1//===- Relocations.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains platform-independent functions to process relocations.
10// I'll describe the overview of this file here.
11//
12// Simple relocations are easy to handle for the linker. For example,
13// for R_X86_64_PC64 relocs, the linker just has to fix up locations
14// with the relative offsets to the target symbols. It would just be
15// reading records from relocation sections and applying them to output.
16//
17// But not all relocations are that easy to handle. For example, for
18// R_386_GOTOFF relocs, the linker has to create new GOT entries for
19// symbols if they don't exist, and fix up locations with GOT entry
20// offsets from the beginning of GOT section. So there is more than
21// fixing addresses in relocation processing.
22//
23// ELF defines a large number of complex relocations.
24//
25// The functions in this file analyze relocations and do whatever needs
26// to be done. It includes, but not limited to, the following.
27//
28//  - create GOT/PLT entries
29//  - create new relocations in .dynsym to let the dynamic linker resolve
30//    them at runtime (since ELF supports dynamic linking, not all
31//    relocations can be resolved at link-time)
32//  - create COPY relocs and reserve space in .bss
33//  - replace expensive relocs (in terms of runtime cost) with cheap ones
34//  - error out infeasible combinations such as PIC and non-relative relocs
35//
36// Note that the functions in this file don't actually apply relocations
37// because it doesn't know about the output file nor the output file buffer.
38// It instead stores Relocation objects to InputSection's Relocations
39// vector to let it apply later in InputSection::writeTo.
40//
41//===----------------------------------------------------------------------===//
42
43#include "Relocations.h"
44#include "Config.h"
45#include "LinkerScript.h"
46#include "OutputSections.h"
47#include "SymbolTable.h"
48#include "Symbols.h"
49#include "SyntheticSections.h"
50#include "Target.h"
51#include "Thunks.h"
52#include "lld/Common/ErrorHandler.h"
53#include "lld/Common/Memory.h"
54#include "lld/Common/Strings.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/Demangle/Demangle.h"
57#include "llvm/Support/Endian.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60
61using namespace llvm;
62using namespace llvm::ELF;
63using namespace llvm::object;
64using namespace llvm::support::endian;
65
66namespace lld {
67namespace elf {
68static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69  for (BaseCommand *base : script->sectionCommands)
70    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71      if (cmd->sym == &sym)
72        return cmd->location;
73  return None;
74}
75
76// Construct a message in the following format.
77//
78// >>> defined in /home/alice/src/foo.o
79// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
80// >>>               /home/alice/src/bar.o:(.text+0x1)
81static std::string getLocation(InputSectionBase &s, const Symbol &sym,
82                               uint64_t off) {
83  std::string msg = "\n>>> defined in ";
84  if (sym.file)
85    msg += toString(sym.file);
86  else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
87    msg += *loc;
88
89  msg += "\n>>> referenced by ";
90  std::string src = s.getSrcMsg(sym, off);
91  if (!src.empty())
92    msg += src + "\n>>>               ";
93  return msg + s.getObjMsg(off);
94}
95
96namespace {
97// Build a bitmask with one bit set for each RelExpr.
98//
99// Constexpr function arguments can't be used in static asserts, so we
100// use template arguments to build the mask.
101// But function template partial specializations don't exist (needed
102// for base case of the recursion), so we need a dummy struct.
103template <RelExpr... Exprs> struct RelExprMaskBuilder {
104  static inline uint64_t build() { return 0; }
105};
106
107// Specialization for recursive case.
108template <RelExpr Head, RelExpr... Tail>
109struct RelExprMaskBuilder<Head, Tail...> {
110  static inline uint64_t build() {
111    static_assert(0 <= Head && Head < 64,
112                  "RelExpr is too large for 64-bit mask!");
113    return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
114  }
115};
116} // namespace
117
118// Return true if `Expr` is one of `Exprs`.
119// There are fewer than 64 RelExpr's, so we can represent any set of
120// RelExpr's as a constant bit mask and test for membership with a
121// couple cheap bitwise operations.
122template <RelExpr... Exprs> bool oneof(RelExpr expr) {
123  assert(0 <= expr && (int)expr < 64 &&
124         "RelExpr is too large for 64-bit mask!");
125  return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
126}
127
128// This function is similar to the `handleTlsRelocation`. MIPS does not
129// support any relaxations for TLS relocations so by factoring out MIPS
130// handling in to the separate function we can simplify the code and do not
131// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
132// Mips has a custom MipsGotSection that handles the writing of GOT entries
133// without dynamic relocations.
134static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
135                                        InputSectionBase &c, uint64_t offset,
136                                        int64_t addend, RelExpr expr) {
137  if (expr == R_MIPS_TLSLD) {
138    in.mipsGot->addTlsIndex(*c.file);
139    c.relocations.push_back({expr, type, offset, addend, &sym});
140    return 1;
141  }
142  if (expr == R_MIPS_TLSGD) {
143    in.mipsGot->addDynTlsEntry(*c.file, sym);
144    c.relocations.push_back({expr, type, offset, addend, &sym});
145    return 1;
146  }
147  return 0;
148}
149
150// Notes about General Dynamic and Local Dynamic TLS models below. They may
151// require the generation of a pair of GOT entries that have associated dynamic
152// relocations. The pair of GOT entries created are of the form GOT[e0] Module
153// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
154// symbol in TLS block.
155//
156// Returns the number of relocations processed.
157template <class ELFT>
158static unsigned
159handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
160                    typename ELFT::uint offset, int64_t addend, RelExpr expr) {
161  if (!sym.isTls())
162    return 0;
163
164  if (config->emachine == EM_MIPS)
165    return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
166
167  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
168          expr) &&
169      config->shared) {
170    if (in.got->addDynTlsEntry(sym)) {
171      uint64_t off = in.got->getGlobalDynOffset(sym);
172      mainPart->relaDyn->addReloc(
173          {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
174    }
175    if (expr != R_TLSDESC_CALL)
176      c.relocations.push_back({expr, type, offset, addend, &sym});
177    return 1;
178  }
179
180  bool canRelax = config->emachine != EM_ARM &&
181                  config->emachine != EM_HEXAGON &&
182                  config->emachine != EM_RISCV;
183
184  // If we are producing an executable and the symbol is non-preemptable, it
185  // must be defined and the code sequence can be relaxed to use Local-Exec.
186  //
187  // ARM and RISC-V do not support any relaxations for TLS relocations, however,
188  // we can omit the DTPMOD dynamic relocations and resolve them at link time
189  // because them are always 1. This may be necessary for static linking as
190  // DTPMOD may not be expected at load time.
191  bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
192
193  // Local Dynamic is for access to module local TLS variables, while still
194  // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
195  // module index, with a special value of 0 for the current module. GOT[e1] is
196  // unused. There only needs to be one module index entry.
197  if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
198          expr)) {
199    // Local-Dynamic relocs can be relaxed to Local-Exec.
200    if (canRelax && !config->shared) {
201      c.relocations.push_back(
202          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
203           offset, addend, &sym});
204      return target->getTlsGdRelaxSkip(type);
205    }
206    if (expr == R_TLSLD_HINT)
207      return 1;
208    if (in.got->addTlsIndex()) {
209      if (isLocalInExecutable)
210        in.got->relocations.push_back(
211            {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
212      else
213        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
214                                in.got->getTlsIndexOff(), nullptr);
215    }
216    c.relocations.push_back({expr, type, offset, addend, &sym});
217    return 1;
218  }
219
220  // Local-Dynamic relocs can be relaxed to Local-Exec.
221  if (expr == R_DTPREL && !config->shared) {
222    c.relocations.push_back(
223        {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
224         offset, addend, &sym});
225    return 1;
226  }
227
228  // Local-Dynamic sequence where offset of tls variable relative to dynamic
229  // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
230  if (expr == R_TLSLD_GOT_OFF) {
231    if (!sym.isInGot()) {
232      in.got->addEntry(sym);
233      uint64_t off = sym.getGotOffset();
234      in.got->relocations.push_back(
235          {R_ABS, target->tlsOffsetRel, off, 0, &sym});
236    }
237    c.relocations.push_back({expr, type, offset, addend, &sym});
238    return 1;
239  }
240
241  if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
242            R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
243    if (!canRelax || config->shared) {
244      if (in.got->addDynTlsEntry(sym)) {
245        uint64_t off = in.got->getGlobalDynOffset(sym);
246
247        if (isLocalInExecutable)
248          // Write one to the GOT slot.
249          in.got->relocations.push_back(
250              {R_ADDEND, target->symbolicRel, off, 1, &sym});
251        else
252          mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
253
254        // If the symbol is preemptible we need the dynamic linker to write
255        // the offset too.
256        uint64_t offsetOff = off + config->wordsize;
257        if (sym.isPreemptible)
258          mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
259                                  &sym);
260        else
261          in.got->relocations.push_back(
262              {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
263      }
264      c.relocations.push_back({expr, type, offset, addend, &sym});
265      return 1;
266    }
267
268    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
269    // depending on the symbol being locally defined or not.
270    if (sym.isPreemptible) {
271      c.relocations.push_back(
272          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type,
273           offset, addend, &sym});
274      if (!sym.isInGot()) {
275        in.got->addEntry(sym);
276        mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
277                                &sym);
278      }
279    } else {
280      c.relocations.push_back(
281          {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type,
282           offset, addend, &sym});
283    }
284    return target->getTlsGdRelaxSkip(type);
285  }
286
287  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
288  // defined.
289  if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
290            R_TLSIE_HINT>(expr) &&
291      canRelax && isLocalInExecutable) {
292    c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
293    return 1;
294  }
295
296  if (expr == R_TLSIE_HINT)
297    return 1;
298  return 0;
299}
300
301static RelType getMipsPairType(RelType type, bool isLocal) {
302  switch (type) {
303  case R_MIPS_HI16:
304    return R_MIPS_LO16;
305  case R_MIPS_GOT16:
306    // In case of global symbol, the R_MIPS_GOT16 relocation does not
307    // have a pair. Each global symbol has a unique entry in the GOT
308    // and a corresponding instruction with help of the R_MIPS_GOT16
309    // relocation loads an address of the symbol. In case of local
310    // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
311    // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
312    // relocations handle low 16 bits of the address. That allows
313    // to allocate only one GOT entry for every 64 KBytes of local data.
314    return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
315  case R_MICROMIPS_GOT16:
316    return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
317  case R_MIPS_PCHI16:
318    return R_MIPS_PCLO16;
319  case R_MICROMIPS_HI16:
320    return R_MICROMIPS_LO16;
321  default:
322    return R_MIPS_NONE;
323  }
324}
325
326// True if non-preemptable symbol always has the same value regardless of where
327// the DSO is loaded.
328static bool isAbsolute(const Symbol &sym) {
329  if (sym.isUndefWeak())
330    return true;
331  if (const auto *dr = dyn_cast<Defined>(&sym))
332    return dr->section == nullptr; // Absolute symbol.
333  return false;
334}
335
336static bool isAbsoluteValue(const Symbol &sym) {
337  return isAbsolute(sym) || sym.isTls();
338}
339
340// Returns true if Expr refers a PLT entry.
341static bool needsPlt(RelExpr expr) {
342  return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
343}
344
345// Returns true if Expr refers a GOT entry. Note that this function
346// returns false for TLS variables even though they need GOT, because
347// TLS variables uses GOT differently than the regular variables.
348static bool needsGot(RelExpr expr) {
349  return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
350               R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>(
351      expr);
352}
353
354// True if this expression is of the form Sym - X, where X is a position in the
355// file (PC, or GOT for example).
356static bool isRelExpr(RelExpr expr) {
357  return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
358               R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
359               R_RISCV_PC_INDIRECT>(expr);
360}
361
362// Returns true if a given relocation can be computed at link-time.
363//
364// For instance, we know the offset from a relocation to its target at
365// link-time if the relocation is PC-relative and refers a
366// non-interposable function in the same executable. This function
367// will return true for such relocation.
368//
369// If this function returns false, that means we need to emit a
370// dynamic relocation so that the relocation will be fixed at load-time.
371static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
372                                     InputSectionBase &s, uint64_t relOff) {
373  // These expressions always compute a constant
374  if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
375            R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
376            R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
377            R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
378            R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
379            R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
380            R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>(
381          e))
382    return true;
383
384  // These never do, except if the entire file is position dependent or if
385  // only the low bits are used.
386  if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
387    return target->usesOnlyLowPageBits(type) || !config->isPic;
388
389  if (sym.isPreemptible)
390    return false;
391  if (!config->isPic)
392    return true;
393
394  // The size of a non preemptible symbol is a constant.
395  if (e == R_SIZE)
396    return true;
397
398  // For the target and the relocation, we want to know if they are
399  // absolute or relative.
400  bool absVal = isAbsoluteValue(sym);
401  bool relE = isRelExpr(e);
402  if (absVal && !relE)
403    return true;
404  if (!absVal && relE)
405    return true;
406  if (!absVal && !relE)
407    return target->usesOnlyLowPageBits(type);
408
409  assert(absVal && relE);
410
411  // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
412  // in PIC mode. This is a little strange, but it allows us to link function
413  // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
414  // Normally such a call will be guarded with a comparison, which will load a
415  // zero from the GOT.
416  if (sym.isUndefWeak())
417    return true;
418
419  // We set the final symbols values for linker script defined symbols later.
420  // They always can be computed as a link time constant.
421  if (sym.scriptDefined)
422      return true;
423
424  error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
425        toString(sym) + getLocation(s, sym, relOff));
426  return true;
427}
428
429static RelExpr toPlt(RelExpr expr) {
430  switch (expr) {
431  case R_PPC64_CALL:
432    return R_PPC64_CALL_PLT;
433  case R_PC:
434    return R_PLT_PC;
435  case R_ABS:
436    return R_PLT;
437  default:
438    return expr;
439  }
440}
441
442static RelExpr fromPlt(RelExpr expr) {
443  // We decided not to use a plt. Optimize a reference to the plt to a
444  // reference to the symbol itself.
445  switch (expr) {
446  case R_PLT_PC:
447  case R_PPC32_PLTREL:
448    return R_PC;
449  case R_PPC64_CALL_PLT:
450    return R_PPC64_CALL;
451  case R_PLT:
452    return R_ABS;
453  default:
454    return expr;
455  }
456}
457
458// Returns true if a given shared symbol is in a read-only segment in a DSO.
459template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
460  using Elf_Phdr = typename ELFT::Phdr;
461
462  // Determine if the symbol is read-only by scanning the DSO's program headers.
463  const SharedFile &file = ss.getFile();
464  for (const Elf_Phdr &phdr :
465       check(file.template getObj<ELFT>().program_headers()))
466    if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
467        !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
468        ss.value < phdr.p_vaddr + phdr.p_memsz)
469      return true;
470  return false;
471}
472
473// Returns symbols at the same offset as a given symbol, including SS itself.
474//
475// If two or more symbols are at the same offset, and at least one of
476// them are copied by a copy relocation, all of them need to be copied.
477// Otherwise, they would refer to different places at runtime.
478template <class ELFT>
479static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
480  using Elf_Sym = typename ELFT::Sym;
481
482  SharedFile &file = ss.getFile();
483
484  SmallSet<SharedSymbol *, 4> ret;
485  for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
486    if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
487        s.getType() == STT_TLS || s.st_value != ss.value)
488      continue;
489    StringRef name = check(s.getName(file.getStringTable()));
490    Symbol *sym = symtab->find(name);
491    if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
492      ret.insert(alias);
493  }
494  return ret;
495}
496
497// When a symbol is copy relocated or we create a canonical plt entry, it is
498// effectively a defined symbol. In the case of copy relocation the symbol is
499// in .bss and in the case of a canonical plt entry it is in .plt. This function
500// replaces the existing symbol with a Defined pointing to the appropriate
501// location.
502static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
503                               uint64_t size) {
504  Symbol old = sym;
505
506  sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
507                      sym.type, value, size, sec});
508
509  sym.pltIndex = old.pltIndex;
510  sym.gotIndex = old.gotIndex;
511  sym.verdefIndex = old.verdefIndex;
512  sym.exportDynamic = true;
513  sym.isUsedInRegularObj = true;
514}
515
516// Reserve space in .bss or .bss.rel.ro for copy relocation.
517//
518// The copy relocation is pretty much a hack. If you use a copy relocation
519// in your program, not only the symbol name but the symbol's size, RW/RO
520// bit and alignment become part of the ABI. In addition to that, if the
521// symbol has aliases, the aliases become part of the ABI. That's subtle,
522// but if you violate that implicit ABI, that can cause very counter-
523// intuitive consequences.
524//
525// So, what is the copy relocation? It's for linking non-position
526// independent code to DSOs. In an ideal world, all references to data
527// exported by DSOs should go indirectly through GOT. But if object files
528// are compiled as non-PIC, all data references are direct. There is no
529// way for the linker to transform the code to use GOT, as machine
530// instructions are already set in stone in object files. This is where
531// the copy relocation takes a role.
532//
533// A copy relocation instructs the dynamic linker to copy data from a DSO
534// to a specified address (which is usually in .bss) at load-time. If the
535// static linker (that's us) finds a direct data reference to a DSO
536// symbol, it creates a copy relocation, so that the symbol can be
537// resolved as if it were in .bss rather than in a DSO.
538//
539// As you can see in this function, we create a copy relocation for the
540// dynamic linker, and the relocation contains not only symbol name but
541// various other information about the symbol. So, such attributes become a
542// part of the ABI.
543//
544// Note for application developers: I can give you a piece of advice if
545// you are writing a shared library. You probably should export only
546// functions from your library. You shouldn't export variables.
547//
548// As an example what can happen when you export variables without knowing
549// the semantics of copy relocations, assume that you have an exported
550// variable of type T. It is an ABI-breaking change to add new members at
551// end of T even though doing that doesn't change the layout of the
552// existing members. That's because the space for the new members are not
553// reserved in .bss unless you recompile the main program. That means they
554// are likely to overlap with other data that happens to be laid out next
555// to the variable in .bss. This kind of issue is sometimes very hard to
556// debug. What's a solution? Instead of exporting a variable V from a DSO,
557// define an accessor getV().
558template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
559  // Copy relocation against zero-sized symbol doesn't make sense.
560  uint64_t symSize = ss.getSize();
561  if (symSize == 0 || ss.alignment == 0)
562    fatal("cannot create a copy relocation for symbol " + toString(ss));
563
564  // See if this symbol is in a read-only segment. If so, preserve the symbol's
565  // memory protection by reserving space in the .bss.rel.ro section.
566  bool isRO = isReadOnly<ELFT>(ss);
567  BssSection *sec =
568      make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
569  OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
570
571  // At this point, sectionBases has been migrated to sections. Append sec to
572  // sections.
573  if (osec->sectionCommands.empty() ||
574      !isa<InputSectionDescription>(osec->sectionCommands.back()))
575    osec->sectionCommands.push_back(make<InputSectionDescription>(""));
576  auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
577  isd->sections.push_back(sec);
578  osec->commitSection(sec);
579
580  // Look through the DSO's dynamic symbol table for aliases and create a
581  // dynamic symbol for each one. This causes the copy relocation to correctly
582  // interpose any aliases.
583  for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
584    replaceWithDefined(*sym, sec, 0, sym->size);
585
586  mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
587}
588
589// MIPS has an odd notion of "paired" relocations to calculate addends.
590// For example, if a relocation is of R_MIPS_HI16, there must be a
591// R_MIPS_LO16 relocation after that, and an addend is calculated using
592// the two relocations.
593template <class ELFT, class RelTy>
594static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
595                                 InputSectionBase &sec, RelExpr expr,
596                                 bool isLocal) {
597  if (expr == R_MIPS_GOTREL && isLocal)
598    return sec.getFile<ELFT>()->mipsGp0;
599
600  // The ABI says that the paired relocation is used only for REL.
601  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
602  if (RelTy::IsRela)
603    return 0;
604
605  RelType type = rel.getType(config->isMips64EL);
606  uint32_t pairTy = getMipsPairType(type, isLocal);
607  if (pairTy == R_MIPS_NONE)
608    return 0;
609
610  const uint8_t *buf = sec.data().data();
611  uint32_t symIndex = rel.getSymbol(config->isMips64EL);
612
613  // To make things worse, paired relocations might not be contiguous in
614  // the relocation table, so we need to do linear search. *sigh*
615  for (const RelTy *ri = &rel; ri != end; ++ri)
616    if (ri->getType(config->isMips64EL) == pairTy &&
617        ri->getSymbol(config->isMips64EL) == symIndex)
618      return target->getImplicitAddend(buf + ri->r_offset, pairTy);
619
620  warn("can't find matching " + toString(pairTy) + " relocation for " +
621       toString(type));
622  return 0;
623}
624
625// Returns an addend of a given relocation. If it is RELA, an addend
626// is in a relocation itself. If it is REL, we need to read it from an
627// input section.
628template <class ELFT, class RelTy>
629static int64_t computeAddend(const RelTy &rel, const RelTy *end,
630                             InputSectionBase &sec, RelExpr expr,
631                             bool isLocal) {
632  int64_t addend;
633  RelType type = rel.getType(config->isMips64EL);
634
635  if (RelTy::IsRela) {
636    addend = getAddend<ELFT>(rel);
637  } else {
638    const uint8_t *buf = sec.data().data();
639    addend = target->getImplicitAddend(buf + rel.r_offset, type);
640  }
641
642  if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
643    addend += getPPC64TocBase();
644  if (config->emachine == EM_MIPS)
645    addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
646
647  return addend;
648}
649
650// Custom error message if Sym is defined in a discarded section.
651template <class ELFT>
652static std::string maybeReportDiscarded(Undefined &sym) {
653  auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
654  if (!file || !sym.discardedSecIdx ||
655      file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
656    return "";
657  ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
658      CHECK(file->getObj().sections(), file);
659
660  std::string msg;
661  if (sym.type == ELF::STT_SECTION) {
662    msg = "relocation refers to a discarded section: ";
663    msg += CHECK(
664        file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file);
665  } else {
666    msg = "relocation refers to a symbol in a discarded section: " +
667          toString(sym);
668  }
669  msg += "\n>>> defined in " + toString(file);
670
671  Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
672  if (elfSec.sh_type != SHT_GROUP)
673    return msg;
674
675  // If the discarded section is a COMDAT.
676  StringRef signature = file->getShtGroupSignature(objSections, elfSec);
677  if (const InputFile *prevailing =
678          symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
679    msg += "\n>>> section group signature: " + signature.str() +
680           "\n>>> prevailing definition is in " + toString(prevailing);
681  return msg;
682}
683
684// Undefined diagnostics are collected in a vector and emitted once all of
685// them are known, so that some postprocessing on the list of undefined symbols
686// can happen before lld emits diagnostics.
687struct UndefinedDiag {
688  Symbol *sym;
689  struct Loc {
690    InputSectionBase *sec;
691    uint64_t offset;
692  };
693  std::vector<Loc> locs;
694  bool isWarning;
695};
696
697static std::vector<UndefinedDiag> undefs;
698
699// Check whether the definition name def is a mangled function name that matches
700// the reference name ref.
701static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
702  llvm::ItaniumPartialDemangler d;
703  std::string name = def.str();
704  if (d.partialDemangle(name.c_str()))
705    return false;
706  char *buf = d.getFunctionName(nullptr, nullptr);
707  if (!buf)
708    return false;
709  bool ret = ref == buf;
710  free(buf);
711  return ret;
712}
713
714// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
715// the suggested symbol, which is either in the symbol table, or in the same
716// file of sym.
717template <class ELFT>
718static const Symbol *getAlternativeSpelling(const Undefined &sym,
719                                            std::string &pre_hint,
720                                            std::string &post_hint) {
721  DenseMap<StringRef, const Symbol *> map;
722  if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
723    // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
724    // will give an error. Don't suggest an alternative spelling.
725    if (file && sym.discardedSecIdx != 0 &&
726        file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
727      return nullptr;
728
729    // Build a map of local defined symbols.
730    for (const Symbol *s : sym.file->getSymbols())
731      if (s->isLocal() && s->isDefined())
732        map.try_emplace(s->getName(), s);
733  }
734
735  auto suggest = [&](StringRef newName) -> const Symbol * {
736    // If defined locally.
737    if (const Symbol *s = map.lookup(newName))
738      return s;
739
740    // If in the symbol table and not undefined.
741    if (const Symbol *s = symtab->find(newName))
742      if (!s->isUndefined())
743        return s;
744
745    return nullptr;
746  };
747
748  // This loop enumerates all strings of Levenshtein distance 1 as typo
749  // correction candidates and suggests the one that exists as a non-undefined
750  // symbol.
751  StringRef name = sym.getName();
752  for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
753    // Insert a character before name[i].
754    std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
755    for (char c = '0'; c <= 'z'; ++c) {
756      newName[i] = c;
757      if (const Symbol *s = suggest(newName))
758        return s;
759    }
760    if (i == e)
761      break;
762
763    // Substitute name[i].
764    newName = name;
765    for (char c = '0'; c <= 'z'; ++c) {
766      newName[i] = c;
767      if (const Symbol *s = suggest(newName))
768        return s;
769    }
770
771    // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
772    // common.
773    if (i + 1 < e) {
774      newName[i] = name[i + 1];
775      newName[i + 1] = name[i];
776      if (const Symbol *s = suggest(newName))
777        return s;
778    }
779
780    // Delete name[i].
781    newName = (name.substr(0, i) + name.substr(i + 1)).str();
782    if (const Symbol *s = suggest(newName))
783      return s;
784  }
785
786  // Case mismatch, e.g. Foo vs FOO.
787  for (auto &it : map)
788    if (name.equals_lower(it.first))
789      return it.second;
790  for (Symbol *sym : symtab->symbols())
791    if (!sym->isUndefined() && name.equals_lower(sym->getName()))
792      return sym;
793
794  // The reference may be a mangled name while the definition is not. Suggest a
795  // missing extern "C".
796  if (name.startswith("_Z")) {
797    std::string buf = name.str();
798    llvm::ItaniumPartialDemangler d;
799    if (!d.partialDemangle(buf.c_str()))
800      if (char *buf = d.getFunctionName(nullptr, nullptr)) {
801        const Symbol *s = suggest(buf);
802        free(buf);
803        if (s) {
804          pre_hint = ": extern \"C\" ";
805          return s;
806        }
807      }
808  } else {
809    const Symbol *s = nullptr;
810    for (auto &it : map)
811      if (canSuggestExternCForCXX(name, it.first)) {
812        s = it.second;
813        break;
814      }
815    if (!s)
816      for (Symbol *sym : symtab->symbols())
817        if (canSuggestExternCForCXX(name, sym->getName())) {
818          s = sym;
819          break;
820        }
821    if (s) {
822      pre_hint = " to declare ";
823      post_hint = " as extern \"C\"?";
824      return s;
825    }
826  }
827
828  return nullptr;
829}
830
831template <class ELFT>
832static void reportUndefinedSymbol(const UndefinedDiag &undef,
833                                  bool correctSpelling) {
834  Symbol &sym = *undef.sym;
835
836  auto visibility = [&]() -> std::string {
837    switch (sym.visibility) {
838    case STV_INTERNAL:
839      return "internal ";
840    case STV_HIDDEN:
841      return "hidden ";
842    case STV_PROTECTED:
843      return "protected ";
844    default:
845      return "";
846    }
847  };
848
849  std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
850  if (msg.empty())
851    msg = "undefined " + visibility() + "symbol: " + toString(sym);
852
853  const size_t maxUndefReferences = 10;
854  size_t i = 0;
855  for (UndefinedDiag::Loc l : undef.locs) {
856    if (i >= maxUndefReferences)
857      break;
858    InputSectionBase &sec = *l.sec;
859    uint64_t offset = l.offset;
860
861    msg += "\n>>> referenced by ";
862    std::string src = sec.getSrcMsg(sym, offset);
863    if (!src.empty())
864      msg += src + "\n>>>               ";
865    msg += sec.getObjMsg(offset);
866    i++;
867  }
868
869  if (i < undef.locs.size())
870    msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
871               .str();
872
873  if (correctSpelling) {
874    std::string pre_hint = ": ", post_hint;
875    if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
876            cast<Undefined>(sym), pre_hint, post_hint)) {
877      msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
878      if (corrected->file)
879        msg += "\n>>> defined in: " + toString(corrected->file);
880    }
881  }
882
883  if (sym.getName().startswith("_ZTV"))
884    msg += "\nthe vtable symbol may be undefined because the class is missing "
885           "its key function (see https://lld.llvm.org/missingkeyfunction)";
886
887  if (undef.isWarning)
888    warn(msg);
889  else
890    error(msg);
891}
892
893template <class ELFT> void reportUndefinedSymbols() {
894  // Find the first "undefined symbol" diagnostic for each diagnostic, and
895  // collect all "referenced from" lines at the first diagnostic.
896  DenseMap<Symbol *, UndefinedDiag *> firstRef;
897  for (UndefinedDiag &undef : undefs) {
898    assert(undef.locs.size() == 1);
899    if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
900      canon->locs.push_back(undef.locs[0]);
901      undef.locs.clear();
902    } else
903      firstRef[undef.sym] = &undef;
904  }
905
906  // Enable spell corrector for the first 2 diagnostics.
907  for (auto it : enumerate(undefs))
908    if (!it.value().locs.empty())
909      reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
910  undefs.clear();
911}
912
913// Report an undefined symbol if necessary.
914// Returns true if the undefined symbol will produce an error message.
915static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
916                                 uint64_t offset) {
917  if (!sym.isUndefined() || sym.isWeak())
918    return false;
919
920  bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
921  if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
922    return false;
923
924  // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
925  // which references a switch table in a discarded .rodata/.text section. The
926  // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
927  // spec says references from outside the group to a STB_LOCAL symbol are not
928  // allowed. Work around the bug.
929  //
930  // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
931  // because .LC0-.LTOC is not representable if the two labels are in different
932  // .got2
933  if (cast<Undefined>(sym).discardedSecIdx != 0 &&
934      (sec.name == ".got2" || sec.name == ".toc"))
935    return false;
936
937  bool isWarning =
938      (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
939      config->noinhibitExec;
940  undefs.push_back({&sym, {{&sec, offset}}, isWarning});
941  return !isWarning;
942}
943
944// MIPS N32 ABI treats series of successive relocations with the same offset
945// as a single relocation. The similar approach used by N64 ABI, but this ABI
946// packs all relocations into the single relocation record. Here we emulate
947// this for the N32 ABI. Iterate over relocation with the same offset and put
948// theirs types into the single bit-set.
949template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
950  RelType type = 0;
951  uint64_t offset = rel->r_offset;
952
953  int n = 0;
954  while (rel != end && rel->r_offset == offset)
955    type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
956  return type;
957}
958
959// .eh_frame sections are mergeable input sections, so their input
960// offsets are not linearly mapped to output section. For each input
961// offset, we need to find a section piece containing the offset and
962// add the piece's base address to the input offset to compute the
963// output offset. That isn't cheap.
964//
965// This class is to speed up the offset computation. When we process
966// relocations, we access offsets in the monotonically increasing
967// order. So we can optimize for that access pattern.
968//
969// For sections other than .eh_frame, this class doesn't do anything.
970namespace {
971class OffsetGetter {
972public:
973  explicit OffsetGetter(InputSectionBase &sec) {
974    if (auto *eh = dyn_cast<EhInputSection>(&sec))
975      pieces = eh->pieces;
976  }
977
978  // Translates offsets in input sections to offsets in output sections.
979  // Given offset must increase monotonically. We assume that Piece is
980  // sorted by inputOff.
981  uint64_t get(uint64_t off) {
982    if (pieces.empty())
983      return off;
984
985    while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
986      ++i;
987    if (i == pieces.size())
988      fatal(".eh_frame: relocation is not in any piece");
989
990    // Pieces must be contiguous, so there must be no holes in between.
991    assert(pieces[i].inputOff <= off && "Relocation not in any piece");
992
993    // Offset -1 means that the piece is dead (i.e. garbage collected).
994    if (pieces[i].outputOff == -1)
995      return -1;
996    return pieces[i].outputOff + off - pieces[i].inputOff;
997  }
998
999private:
1000  ArrayRef<EhSectionPiece> pieces;
1001  size_t i = 0;
1002};
1003} // namespace
1004
1005static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1006                             Symbol *sym, int64_t addend, RelExpr expr,
1007                             RelType type) {
1008  Partition &part = isec->getPartition();
1009
1010  // Add a relative relocation. If relrDyn section is enabled, and the
1011  // relocation offset is guaranteed to be even, add the relocation to
1012  // the relrDyn section, otherwise add it to the relaDyn section.
1013  // relrDyn sections don't support odd offsets. Also, relrDyn sections
1014  // don't store the addend values, so we must write it to the relocated
1015  // address.
1016  if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1017    isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1018    part.relrDyn->relocs.push_back({isec, offsetInSec});
1019    return;
1020  }
1021  part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
1022                         expr, type);
1023}
1024
1025template <class PltSection, class GotPltSection>
1026static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1027                        RelocationBaseSection *rel, RelType type, Symbol &sym) {
1028  plt->addEntry(sym);
1029  gotPlt->addEntry(sym);
1030  rel->addReloc(
1031      {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
1032}
1033
1034static void addGotEntry(Symbol &sym) {
1035  in.got->addEntry(sym);
1036
1037  RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
1038  uint64_t off = sym.getGotOffset();
1039
1040  // If a GOT slot value can be calculated at link-time, which is now,
1041  // we can just fill that out.
1042  //
1043  // (We don't actually write a value to a GOT slot right now, but we
1044  // add a static relocation to a Relocations vector so that
1045  // InputSection::relocate will do the work for us. We may be able
1046  // to just write a value now, but it is a TODO.)
1047  bool isLinkTimeConstant =
1048      !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1049  if (isLinkTimeConstant) {
1050    in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1051    return;
1052  }
1053
1054  // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1055  // the GOT slot will be fixed at load-time.
1056  if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
1057    addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
1058    return;
1059  }
1060  mainPart->relaDyn->addReloc(
1061      sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
1062      sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
1063}
1064
1065// Return true if we can define a symbol in the executable that
1066// contains the value/function of a symbol defined in a shared
1067// library.
1068static bool canDefineSymbolInExecutable(Symbol &sym) {
1069  // If the symbol has default visibility the symbol defined in the
1070  // executable will preempt it.
1071  // Note that we want the visibility of the shared symbol itself, not
1072  // the visibility of the symbol in the output file we are producing. That is
1073  // why we use Sym.stOther.
1074  if ((sym.stOther & 0x3) == STV_DEFAULT)
1075    return true;
1076
1077  // If we are allowed to break address equality of functions, defining
1078  // a plt entry will allow the program to call the function in the
1079  // .so, but the .so and the executable will no agree on the address
1080  // of the function. Similar logic for objects.
1081  return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1082          (sym.isObject() && config->ignoreDataAddressEquality));
1083}
1084
1085// The reason we have to do this early scan is as follows
1086// * To mmap the output file, we need to know the size
1087// * For that, we need to know how many dynamic relocs we will have.
1088// It might be possible to avoid this by outputting the file with write:
1089// * Write the allocated output sections, computing addresses.
1090// * Apply relocations, recording which ones require a dynamic reloc.
1091// * Write the dynamic relocations.
1092// * Write the rest of the file.
1093// This would have some drawbacks. For example, we would only know if .rela.dyn
1094// is needed after applying relocations. If it is, it will go after rw and rx
1095// sections. Given that it is ro, we will need an extra PT_LOAD. This
1096// complicates things for the dynamic linker and means we would have to reserve
1097// space for the extra PT_LOAD even if we end up not using it.
1098template <class ELFT, class RelTy>
1099static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1100                            uint64_t offset, Symbol &sym, const RelTy &rel,
1101                            int64_t addend) {
1102  // If the relocation is known to be a link-time constant, we know no dynamic
1103  // relocation will be created, pass the control to relocateAlloc() or
1104  // relocateNonAlloc() to resolve it.
1105  //
1106  // The behavior of an undefined weak reference is implementation defined. If
1107  // the relocation is to a weak undef, and we are producing an executable, let
1108  // relocate{,Non}Alloc() resolve it.
1109  if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1110      (!config->shared && sym.isUndefWeak())) {
1111    sec.relocations.push_back({expr, type, offset, addend, &sym});
1112    return;
1113  }
1114
1115  bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1116  if (canWrite) {
1117    RelType rel = target->getDynRel(type);
1118    if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1119      addRelativeReloc(&sec, offset, &sym, addend, expr, type);
1120      return;
1121    } else if (rel != 0) {
1122      if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1123        rel = target->relativeRel;
1124      sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
1125                                           R_ADDEND, type);
1126
1127      // MIPS ABI turns using of GOT and dynamic relocations inside out.
1128      // While regular ABI uses dynamic relocations to fill up GOT entries
1129      // MIPS ABI requires dynamic linker to fills up GOT entries using
1130      // specially sorted dynamic symbol table. This affects even dynamic
1131      // relocations against symbols which do not require GOT entries
1132      // creation explicitly, i.e. do not have any GOT-relocations. So if
1133      // a preemptible symbol has a dynamic relocation we anyway have
1134      // to create a GOT entry for it.
1135      // If a non-preemptible symbol has a dynamic relocation against it,
1136      // dynamic linker takes it st_value, adds offset and writes down
1137      // result of the dynamic relocation. In case of preemptible symbol
1138      // dynamic linker performs symbol resolution, writes the symbol value
1139      // to the GOT entry and reads the GOT entry when it needs to perform
1140      // a dynamic relocation.
1141      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1142      if (config->emachine == EM_MIPS)
1143        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1144      return;
1145    }
1146  }
1147
1148  // When producing an executable, we can perform copy relocations (for
1149  // STT_OBJECT) and canonical PLT (for STT_FUNC).
1150  if (!config->shared) {
1151    if (!canDefineSymbolInExecutable(sym)) {
1152      errorOrWarn("cannot preempt symbol: " + toString(sym) +
1153                  getLocation(sec, sym, offset));
1154      return;
1155    }
1156
1157    if (sym.isObject()) {
1158      // Produce a copy relocation.
1159      if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1160        if (!config->zCopyreloc)
1161          error("unresolvable relocation " + toString(type) +
1162                " against symbol '" + toString(*ss) +
1163                "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1164                getLocation(sec, sym, offset));
1165        addCopyRelSymbol<ELFT>(*ss);
1166      }
1167      sec.relocations.push_back({expr, type, offset, addend, &sym});
1168      return;
1169    }
1170
1171    // This handles a non PIC program call to function in a shared library. In
1172    // an ideal world, we could just report an error saying the relocation can
1173    // overflow at runtime. In the real world with glibc, crt1.o has a
1174    // R_X86_64_PC32 pointing to libc.so.
1175    //
1176    // The general idea on how to handle such cases is to create a PLT entry and
1177    // use that as the function value.
1178    //
1179    // For the static linking part, we just return a plt expr and everything
1180    // else will use the PLT entry as the address.
1181    //
1182    // The remaining problem is making sure pointer equality still works. We
1183    // need the help of the dynamic linker for that. We let it know that we have
1184    // a direct reference to a so symbol by creating an undefined symbol with a
1185    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1186    // the value of the symbol we created. This is true even for got entries, so
1187    // pointer equality is maintained. To avoid an infinite loop, the only entry
1188    // that points to the real function is a dedicated got entry used by the
1189    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1190    // R_386_JMP_SLOT, etc).
1191
1192    // For position independent executable on i386, the plt entry requires ebx
1193    // to be set. This causes two problems:
1194    // * If some code has a direct reference to a function, it was probably
1195    //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1196    // * If a library definition gets preempted to the executable, it will have
1197    //   the wrong ebx value.
1198    if (sym.isFunc()) {
1199      if (config->pie && config->emachine == EM_386)
1200        errorOrWarn("symbol '" + toString(sym) +
1201                    "' cannot be preempted; recompile with -fPIE" +
1202                    getLocation(sec, sym, offset));
1203      if (!sym.isInPlt())
1204        addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1205      if (!sym.isDefined()) {
1206        replaceWithDefined(
1207            sym, in.plt,
1208            target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1209        if (config->emachine == EM_PPC) {
1210          // PPC32 canonical PLT entries are at the beginning of .glink
1211          cast<Defined>(sym).value = in.plt->headerSize;
1212          in.plt->headerSize += 16;
1213          cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1214        }
1215      }
1216      sym.needsPltAddr = true;
1217      sec.relocations.push_back({expr, type, offset, addend, &sym});
1218      return;
1219    }
1220  }
1221
1222  if (config->isPic) {
1223    if (!canWrite && !isRelExpr(expr))
1224      errorOrWarn(
1225          "can't create dynamic relocation " + toString(type) + " against " +
1226          (sym.getName().empty() ? "local symbol"
1227                                 : "symbol: " + toString(sym)) +
1228          " in readonly segment; recompile object files with -fPIC "
1229          "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1230          getLocation(sec, sym, offset));
1231    else
1232      errorOrWarn(
1233          "relocation " + toString(type) + " cannot be used against " +
1234          (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1235          "; recompile with -fPIC" + getLocation(sec, sym, offset));
1236    return;
1237  }
1238
1239  errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1240              getLocation(sec, sym, offset));
1241}
1242
1243template <class ELFT, class RelTy>
1244static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1245                      RelTy *end) {
1246  const RelTy &rel = *i;
1247  uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1248  Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1249  RelType type;
1250
1251  // Deal with MIPS oddity.
1252  if (config->mipsN32Abi) {
1253    type = getMipsN32RelType(i, end);
1254  } else {
1255    type = rel.getType(config->isMips64EL);
1256    ++i;
1257  }
1258
1259  // Get an offset in an output section this relocation is applied to.
1260  uint64_t offset = getOffset.get(rel.r_offset);
1261  if (offset == uint64_t(-1))
1262    return;
1263
1264  // Error if the target symbol is undefined. Symbol index 0 may be used by
1265  // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1266  if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1267    return;
1268
1269  const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1270  RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1271
1272  // Ignore R_*_NONE and other marker relocations.
1273  if (expr == R_NONE)
1274    return;
1275
1276  // We can separate the small code model relocations into 2 categories:
1277  // 1) Those that access the compiler generated .toc sections.
1278  // 2) Those that access the linker allocated got entries.
1279  // lld allocates got entries to symbols on demand. Since we don't try to sort
1280  // the got entries in any way, we don't have to track which objects have
1281  // got-based small code model relocs. The .toc sections get placed after the
1282  // end of the linker allocated .got section and we do sort those so sections
1283  // addressed with small code model relocations come first.
1284  if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type))
1285    sec.file->ppc64SmallCodeModelTocRelocs = true;
1286
1287  if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1288    warn("using ifunc symbols when text relocations are allowed may produce "
1289         "a binary that will segfault, if the object file is linked with "
1290         "old version of glibc (glibc 2.28 and earlier). If this applies to "
1291         "you, consider recompiling the object files without -fPIC and "
1292         "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1293         "turn off this warning." +
1294         getLocation(sec, sym, offset));
1295  }
1296
1297  // Read an addend.
1298  int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1299
1300  // Relax relocations.
1301  //
1302  // If we know that a PLT entry will be resolved within the same ELF module, we
1303  // can skip PLT access and directly jump to the destination function. For
1304  // example, if we are linking a main executable, all dynamic symbols that can
1305  // be resolved within the executable will actually be resolved that way at
1306  // runtime, because the main executable is always at the beginning of a search
1307  // list. We can leverage that fact.
1308  if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1309    if (expr == R_GOT_PC && !isAbsoluteValue(sym)) {
1310      expr = target->adjustRelaxExpr(type, relocatedAddr, expr);
1311    } else {
1312      // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1313      // stub type. It should be ignored if optimized to R_PC.
1314      if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1315        addend &= ~0x8000;
1316      expr = fromPlt(expr);
1317    }
1318  }
1319
1320  // If the relocation does not emit a GOT or GOTPLT entry but its computation
1321  // uses their addresses, we need GOT or GOTPLT to be created.
1322  //
1323  // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1324  if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1325    in.gotPlt->hasGotPltOffRel = true;
1326  } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1327                 expr)) {
1328    in.got->hasGotOffRel = true;
1329  }
1330
1331  // Process some TLS relocations, including relaxing TLS relocations.
1332  // Note that this function does not handle all TLS relocations.
1333  if (unsigned processed =
1334          handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
1335    i += (processed - 1);
1336    return;
1337  }
1338
1339  // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1340  // direct relocation on through.
1341  if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1342    sym.exportDynamic = true;
1343    mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1344    return;
1345  }
1346
1347  // Non-preemptible ifuncs require special handling. First, handle the usual
1348  // case where the symbol isn't one of these.
1349  if (!sym.isGnuIFunc() || sym.isPreemptible) {
1350    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1351    if (needsPlt(expr) && !sym.isInPlt())
1352      addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1353
1354    // Create a GOT slot if a relocation needs GOT.
1355    if (needsGot(expr)) {
1356      if (config->emachine == EM_MIPS) {
1357        // MIPS ABI has special rules to process GOT entries and doesn't
1358        // require relocation entries for them. A special case is TLS
1359        // relocations. In that case dynamic loader applies dynamic
1360        // relocations to initialize TLS GOT entries.
1361        // See "Global Offset Table" in Chapter 5 in the following document
1362        // for detailed description:
1363        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1364        in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1365      } else if (!sym.isInGot()) {
1366        addGotEntry(sym);
1367      }
1368    }
1369  } else {
1370    // Handle a reference to a non-preemptible ifunc. These are special in a
1371    // few ways:
1372    //
1373    // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1374    //   a fixed value. But assuming that all references to the ifunc are
1375    //   GOT-generating or PLT-generating, the handling of an ifunc is
1376    //   relatively straightforward. We create a PLT entry in Iplt, which is
1377    //   usually at the end of .plt, which makes an indirect call using a
1378    //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1379    //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1380    //   which is usually at the end of .rela.plt. Unlike most relocations in
1381    //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1382    //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1383    //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1384    //   .got.plt without requiring a separate GOT entry.
1385    //
1386    // - Despite the fact that an ifunc does not have a fixed value, compilers
1387    //   that are not passed -fPIC will assume that they do, and will emit
1388    //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1389    //   symbol. This means that if a direct relocation to the symbol is
1390    //   seen, the linker must set a value for the symbol, and this value must
1391    //   be consistent no matter what type of reference is made to the symbol.
1392    //   This can be done by creating a PLT entry for the symbol in the way
1393    //   described above and making it canonical, that is, making all references
1394    //   point to the PLT entry instead of the resolver. In lld we also store
1395    //   the address of the PLT entry in the dynamic symbol table, which means
1396    //   that the symbol will also have the same value in other modules.
1397    //   Because the value loaded from the GOT needs to be consistent with
1398    //   the value computed using a direct relocation, a non-preemptible ifunc
1399    //   may end up with two GOT entries, one in .got.plt that points to the
1400    //   address returned by the resolver and is used only by the PLT entry,
1401    //   and another in .got that points to the PLT entry and is used by
1402    //   GOT-generating relocations.
1403    //
1404    // - The fact that these symbols do not have a fixed value makes them an
1405    //   exception to the general rule that a statically linked executable does
1406    //   not require any form of dynamic relocation. To handle these relocations
1407    //   correctly, the IRELATIVE relocations are stored in an array which a
1408    //   statically linked executable's startup code must enumerate using the
1409    //   linker-defined symbols __rela?_iplt_{start,end}.
1410    if (!sym.isInPlt()) {
1411      // Create PLT and GOTPLT slots for the symbol.
1412      sym.isInIplt = true;
1413
1414      // Create a copy of the symbol to use as the target of the IRELATIVE
1415      // relocation in the igotPlt. This is in case we make the PLT canonical
1416      // later, which would overwrite the original symbol.
1417      //
1418      // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1419      // that's really needed to create the IRELATIVE is the section and value,
1420      // so ideally we should just need to copy those.
1421      auto *directSym = make<Defined>(cast<Defined>(sym));
1422      addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1423                  *directSym);
1424      sym.pltIndex = directSym->pltIndex;
1425    }
1426    if (needsGot(expr)) {
1427      // Redirect GOT accesses to point to the Igot.
1428      //
1429      // This field is also used to keep track of whether we ever needed a GOT
1430      // entry. If we did and we make the PLT canonical later, we'll need to
1431      // create a GOT entry pointing to the PLT entry for Sym.
1432      sym.gotInIgot = true;
1433    } else if (!needsPlt(expr)) {
1434      // Make the ifunc's PLT entry canonical by changing the value of its
1435      // symbol to redirect all references to point to it.
1436      auto &d = cast<Defined>(sym);
1437      d.section = in.iplt;
1438      d.value = sym.pltIndex * target->ipltEntrySize;
1439      d.size = 0;
1440      // It's important to set the symbol type here so that dynamic loaders
1441      // don't try to call the PLT as if it were an ifunc resolver.
1442      d.type = STT_FUNC;
1443
1444      if (sym.gotInIgot) {
1445        // We previously encountered a GOT generating reference that we
1446        // redirected to the Igot. Now that the PLT entry is canonical we must
1447        // clear the redirection to the Igot and add a GOT entry. As we've
1448        // changed the symbol type to STT_FUNC future GOT generating references
1449        // will naturally use this GOT entry.
1450        //
1451        // We don't need to worry about creating a MIPS GOT here because ifuncs
1452        // aren't a thing on MIPS.
1453        sym.gotInIgot = false;
1454        addGotEntry(sym);
1455      }
1456    }
1457  }
1458
1459  processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1460}
1461
1462template <class ELFT, class RelTy>
1463static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1464  OffsetGetter getOffset(sec);
1465
1466  // Not all relocations end up in Sec.Relocations, but a lot do.
1467  sec.relocations.reserve(rels.size());
1468
1469  for (auto i = rels.begin(), end = rels.end(); i != end;)
1470    scanReloc<ELFT>(sec, getOffset, i, end);
1471
1472  // Sort relocations by offset for more efficient searching for
1473  // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1474  if (config->emachine == EM_RISCV ||
1475      (config->emachine == EM_PPC64 && sec.name == ".toc"))
1476    llvm::stable_sort(sec.relocations,
1477                      [](const Relocation &lhs, const Relocation &rhs) {
1478                        return lhs.offset < rhs.offset;
1479                      });
1480}
1481
1482template <class ELFT> void scanRelocations(InputSectionBase &s) {
1483  if (s.areRelocsRela)
1484    scanRelocs<ELFT>(s, s.relas<ELFT>());
1485  else
1486    scanRelocs<ELFT>(s, s.rels<ELFT>());
1487}
1488
1489static bool mergeCmp(const InputSection *a, const InputSection *b) {
1490  // std::merge requires a strict weak ordering.
1491  if (a->outSecOff < b->outSecOff)
1492    return true;
1493
1494  if (a->outSecOff == b->outSecOff) {
1495    auto *ta = dyn_cast<ThunkSection>(a);
1496    auto *tb = dyn_cast<ThunkSection>(b);
1497
1498    // Check if Thunk is immediately before any specific Target
1499    // InputSection for example Mips LA25 Thunks.
1500    if (ta && ta->getTargetInputSection() == b)
1501      return true;
1502
1503    // Place Thunk Sections without specific targets before
1504    // non-Thunk Sections.
1505    if (ta && !tb && !ta->getTargetInputSection())
1506      return true;
1507  }
1508
1509  return false;
1510}
1511
1512// Call Fn on every executable InputSection accessed via the linker script
1513// InputSectionDescription::Sections.
1514static void forEachInputSectionDescription(
1515    ArrayRef<OutputSection *> outputSections,
1516    llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1517  for (OutputSection *os : outputSections) {
1518    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1519      continue;
1520    for (BaseCommand *bc : os->sectionCommands)
1521      if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1522        fn(os, isd);
1523  }
1524}
1525
1526// Thunk Implementation
1527//
1528// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1529// of code that the linker inserts inbetween a caller and a callee. The thunks
1530// are added at link time rather than compile time as the decision on whether
1531// a thunk is needed, such as the caller and callee being out of range, can only
1532// be made at link time.
1533//
1534// It is straightforward to tell given the current state of the program when a
1535// thunk is needed for a particular call. The more difficult part is that
1536// the thunk needs to be placed in the program such that the caller can reach
1537// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1538// the program alters addresses, which can mean more thunks etc.
1539//
1540// In lld we have a synthetic ThunkSection that can hold many Thunks.
1541// The decision to have a ThunkSection act as a container means that we can
1542// more easily handle the most common case of a single block of contiguous
1543// Thunks by inserting just a single ThunkSection.
1544//
1545// The implementation of Thunks in lld is split across these areas
1546// Relocations.cpp : Framework for creating and placing thunks
1547// Thunks.cpp : The code generated for each supported thunk
1548// Target.cpp : Target specific hooks that the framework uses to decide when
1549//              a thunk is used
1550// Synthetic.cpp : Implementation of ThunkSection
1551// Writer.cpp : Iteratively call framework until no more Thunks added
1552//
1553// Thunk placement requirements:
1554// Mips LA25 thunks. These must be placed immediately before the callee section
1555// We can assume that the caller is in range of the Thunk. These are modelled
1556// by Thunks that return the section they must precede with
1557// getTargetInputSection().
1558//
1559// ARM interworking and range extension thunks. These thunks must be placed
1560// within range of the caller. All implemented ARM thunks can always reach the
1561// callee as they use an indirect jump via a register that has no range
1562// restrictions.
1563//
1564// Thunk placement algorithm:
1565// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1566// getTargetInputSection().
1567//
1568// For thunks that must be placed within range of the caller there are many
1569// possible choices given that the maximum range from the caller is usually
1570// much larger than the average InputSection size. Desirable properties include:
1571// - Maximize reuse of thunks by multiple callers
1572// - Minimize number of ThunkSections to simplify insertion
1573// - Handle impact of already added Thunks on addresses
1574// - Simple to understand and implement
1575//
1576// In lld for the first pass, we pre-create one or more ThunkSections per
1577// InputSectionDescription at Target specific intervals. A ThunkSection is
1578// placed so that the estimated end of the ThunkSection is within range of the
1579// start of the InputSectionDescription or the previous ThunkSection. For
1580// example:
1581// InputSectionDescription
1582// Section 0
1583// ...
1584// Section N
1585// ThunkSection 0
1586// Section N + 1
1587// ...
1588// Section N + K
1589// Thunk Section 1
1590//
1591// The intention is that we can add a Thunk to a ThunkSection that is well
1592// spaced enough to service a number of callers without having to do a lot
1593// of work. An important principle is that it is not an error if a Thunk cannot
1594// be placed in a pre-created ThunkSection; when this happens we create a new
1595// ThunkSection placed next to the caller. This allows us to handle the vast
1596// majority of thunks simply, but also handle rare cases where the branch range
1597// is smaller than the target specific spacing.
1598//
1599// The algorithm is expected to create all the thunks that are needed in a
1600// single pass, with a small number of programs needing a second pass due to
1601// the insertion of thunks in the first pass increasing the offset between
1602// callers and callees that were only just in range.
1603//
1604// A consequence of allowing new ThunkSections to be created outside of the
1605// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1606// range in pass K, are out of range in some pass > K due to the insertion of
1607// more Thunks in between the caller and callee. When this happens we retarget
1608// the relocation back to the original target and create another Thunk.
1609
1610// Remove ThunkSections that are empty, this should only be the initial set
1611// precreated on pass 0.
1612
1613// Insert the Thunks for OutputSection OS into their designated place
1614// in the Sections vector, and recalculate the InputSection output section
1615// offsets.
1616// This may invalidate any output section offsets stored outside of InputSection
1617void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1618  forEachInputSectionDescription(
1619      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1620        if (isd->thunkSections.empty())
1621          return;
1622
1623        // Remove any zero sized precreated Thunks.
1624        llvm::erase_if(isd->thunkSections,
1625                       [](const std::pair<ThunkSection *, uint32_t> &ts) {
1626                         return ts.first->getSize() == 0;
1627                       });
1628
1629        // ISD->ThunkSections contains all created ThunkSections, including
1630        // those inserted in previous passes. Extract the Thunks created this
1631        // pass and order them in ascending outSecOff.
1632        std::vector<ThunkSection *> newThunks;
1633        for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1634          if (ts.second == pass)
1635            newThunks.push_back(ts.first);
1636        llvm::stable_sort(newThunks,
1637                          [](const ThunkSection *a, const ThunkSection *b) {
1638                            return a->outSecOff < b->outSecOff;
1639                          });
1640
1641        // Merge sorted vectors of Thunks and InputSections by outSecOff
1642        std::vector<InputSection *> tmp;
1643        tmp.reserve(isd->sections.size() + newThunks.size());
1644
1645        std::merge(isd->sections.begin(), isd->sections.end(),
1646                   newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1647                   mergeCmp);
1648
1649        isd->sections = std::move(tmp);
1650      });
1651}
1652
1653// Find or create a ThunkSection within the InputSectionDescription (ISD) that
1654// is in range of Src. An ISD maps to a range of InputSections described by a
1655// linker script section pattern such as { .text .text.* }.
1656ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1657                                           InputSectionDescription *isd,
1658                                           uint32_t type, uint64_t src) {
1659  for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1660    ThunkSection *ts = tp.first;
1661    uint64_t tsBase = os->addr + ts->outSecOff;
1662    uint64_t tsLimit = tsBase + ts->getSize();
1663    if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1664      return ts;
1665  }
1666
1667  // No suitable ThunkSection exists. This can happen when there is a branch
1668  // with lower range than the ThunkSection spacing or when there are too
1669  // many Thunks. Create a new ThunkSection as close to the InputSection as
1670  // possible. Error if InputSection is so large we cannot place ThunkSection
1671  // anywhere in Range.
1672  uint64_t thunkSecOff = isec->outSecOff;
1673  if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1674    thunkSecOff = isec->outSecOff + isec->getSize();
1675    if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1676      fatal("InputSection too large for range extension thunk " +
1677            isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1678  }
1679  return addThunkSection(os, isd, thunkSecOff);
1680}
1681
1682// Add a Thunk that needs to be placed in a ThunkSection that immediately
1683// precedes its Target.
1684ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1685  ThunkSection *ts = thunkedSections.lookup(isec);
1686  if (ts)
1687    return ts;
1688
1689  // Find InputSectionRange within Target Output Section (TOS) that the
1690  // InputSection (IS) that we need to precede is in.
1691  OutputSection *tos = isec->getParent();
1692  for (BaseCommand *bc : tos->sectionCommands) {
1693    auto *isd = dyn_cast<InputSectionDescription>(bc);
1694    if (!isd || isd->sections.empty())
1695      continue;
1696
1697    InputSection *first = isd->sections.front();
1698    InputSection *last = isd->sections.back();
1699
1700    if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1701      continue;
1702
1703    ts = addThunkSection(tos, isd, isec->outSecOff);
1704    thunkedSections[isec] = ts;
1705    return ts;
1706  }
1707
1708  return nullptr;
1709}
1710
1711// Create one or more ThunkSections per OS that can be used to place Thunks.
1712// We attempt to place the ThunkSections using the following desirable
1713// properties:
1714// - Within range of the maximum number of callers
1715// - Minimise the number of ThunkSections
1716//
1717// We follow a simple but conservative heuristic to place ThunkSections at
1718// offsets that are multiples of a Target specific branch range.
1719// For an InputSectionDescription that is smaller than the range, a single
1720// ThunkSection at the end of the range will do.
1721//
1722// For an InputSectionDescription that is more than twice the size of the range,
1723// we place the last ThunkSection at range bytes from the end of the
1724// InputSectionDescription in order to increase the likelihood that the
1725// distance from a thunk to its target will be sufficiently small to
1726// allow for the creation of a short thunk.
1727void ThunkCreator::createInitialThunkSections(
1728    ArrayRef<OutputSection *> outputSections) {
1729  uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1730
1731  forEachInputSectionDescription(
1732      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1733        if (isd->sections.empty())
1734          return;
1735
1736        uint32_t isdBegin = isd->sections.front()->outSecOff;
1737        uint32_t isdEnd =
1738            isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1739        uint32_t lastThunkLowerBound = -1;
1740        if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1741          lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1742
1743        uint32_t isecLimit;
1744        uint32_t prevIsecLimit = isdBegin;
1745        uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1746
1747        for (const InputSection *isec : isd->sections) {
1748          isecLimit = isec->outSecOff + isec->getSize();
1749          if (isecLimit > thunkUpperBound) {
1750            addThunkSection(os, isd, prevIsecLimit);
1751            thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1752          }
1753          if (isecLimit > lastThunkLowerBound)
1754            break;
1755          prevIsecLimit = isecLimit;
1756        }
1757        addThunkSection(os, isd, isecLimit);
1758      });
1759}
1760
1761ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1762                                            InputSectionDescription *isd,
1763                                            uint64_t off) {
1764  auto *ts = make<ThunkSection>(os, off);
1765  ts->partition = os->partition;
1766  if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1767      !isd->sections.empty()) {
1768    // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1769    // thunks we disturb the base addresses of sections placed after the thunks
1770    // this makes patches we have generated redundant, and may cause us to
1771    // generate more patches as different instructions are now in sensitive
1772    // locations. When we generate more patches we may force more branches to
1773    // go out of range, causing more thunks to be generated. In pathological
1774    // cases this can cause the address dependent content pass not to converge.
1775    // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1776    // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1777    // which means that adding Thunks to the section does not invalidate
1778    // errata patches for following code.
1779    // Rounding up the size to 4KiB has consequences for code-size and can
1780    // trip up linker script defined assertions. For example the linux kernel
1781    // has an assertion that what LLD represents as an InputSectionDescription
1782    // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1783    // We use the heuristic of rounding up the size when both of the following
1784    // conditions are true:
1785    // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1786    //     accounts for the case where no single InputSectionDescription is
1787    //     larger than the OutputSection size. This is conservative but simple.
1788    // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1789    //     any assertion failures that an InputSectionDescription is < 4 KiB
1790    //     in size.
1791    uint64_t isdSize = isd->sections.back()->outSecOff +
1792                       isd->sections.back()->getSize() -
1793                       isd->sections.front()->outSecOff;
1794    if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1795      ts->roundUpSizeForErrata = true;
1796  }
1797  isd->thunkSections.push_back({ts, pass});
1798  return ts;
1799}
1800
1801static bool isThunkSectionCompatible(InputSection *source,
1802                                     SectionBase *target) {
1803  // We can't reuse thunks in different loadable partitions because they might
1804  // not be loaded. But partition 1 (the main partition) will always be loaded.
1805  if (source->partition != target->partition)
1806    return target->partition == 1;
1807  return true;
1808}
1809
1810static int64_t getPCBias(RelType type) {
1811  if (config->emachine != EM_ARM)
1812    return 0;
1813  switch (type) {
1814  case R_ARM_THM_JUMP19:
1815  case R_ARM_THM_JUMP24:
1816  case R_ARM_THM_CALL:
1817    return 4;
1818  default:
1819    return 8;
1820  }
1821}
1822
1823std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1824                                                Relocation &rel, uint64_t src) {
1825  std::vector<Thunk *> *thunkVec = nullptr;
1826  int64_t addend = rel.addend + getPCBias(rel.type);
1827
1828  // We use a ((section, offset), addend) pair to find the thunk position if
1829  // possible so that we create only one thunk for aliased symbols or ICFed
1830  // sections. There may be multiple relocations sharing the same (section,
1831  // offset + addend) pair. We may revert the relocation back to its original
1832  // non-Thunk target, so we cannot fold offset + addend.
1833  if (auto *d = dyn_cast<Defined>(rel.sym))
1834    if (!d->isInPlt() && d->section)
1835      thunkVec = &thunkedSymbolsBySectionAndAddend[{
1836          {d->section->repl, d->value}, addend}];
1837  if (!thunkVec)
1838    thunkVec = &thunkedSymbols[{rel.sym, addend}];
1839
1840  // Check existing Thunks for Sym to see if they can be reused
1841  for (Thunk *t : *thunkVec)
1842    if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1843        t->isCompatibleWith(*isec, rel) &&
1844        target->inBranchRange(rel.type, src,
1845                              t->getThunkTargetSym()->getVA(rel.addend) +
1846                                  getPCBias(rel.type)))
1847      return std::make_pair(t, false);
1848
1849  // No existing compatible Thunk in range, create a new one
1850  Thunk *t = addThunk(*isec, rel);
1851  thunkVec->push_back(t);
1852  return std::make_pair(t, true);
1853}
1854
1855// Return true if the relocation target is an in range Thunk.
1856// Return false if the relocation is not to a Thunk. If the relocation target
1857// was originally to a Thunk, but is no longer in range we revert the
1858// relocation back to its original non-Thunk target.
1859bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1860  if (Thunk *t = thunks.lookup(rel.sym)) {
1861    if (target->inBranchRange(rel.type, src,
1862                              rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
1863      return true;
1864    rel.sym = &t->destination;
1865    rel.addend = t->addend;
1866    if (rel.sym->isInPlt())
1867      rel.expr = toPlt(rel.expr);
1868  }
1869  return false;
1870}
1871
1872// Process all relocations from the InputSections that have been assigned
1873// to InputSectionDescriptions and redirect through Thunks if needed. The
1874// function should be called iteratively until it returns false.
1875//
1876// PreConditions:
1877// All InputSections that may need a Thunk are reachable from
1878// OutputSectionCommands.
1879//
1880// All OutputSections have an address and all InputSections have an offset
1881// within the OutputSection.
1882//
1883// The offsets between caller (relocation place) and callee
1884// (relocation target) will not be modified outside of createThunks().
1885//
1886// PostConditions:
1887// If return value is true then ThunkSections have been inserted into
1888// OutputSections. All relocations that needed a Thunk based on the information
1889// available to createThunks() on entry have been redirected to a Thunk. Note
1890// that adding Thunks changes offsets between caller and callee so more Thunks
1891// may be required.
1892//
1893// If return value is false then no more Thunks are needed, and createThunks has
1894// made no changes. If the target requires range extension thunks, currently
1895// ARM, then any future change in offset between caller and callee risks a
1896// relocation out of range error.
1897bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
1898  bool addressesChanged = false;
1899
1900  if (pass == 0 && target->getThunkSectionSpacing())
1901    createInitialThunkSections(outputSections);
1902
1903  // Create all the Thunks and insert them into synthetic ThunkSections. The
1904  // ThunkSections are later inserted back into InputSectionDescriptions.
1905  // We separate the creation of ThunkSections from the insertion of the
1906  // ThunkSections as ThunkSections are not always inserted into the same
1907  // InputSectionDescription as the caller.
1908  forEachInputSectionDescription(
1909      outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1910        for (InputSection *isec : isd->sections)
1911          for (Relocation &rel : isec->relocations) {
1912            uint64_t src = isec->getVA(rel.offset);
1913
1914            // If we are a relocation to an existing Thunk, check if it is
1915            // still in range. If not then Rel will be altered to point to its
1916            // original target so another Thunk can be generated.
1917            if (pass > 0 && normalizeExistingThunk(rel, src))
1918              continue;
1919
1920            if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
1921                                    *rel.sym, rel.addend))
1922              continue;
1923
1924            Thunk *t;
1925            bool isNew;
1926            std::tie(t, isNew) = getThunk(isec, rel, src);
1927
1928            if (isNew) {
1929              // Find or create a ThunkSection for the new Thunk
1930              ThunkSection *ts;
1931              if (auto *tis = t->getTargetInputSection())
1932                ts = getISThunkSec(tis);
1933              else
1934                ts = getISDThunkSec(os, isec, isd, rel.type, src);
1935              ts->addThunk(t);
1936              thunks[t->getThunkTargetSym()] = t;
1937            }
1938
1939            // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1940            rel.sym = t->getThunkTargetSym();
1941            rel.expr = fromPlt(rel.expr);
1942
1943            // On AArch64 and PPC, a jump/call relocation may be encoded as
1944            // STT_SECTION + non-zero addend, clear the addend after
1945            // redirection.
1946            if (config->emachine != EM_MIPS)
1947              rel.addend = -getPCBias(rel.type);
1948          }
1949
1950        for (auto &p : isd->thunkSections)
1951          addressesChanged |= p.first->assignOffsets();
1952      });
1953
1954  for (auto &p : thunkedSections)
1955    addressesChanged |= p.second->assignOffsets();
1956
1957  // Merge all created synthetic ThunkSections back into OutputSection
1958  mergeThunks(outputSections);
1959  ++pass;
1960  return addressesChanged;
1961}
1962
1963template void scanRelocations<ELF32LE>(InputSectionBase &);
1964template void scanRelocations<ELF32BE>(InputSectionBase &);
1965template void scanRelocations<ELF64LE>(InputSectionBase &);
1966template void scanRelocations<ELF64BE>(InputSectionBase &);
1967template void reportUndefinedSymbols<ELF32LE>();
1968template void reportUndefinedSymbols<ELF32BE>();
1969template void reportUndefinedSymbols<ELF64LE>();
1970template void reportUndefinedSymbols<ELF64BE>();
1971
1972} // namespace elf
1973} // namespace lld
1974