1321369Sdim//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2249259Sdim//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6249259Sdim//
7249259Sdim//===----------------------------------------------------------------------===//
8249259Sdim//
9249259Sdim// This file defines the SparseMultiSet class, which adds multiset behavior to
10249259Sdim// the SparseSet.
11249259Sdim//
12249259Sdim// A sparse multiset holds a small number of objects identified by integer keys
13249259Sdim// from a moderately sized universe. The sparse multiset uses more memory than
14249259Sdim// other containers in order to provide faster operations. Any key can map to
15249259Sdim// multiple values. A SparseMultiSetNode class is provided, which serves as a
16249259Sdim// convenient base class for the contents of a SparseMultiSet.
17249259Sdim//
18249259Sdim//===----------------------------------------------------------------------===//
19249259Sdim
20249259Sdim#ifndef LLVM_ADT_SPARSEMULTISET_H
21249259Sdim#define LLVM_ADT_SPARSEMULTISET_H
22249259Sdim
23321369Sdim#include "llvm/ADT/STLExtras.h"
24314564Sdim#include "llvm/ADT/SmallVector.h"
25249259Sdim#include "llvm/ADT/SparseSet.h"
26314564Sdim#include <cassert>
27314564Sdim#include <cstdint>
28314564Sdim#include <cstdlib>
29314564Sdim#include <iterator>
30314564Sdim#include <limits>
31314564Sdim#include <utility>
32249259Sdim
33249259Sdimnamespace llvm {
34249259Sdim
35249259Sdim/// Fast multiset implementation for objects that can be identified by small
36249259Sdim/// unsigned keys.
37249259Sdim///
38249259Sdim/// SparseMultiSet allocates memory proportional to the size of the key
39249259Sdim/// universe, so it is not recommended for building composite data structures.
40249259Sdim/// It is useful for algorithms that require a single set with fast operations.
41249259Sdim///
42249259Sdim/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
43249259Sdim/// fast clear() as fast as a vector.  The find(), insert(), and erase()
44249259Sdim/// operations are all constant time, and typically faster than a hash table.
45249259Sdim/// The iteration order doesn't depend on numerical key values, it only depends
46249259Sdim/// on the order of insert() and erase() operations.  Iteration order is the
47249259Sdim/// insertion order. Iteration is only provided over elements of equivalent
48249259Sdim/// keys, but iterators are bidirectional.
49249259Sdim///
50249259Sdim/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
51249259Sdim/// offers constant-time clear() and size() operations as well as fast iteration
52249259Sdim/// independent on the size of the universe.
53249259Sdim///
54249259Sdim/// SparseMultiSet contains a dense vector holding all the objects and a sparse
55249259Sdim/// array holding indexes into the dense vector.  Most of the memory is used by
56249259Sdim/// the sparse array which is the size of the key universe. The SparseT template
57249259Sdim/// parameter provides a space/speed tradeoff for sets holding many elements.
58249259Sdim///
59249259Sdim/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
60249259Sdim/// sparse array uses 4 x Universe bytes.
61249259Sdim///
62249259Sdim/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
63249259Sdim/// lines, but the sparse array is 4x smaller.  N is the number of elements in
64249259Sdim/// the set.
65249259Sdim///
66249259Sdim/// For sets that may grow to thousands of elements, SparseT should be set to
67249259Sdim/// uint16_t or uint32_t.
68249259Sdim///
69249259Sdim/// Multiset behavior is provided by providing doubly linked lists for values
70249259Sdim/// that are inlined in the dense vector. SparseMultiSet is a good choice when
71249259Sdim/// one desires a growable number of entries per key, as it will retain the
72249259Sdim/// SparseSet algorithmic properties despite being growable. Thus, it is often a
73249259Sdim/// better choice than a SparseSet of growable containers or a vector of
74249259Sdim/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
75249259Sdim/// the iterators don't point to the element erased), allowing for more
76249259Sdim/// intuitive and fast removal.
77249259Sdim///
78249259Sdim/// @tparam ValueT      The type of objects in the set.
79249259Sdim/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
80249259Sdim/// @tparam SparseT     An unsigned integer type. See above.
81249259Sdim///
82249259Sdimtemplate<typename ValueT,
83314564Sdim         typename KeyFunctorT = identity<unsigned>,
84249259Sdim         typename SparseT = uint8_t>
85249259Sdimclass SparseMultiSet {
86276479Sdim  static_assert(std::numeric_limits<SparseT>::is_integer &&
87276479Sdim                !std::numeric_limits<SparseT>::is_signed,
88276479Sdim                "SparseT must be an unsigned integer type");
89276479Sdim
90249259Sdim  /// The actual data that's stored, as a doubly-linked list implemented via
91249259Sdim  /// indices into the DenseVector.  The doubly linked list is implemented
92249259Sdim  /// circular in Prev indices, and INVALID-terminated in Next indices. This
93249259Sdim  /// provides efficient access to list tails. These nodes can also be
94249259Sdim  /// tombstones, in which case they are actually nodes in a single-linked
95249259Sdim  /// freelist of recyclable slots.
96249259Sdim  struct SMSNode {
97249259Sdim    static const unsigned INVALID = ~0U;
98249259Sdim
99249259Sdim    ValueT Data;
100249259Sdim    unsigned Prev;
101249259Sdim    unsigned Next;
102249259Sdim
103321369Sdim    SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
104249259Sdim
105249259Sdim    /// List tails have invalid Nexts.
106249259Sdim    bool isTail() const {
107249259Sdim      return Next == INVALID;
108249259Sdim    }
109249259Sdim
110249259Sdim    /// Whether this node is a tombstone node, and thus is in our freelist.
111249259Sdim    bool isTombstone() const {
112249259Sdim      return Prev == INVALID;
113249259Sdim    }
114249259Sdim
115249259Sdim    /// Since the list is circular in Prev, all non-tombstone nodes have a valid
116249259Sdim    /// Prev.
117249259Sdim    bool isValid() const { return Prev != INVALID; }
118249259Sdim  };
119249259Sdim
120321369Sdim  using KeyT = typename KeyFunctorT::argument_type;
121321369Sdim  using DenseT = SmallVector<SMSNode, 8>;
122249259Sdim  DenseT Dense;
123314564Sdim  SparseT *Sparse = nullptr;
124314564Sdim  unsigned Universe = 0;
125249259Sdim  KeyFunctorT KeyIndexOf;
126249259Sdim  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
127249259Sdim
128249259Sdim  /// We have a built-in recycler for reusing tombstone slots. This recycler
129249259Sdim  /// puts a singly-linked free list into tombstone slots, allowing us quick
130249259Sdim  /// erasure, iterator preservation, and dense size.
131314564Sdim  unsigned FreelistIdx = SMSNode::INVALID;
132314564Sdim  unsigned NumFree = 0;
133249259Sdim
134249259Sdim  unsigned sparseIndex(const ValueT &Val) const {
135249259Sdim    assert(ValIndexOf(Val) < Universe &&
136249259Sdim           "Invalid key in set. Did object mutate?");
137249259Sdim    return ValIndexOf(Val);
138249259Sdim  }
139249259Sdim  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
140249259Sdim
141249259Sdim  /// Whether the given entry is the head of the list. List heads's previous
142249259Sdim  /// pointers are to the tail of the list, allowing for efficient access to the
143249259Sdim  /// list tail. D must be a valid entry node.
144249259Sdim  bool isHead(const SMSNode &D) const {
145249259Sdim    assert(D.isValid() && "Invalid node for head");
146249259Sdim    return Dense[D.Prev].isTail();
147249259Sdim  }
148249259Sdim
149249259Sdim  /// Whether the given entry is a singleton entry, i.e. the only entry with
150249259Sdim  /// that key.
151249259Sdim  bool isSingleton(const SMSNode &N) const {
152249259Sdim    assert(N.isValid() && "Invalid node for singleton");
153249259Sdim    // Is N its own predecessor?
154249259Sdim    return &Dense[N.Prev] == &N;
155249259Sdim  }
156249259Sdim
157249259Sdim  /// Add in the given SMSNode. Uses a free entry in our freelist if
158249259Sdim  /// available. Returns the index of the added node.
159249259Sdim  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
160249259Sdim    if (NumFree == 0) {
161249259Sdim      Dense.push_back(SMSNode(V, Prev, Next));
162249259Sdim      return Dense.size() - 1;
163249259Sdim    }
164249259Sdim
165249259Sdim    // Peel off a free slot
166249259Sdim    unsigned Idx = FreelistIdx;
167249259Sdim    unsigned NextFree = Dense[Idx].Next;
168249259Sdim    assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
169249259Sdim
170249259Sdim    Dense[Idx] = SMSNode(V, Prev, Next);
171249259Sdim    FreelistIdx = NextFree;
172249259Sdim    --NumFree;
173249259Sdim    return Idx;
174249259Sdim  }
175249259Sdim
176249259Sdim  /// Make the current index a new tombstone. Pushes it onto the freelist.
177249259Sdim  void makeTombstone(unsigned Idx) {
178249259Sdim    Dense[Idx].Prev = SMSNode::INVALID;
179249259Sdim    Dense[Idx].Next = FreelistIdx;
180249259Sdim    FreelistIdx = Idx;
181249259Sdim    ++NumFree;
182249259Sdim  }
183249259Sdim
184249259Sdimpublic:
185321369Sdim  using value_type = ValueT;
186321369Sdim  using reference = ValueT &;
187321369Sdim  using const_reference = const ValueT &;
188321369Sdim  using pointer = ValueT *;
189321369Sdim  using const_pointer = const ValueT *;
190321369Sdim  using size_type = unsigned;
191249259Sdim
192314564Sdim  SparseMultiSet() = default;
193314564Sdim  SparseMultiSet(const SparseMultiSet &) = delete;
194314564Sdim  SparseMultiSet &operator=(const SparseMultiSet &) = delete;
195249259Sdim  ~SparseMultiSet() { free(Sparse); }
196249259Sdim
197249259Sdim  /// Set the universe size which determines the largest key the set can hold.
198249259Sdim  /// The universe must be sized before any elements can be added.
199249259Sdim  ///
200249259Sdim  /// @param U Universe size. All object keys must be less than U.
201249259Sdim  ///
202249259Sdim  void setUniverse(unsigned U) {
203249259Sdim    // It's not hard to resize the universe on a non-empty set, but it doesn't
204249259Sdim    // seem like a likely use case, so we can add that code when we need it.
205249259Sdim    assert(empty() && "Can only resize universe on an empty map");
206249259Sdim    // Hysteresis prevents needless reallocations.
207249259Sdim    if (U >= Universe/4 && U <= Universe)
208249259Sdim      return;
209249259Sdim    free(Sparse);
210249259Sdim    // The Sparse array doesn't actually need to be initialized, so malloc
211249259Sdim    // would be enough here, but that will cause tools like valgrind to
212249259Sdim    // complain about branching on uninitialized data.
213341825Sdim    Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
214249259Sdim    Universe = U;
215249259Sdim  }
216249259Sdim
217249259Sdim  /// Our iterators are iterators over the collection of objects that share a
218249259Sdim  /// key.
219249259Sdim  template<typename SMSPtrTy>
220249259Sdim  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
221249259Sdim                                             ValueT> {
222249259Sdim    friend class SparseMultiSet;
223314564Sdim
224249259Sdim    SMSPtrTy SMS;
225249259Sdim    unsigned Idx;
226249259Sdim    unsigned SparseIdx;
227249259Sdim
228249259Sdim    iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
229321369Sdim      : SMS(P), Idx(I), SparseIdx(SI) {}
230249259Sdim
231249259Sdim    /// Whether our iterator has fallen outside our dense vector.
232249259Sdim    bool isEnd() const {
233249259Sdim      if (Idx == SMSNode::INVALID)
234249259Sdim        return true;
235249259Sdim
236249259Sdim      assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
237249259Sdim      return false;
238249259Sdim    }
239249259Sdim
240249259Sdim    /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
241249259Sdim    bool isKeyed() const { return SparseIdx < SMS->Universe; }
242249259Sdim
243249259Sdim    unsigned Prev() const { return SMS->Dense[Idx].Prev; }
244249259Sdim    unsigned Next() const { return SMS->Dense[Idx].Next; }
245249259Sdim
246249259Sdim    void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
247249259Sdim    void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
248249259Sdim
249249259Sdim  public:
250321369Sdim    using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
251321369Sdim    using value_type = typename super::value_type;
252321369Sdim    using difference_type = typename super::difference_type;
253321369Sdim    using pointer = typename super::pointer;
254321369Sdim    using reference = typename super::reference;
255249259Sdim
256249259Sdim    reference operator*() const {
257249259Sdim      assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
258249259Sdim             "Dereferencing iterator of invalid key or index");
259249259Sdim
260249259Sdim      return SMS->Dense[Idx].Data;
261249259Sdim    }
262249259Sdim    pointer operator->() const { return &operator*(); }
263249259Sdim
264249259Sdim    /// Comparison operators
265249259Sdim    bool operator==(const iterator_base &RHS) const {
266249259Sdim      // end compares equal
267249259Sdim      if (SMS == RHS.SMS && Idx == RHS.Idx) {
268249259Sdim        assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
269249259Sdim               "Same dense entry, but different keys?");
270249259Sdim        return true;
271249259Sdim      }
272249259Sdim
273249259Sdim      return false;
274249259Sdim    }
275249259Sdim
276249259Sdim    bool operator!=(const iterator_base &RHS) const {
277249259Sdim      return !operator==(RHS);
278249259Sdim    }
279249259Sdim
280249259Sdim    /// Increment and decrement operators
281249259Sdim    iterator_base &operator--() { // predecrement - Back up
282249259Sdim      assert(isKeyed() && "Decrementing an invalid iterator");
283249259Sdim      assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
284249259Sdim             "Decrementing head of list");
285249259Sdim
286249259Sdim      // If we're at the end, then issue a new find()
287249259Sdim      if (isEnd())
288249259Sdim        Idx = SMS->findIndex(SparseIdx).Prev();
289249259Sdim      else
290249259Sdim        Idx = Prev();
291249259Sdim
292249259Sdim      return *this;
293249259Sdim    }
294249259Sdim    iterator_base &operator++() { // preincrement - Advance
295249259Sdim      assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
296249259Sdim      Idx = Next();
297249259Sdim      return *this;
298249259Sdim    }
299249259Sdim    iterator_base operator--(int) { // postdecrement
300249259Sdim      iterator_base I(*this);
301249259Sdim      --*this;
302249259Sdim      return I;
303249259Sdim    }
304249259Sdim    iterator_base operator++(int) { // postincrement
305249259Sdim      iterator_base I(*this);
306249259Sdim      ++*this;
307249259Sdim      return I;
308249259Sdim    }
309249259Sdim  };
310249259Sdim
311321369Sdim  using iterator = iterator_base<SparseMultiSet *>;
312321369Sdim  using const_iterator = iterator_base<const SparseMultiSet *>;
313321369Sdim
314249259Sdim  // Convenience types
315321369Sdim  using RangePair = std::pair<iterator, iterator>;
316249259Sdim
317249259Sdim  /// Returns an iterator past this container. Note that such an iterator cannot
318249259Sdim  /// be decremented, but will compare equal to other end iterators.
319249259Sdim  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
320249259Sdim  const_iterator end() const {
321249259Sdim    return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
322249259Sdim  }
323249259Sdim
324249259Sdim  /// Returns true if the set is empty.
325249259Sdim  ///
326249259Sdim  /// This is not the same as BitVector::empty().
327249259Sdim  ///
328249259Sdim  bool empty() const { return size() == 0; }
329249259Sdim
330249259Sdim  /// Returns the number of elements in the set.
331249259Sdim  ///
332249259Sdim  /// This is not the same as BitVector::size() which returns the size of the
333249259Sdim  /// universe.
334249259Sdim  ///
335276479Sdim  size_type size() const {
336249259Sdim    assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
337249259Sdim    return Dense.size() - NumFree;
338249259Sdim  }
339249259Sdim
340249259Sdim  /// Clears the set.  This is a very fast constant time operation.
341249259Sdim  ///
342249259Sdim  void clear() {
343249259Sdim    // Sparse does not need to be cleared, see find().
344249259Sdim    Dense.clear();
345249259Sdim    NumFree = 0;
346249259Sdim    FreelistIdx = SMSNode::INVALID;
347249259Sdim  }
348249259Sdim
349249259Sdim  /// Find an element by its index.
350249259Sdim  ///
351249259Sdim  /// @param   Idx A valid index to find.
352249259Sdim  /// @returns An iterator to the element identified by key, or end().
353249259Sdim  ///
354249259Sdim  iterator findIndex(unsigned Idx) {
355249259Sdim    assert(Idx < Universe && "Key out of range");
356249259Sdim    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
357249259Sdim    for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
358249259Sdim      const unsigned FoundIdx = sparseIndex(Dense[i]);
359249259Sdim      // Check that we're pointing at the correct entry and that it is the head
360249259Sdim      // of a valid list.
361249259Sdim      if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
362249259Sdim        return iterator(this, i, Idx);
363249259Sdim      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
364249259Sdim      if (!Stride)
365249259Sdim        break;
366249259Sdim    }
367249259Sdim    return end();
368249259Sdim  }
369249259Sdim
370249259Sdim  /// Find an element by its key.
371249259Sdim  ///
372249259Sdim  /// @param   Key A valid key to find.
373249259Sdim  /// @returns An iterator to the element identified by key, or end().
374249259Sdim  ///
375249259Sdim  iterator find(const KeyT &Key) {
376249259Sdim    return findIndex(KeyIndexOf(Key));
377249259Sdim  }
378249259Sdim
379249259Sdim  const_iterator find(const KeyT &Key) const {
380249259Sdim    iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
381249259Sdim    return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
382249259Sdim  }
383249259Sdim
384249259Sdim  /// Returns the number of elements identified by Key. This will be linear in
385249259Sdim  /// the number of elements of that key.
386276479Sdim  size_type count(const KeyT &Key) const {
387249259Sdim    unsigned Ret = 0;
388249259Sdim    for (const_iterator It = find(Key); It != end(); ++It)
389249259Sdim      ++Ret;
390249259Sdim
391249259Sdim    return Ret;
392249259Sdim  }
393249259Sdim
394249259Sdim  /// Returns true if this set contains an element identified by Key.
395249259Sdim  bool contains(const KeyT &Key) const {
396249259Sdim    return find(Key) != end();
397249259Sdim  }
398249259Sdim
399249259Sdim  /// Return the head and tail of the subset's list, otherwise returns end().
400249259Sdim  iterator getHead(const KeyT &Key) { return find(Key); }
401249259Sdim  iterator getTail(const KeyT &Key) {
402249259Sdim    iterator I = find(Key);
403249259Sdim    if (I != end())
404249259Sdim      I = iterator(this, I.Prev(), KeyIndexOf(Key));
405249259Sdim    return I;
406249259Sdim  }
407249259Sdim
408249259Sdim  /// The bounds of the range of items sharing Key K. First member is the head
409249259Sdim  /// of the list, and the second member is a decrementable end iterator for
410249259Sdim  /// that key.
411249259Sdim  RangePair equal_range(const KeyT &K) {
412249259Sdim    iterator B = find(K);
413249259Sdim    iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
414249259Sdim    return make_pair(B, E);
415249259Sdim  }
416249259Sdim
417249259Sdim  /// Insert a new element at the tail of the subset list. Returns an iterator
418249259Sdim  /// to the newly added entry.
419249259Sdim  iterator insert(const ValueT &Val) {
420249259Sdim    unsigned Idx = sparseIndex(Val);
421249259Sdim    iterator I = findIndex(Idx);
422249259Sdim
423249259Sdim    unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
424249259Sdim
425249259Sdim    if (I == end()) {
426249259Sdim      // Make a singleton list
427249259Sdim      Sparse[Idx] = NodeIdx;
428249259Sdim      Dense[NodeIdx].Prev = NodeIdx;
429249259Sdim      return iterator(this, NodeIdx, Idx);
430249259Sdim    }
431249259Sdim
432249259Sdim    // Stick it at the end.
433249259Sdim    unsigned HeadIdx = I.Idx;
434249259Sdim    unsigned TailIdx = I.Prev();
435249259Sdim    Dense[TailIdx].Next = NodeIdx;
436249259Sdim    Dense[HeadIdx].Prev = NodeIdx;
437249259Sdim    Dense[NodeIdx].Prev = TailIdx;
438249259Sdim
439249259Sdim    return iterator(this, NodeIdx, Idx);
440249259Sdim  }
441249259Sdim
442249259Sdim  /// Erases an existing element identified by a valid iterator.
443249259Sdim  ///
444249259Sdim  /// This invalidates iterators pointing at the same entry, but erase() returns
445249259Sdim  /// an iterator pointing to the next element in the subset's list. This makes
446249259Sdim  /// it possible to erase selected elements while iterating over the subset:
447249259Sdim  ///
448249259Sdim  ///   tie(I, E) = Set.equal_range(Key);
449249259Sdim  ///   while (I != E)
450249259Sdim  ///     if (test(*I))
451249259Sdim  ///       I = Set.erase(I);
452249259Sdim  ///     else
453249259Sdim  ///       ++I;
454249259Sdim  ///
455249259Sdim  /// Note that if the last element in the subset list is erased, this will
456249259Sdim  /// return an end iterator which can be decremented to get the new tail (if it
457249259Sdim  /// exists):
458249259Sdim  ///
459249259Sdim  ///  tie(B, I) = Set.equal_range(Key);
460249259Sdim  ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
461249259Sdim  ///    isBegin = (--I) == B;
462249259Sdim  ///    if (test(I))
463249259Sdim  ///      break;
464249259Sdim  ///    I = erase(I);
465249259Sdim  ///  }
466249259Sdim  iterator erase(iterator I) {
467249259Sdim    assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
468249259Sdim           "erasing invalid/end/tombstone iterator");
469249259Sdim
470249259Sdim    // First, unlink the node from its list. Then swap the node out with the
471249259Sdim    // dense vector's last entry
472249259Sdim    iterator NextI = unlink(Dense[I.Idx]);
473249259Sdim
474249259Sdim    // Put in a tombstone.
475249259Sdim    makeTombstone(I.Idx);
476249259Sdim
477249259Sdim    return NextI;
478249259Sdim  }
479249259Sdim
480249259Sdim  /// Erase all elements with the given key. This invalidates all
481249259Sdim  /// iterators of that key.
482249259Sdim  void eraseAll(const KeyT &K) {
483249259Sdim    for (iterator I = find(K); I != end(); /* empty */)
484249259Sdim      I = erase(I);
485249259Sdim  }
486249259Sdim
487249259Sdimprivate:
488249259Sdim  /// Unlink the node from its list. Returns the next node in the list.
489249259Sdim  iterator unlink(const SMSNode &N) {
490249259Sdim    if (isSingleton(N)) {
491249259Sdim      // Singleton is already unlinked
492249259Sdim      assert(N.Next == SMSNode::INVALID && "Singleton has next?");
493249259Sdim      return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
494249259Sdim    }
495249259Sdim
496249259Sdim    if (isHead(N)) {
497249259Sdim      // If we're the head, then update the sparse array and our next.
498249259Sdim      Sparse[sparseIndex(N)] = N.Next;
499249259Sdim      Dense[N.Next].Prev = N.Prev;
500249259Sdim      return iterator(this, N.Next, ValIndexOf(N.Data));
501249259Sdim    }
502249259Sdim
503249259Sdim    if (N.isTail()) {
504249259Sdim      // If we're the tail, then update our head and our previous.
505249259Sdim      findIndex(sparseIndex(N)).setPrev(N.Prev);
506249259Sdim      Dense[N.Prev].Next = N.Next;
507249259Sdim
508249259Sdim      // Give back an end iterator that can be decremented
509249259Sdim      iterator I(this, N.Prev, ValIndexOf(N.Data));
510249259Sdim      return ++I;
511249259Sdim    }
512249259Sdim
513249259Sdim    // Otherwise, just drop us
514249259Sdim    Dense[N.Next].Prev = N.Prev;
515249259Sdim    Dense[N.Prev].Next = N.Next;
516249259Sdim    return iterator(this, N.Next, ValIndexOf(N.Data));
517249259Sdim  }
518249259Sdim};
519249259Sdim
520249259Sdim} // end namespace llvm
521249259Sdim
522314564Sdim#endif // LLVM_ADT_SPARSEMULTISET_H
523