx;
172  }
173
174  /// Make the current index a new tombstone. Pushes it onto the freelist.
175  void makeTombstone(unsigned Idx) {
176    Dense[Idx].Prev = SMSNode::INVALID;
177    Dense[Idx].Next = FreelistIdx;
178    FreelistIdx = Idx;
179    ++NumFree;
180  }
181
182public:
183  typedef ValueT value_type;
184  typedef ValueT &reference;
185  typedef const ValueT &const_reference;
186  typedef ValueT *pointer;
187  typedef const ValueT *const_pointer;
188  typedef unsigned size_type;
189
190  SparseMultiSet()
191    : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
192
193  ~SparseMultiSet() { free(Sparse); }
194
195  /// Set the universe size which determines the largest key the set can hold.
196  /// The universe must be sized before any elements can be added.
197  ///
198  /// @param U Universe size. All object keys must be less than U.
199  ///
200  void setUniverse(unsigned U) {
201    // It's not hard to resize the universe on a non-empty set, but it doesn't
202    // seem like a likely use case, so we can add that code when we need it.
203    assert(empty() && "Can only resize universe on an empty map");
204    // Hysteresis prevents needless reallocations.
205    if (U >= Universe/4 && U <= Universe)
206      return;
207    free(Sparse);
208    // The Sparse array doesn't actually need to be initialized, so malloc
209    // would be enough here, but that will cause tools like valgrind to
210    // complain about branching on uninitialized data.
211    Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
212    Universe = U;
213  }
214
215  /// Our iterators are iterators over the collection of objects that share a
216  /// key.
217  template<typename SMSPtrTy>
218  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
219                                             ValueT> {
220    friend class SparseMultiSet;
221    SMSPtrTy SMS;
222    unsigned Idx;
223    unsigned SparseIdx;
224
225    iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
226      : SMS(P), Idx(I), SparseIdx(SI) { }
227
228    /// Whether our iterator has fallen outside our dense vector.
229    bool isEnd() const {
230      if (Idx == SMSNode::INVALID)
231        return true;
232
233      assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
234      return false;
235    }
236
237    /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
238    bool isKeyed() const { return SparseIdx < SMS->Universe; }
239
240    unsigned Prev() const { return SMS->Dense[Idx].Prev; }
241    unsigned Next() const { return SMS->Dense[Idx].Next; }
242
243    void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
244    void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
245
246  public:
247    typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
248    typedef typename super::value_type value_type;
249    typedef typename super::difference_type difference_type;
250    typedef typename super::pointer pointer;
251    typedef typename super::reference reference;
252
253    reference operator*() const {
254      assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
255             "Dereferencing iterator of invalid key or index");
256
257      return SMS->Dense[Idx].Data;
258    }
259    pointer operator->() const { return &operator*(); }
260
261    /// Comparison operators
262    bool operator==(const iterator_base &RHS) const {
263      // end compares equal
264      if (SMS == RHS.SMS && Idx == RHS.Idx) {
265        assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
266               "Same dense entry, but different keys?");
267        return true;
268      }
269
270      return false;
271    }
272
273    bool operator!=(const iterator_base &RHS) const {
274      return !operator==(RHS);
275    }
276
277    /// Increment and decrement operators
278    iterator_base &operator--() { // predecrement - Back up
279      assert(isKeyed() && "Decrementing an invalid iterator");
280      assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
281             "Decrementing head of list");
282
283      // If we're at the end, then issue a new find()
284      if (isEnd())
285        Idx = SMS->findIndex(SparseIdx).Prev();
286      else
287        Idx = Prev();
288
289      return *this;
290    }
291    iterator_base &operator++() { // preincrement - Advance
292      assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
293      Idx = Next();
294      return *this;
295    }
296    iterator_base operator--(int) { // postdecrement
297      iterator_base I(*this);
298      --*this;
299      return I;
300    }
301    iterator_base operator++(int) { // postincrement
302      iterator_base I(*this);
303      ++*this;
304      return I;
305    }
306  };
307  typedef iterator_base<SparseMultiSet *> iterator;
308  typedef iterator_base<const SparseMultiSet *> const_iterator;
309
310  // Convenience types
311  typedef std::pair<iterator, iterator> RangePair;
312
313  /// Returns an iterator past this container. Note that such an iterator cannot
314  /// be decremented, but will compare equal to other end iterators.
315  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
316  const_iterator end() const {
317    return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
318  }
319
320  /// Returns true if the set is empty.
321  ///
322  /// This is not the same as BitVector::empty().
323  ///
324  bool empty() const { return size() == 0; }
325
326  /// Returns the number of elements in the set.
327  ///
328  /// This is not the same as BitVector::size() which returns the size of the
329  /// universe.
330  ///
331  size_type size() const {
332    assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
333    return Dense.size() - NumFree;
334  }
335
336  /// Clears the set.  This is a very fast constant time operation.
337  ///
338  void clear() {
339    // Sparse does not need to be cleared, see find().
340    Dense.clear();
341    NumFree = 0;
342    FreelistIdx = SMSNode::INVALID;
343  }
344
345  /// Find an element by its index.
346  ///
347  /// @param   Idx A valid index to find.
348  /// @returns An iterator to the element identified by key, or end().
349  ///
350  iterator findIndex(unsigned Idx) {
351    assert(Idx < Universe && "Key out of range");
352    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
353    for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
354      const unsigned FoundIdx = sparseIndex(Dense[i]);
355      // Check that we're pointing at the correct entry and that it is the head
356      // of a valid list.
357      if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
358        return iterator(this, i, Idx);
359      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
360      if (!Stride)
361        break;
362    }
363    return end();
364  }
365
366  /// Find an element by its key.
367  ///
368  /// @param   Key A valid key to find.
369  /// @returns An iterator to the element identified by key, or end().
370  ///
371  iterator find(const KeyT &Key) {
372    return findIndex(KeyIndexOf(Key));
373  }
374
375  const_iterator find(const KeyT &Key) const {
376    iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
377    return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
378  }
379
380  /// Returns the number of elements identified by Key. This will be linear in
381  /// the number of elements of that key.
382  size_type count(const KeyT &Key) const {
383    unsigned Ret = 0;
384    for (const_iterator It = find(Key); It != end(); ++It)
385      ++Ret;
386
387    return Ret;
388  }
389
390  /// Returns true if this set contains an element identified by Key.
391  bool contains(const KeyT &Key) const {
392    return find(Key) != end();
393  }
394
395  /// Return the head and tail of the subset's list, otherwise returns end().
396  iterator getHead(const KeyT &Key) { return find(Key); }
397  iterator getTail(const KeyT &Key) {
398    iterator I = find(Key);
399    if (I != end())
400      I = iterator(this, I.Prev(), KeyIndexOf(Key));
401    return I;
402  }
403
404  /// The bounds of the range of items sharing Key K. First member is the head
405  /// of the list, and the second member is a decrementable end iterator for
406  /// that key.
407  RangePair equal_range(const KeyT &K) {
408    iterator B = find(K);
409    iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
410    return make_pair(B, E);
411  }
412
413  /// Insert a new element at the tail of the subset list. Returns an iterator
414  /// to the newly added entry.
415  iterator insert(const ValueT &Val) {
416    unsigned Idx = sparseIndex(Val);
417    iterator I = findIndex(Idx);
418
419    unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
420
421    if (I == end()) {
422      // Make a singleton list
423      Sparse[Idx] = NodeIdx;
424      Dense[NodeIdx].Prev = NodeIdx;
425      return iterator(this, NodeIdx, Idx);
426    }
427
428    // Stick it at the end.
429    unsigned HeadIdx = I.Idx;
430    unsigned TailIdx = I.Prev();
431    Dense[TailIdx].Next = NodeIdx;
432    Dense[HeadIdx].Prev = NodeIdx;
433    Dense[NodeIdx].Prev = TailIdx;
434
435    return iterator(this, NodeIdx, Idx);
436  }
437
438  /// Erases an existing element identified by a valid iterator.
439  ///
440  /// This invalidates iterators pointing at the same entry, but erase() returns
441  /// an iterator pointing to the next element in the subset's list. This makes
442  /// it possible to erase selected elements while iterating over the subset:
443  ///
444  ///   tie(I, E) = Set.equal_range(Key);
445  ///   while (I != E)
446  ///     if (test(*I))
447  ///       I = Set.erase(I);
448  ///     else
449  ///       ++I;
450  ///
451  /// Note that if the last element in the subset list is erased, this will
452  /// return an end iterator which can be decremented to get the new tail (if it
453  /// exists):
454  ///
455  ///  tie(B, I) = Set.equal_range(Key);
456  ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
457  ///    isBegin = (--I) == B;
458  ///    if (test(I))
459  ///      break;
460  ///    I = erase(I);
461  ///  }
462  iterator erase(iterator I) {
463    assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
464           "erasing invalid/end/tombstone iterator");
465
466    // First, unlink the node from its list. Then swap the node out with the
467    // dense vector's last entry
468    iterator NextI = unlink(Dense[I.Idx]);
469
470    // Put in a tombstone.
471    makeTombstone(I.Idx);
472
473    return NextI;
474  }
475
476  /// Erase all elements with the given key. This invalidates all
477  /// iterators of that key.
478  void eraseAll(const KeyT &K) {
479    for (iterator I = find(K); I != end(); /* empty */)
480      I = erase(I);
481  }
482
483private:
484  /// Unlink the node from its list. Returns the next node in the list.
485  iterator unlink(const SMSNode &N) {
486    if (isSingleton(N)) {
487      // Singleton is already unlinked
488      assert(N.Next == SMSNode::INVALID && "Singleton has next?");
489      return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
490    }
491
492    if (isHead(N)) {
493      // If we're the head, then update the sparse array and our next.
494      Sparse[sparseIndex(N)] = N.Next;
495      Dense[N.Next].Prev = N.Prev;
496      return iterator(this, N.Next, ValIndexOf(N.Data));
497    }
498
499    if (N.isTail()) {
500      // If we're the tail, then update our head and our previous.
501      findIndex(sparseIndex(N)).setPrev(N.Prev);
502      Dense[N.Prev].Next = N.Next;
503
504      // Give back an end iterator that can be decremented
505      iterator I(this, N.Prev, ValIndexOf(N.Data));
506      return ++I;
507    }
508
509    // Otherwise, just drop us
510    Dense[N.Next].Prev = N.Prev;
511    Dense[N.Prev].Next = N.Next;
512    return iterator(this, N.Next, ValIndexOf(N.Data));
513  }
514};
515
516} // end namespace llvm
517
518#endif
519