Relocations.cpp revision 355940
1//===- Relocations.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains platform-independent functions to process relocations.
10// I'll describe the overview of this file here.
11//
12// Simple relocations are easy to handle for the linker. For example,
13// for R_X86_64_PC64 relocs, the linker just has to fix up locations
14// with the relative offsets to the target symbols. It would just be
15// reading records from relocation sections and applying them to output.
16//
17// But not all relocations are that easy to handle. For example, for
18// R_386_GOTOFF relocs, the linker has to create new GOT entries for
19// symbols if they don't exist, and fix up locations with GOT entry
20// offsets from the beginning of GOT section. So there is more than
21// fixing addresses in relocation processing.
22//
23// ELF defines a large number of complex relocations.
24//
25// The functions in this file analyze relocations and do whatever needs
26// to be done. It includes, but not limited to, the following.
27//
28//  - create GOT/PLT entries
29//  - create new relocations in .dynsym to let the dynamic linker resolve
30//    them at runtime (since ELF supports dynamic linking, not all
31//    relocations can be resolved at link-time)
32//  - create COPY relocs and reserve space in .bss
33//  - replace expensive relocs (in terms of runtime cost) with cheap ones
34//  - error out infeasible combinations such as PIC and non-relative relocs
35//
36// Note that the functions in this file don't actually apply relocations
37// because it doesn't know about the output file nor the output file buffer.
38// It instead stores Relocation objects to InputSection's Relocations
39// vector to let it apply later in InputSection::writeTo.
40//
41//===----------------------------------------------------------------------===//
42
43#include "Relocations.h"
44#include "Config.h"
45#include "LinkerScript.h"
46#include "OutputSections.h"
47#include "SymbolTable.h"
48#include "Symbols.h"
49#include "SyntheticSections.h"
50#include "Target.h"
51#include "Thunks.h"
52#include "lld/Common/ErrorHandler.h"
53#include "lld/Common/Memory.h"
54#include "lld/Common/Strings.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/Support/Endian.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59
60using namespace llvm;
61using namespace llvm::ELF;
62using namespace llvm::object;
63using namespace llvm::support::endian;
64
65using namespace lld;
66using namespace lld::elf;
67
68static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69  for (BaseCommand *base : script->sectionCommands)
70    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71      if (cmd->sym == &sym)
72        return cmd->location;
73  return None;
74}
75
76// Construct a message in the following format.
77//
78// >>> defined in /home/alice/src/foo.o
79// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
80// >>>               /home/alice/src/bar.o:(.text+0x1)
81static std::string getLocation(InputSectionBase &s, const Symbol &sym,
82                               uint64_t off) {
83  std::string msg = "\n>>> defined in ";
84  if (sym.file)
85    msg += toString(sym.file);
86  else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
87    msg += *loc;
88
89  msg += "\n>>> referenced by ";
90  std::string src = s.getSrcMsg(sym, off);
91  if (!src.empty())
92    msg += src + "\n>>>               ";
93  return msg + s.getObjMsg(off);
94}
95
96namespace {
97// Build a bitmask with one bit set for each RelExpr.
98//
99// Constexpr function arguments can't be used in static asserts, so we
100// use template arguments to build the mask.
101// But function template partial specializations don't exist (needed
102// for base case of the recursion), so we need a dummy struct.
103template <RelExpr... Exprs> struct RelExprMaskBuilder {
104  static inline uint64_t build() { return 0; }
105};
106
107// Specialization for recursive case.
108template <RelExpr Head, RelExpr... Tail>
109struct RelExprMaskBuilder<Head, Tail...> {
110  static inline uint64_t build() {
111    static_assert(0 <= Head && Head < 64,
112                  "RelExpr is too large for 64-bit mask!");
113    return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
114  }
115};
116} // namespace
117
118// Return true if `Expr` is one of `Exprs`.
119// There are fewer than 64 RelExpr's, so we can represent any set of
120// RelExpr's as a constant bit mask and test for membership with a
121// couple cheap bitwise operations.
122template <RelExpr... Exprs> bool oneof(RelExpr expr) {
123  assert(0 <= expr && (int)expr < 64 &&
124         "RelExpr is too large for 64-bit mask!");
125  return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
126}
127
128// This function is similar to the `handleTlsRelocation`. MIPS does not
129// support any relaxations for TLS relocations so by factoring out MIPS
130// handling in to the separate function we can simplify the code and do not
131// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
132// Mips has a custom MipsGotSection that handles the writing of GOT entries
133// without dynamic relocations.
134static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
135                                        InputSectionBase &c, uint64_t offset,
136                                        int64_t addend, RelExpr expr) {
137  if (expr == R_MIPS_TLSLD) {
138    in.mipsGot->addTlsIndex(*c.file);
139    c.relocations.push_back({expr, type, offset, addend, &sym});
140    return 1;
141  }
142  if (expr == R_MIPS_TLSGD) {
143    in.mipsGot->addDynTlsEntry(*c.file, sym);
144    c.relocations.push_back({expr, type, offset, addend, &sym});
145    return 1;
146  }
147  return 0;
148}
149
150// Notes about General Dynamic and Local Dynamic TLS models below. They may
151// require the generation of a pair of GOT entries that have associated dynamic
152// relocations. The pair of GOT entries created are of the form GOT[e0] Module
153// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
154// symbol in TLS block.
155//
156// Returns the number of relocations processed.
157template <class ELFT>
158static unsigned
159handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
160                    typename ELFT::uint offset, int64_t addend, RelExpr expr) {
161  if (!sym.isTls())
162    return 0;
163
164  if (config->emachine == EM_MIPS)
165    return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
166
167  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
168          expr) &&
169      config->shared) {
170    if (in.got->addDynTlsEntry(sym)) {
171      uint64_t off = in.got->getGlobalDynOffset(sym);
172      mainPart->relaDyn->addReloc(
173          {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
174    }
175    if (expr != R_TLSDESC_CALL)
176      c.relocations.push_back({expr, type, offset, addend, &sym});
177    return 1;
178  }
179
180  bool canRelax = config->emachine != EM_ARM && config->emachine != EM_RISCV;
181
182  // If we are producing an executable and the symbol is non-preemptable, it
183  // must be defined and the code sequence can be relaxed to use Local-Exec.
184  //
185  // ARM and RISC-V do not support any relaxations for TLS relocations, however,
186  // we can omit the DTPMOD dynamic relocations and resolve them at link time
187  // because them are always 1. This may be necessary for static linking as
188  // DTPMOD may not be expected at load time.
189  bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
190
191  // Local Dynamic is for access to module local TLS variables, while still
192  // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
193  // module index, with a special value of 0 for the current module. GOT[e1] is
194  // unused. There only needs to be one module index entry.
195  if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
196          expr)) {
197    // Local-Dynamic relocs can be relaxed to Local-Exec.
198    if (canRelax && !config->shared) {
199      c.relocations.push_back(
200          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
201           offset, addend, &sym});
202      return target->getTlsGdRelaxSkip(type);
203    }
204    if (expr == R_TLSLD_HINT)
205      return 1;
206    if (in.got->addTlsIndex()) {
207      if (isLocalInExecutable)
208        in.got->relocations.push_back(
209            {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
210      else
211        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
212                                in.got->getTlsIndexOff(), nullptr);
213    }
214    c.relocations.push_back({expr, type, offset, addend, &sym});
215    return 1;
216  }
217
218  // Local-Dynamic relocs can be relaxed to Local-Exec.
219  if (expr == R_DTPREL && !config->shared) {
220    c.relocations.push_back(
221        {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
222         offset, addend, &sym});
223    return 1;
224  }
225
226  // Local-Dynamic sequence where offset of tls variable relative to dynamic
227  // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
228  if (expr == R_TLSLD_GOT_OFF) {
229    if (!sym.isInGot()) {
230      in.got->addEntry(sym);
231      uint64_t off = sym.getGotOffset();
232      in.got->relocations.push_back(
233          {R_ABS, target->tlsOffsetRel, off, 0, &sym});
234    }
235    c.relocations.push_back({expr, type, offset, addend, &sym});
236    return 1;
237  }
238
239  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
240            R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
241    if (!canRelax || config->shared) {
242      if (in.got->addDynTlsEntry(sym)) {
243        uint64_t off = in.got->getGlobalDynOffset(sym);
244
245        if (isLocalInExecutable)
246          // Write one to the GOT slot.
247          in.got->relocations.push_back(
248              {R_ADDEND, target->symbolicRel, off, 1, &sym});
249        else
250          mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
251
252        // If the symbol is preemptible we need the dynamic linker to write
253        // the offset too.
254        uint64_t offsetOff = off + config->wordsize;
255        if (sym.isPreemptible)
256          mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
257                                  &sym);
258        else
259          in.got->relocations.push_back(
260              {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
261      }
262      c.relocations.push_back({expr, type, offset, addend, &sym});
263      return 1;
264    }
265
266    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
267    // depending on the symbol being locally defined or not.
268    if (sym.isPreemptible) {
269      c.relocations.push_back(
270          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type,
271           offset, addend, &sym});
272      if (!sym.isInGot()) {
273        in.got->addEntry(sym);
274        mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
275                                &sym);
276      }
277    } else {
278      c.relocations.push_back(
279          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type,
280           offset, addend, &sym});
281    }
282    return target->getTlsGdRelaxSkip(type);
283  }
284
285  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
286  // defined.
287  if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
288            R_TLSIE_HINT>(expr) &&
289      canRelax && isLocalInExecutable) {
290    c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
291    return 1;
292  }
293
294  if (expr == R_TLSIE_HINT)
295    return 1;
296  return 0;
297}
298
299static RelType getMipsPairType(RelType type, bool isLocal) {
300  switch (type) {
301  case R_MIPS_HI16:
302    return R_MIPS_LO16;
303  case R_MIPS_GOT16:
304    // In case of global symbol, the R_MIPS_GOT16 relocation does not
305    // have a pair. Each global symbol has a unique entry in the GOT
306    // and a corresponding instruction with help of the R_MIPS_GOT16
307    // relocation loads an address of the symbol. In case of local
308    // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
309    // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
310    // relocations handle low 16 bits of the address. That allows
311    // to allocate only one GOT entry for every 64 KBytes of local data.
312    return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
313  case R_MICROMIPS_GOT16:
314    return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
315  case R_MIPS_PCHI16:
316    return R_MIPS_PCLO16;
317  case R_MICROMIPS_HI16:
318    return R_MICROMIPS_LO16;
319  default:
320    return R_MIPS_NONE;
321  }
322}
323
324// True if non-preemptable symbol always has the same value regardless of where
325// the DSO is loaded.
326static bool isAbsolute(const Symbol &sym) {
327  if (sym.isUndefWeak())
328    return true;
329  if (const auto *dr = dyn_cast<Defined>(&sym))
330    return dr->section == nullptr; // Absolute symbol.
331  return false;
332}
333
334static bool isAbsoluteValue(const Symbol &sym) {
335  return isAbsolute(sym) || sym.isTls();
336}
337
338// Returns true if Expr refers a PLT entry.
339static bool needsPlt(RelExpr expr) {
340  return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
341}
342
343// Returns true if Expr refers a GOT entry. Note that this function
344// returns false for TLS variables even though they need GOT, because
345// TLS variables uses GOT differently than the regular variables.
346static bool needsGot(RelExpr expr) {
347  return oneof<R_GOT, R_GOT_OFF, R_HEXAGON_GOT, R_MIPS_GOT_LOCAL_PAGE,
348               R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC,
349               R_GOT_PC, R_GOTPLT>(expr);
350}
351
352// True if this expression is of the form Sym - X, where X is a position in the
353// file (PC, or GOT for example).
354static bool isRelExpr(RelExpr expr) {
355  return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
356               R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
357               R_RISCV_PC_INDIRECT>(expr);
358}
359
360// Returns true if a given relocation can be computed at link-time.
361//
362// For instance, we know the offset from a relocation to its target at
363// link-time if the relocation is PC-relative and refers a
364// non-interposable function in the same executable. This function
365// will return true for such relocation.
366//
367// If this function returns false, that means we need to emit a
368// dynamic relocation so that the relocation will be fixed at load-time.
369static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
370                                     InputSectionBase &s, uint64_t relOff) {
371  // These expressions always compute a constant
372  if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_HEXAGON_GOT, R_TLSLD_GOT_OFF,
373            R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
374            R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
375            R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
376            R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
377            R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
378            R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_HINT, R_TLSLD_HINT,
379            R_TLSIE_HINT>(e))
380    return true;
381
382  // These never do, except if the entire file is position dependent or if
383  // only the low bits are used.
384  if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
385    return target->usesOnlyLowPageBits(type) || !config->isPic;
386
387  if (sym.isPreemptible)
388    return false;
389  if (!config->isPic)
390    return true;
391
392  // The size of a non preemptible symbol is a constant.
393  if (e == R_SIZE)
394    return true;
395
396  // For the target and the relocation, we want to know if they are
397  // absolute or relative.
398  bool absVal = isAbsoluteValue(sym);
399  bool relE = isRelExpr(e);
400  if (absVal && !relE)
401    return true;
402  if (!absVal && relE)
403    return true;
404  if (!absVal && !relE)
405    return target->usesOnlyLowPageBits(type);
406
407  // Relative relocation to an absolute value. This is normally unrepresentable,
408  // but if the relocation refers to a weak undefined symbol, we allow it to
409  // resolve to the image base. This is a little strange, but it allows us to
410  // link function calls to such symbols. Normally such a call will be guarded
411  // with a comparison, which will load a zero from the GOT.
412  // Another special case is MIPS _gp_disp symbol which represents offset
413  // between start of a function and '_gp' value and defined as absolute just
414  // to simplify the code.
415  assert(absVal && relE);
416  if (sym.isUndefWeak())
417    return true;
418
419  // We set the final symbols values for linker script defined symbols later.
420  // They always can be computed as a link time constant.
421  if (sym.scriptDefined)
422      return true;
423
424  error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
425        toString(sym) + getLocation(s, sym, relOff));
426  return true;
427}
428
429static RelExpr toPlt(RelExpr expr) {
430  switch (expr) {
431  case R_PPC64_CALL:
432    return R_PPC64_CALL_PLT;
433  case R_PC:
434    return R_PLT_PC;
435  case R_ABS:
436    return R_PLT;
437  default:
438    return expr;
439  }
440}
441
442static RelExpr fromPlt(RelExpr expr) {
443  // We decided not to use a plt. Optimize a reference to the plt to a
444  // reference to the symbol itself.
445  switch (expr) {
446  case R_PLT_PC:
447  case R_PPC32_PLTREL:
448    return R_PC;
449  case R_PPC64_CALL_PLT:
450    return R_PPC64_CALL;
451  case R_PLT:
452    return R_ABS;
453  default:
454    return expr;
455  }
456}
457
458// Returns true if a given shared symbol is in a read-only segment in a DSO.
459template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
460  using Elf_Phdr = typename ELFT::Phdr;
461
462  // Determine if the symbol is read-only by scanning the DSO's program headers.
463  const SharedFile &file = ss.getFile();
464  for (const Elf_Phdr &phdr :
465       check(file.template getObj<ELFT>().program_headers()))
466    if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
467        !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
468        ss.value < phdr.p_vaddr + phdr.p_memsz)
469      return true;
470  return false;
471}
472
473// Returns symbols at the same offset as a given symbol, including SS itself.
474//
475// If two or more symbols are at the same offset, and at least one of
476// them are copied by a copy relocation, all of them need to be copied.
477// Otherwise, they would refer to different places at runtime.
478template <class ELFT>
479static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
480  using Elf_Sym = typename ELFT::Sym;
481
482  SharedFile &file = ss.getFile();
483
484  SmallSet<SharedSymbol *, 4> ret;
485  for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
486    if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
487        s.getType() == STT_TLS || s.st_value != ss.value)
488      continue;
489    StringRef name = check(s.getName(file.getStringTable()));
490    Symbol *sym = symtab->find(name);
491    if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
492      ret.insert(alias);
493  }
494  return ret;
495}
496
497// When a symbol is copy relocated or we create a canonical plt entry, it is
498// effectively a defined symbol. In the case of copy relocation the symbol is
499// in .bss and in the case of a canonical plt entry it is in .plt. This function
500// replaces the existing symbol with a Defined pointing to the appropriate
501// location.
502static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
503                               uint64_t size) {
504  Symbol old = sym;
505
506  sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
507                      sym.type, value, size, sec});
508
509  sym.pltIndex = old.pltIndex;
510  sym.gotIndex = old.gotIndex;
511  sym.verdefIndex = old.verdefIndex;
512  sym.ppc64BranchltIndex = old.ppc64BranchltIndex;
513  sym.isPreemptible = true;
514  sym.exportDynamic = true;
515  sym.isUsedInRegularObj = true;
516  sym.used = true;
517}
518
519// Reserve space in .bss or .bss.rel.ro for copy relocation.
520//
521// The copy relocation is pretty much a hack. If you use a copy relocation
522// in your program, not only the symbol name but the symbol's size, RW/RO
523// bit and alignment become part of the ABI. In addition to that, if the
524// symbol has aliases, the aliases become part of the ABI. That's subtle,
525// but if you violate that implicit ABI, that can cause very counter-
526// intuitive consequences.
527//
528// So, what is the copy relocation? It's for linking non-position
529// independent code to DSOs. In an ideal world, all references to data
530// exported by DSOs should go indirectly through GOT. But if object files
531// are compiled as non-PIC, all data references are direct. There is no
532// way for the linker to transform the code to use GOT, as machine
533// instructions are already set in stone in object files. This is where
534// the copy relocation takes a role.
535//
536// A copy relocation instructs the dynamic linker to copy data from a DSO
537// to a specified address (which is usually in .bss) at load-time. If the
538// static linker (that's us) finds a direct data reference to a DSO
539// symbol, it creates a copy relocation, so that the symbol can be
540// resolved as if it were in .bss rather than in a DSO.
541//
542// As you can see in this function, we create a copy relocation for the
543// dynamic linker, and the relocation contains not only symbol name but
544// various other informtion about the symbol. So, such attributes become a
545// part of the ABI.
546//
547// Note for application developers: I can give you a piece of advice if
548// you are writing a shared library. You probably should export only
549// functions from your library. You shouldn't export variables.
550//
551// As an example what can happen when you export variables without knowing
552// the semantics of copy relocations, assume that you have an exported
553// variable of type T. It is an ABI-breaking change to add new members at
554// end of T even though doing that doesn't change the layout of the
555// existing members. That's because the space for the new members are not
556// reserved in .bss unless you recompile the main program. That means they
557// are likely to overlap with other data that happens to be laid out next
558// to the variable in .bss. This kind of issue is sometimes very hard to
559// debug. What's a solution? Instead of exporting a varaible V from a DSO,
560// define an accessor getV().
561template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
562  // Copy relocation against zero-sized symbol doesn't make sense.
563  uint64_t symSize = ss.getSize();
564  if (symSize == 0 || ss.alignment == 0)
565    fatal("cannot create a copy relocation for symbol " + toString(ss));
566
567  // See if this symbol is in a read-only segment. If so, preserve the symbol's
568  // memory protection by reserving space in the .bss.rel.ro section.
569  bool isRO = isReadOnly<ELFT>(ss);
570  BssSection *sec =
571      make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
572  if (isRO)
573    in.bssRelRo->getParent()->addSection(sec);
574  else
575    in.bss->getParent()->addSection(sec);
576
577  // Look through the DSO's dynamic symbol table for aliases and create a
578  // dynamic symbol for each one. This causes the copy relocation to correctly
579  // interpose any aliases.
580  for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
581    replaceWithDefined(*sym, sec, 0, sym->size);
582
583  mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
584}
585
586// MIPS has an odd notion of "paired" relocations to calculate addends.
587// For example, if a relocation is of R_MIPS_HI16, there must be a
588// R_MIPS_LO16 relocation after that, and an addend is calculated using
589// the two relocations.
590template <class ELFT, class RelTy>
591static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
592                                 InputSectionBase &sec, RelExpr expr,
593                                 bool isLocal) {
594  if (expr == R_MIPS_GOTREL && isLocal)
595    return sec.getFile<ELFT>()->mipsGp0;
596
597  // The ABI says that the paired relocation is used only for REL.
598  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
599  if (RelTy::IsRela)
600    return 0;
601
602  RelType type = rel.getType(config->isMips64EL);
603  uint32_t pairTy = getMipsPairType(type, isLocal);
604  if (pairTy == R_MIPS_NONE)
605    return 0;
606
607  const uint8_t *buf = sec.data().data();
608  uint32_t symIndex = rel.getSymbol(config->isMips64EL);
609
610  // To make things worse, paired relocations might not be contiguous in
611  // the relocation table, so we need to do linear search. *sigh*
612  for (const RelTy *ri = &rel; ri != end; ++ri)
613    if (ri->getType(config->isMips64EL) == pairTy &&
614        ri->getSymbol(config->isMips64EL) == symIndex)
615      return target->getImplicitAddend(buf + ri->r_offset, pairTy);
616
617  warn("can't find matching " + toString(pairTy) + " relocation for " +
618       toString(type));
619  return 0;
620}
621
622// Returns an addend of a given relocation. If it is RELA, an addend
623// is in a relocation itself. If it is REL, we need to read it from an
624// input section.
625template <class ELFT, class RelTy>
626static int64_t computeAddend(const RelTy &rel, const RelTy *end,
627                             InputSectionBase &sec, RelExpr expr,
628                             bool isLocal) {
629  int64_t addend;
630  RelType type = rel.getType(config->isMips64EL);
631
632  if (RelTy::IsRela) {
633    addend = getAddend<ELFT>(rel);
634  } else {
635    const uint8_t *buf = sec.data().data();
636    addend = target->getImplicitAddend(buf + rel.r_offset, type);
637  }
638
639  if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
640    addend += getPPC64TocBase();
641  if (config->emachine == EM_MIPS)
642    addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
643
644  return addend;
645}
646
647// Custom error message if Sym is defined in a discarded section.
648template <class ELFT>
649static std::string maybeReportDiscarded(Undefined &sym) {
650  auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
651  if (!file || !sym.discardedSecIdx ||
652      file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
653    return "";
654  ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
655      CHECK(file->getObj().sections(), file);
656
657  std::string msg;
658  if (sym.type == ELF::STT_SECTION) {
659    msg = "relocation refers to a discarded section: ";
660    msg += CHECK(
661        file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file);
662  } else {
663    msg = "relocation refers to a symbol in a discarded section: " +
664          toString(sym);
665  }
666  msg += "\n>>> defined in " + toString(file);
667
668  Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
669  if (elfSec.sh_type != SHT_GROUP)
670    return msg;
671
672  // If the discarded section is a COMDAT.
673  StringRef signature = file->getShtGroupSignature(objSections, elfSec);
674  if (const InputFile *prevailing =
675          symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
676    msg += "\n>>> section group signature: " + signature.str() +
677           "\n>>> prevailing definition is in " + toString(prevailing);
678  return msg;
679}
680
681// Undefined diagnostics are collected in a vector and emitted once all of
682// them are known, so that some postprocessing on the list of undefined symbols
683// can happen before lld emits diagnostics.
684struct UndefinedDiag {
685  Symbol *sym;
686  struct Loc {
687    InputSectionBase *sec;
688    uint64_t offset;
689  };
690  std::vector<Loc> locs;
691  bool isWarning;
692};
693
694static std::vector<UndefinedDiag> undefs;
695
696template <class ELFT>
697static void reportUndefinedSymbol(const UndefinedDiag &undef) {
698  Symbol &sym = *undef.sym;
699
700  auto visibility = [&]() -> std::string {
701    switch (sym.visibility) {
702    case STV_INTERNAL:
703      return "internal ";
704    case STV_HIDDEN:
705      return "hidden ";
706    case STV_PROTECTED:
707      return "protected ";
708    default:
709      return "";
710    }
711  };
712
713  std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
714  if (msg.empty())
715    msg = "undefined " + visibility() + "symbol: " + toString(sym);
716
717  const size_t maxUndefReferences = 10;
718  size_t i = 0;
719  for (UndefinedDiag::Loc l : undef.locs) {
720    if (i >= maxUndefReferences)
721      break;
722    InputSectionBase &sec = *l.sec;
723    uint64_t offset = l.offset;
724
725    msg += "\n>>> referenced by ";
726    std::string src = sec.getSrcMsg(sym, offset);
727    if (!src.empty())
728      msg += src + "\n>>>               ";
729    msg += sec.getObjMsg(offset);
730    i++;
731  }
732
733  if (i < undef.locs.size())
734    msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
735               .str();
736
737  if (sym.getName().startswith("_ZTV"))
738    msg += "\nthe vtable symbol may be undefined because the class is missing "
739           "its key function (see https://lld.llvm.org/missingkeyfunction)";
740
741  if (undef.isWarning)
742    warn(msg);
743  else
744    error(msg);
745}
746
747template <class ELFT> void elf::reportUndefinedSymbols() {
748  // Find the first "undefined symbol" diagnostic for each diagnostic, and
749  // collect all "referenced from" lines at the first diagnostic.
750  DenseMap<Symbol *, UndefinedDiag *> firstRef;
751  for (UndefinedDiag &undef : undefs) {
752    assert(undef.locs.size() == 1);
753    if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
754      canon->locs.push_back(undef.locs[0]);
755      undef.locs.clear();
756    } else
757      firstRef[undef.sym] = &undef;
758  }
759
760  for (const UndefinedDiag &undef : undefs) {
761    if (!undef.locs.empty())
762      reportUndefinedSymbol<ELFT>(undef);
763  }
764  undefs.clear();
765}
766
767// Report an undefined symbol if necessary.
768// Returns true if the undefined symbol will produce an error message.
769template <class ELFT>
770static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
771                                 uint64_t offset) {
772  if (!sym.isUndefined() || sym.isWeak())
773    return false;
774
775  bool canBeExternal = !sym.isLocal() && sym.computeBinding() != STB_LOCAL &&
776                       sym.visibility == STV_DEFAULT;
777  if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
778    return false;
779
780  // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
781  // which references a switch table in a discarded .rodata/.text section. The
782  // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
783  // spec says references from outside the group to a STB_LOCAL symbol are not
784  // allowed. Work around the bug.
785  if (config->emachine == EM_PPC64 &&
786      cast<Undefined>(sym).discardedSecIdx != 0 && sec.name == ".toc")
787    return false;
788
789  bool isWarning =
790      (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
791      config->noinhibitExec;
792  undefs.push_back({&sym, {{&sec, offset}}, isWarning});
793  return !isWarning;
794}
795
796// MIPS N32 ABI treats series of successive relocations with the same offset
797// as a single relocation. The similar approach used by N64 ABI, but this ABI
798// packs all relocations into the single relocation record. Here we emulate
799// this for the N32 ABI. Iterate over relocation with the same offset and put
800// theirs types into the single bit-set.
801template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
802  RelType type = 0;
803  uint64_t offset = rel->r_offset;
804
805  int n = 0;
806  while (rel != end && rel->r_offset == offset)
807    type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
808  return type;
809}
810
811// .eh_frame sections are mergeable input sections, so their input
812// offsets are not linearly mapped to output section. For each input
813// offset, we need to find a section piece containing the offset and
814// add the piece's base address to the input offset to compute the
815// output offset. That isn't cheap.
816//
817// This class is to speed up the offset computation. When we process
818// relocations, we access offsets in the monotonically increasing
819// order. So we can optimize for that access pattern.
820//
821// For sections other than .eh_frame, this class doesn't do anything.
822namespace {
823class OffsetGetter {
824public:
825  explicit OffsetGetter(InputSectionBase &sec) {
826    if (auto *eh = dyn_cast<EhInputSection>(&sec))
827      pieces = eh->pieces;
828  }
829
830  // Translates offsets in input sections to offsets in output sections.
831  // Given offset must increase monotonically. We assume that Piece is
832  // sorted by inputOff.
833  uint64_t get(uint64_t off) {
834    if (pieces.empty())
835      return off;
836
837    while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
838      ++i;
839    if (i == pieces.size())
840      fatal(".eh_frame: relocation is not in any piece");
841
842    // Pieces must be contiguous, so there must be no holes in between.
843    assert(pieces[i].inputOff <= off && "Relocation not in any piece");
844
845    // Offset -1 means that the piece is dead (i.e. garbage collected).
846    if (pieces[i].outputOff == -1)
847      return -1;
848    return pieces[i].outputOff + off - pieces[i].inputOff;
849  }
850
851private:
852  ArrayRef<EhSectionPiece> pieces;
853  size_t i = 0;
854};
855} // namespace
856
857static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
858                             Symbol *sym, int64_t addend, RelExpr expr,
859                             RelType type) {
860  Partition &part = isec->getPartition();
861
862  // Add a relative relocation. If relrDyn section is enabled, and the
863  // relocation offset is guaranteed to be even, add the relocation to
864  // the relrDyn section, otherwise add it to the relaDyn section.
865  // relrDyn sections don't support odd offsets. Also, relrDyn sections
866  // don't store the addend values, so we must write it to the relocated
867  // address.
868  if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
869    isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
870    part.relrDyn->relocs.push_back({isec, offsetInSec});
871    return;
872  }
873  part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
874                         expr, type);
875}
876
877template <class ELFT, class GotPltSection>
878static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
879                        RelocationBaseSection *rel, RelType type, Symbol &sym) {
880  plt->addEntry<ELFT>(sym);
881  gotPlt->addEntry(sym);
882  rel->addReloc(
883      {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
884}
885
886static void addGotEntry(Symbol &sym) {
887  in.got->addEntry(sym);
888
889  RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
890  uint64_t off = sym.getGotOffset();
891
892  // If a GOT slot value can be calculated at link-time, which is now,
893  // we can just fill that out.
894  //
895  // (We don't actually write a value to a GOT slot right now, but we
896  // add a static relocation to a Relocations vector so that
897  // InputSection::relocate will do the work for us. We may be able
898  // to just write a value now, but it is a TODO.)
899  bool isLinkTimeConstant =
900      !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
901  if (isLinkTimeConstant) {
902    in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
903    return;
904  }
905
906  // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
907  // the GOT slot will be fixed at load-time.
908  if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
909    addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
910    return;
911  }
912  mainPart->relaDyn->addReloc(
913      sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
914      sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
915}
916
917// Return true if we can define a symbol in the executable that
918// contains the value/function of a symbol defined in a shared
919// library.
920static bool canDefineSymbolInExecutable(Symbol &sym) {
921  // If the symbol has default visibility the symbol defined in the
922  // executable will preempt it.
923  // Note that we want the visibility of the shared symbol itself, not
924  // the visibility of the symbol in the output file we are producing. That is
925  // why we use Sym.stOther.
926  if ((sym.stOther & 0x3) == STV_DEFAULT)
927    return true;
928
929  // If we are allowed to break address equality of functions, defining
930  // a plt entry will allow the program to call the function in the
931  // .so, but the .so and the executable will no agree on the address
932  // of the function. Similar logic for objects.
933  return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
934          (sym.isObject() && config->ignoreDataAddressEquality));
935}
936
937// The reason we have to do this early scan is as follows
938// * To mmap the output file, we need to know the size
939// * For that, we need to know how many dynamic relocs we will have.
940// It might be possible to avoid this by outputting the file with write:
941// * Write the allocated output sections, computing addresses.
942// * Apply relocations, recording which ones require a dynamic reloc.
943// * Write the dynamic relocations.
944// * Write the rest of the file.
945// This would have some drawbacks. For example, we would only know if .rela.dyn
946// is needed after applying relocations. If it is, it will go after rw and rx
947// sections. Given that it is ro, we will need an extra PT_LOAD. This
948// complicates things for the dynamic linker and means we would have to reserve
949// space for the extra PT_LOAD even if we end up not using it.
950template <class ELFT, class RelTy>
951static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
952                            uint64_t offset, Symbol &sym, const RelTy &rel,
953                            int64_t addend) {
954  // If the relocation is known to be a link-time constant, we know no dynamic
955  // relocation will be created, pass the control to relocateAlloc() or
956  // relocateNonAlloc() to resolve it.
957  //
958  // The behavior of an undefined weak reference is implementation defined. If
959  // the relocation is to a weak undef, and we are producing an executable, let
960  // relocate{,Non}Alloc() resolve it.
961  if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
962      (!config->shared && sym.isUndefWeak())) {
963    sec.relocations.push_back({expr, type, offset, addend, &sym});
964    return;
965  }
966
967  bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
968  if (canWrite) {
969    RelType rel = target->getDynRel(type);
970    if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
971      addRelativeReloc(&sec, offset, &sym, addend, expr, type);
972      return;
973    } else if (rel != 0) {
974      if (config->emachine == EM_MIPS && rel == target->symbolicRel)
975        rel = target->relativeRel;
976      sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
977                                           R_ADDEND, type);
978
979      // MIPS ABI turns using of GOT and dynamic relocations inside out.
980      // While regular ABI uses dynamic relocations to fill up GOT entries
981      // MIPS ABI requires dynamic linker to fills up GOT entries using
982      // specially sorted dynamic symbol table. This affects even dynamic
983      // relocations against symbols which do not require GOT entries
984      // creation explicitly, i.e. do not have any GOT-relocations. So if
985      // a preemptible symbol has a dynamic relocation we anyway have
986      // to create a GOT entry for it.
987      // If a non-preemptible symbol has a dynamic relocation against it,
988      // dynamic linker takes it st_value, adds offset and writes down
989      // result of the dynamic relocation. In case of preemptible symbol
990      // dynamic linker performs symbol resolution, writes the symbol value
991      // to the GOT entry and reads the GOT entry when it needs to perform
992      // a dynamic relocation.
993      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
994      if (config->emachine == EM_MIPS)
995        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
996      return;
997    }
998  }
999
1000  if (!canWrite && (config->isPic && !isRelExpr(expr))) {
1001    error(
1002        "can't create dynamic relocation " + toString(type) + " against " +
1003        (sym.getName().empty() ? "local symbol" : "symbol: " + toString(sym)) +
1004        " in readonly segment; recompile object files with -fPIC "
1005        "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1006        getLocation(sec, sym, offset));
1007    return;
1008  }
1009
1010  // Copy relocations (for STT_OBJECT) and canonical PLT (for STT_FUNC) are only
1011  // possible in an executable.
1012  //
1013  // Among R_ABS relocatoin types, symbolicRel has the same size as the word
1014  // size. Others have fewer bits and may cause runtime overflow in -pie/-shared
1015  // mode. Disallow them.
1016  if (config->shared ||
1017      (config->pie && expr == R_ABS && type != target->symbolicRel)) {
1018    errorOrWarn(
1019        "relocation " + toString(type) + " cannot be used against " +
1020        (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1021        "; recompile with -fPIC" + getLocation(sec, sym, offset));
1022    return;
1023  }
1024
1025  // If the symbol is undefined we already reported any relevant errors.
1026  if (sym.isUndefined())
1027    return;
1028
1029  if (!canDefineSymbolInExecutable(sym)) {
1030    error("cannot preempt symbol: " + toString(sym) +
1031          getLocation(sec, sym, offset));
1032    return;
1033  }
1034
1035  if (sym.isObject()) {
1036    // Produce a copy relocation.
1037    if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1038      if (!config->zCopyreloc)
1039        error("unresolvable relocation " + toString(type) +
1040              " against symbol '" + toString(*ss) +
1041              "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1042              getLocation(sec, sym, offset));
1043      addCopyRelSymbol<ELFT>(*ss);
1044    }
1045    sec.relocations.push_back({expr, type, offset, addend, &sym});
1046    return;
1047  }
1048
1049  if (sym.isFunc()) {
1050    // This handles a non PIC program call to function in a shared library. In
1051    // an ideal world, we could just report an error saying the relocation can
1052    // overflow at runtime. In the real world with glibc, crt1.o has a
1053    // R_X86_64_PC32 pointing to libc.so.
1054    //
1055    // The general idea on how to handle such cases is to create a PLT entry and
1056    // use that as the function value.
1057    //
1058    // For the static linking part, we just return a plt expr and everything
1059    // else will use the PLT entry as the address.
1060    //
1061    // The remaining problem is making sure pointer equality still works. We
1062    // need the help of the dynamic linker for that. We let it know that we have
1063    // a direct reference to a so symbol by creating an undefined symbol with a
1064    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1065    // the value of the symbol we created. This is true even for got entries, so
1066    // pointer equality is maintained. To avoid an infinite loop, the only entry
1067    // that points to the real function is a dedicated got entry used by the
1068    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1069    // R_386_JMP_SLOT, etc).
1070
1071    // For position independent executable on i386, the plt entry requires ebx
1072    // to be set. This causes two problems:
1073    // * If some code has a direct reference to a function, it was probably
1074    //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1075    // * If a library definition gets preempted to the executable, it will have
1076    //   the wrong ebx value.
1077    if (config->pie && config->emachine == EM_386)
1078      errorOrWarn("symbol '" + toString(sym) +
1079                  "' cannot be preempted; recompile with -fPIE" +
1080                  getLocation(sec, sym, offset));
1081    if (!sym.isInPlt())
1082      addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1083    if (!sym.isDefined())
1084      replaceWithDefined(
1085          sym, in.plt,
1086          target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1087    sym.needsPltAddr = true;
1088    sec.relocations.push_back({expr, type, offset, addend, &sym});
1089    return;
1090  }
1091
1092  errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1093              getLocation(sec, sym, offset));
1094}
1095
1096struct IRelativeReloc {
1097  RelType type;
1098  InputSectionBase *sec;
1099  uint64_t offset;
1100  Symbol *sym;
1101};
1102
1103static std::vector<IRelativeReloc> iRelativeRelocs;
1104
1105template <class ELFT, class RelTy>
1106static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1107                      RelTy *end) {
1108  const RelTy &rel = *i;
1109  uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1110  Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1111  RelType type;
1112
1113  // Deal with MIPS oddity.
1114  if (config->mipsN32Abi) {
1115    type = getMipsN32RelType(i, end);
1116  } else {
1117    type = rel.getType(config->isMips64EL);
1118    ++i;
1119  }
1120
1121  // Get an offset in an output section this relocation is applied to.
1122  uint64_t offset = getOffset.get(rel.r_offset);
1123  if (offset == uint64_t(-1))
1124    return;
1125
1126  // Error if the target symbol is undefined. Symbol index 0 may be used by
1127  // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1128  if (symIndex != 0 && maybeReportUndefined<ELFT>(sym, sec, rel.r_offset))
1129    return;
1130
1131  const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1132  RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1133
1134  // Ignore "hint" relocations because they are only markers for relaxation.
1135  if (oneof<R_HINT, R_NONE>(expr))
1136    return;
1137
1138  // We can separate the small code model relocations into 2 categories:
1139  // 1) Those that access the compiler generated .toc sections.
1140  // 2) Those that access the linker allocated got entries.
1141  // lld allocates got entries to symbols on demand. Since we don't try to sort
1142  // the got entries in any way, we don't have to track which objects have
1143  // got-based small code model relocs. The .toc sections get placed after the
1144  // end of the linker allocated .got section and we do sort those so sections
1145  // addressed with small code model relocations come first.
1146  if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type))
1147    sec.file->ppc64SmallCodeModelTocRelocs = true;
1148
1149  if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1150    warn("using ifunc symbols when text relocations are allowed may produce "
1151         "a binary that will segfault, if the object file is linked with "
1152         "old version of glibc (glibc 2.28 and earlier). If this applies to "
1153         "you, consider recompiling the object files without -fPIC and "
1154         "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1155         "turn off this warning." +
1156         getLocation(sec, sym, offset));
1157  }
1158
1159  // Read an addend.
1160  int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1161
1162  // Relax relocations.
1163  //
1164  // If we know that a PLT entry will be resolved within the same ELF module, we
1165  // can skip PLT access and directly jump to the destination function. For
1166  // example, if we are linking a main exectuable, all dynamic symbols that can
1167  // be resolved within the executable will actually be resolved that way at
1168  // runtime, because the main exectuable is always at the beginning of a search
1169  // list. We can leverage that fact.
1170  if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1171    if (expr == R_GOT_PC && !isAbsoluteValue(sym)) {
1172      expr = target->adjustRelaxExpr(type, relocatedAddr, expr);
1173    } else {
1174      // Addend of R_PPC_PLTREL24 is used to choose call stub type. It should be
1175      // ignored if optimized to R_PC.
1176      if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1177        addend = 0;
1178      expr = fromPlt(expr);
1179    }
1180  }
1181
1182  // If the relocation does not emit a GOT or GOTPLT entry but its computation
1183  // uses their addresses, we need GOT or GOTPLT to be created.
1184  //
1185  // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1186  if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1187    in.gotPlt->hasGotPltOffRel = true;
1188  } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1189                 expr)) {
1190    in.got->hasGotOffRel = true;
1191  }
1192
1193  // Process some TLS relocations, including relaxing TLS relocations.
1194  // Note that this function does not handle all TLS relocations.
1195  if (unsigned processed =
1196          handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
1197    i += (processed - 1);
1198    return;
1199  }
1200
1201  // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1202  // direct relocation on through.
1203  if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1204    sym.exportDynamic = true;
1205    mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1206    return;
1207  }
1208
1209  // Non-preemptible ifuncs require special handling. First, handle the usual
1210  // case where the symbol isn't one of these.
1211  if (!sym.isGnuIFunc() || sym.isPreemptible) {
1212    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1213    if (needsPlt(expr) && !sym.isInPlt())
1214      addPltEntry<ELFT>(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1215
1216    // Create a GOT slot if a relocation needs GOT.
1217    if (needsGot(expr)) {
1218      if (config->emachine == EM_MIPS) {
1219        // MIPS ABI has special rules to process GOT entries and doesn't
1220        // require relocation entries for them. A special case is TLS
1221        // relocations. In that case dynamic loader applies dynamic
1222        // relocations to initialize TLS GOT entries.
1223        // See "Global Offset Table" in Chapter 5 in the following document
1224        // for detailed description:
1225        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1226        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1227      } else if (!sym.isInGot()) {
1228        addGotEntry(sym);
1229      }
1230    }
1231  } else {
1232    // Handle a reference to a non-preemptible ifunc. These are special in a
1233    // few ways:
1234    //
1235    // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1236    //   a fixed value. But assuming that all references to the ifunc are
1237    //   GOT-generating or PLT-generating, the handling of an ifunc is
1238    //   relatively straightforward. We create a PLT entry in Iplt, which is
1239    //   usually at the end of .plt, which makes an indirect call using a
1240    //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1241    //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1242    //   which is usually at the end of .rela.plt. Unlike most relocations in
1243    //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1244    //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1245    //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1246    //   .got.plt without requiring a separate GOT entry.
1247    //
1248    // - Despite the fact that an ifunc does not have a fixed value, compilers
1249    //   that are not passed -fPIC will assume that they do, and will emit
1250    //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1251    //   symbol. This means that if a direct relocation to the symbol is
1252    //   seen, the linker must set a value for the symbol, and this value must
1253    //   be consistent no matter what type of reference is made to the symbol.
1254    //   This can be done by creating a PLT entry for the symbol in the way
1255    //   described above and making it canonical, that is, making all references
1256    //   point to the PLT entry instead of the resolver. In lld we also store
1257    //   the address of the PLT entry in the dynamic symbol table, which means
1258    //   that the symbol will also have the same value in other modules.
1259    //   Because the value loaded from the GOT needs to be consistent with
1260    //   the value computed using a direct relocation, a non-preemptible ifunc
1261    //   may end up with two GOT entries, one in .got.plt that points to the
1262    //   address returned by the resolver and is used only by the PLT entry,
1263    //   and another in .got that points to the PLT entry and is used by
1264    //   GOT-generating relocations.
1265    //
1266    // - The fact that these symbols do not have a fixed value makes them an
1267    //   exception to the general rule that a statically linked executable does
1268    //   not require any form of dynamic relocation. To handle these relocations
1269    //   correctly, the IRELATIVE relocations are stored in an array which a
1270    //   statically linked executable's startup code must enumerate using the
1271    //   linker-defined symbols __rela?_iplt_{start,end}.
1272    //
1273    // - An absolute relocation to a non-preemptible ifunc (such as a global
1274    //   variable containing a pointer to the ifunc) needs to be relocated in
1275    //   the exact same way as a GOT entry, so we can avoid needing to make the
1276    //   PLT entry canonical by translating such relocations into IRELATIVE
1277    //   relocations in the relaIplt.
1278    if (!sym.isInPlt()) {
1279      // Create PLT and GOTPLT slots for the symbol.
1280      sym.isInIplt = true;
1281
1282      // Create a copy of the symbol to use as the target of the IRELATIVE
1283      // relocation in the igotPlt. This is in case we make the PLT canonical
1284      // later, which would overwrite the original symbol.
1285      //
1286      // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1287      // that's really needed to create the IRELATIVE is the section and value,
1288      // so ideally we should just need to copy those.
1289      auto *directSym = make<Defined>(cast<Defined>(sym));
1290      addPltEntry<ELFT>(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1291                        *directSym);
1292      sym.pltIndex = directSym->pltIndex;
1293    }
1294    if (expr == R_ABS && addend == 0 && (sec.flags & SHF_WRITE)) {
1295      // We might be able to represent this as an IRELATIVE. But we don't know
1296      // yet whether some later relocation will make the symbol point to a
1297      // canonical PLT, which would make this either a dynamic RELATIVE (PIC) or
1298      // static (non-PIC) relocation. So we keep a record of the information
1299      // required to process the relocation, and after scanRelocs() has been
1300      // called on all relocations, the relocation is resolved by
1301      // addIRelativeRelocs().
1302      iRelativeRelocs.push_back({type, &sec, offset, &sym});
1303      return;
1304    }
1305    if (needsGot(expr)) {
1306      // Redirect GOT accesses to point to the Igot.
1307      //
1308      // This field is also used to keep track of whether we ever needed a GOT
1309      // entry. If we did and we make the PLT canonical later, we'll need to
1310      // create a GOT entry pointing to the PLT entry for Sym.
1311      sym.gotInIgot = true;
1312    } else if (!needsPlt(expr)) {
1313      // Make the ifunc's PLT entry canonical by changing the value of its
1314      // symbol to redirect all references to point to it.
1315      unsigned entryOffset = sym.pltIndex * target->pltEntrySize;
1316      if (config->zRetpolineplt)
1317        entryOffset += target->pltHeaderSize;
1318
1319      auto &d = cast<Defined>(sym);
1320      d.section = in.iplt;
1321      d.value = entryOffset;
1322      d.size = 0;
1323      // It's important to set the symbol type here so that dynamic loaders
1324      // don't try to call the PLT as if it were an ifunc resolver.
1325      d.type = STT_FUNC;
1326
1327      if (sym.gotInIgot) {
1328        // We previously encountered a GOT generating reference that we
1329        // redirected to the Igot. Now that the PLT entry is canonical we must
1330        // clear the redirection to the Igot and add a GOT entry. As we've
1331        // changed the symbol type to STT_FUNC future GOT generating references
1332        // will naturally use this GOT entry.
1333        //
1334        // We don't need to worry about creating a MIPS GOT here because ifuncs
1335        // aren't a thing on MIPS.
1336        sym.gotInIgot = false;
1337        addGotEntry(sym);
1338      }
1339    }
1340  }
1341
1342  processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1343}
1344
1345template <class ELFT, class RelTy>
1346static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1347  OffsetGetter getOffset(sec);
1348
1349  // Not all relocations end up in Sec.Relocations, but a lot do.
1350  sec.relocations.reserve(rels.size());
1351
1352  for (auto i = rels.begin(), end = rels.end(); i != end;)
1353    scanReloc<ELFT>(sec, getOffset, i, end);
1354
1355  // Sort relocations by offset for more efficient searching for
1356  // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1357  if (config->emachine == EM_RISCV ||
1358      (config->emachine == EM_PPC64 && sec.name == ".toc"))
1359    llvm::stable_sort(sec.relocations,
1360                      [](const Relocation &lhs, const Relocation &rhs) {
1361                        return lhs.offset < rhs.offset;
1362                      });
1363}
1364
1365template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1366  if (s.areRelocsRela)
1367    scanRelocs<ELFT>(s, s.relas<ELFT>());
1368  else
1369    scanRelocs<ELFT>(s, s.rels<ELFT>());
1370}
1371
1372// Figure out which representation to use for any absolute relocs to
1373// non-preemptible ifuncs that we visited during scanRelocs().
1374void elf::addIRelativeRelocs() {
1375  for (IRelativeReloc &r : iRelativeRelocs) {
1376    if (r.sym->type == STT_GNU_IFUNC)
1377      in.relaIplt->addReloc(
1378          {target->iRelativeRel, r.sec, r.offset, true, r.sym, 0});
1379    else if (config->isPic)
1380      addRelativeReloc(r.sec, r.offset, r.sym, 0, R_ABS, r.type);
1381    else
1382      r.sec->relocations.push_back({R_ABS, r.type, r.offset, 0, r.sym});
1383  }
1384  iRelativeRelocs.clear();
1385}
1386
1387static bool mergeCmp(const InputSection *a, const InputSection *b) {
1388  // std::merge requires a strict weak ordering.
1389  if (a->outSecOff < b->outSecOff)
1390    return true;
1391
1392  if (a->outSecOff == b->outSecOff) {
1393    auto *ta = dyn_cast<ThunkSection>(a);
1394    auto *tb = dyn_cast<ThunkSection>(b);
1395
1396    // Check if Thunk is immediately before any specific Target
1397    // InputSection for example Mips LA25 Thunks.
1398    if (ta && ta->getTargetInputSection() == b)
1399      return true;
1400
1401    // Place Thunk Sections without specific targets before
1402    // non-Thunk Sections.
1403    if (ta && !tb && !ta->getTargetInputSection())
1404      return true;
1405  }
1406
1407  return false;
1408}
1409
1410// Call Fn on every executable InputSection accessed via the linker script
1411// InputSectionDescription::Sections.
1412static void forEachInputSectionDescription(
1413    ArrayRef<OutputSection *> outputSections,
1414    llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1415  for (OutputSection *os : outputSections) {
1416    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1417      continue;
1418    for (BaseCommand *bc : os->sectionCommands)
1419      if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1420        fn(os, isd);
1421  }
1422}
1423
1424// Thunk Implementation
1425//
1426// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1427// of code that the linker inserts inbetween a caller and a callee. The thunks
1428// are added at link time rather than compile time as the decision on whether
1429// a thunk is needed, such as the caller and callee being out of range, can only
1430// be made at link time.
1431//
1432// It is straightforward to tell given the current state of the program when a
1433// thunk is needed for a particular call. The more difficult part is that
1434// the thunk needs to be placed in the program such that the caller can reach
1435// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1436// the program alters addresses, which can mean more thunks etc.
1437//
1438// In lld we have a synthetic ThunkSection that can hold many Thunks.
1439// The decision to have a ThunkSection act as a container means that we can
1440// more easily handle the most common case of a single block of contiguous
1441// Thunks by inserting just a single ThunkSection.
1442//
1443// The implementation of Thunks in lld is split across these areas
1444// Relocations.cpp : Framework for creating and placing thunks
1445// Thunks.cpp : The code generated for each supported thunk
1446// Target.cpp : Target specific hooks that the framework uses to decide when
1447//              a thunk is used
1448// Synthetic.cpp : Implementation of ThunkSection
1449// Writer.cpp : Iteratively call framework until no more Thunks added
1450//
1451// Thunk placement requirements:
1452// Mips LA25 thunks. These must be placed immediately before the callee section
1453// We can assume that the caller is in range of the Thunk. These are modelled
1454// by Thunks that return the section they must precede with
1455// getTargetInputSection().
1456//
1457// ARM interworking and range extension thunks. These thunks must be placed
1458// within range of the caller. All implemented ARM thunks can always reach the
1459// callee as they use an indirect jump via a register that has no range
1460// restrictions.
1461//
1462// Thunk placement algorithm:
1463// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1464// getTargetInputSection().
1465//
1466// For thunks that must be placed within range of the caller there are many
1467// possible choices given that the maximum range from the caller is usually
1468// much larger than the average InputSection size. Desirable properties include:
1469// - Maximize reuse of thunks by multiple callers
1470// - Minimize number of ThunkSections to simplify insertion
1471// - Handle impact of already added Thunks on addresses
1472// - Simple to understand and implement
1473//
1474// In lld for the first pass, we pre-create one or more ThunkSections per
1475// InputSectionDescription at Target specific intervals. A ThunkSection is
1476// placed so that the estimated end of the ThunkSection is within range of the
1477// start of the InputSectionDescription or the previous ThunkSection. For
1478// example:
1479// InputSectionDescription
1480// Section 0
1481// ...
1482// Section N
1483// ThunkSection 0
1484// Section N + 1
1485// ...
1486// Section N + K
1487// Thunk Section 1
1488//
1489// The intention is that we can add a Thunk to a ThunkSection that is well
1490// spaced enough to service a number of callers without having to do a lot
1491// of work. An important principle is that it is not an error if a Thunk cannot
1492// be placed in a pre-created ThunkSection; when this happens we create a new
1493// ThunkSection placed next to the caller. This allows us to handle the vast
1494// majority of thunks simply, but also handle rare cases where the branch range
1495// is smaller than the target specific spacing.
1496//
1497// The algorithm is expected to create all the thunks that are needed in a
1498// single pass, with a small number of programs needing a second pass due to
1499// the insertion of thunks in the first pass increasing the offset between
1500// callers and callees that were only just in range.
1501//
1502// A consequence of allowing new ThunkSections to be created outside of the
1503// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1504// range in pass K, are out of range in some pass > K due to the insertion of
1505// more Thunks in between the caller and callee. When this happens we retarget
1506// the relocation back to the original target and create another Thunk.
1507
1508// Remove ThunkSections that are empty, this should only be the initial set
1509// precreated on pass 0.
1510
1511// Insert the Thunks for OutputSection OS into their designated place
1512// in the Sections vector, and recalculate the InputSection output section
1513// offsets.
1514// This may invalidate any output section offsets stored outside of InputSection
1515void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1516  forEachInputSectionDescription(
1517      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1518        if (isd->thunkSections.empty())
1519          return;
1520
1521        // Remove any zero sized precreated Thunks.
1522        llvm::erase_if(isd->thunkSections,
1523                       [](const std::pair<ThunkSection *, uint32_t> &ts) {
1524                         return ts.first->getSize() == 0;
1525                       });
1526
1527        // ISD->ThunkSections contains all created ThunkSections, including
1528        // those inserted in previous passes. Extract the Thunks created this
1529        // pass and order them in ascending outSecOff.
1530        std::vector<ThunkSection *> newThunks;
1531        for (const std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1532          if (ts.second == pass)
1533            newThunks.push_back(ts.first);
1534        llvm::stable_sort(newThunks,
1535                          [](const ThunkSection *a, const ThunkSection *b) {
1536                            return a->outSecOff < b->outSecOff;
1537                          });
1538
1539        // Merge sorted vectors of Thunks and InputSections by outSecOff
1540        std::vector<InputSection *> tmp;
1541        tmp.reserve(isd->sections.size() + newThunks.size());
1542
1543        std::merge(isd->sections.begin(), isd->sections.end(),
1544                   newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1545                   mergeCmp);
1546
1547        isd->sections = std::move(tmp);
1548      });
1549}
1550
1551// Find or create a ThunkSection within the InputSectionDescription (ISD) that
1552// is in range of Src. An ISD maps to a range of InputSections described by a
1553// linker script section pattern such as { .text .text.* }.
1554ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1555                                           InputSectionDescription *isd,
1556                                           uint32_t type, uint64_t src) {
1557  for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1558    ThunkSection *ts = tp.first;
1559    uint64_t tsBase = os->addr + ts->outSecOff;
1560    uint64_t tsLimit = tsBase + ts->getSize();
1561    if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1562      return ts;
1563  }
1564
1565  // No suitable ThunkSection exists. This can happen when there is a branch
1566  // with lower range than the ThunkSection spacing or when there are too
1567  // many Thunks. Create a new ThunkSection as close to the InputSection as
1568  // possible. Error if InputSection is so large we cannot place ThunkSection
1569  // anywhere in Range.
1570  uint64_t thunkSecOff = isec->outSecOff;
1571  if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1572    thunkSecOff = isec->outSecOff + isec->getSize();
1573    if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1574      fatal("InputSection too large for range extension thunk " +
1575            isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1576  }
1577  return addThunkSection(os, isd, thunkSecOff);
1578}
1579
1580// Add a Thunk that needs to be placed in a ThunkSection that immediately
1581// precedes its Target.
1582ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1583  ThunkSection *ts = thunkedSections.lookup(isec);
1584  if (ts)
1585    return ts;
1586
1587  // Find InputSectionRange within Target Output Section (TOS) that the
1588  // InputSection (IS) that we need to precede is in.
1589  OutputSection *tos = isec->getParent();
1590  for (BaseCommand *bc : tos->sectionCommands) {
1591    auto *isd = dyn_cast<InputSectionDescription>(bc);
1592    if (!isd || isd->sections.empty())
1593      continue;
1594
1595    InputSection *first = isd->sections.front();
1596    InputSection *last = isd->sections.back();
1597
1598    if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1599      continue;
1600
1601    ts = addThunkSection(tos, isd, isec->outSecOff);
1602    thunkedSections[isec] = ts;
1603    return ts;
1604  }
1605
1606  return nullptr;
1607}
1608
1609// Create one or more ThunkSections per OS that can be used to place Thunks.
1610// We attempt to place the ThunkSections using the following desirable
1611// properties:
1612// - Within range of the maximum number of callers
1613// - Minimise the number of ThunkSections
1614//
1615// We follow a simple but conservative heuristic to place ThunkSections at
1616// offsets that are multiples of a Target specific branch range.
1617// For an InputSectionDescription that is smaller than the range, a single
1618// ThunkSection at the end of the range will do.
1619//
1620// For an InputSectionDescription that is more than twice the size of the range,
1621// we place the last ThunkSection at range bytes from the end of the
1622// InputSectionDescription in order to increase the likelihood that the
1623// distance from a thunk to its target will be sufficiently small to
1624// allow for the creation of a short thunk.
1625void ThunkCreator::createInitialThunkSections(
1626    ArrayRef<OutputSection *> outputSections) {
1627  uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1628
1629  forEachInputSectionDescription(
1630      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1631        if (isd->sections.empty())
1632          return;
1633
1634        uint32_t isdBegin = isd->sections.front()->outSecOff;
1635        uint32_t isdEnd =
1636            isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1637        uint32_t lastThunkLowerBound = -1;
1638        if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1639          lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1640
1641        uint32_t isecLimit;
1642        uint32_t prevIsecLimit = isdBegin;
1643        uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1644
1645        for (const InputSection *isec : isd->sections) {
1646          isecLimit = isec->outSecOff + isec->getSize();
1647          if (isecLimit > thunkUpperBound) {
1648            addThunkSection(os, isd, prevIsecLimit);
1649            thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1650          }
1651          if (isecLimit > lastThunkLowerBound)
1652            break;
1653          prevIsecLimit = isecLimit;
1654        }
1655        addThunkSection(os, isd, isecLimit);
1656      });
1657}
1658
1659ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1660                                            InputSectionDescription *isd,
1661                                            uint64_t off) {
1662  auto *ts = make<ThunkSection>(os, off);
1663  ts->partition = os->partition;
1664  isd->thunkSections.push_back({ts, pass});
1665  return ts;
1666}
1667
1668static bool isThunkSectionCompatible(InputSection *source,
1669                                     SectionBase *target) {
1670  // We can't reuse thunks in different loadable partitions because they might
1671  // not be loaded. But partition 1 (the main partition) will always be loaded.
1672  if (source->partition != target->partition)
1673    return target->partition == 1;
1674  return true;
1675}
1676
1677std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1678                                                Relocation &rel, uint64_t src) {
1679  std::vector<Thunk *> *thunkVec = nullptr;
1680
1681  // We use (section, offset) pair to find the thunk position if possible so
1682  // that we create only one thunk for aliased symbols or ICFed sections.
1683  if (auto *d = dyn_cast<Defined>(rel.sym))
1684    if (!d->isInPlt() && d->section)
1685      thunkVec = &thunkedSymbolsBySection[{d->section->repl, d->value}];
1686  if (!thunkVec)
1687    thunkVec = &thunkedSymbols[rel.sym];
1688
1689  // Check existing Thunks for Sym to see if they can be reused
1690  for (Thunk *t : *thunkVec)
1691    if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1692        t->isCompatibleWith(*isec, rel) &&
1693        target->inBranchRange(rel.type, src, t->getThunkTargetSym()->getVA()))
1694      return std::make_pair(t, false);
1695
1696  // No existing compatible Thunk in range, create a new one
1697  Thunk *t = addThunk(*isec, rel);
1698  thunkVec->push_back(t);
1699  return std::make_pair(t, true);
1700}
1701
1702// Return true if the relocation target is an in range Thunk.
1703// Return false if the relocation is not to a Thunk. If the relocation target
1704// was originally to a Thunk, but is no longer in range we revert the
1705// relocation back to its original non-Thunk target.
1706bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1707  if (Thunk *t = thunks.lookup(rel.sym)) {
1708    if (target->inBranchRange(rel.type, src, rel.sym->getVA()))
1709      return true;
1710    rel.sym = &t->destination;
1711    if (rel.sym->isInPlt())
1712      rel.expr = toPlt(rel.expr);
1713  }
1714  return false;
1715}
1716
1717// Process all relocations from the InputSections that have been assigned
1718// to InputSectionDescriptions and redirect through Thunks if needed. The
1719// function should be called iteratively until it returns false.
1720//
1721// PreConditions:
1722// All InputSections that may need a Thunk are reachable from
1723// OutputSectionCommands.
1724//
1725// All OutputSections have an address and all InputSections have an offset
1726// within the OutputSection.
1727//
1728// The offsets between caller (relocation place) and callee
1729// (relocation target) will not be modified outside of createThunks().
1730//
1731// PostConditions:
1732// If return value is true then ThunkSections have been inserted into
1733// OutputSections. All relocations that needed a Thunk based on the information
1734// available to createThunks() on entry have been redirected to a Thunk. Note
1735// that adding Thunks changes offsets between caller and callee so more Thunks
1736// may be required.
1737//
1738// If return value is false then no more Thunks are needed, and createThunks has
1739// made no changes. If the target requires range extension thunks, currently
1740// ARM, then any future change in offset between caller and callee risks a
1741// relocation out of range error.
1742bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
1743  bool addressesChanged = false;
1744
1745  if (pass == 0 && target->getThunkSectionSpacing())
1746    createInitialThunkSections(outputSections);
1747
1748  // With Thunk Size much smaller than branch range we expect to
1749  // converge quickly; if we get to 10 something has gone wrong.
1750  if (pass == 10)
1751    fatal("thunk creation not converged");
1752
1753  // Create all the Thunks and insert them into synthetic ThunkSections. The
1754  // ThunkSections are later inserted back into InputSectionDescriptions.
1755  // We separate the creation of ThunkSections from the insertion of the
1756  // ThunkSections as ThunkSections are not always inserted into the same
1757  // InputSectionDescription as the caller.
1758  forEachInputSectionDescription(
1759      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1760        for (InputSection *isec : isd->sections)
1761          for (Relocation &rel : isec->relocations) {
1762            uint64_t src = isec->getVA(rel.offset);
1763
1764            // If we are a relocation to an existing Thunk, check if it is
1765            // still in range. If not then Rel will be altered to point to its
1766            // original target so another Thunk can be generated.
1767            if (pass > 0 && normalizeExistingThunk(rel, src))
1768              continue;
1769
1770            if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
1771                                    *rel.sym))
1772              continue;
1773
1774            Thunk *t;
1775            bool isNew;
1776            std::tie(t, isNew) = getThunk(isec, rel, src);
1777
1778            if (isNew) {
1779              // Find or create a ThunkSection for the new Thunk
1780              ThunkSection *ts;
1781              if (auto *tis = t->getTargetInputSection())
1782                ts = getISThunkSec(tis);
1783              else
1784                ts = getISDThunkSec(os, isec, isd, rel.type, src);
1785              ts->addThunk(t);
1786              thunks[t->getThunkTargetSym()] = t;
1787            }
1788
1789            // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1790            rel.sym = t->getThunkTargetSym();
1791            rel.expr = fromPlt(rel.expr);
1792
1793            // The addend of R_PPC_PLTREL24 should be ignored after changing to
1794            // R_PC.
1795            if (config->emachine == EM_PPC && rel.type == R_PPC_PLTREL24)
1796              rel.addend = 0;
1797          }
1798
1799        for (auto &p : isd->thunkSections)
1800          addressesChanged |= p.first->assignOffsets();
1801      });
1802
1803  for (auto &p : thunkedSections)
1804    addressesChanged |= p.second->assignOffsets();
1805
1806  // Merge all created synthetic ThunkSections back into OutputSection
1807  mergeThunks(outputSections);
1808  ++pass;
1809  return addressesChanged;
1810}
1811
1812template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
1813template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
1814template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
1815template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
1816template void elf::reportUndefinedSymbols<ELF32LE>();
1817template void elf::reportUndefinedSymbols<ELF32BE>();
1818template void elf::reportUndefinedSymbols<ELF64LE>();
1819template void elf::reportUndefinedSymbols<ELF64BE>();
1820