1//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This file defines CallEvent and its subclasses, which represent path-
10/// sensitive instances of different kinds of function and method calls
11/// (C, C++, and Objective-C).
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ParentMap.h"
26#include "clang/AST/Stmt.h"
27#include "clang/AST/Type.h"
28#include "clang/Analysis/AnalysisDeclContext.h"
29#include "clang/Analysis/CFG.h"
30#include "clang/Analysis/CFGStmtMap.h"
31#include "clang/Analysis/PathDiagnostic.h"
32#include "clang/Analysis/ProgramPoint.h"
33#include "clang/Basic/IdentifierTable.h"
34#include "clang/Basic/LLVM.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/Specifiers.h"
38#include "clang/CrossTU/CrossTranslationUnit.h"
39#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/None.h"
51#include "llvm/ADT/Optional.h"
52#include "llvm/ADT/PointerIntPair.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/ADT/StringRef.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/Compiler.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include <cassert>
63#include <utility>
64
65#define DEBUG_TYPE "static-analyzer-call-event"
66
67using namespace clang;
68using namespace ento;
69
70QualType CallEvent::getResultType() const {
71  ASTContext &Ctx = getState()->getStateManager().getContext();
72  const Expr *E = getOriginExpr();
73  if (!E)
74    return Ctx.VoidTy;
75  assert(E);
76
77  QualType ResultTy = E->getType();
78
79  // A function that returns a reference to 'int' will have a result type
80  // of simply 'int'. Check the origin expr's value kind to recover the
81  // proper type.
82  switch (E->getValueKind()) {
83  case VK_LValue:
84    ResultTy = Ctx.getLValueReferenceType(ResultTy);
85    break;
86  case VK_XValue:
87    ResultTy = Ctx.getRValueReferenceType(ResultTy);
88    break;
89  case VK_RValue:
90    // No adjustment is necessary.
91    break;
92  }
93
94  return ResultTy;
95}
96
97static bool isCallback(QualType T) {
98  // If a parameter is a block or a callback, assume it can modify pointer.
99  if (T->isBlockPointerType() ||
100      T->isFunctionPointerType() ||
101      T->isObjCSelType())
102    return true;
103
104  // Check if a callback is passed inside a struct (for both, struct passed by
105  // reference and by value). Dig just one level into the struct for now.
106
107  if (T->isAnyPointerType() || T->isReferenceType())
108    T = T->getPointeeType();
109
110  if (const RecordType *RT = T->getAsStructureType()) {
111    const RecordDecl *RD = RT->getDecl();
112    for (const auto *I : RD->fields()) {
113      QualType FieldT = I->getType();
114      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115        return true;
116    }
117  }
118  return false;
119}
120
121static bool isVoidPointerToNonConst(QualType T) {
122  if (const auto *PT = T->getAs<PointerType>()) {
123    QualType PointeeTy = PT->getPointeeType();
124    if (PointeeTy.isConstQualified())
125      return false;
126    return PointeeTy->isVoidType();
127  } else
128    return false;
129}
130
131bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132  unsigned NumOfArgs = getNumArgs();
133
134  // If calling using a function pointer, assume the function does not
135  // satisfy the callback.
136  // TODO: We could check the types of the arguments here.
137  if (!getDecl())
138    return false;
139
140  unsigned Idx = 0;
141  for (CallEvent::param_type_iterator I = param_type_begin(),
142                                      E = param_type_end();
143       I != E && Idx < NumOfArgs; ++I, ++Idx) {
144    // If the parameter is 0, it's harmless.
145    if (getArgSVal(Idx).isZeroConstant())
146      continue;
147
148    if (Condition(*I))
149      return true;
150  }
151  return false;
152}
153
154bool CallEvent::hasNonZeroCallbackArg() const {
155  return hasNonNullArgumentsWithType(isCallback);
156}
157
158bool CallEvent::hasVoidPointerToNonConstArg() const {
159  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160}
161
162bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163  const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164  if (!FD)
165    return false;
166
167  return CheckerContext::isCLibraryFunction(FD, FunctionName);
168}
169
170AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171  const Decl *D = getDecl();
172  if (!D)
173    return nullptr;
174
175  // TODO: For now we skip functions without definitions, even if we have
176  // our own getDecl(), because it's hard to find out which re-declaration
177  // is going to be used, and usually clients don't really care about this
178  // situation because there's a loss of precision anyway because we cannot
179  // inline the call.
180  RuntimeDefinition RD = getRuntimeDefinition();
181  if (!RD.getDecl())
182    return nullptr;
183
184  AnalysisDeclContext *ADC =
185      LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186
187  // TODO: For now we skip virtual functions, because this also rises
188  // the problem of which decl to use, but now it's across different classes.
189  if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190    return nullptr;
191
192  return ADC;
193}
194
195const StackFrameContext *
196CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
197  AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
198  if (!ADC)
199    return nullptr;
200
201  const Expr *E = getOriginExpr();
202  if (!E)
203    return nullptr;
204
205  // Recover CFG block via reverse lookup.
206  // TODO: If we were to keep CFG element information as part of the CallEvent
207  // instead of doing this reverse lookup, we would be able to build the stack
208  // frame for non-expression-based calls, and also we wouldn't need the reverse
209  // lookup.
210  CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
211  const CFGBlock *B = Map->getBlock(E);
212  assert(B);
213
214  // Also recover CFG index by scanning the CFG block.
215  unsigned Idx = 0, Sz = B->size();
216  for (; Idx < Sz; ++Idx)
217    if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
218      if (StmtElem->getStmt() == E)
219        break;
220  assert(Idx < Sz);
221
222  return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
223}
224
225const VarRegion *CallEvent::getParameterLocation(unsigned Index,
226                                                 unsigned BlockCount) const {
227  const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
228  // We cannot construct a VarRegion without a stack frame.
229  if (!SFC)
230    return nullptr;
231
232  // Retrieve parameters of the definition, which are different from
233  // CallEvent's parameters() because getDecl() isn't necessarily
234  // the definition. SFC contains the definition that would be used
235  // during analysis.
236  const Decl *D = SFC->getDecl();
237
238  // TODO: Refactor into a virtual method of CallEvent, like parameters().
239  const ParmVarDecl *PVD = nullptr;
240  if (const auto *FD = dyn_cast<FunctionDecl>(D))
241    PVD = FD->parameters()[Index];
242  else if (const auto *BD = dyn_cast<BlockDecl>(D))
243    PVD = BD->parameters()[Index];
244  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
245    PVD = MD->parameters()[Index];
246  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
247    PVD = CD->parameters()[Index];
248  assert(PVD && "Unexpected Decl kind!");
249
250  const VarRegion *VR =
251      State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
252
253  // This sanity check would fail if our parameter declaration doesn't
254  // correspond to the stack frame's function declaration.
255  assert(VR->getStackFrame() == SFC);
256
257  return VR;
258}
259
260/// Returns true if a type is a pointer-to-const or reference-to-const
261/// with no further indirection.
262static bool isPointerToConst(QualType Ty) {
263  QualType PointeeTy = Ty->getPointeeType();
264  if (PointeeTy == QualType())
265    return false;
266  if (!PointeeTy.isConstQualified())
267    return false;
268  if (PointeeTy->isAnyPointerType())
269    return false;
270  return true;
271}
272
273// Try to retrieve the function declaration and find the function parameter
274// types which are pointers/references to a non-pointer const.
275// We will not invalidate the corresponding argument regions.
276static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
277                                 const CallEvent &Call) {
278  unsigned Idx = 0;
279  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
280                                      E = Call.param_type_end();
281       I != E; ++I, ++Idx) {
282    if (isPointerToConst(*I))
283      PreserveArgs.insert(Idx);
284  }
285}
286
287ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
288                                             ProgramStateRef Orig) const {
289  ProgramStateRef Result = (Orig ? Orig : getState());
290
291  // Don't invalidate anything if the callee is marked pure/const.
292  if (const Decl *callee = getDecl())
293    if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
294      return Result;
295
296  SmallVector<SVal, 8> ValuesToInvalidate;
297  RegionAndSymbolInvalidationTraits ETraits;
298
299  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
300
301  // Indexes of arguments whose values will be preserved by the call.
302  llvm::SmallSet<unsigned, 4> PreserveArgs;
303  if (!argumentsMayEscape())
304    findPtrToConstParams(PreserveArgs, *this);
305
306  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
307    // Mark this region for invalidation.  We batch invalidate regions
308    // below for efficiency.
309    if (PreserveArgs.count(Idx))
310      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
311        ETraits.setTrait(MR->getBaseRegion(),
312                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
313        // TODO: Factor this out + handle the lower level const pointers.
314
315    ValuesToInvalidate.push_back(getArgSVal(Idx));
316
317    // If a function accepts an object by argument (which would of course be a
318    // temporary that isn't lifetime-extended), invalidate the object itself,
319    // not only other objects reachable from it. This is necessary because the
320    // destructor has access to the temporary object after the call.
321    // TODO: Support placement arguments once we start
322    // constructing them directly.
323    // TODO: This is unnecessary when there's no destructor, but that's
324    // currently hard to figure out.
325    if (getKind() != CE_CXXAllocator)
326      if (isArgumentConstructedDirectly(Idx))
327        if (auto AdjIdx = getAdjustedParameterIndex(Idx))
328          if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
329            ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
330  }
331
332  // Invalidate designated regions using the batch invalidation API.
333  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
334  //  global variables.
335  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
336                                   BlockCount, getLocationContext(),
337                                   /*CausedByPointerEscape*/ true,
338                                   /*Symbols=*/nullptr, this, &ETraits);
339}
340
341ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
342                                        const ProgramPointTag *Tag) const {
343  if (const Expr *E = getOriginExpr()) {
344    if (IsPreVisit)
345      return PreStmt(E, getLocationContext(), Tag);
346    return PostStmt(E, getLocationContext(), Tag);
347  }
348
349  const Decl *D = getDecl();
350  assert(D && "Cannot get a program point without a statement or decl");
351
352  SourceLocation Loc = getSourceRange().getBegin();
353  if (IsPreVisit)
354    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
355  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
356}
357
358bool CallEvent::isCalled(const CallDescription &CD) const {
359  // FIXME: Add ObjC Message support.
360  if (getKind() == CE_ObjCMessage)
361    return false;
362
363  const IdentifierInfo *II = getCalleeIdentifier();
364  if (!II)
365    return false;
366  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
367  if (!FD)
368    return false;
369
370  if (CD.Flags & CDF_MaybeBuiltin) {
371    return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
372           (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
373           (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
374  }
375
376  if (!CD.IsLookupDone) {
377    CD.IsLookupDone = true;
378    CD.II = &getState()->getStateManager().getContext().Idents.get(
379        CD.getFunctionName());
380  }
381
382  if (II != CD.II)
383    return false;
384
385  // If CallDescription provides prefix names, use them to improve matching
386  // accuracy.
387  if (CD.QualifiedName.size() > 1 && FD) {
388    const DeclContext *Ctx = FD->getDeclContext();
389    // See if we'll be able to match them all.
390    size_t NumUnmatched = CD.QualifiedName.size() - 1;
391    for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
392      if (NumUnmatched == 0)
393        break;
394
395      if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
396        if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
397          --NumUnmatched;
398        continue;
399      }
400
401      if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
402        if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
403          --NumUnmatched;
404        continue;
405      }
406    }
407
408    if (NumUnmatched > 0)
409      return false;
410  }
411
412  return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
413         (!CD.RequiredParams || CD.RequiredParams == parameters().size());
414}
415
416SVal CallEvent::getArgSVal(unsigned Index) const {
417  const Expr *ArgE = getArgExpr(Index);
418  if (!ArgE)
419    return UnknownVal();
420  return getSVal(ArgE);
421}
422
423SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
424  const Expr *ArgE = getArgExpr(Index);
425  if (!ArgE)
426    return {};
427  return ArgE->getSourceRange();
428}
429
430SVal CallEvent::getReturnValue() const {
431  const Expr *E = getOriginExpr();
432  if (!E)
433    return UndefinedVal();
434  return getSVal(E);
435}
436
437LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
438
439void CallEvent::dump(raw_ostream &Out) const {
440  ASTContext &Ctx = getState()->getStateManager().getContext();
441  if (const Expr *E = getOriginExpr()) {
442    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
443    Out << "\n";
444    return;
445  }
446
447  if (const Decl *D = getDecl()) {
448    Out << "Call to ";
449    D->print(Out, Ctx.getPrintingPolicy());
450    return;
451  }
452
453  // FIXME: a string representation of the kind would be nice.
454  Out << "Unknown call (type " << getKind() << ")";
455}
456
457bool CallEvent::isCallStmt(const Stmt *S) {
458  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
459                          || isa<CXXConstructExpr>(S)
460                          || isa<CXXNewExpr>(S);
461}
462
463QualType CallEvent::getDeclaredResultType(const Decl *D) {
464  assert(D);
465  if (const auto *FD = dyn_cast<FunctionDecl>(D))
466    return FD->getReturnType();
467  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
468    return MD->getReturnType();
469  if (const auto *BD = dyn_cast<BlockDecl>(D)) {
470    // Blocks are difficult because the return type may not be stored in the
471    // BlockDecl itself. The AST should probably be enhanced, but for now we
472    // just do what we can.
473    // If the block is declared without an explicit argument list, the
474    // signature-as-written just includes the return type, not the entire
475    // function type.
476    // FIXME: All blocks should have signatures-as-written, even if the return
477    // type is inferred. (That's signified with a dependent result type.)
478    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
479      QualType Ty = TSI->getType();
480      if (const FunctionType *FT = Ty->getAs<FunctionType>())
481        Ty = FT->getReturnType();
482      if (!Ty->isDependentType())
483        return Ty;
484    }
485
486    return {};
487  }
488
489  llvm_unreachable("unknown callable kind");
490}
491
492bool CallEvent::isVariadic(const Decl *D) {
493  assert(D);
494
495  if (const auto *FD = dyn_cast<FunctionDecl>(D))
496    return FD->isVariadic();
497  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
498    return MD->isVariadic();
499  if (const auto *BD = dyn_cast<BlockDecl>(D))
500    return BD->isVariadic();
501
502  llvm_unreachable("unknown callable kind");
503}
504
505static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
506                                         CallEvent::BindingsTy &Bindings,
507                                         SValBuilder &SVB,
508                                         const CallEvent &Call,
509                                         ArrayRef<ParmVarDecl*> parameters) {
510  MemRegionManager &MRMgr = SVB.getRegionManager();
511
512  // If the function has fewer parameters than the call has arguments, we simply
513  // do not bind any values to them.
514  unsigned NumArgs = Call.getNumArgs();
515  unsigned Idx = 0;
516  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
517  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
518    const ParmVarDecl *ParamDecl = *I;
519    assert(ParamDecl && "Formal parameter has no decl?");
520
521    // TODO: Support allocator calls.
522    if (Call.getKind() != CE_CXXAllocator)
523      if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
524        continue;
525
526    // TODO: Allocators should receive the correct size and possibly alignment,
527    // determined in compile-time but not represented as arg-expressions,
528    // which makes getArgSVal() fail and return UnknownVal.
529    SVal ArgVal = Call.getArgSVal(Idx);
530    if (!ArgVal.isUnknown()) {
531      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
532      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
533    }
534  }
535
536  // FIXME: Variadic arguments are not handled at all right now.
537}
538
539ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
540  const FunctionDecl *D = getDecl();
541  if (!D)
542    return None;
543  return D->parameters();
544}
545
546RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
547  const FunctionDecl *FD = getDecl();
548  if (!FD)
549    return {};
550
551  // Note that the AnalysisDeclContext will have the FunctionDecl with
552  // the definition (if one exists).
553  AnalysisDeclContext *AD =
554    getLocationContext()->getAnalysisDeclContext()->
555    getManager()->getContext(FD);
556  bool IsAutosynthesized;
557  Stmt* Body = AD->getBody(IsAutosynthesized);
558  LLVM_DEBUG({
559    if (IsAutosynthesized)
560      llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
561                   << "\n";
562  });
563  if (Body) {
564    const Decl* Decl = AD->getDecl();
565    return RuntimeDefinition(Decl);
566  }
567
568  SubEngine &Engine = getState()->getStateManager().getOwningEngine();
569  AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
570
571  // Try to get CTU definition only if CTUDir is provided.
572  if (!Opts.IsNaiveCTUEnabled)
573    return {};
574
575  cross_tu::CrossTranslationUnitContext &CTUCtx =
576      *Engine.getCrossTranslationUnitContext();
577  llvm::Expected<const FunctionDecl *> CTUDeclOrError =
578      CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
579                                  Opts.DisplayCTUProgress);
580
581  if (!CTUDeclOrError) {
582    handleAllErrors(CTUDeclOrError.takeError(),
583                    [&](const cross_tu::IndexError &IE) {
584                      CTUCtx.emitCrossTUDiagnostics(IE);
585                    });
586    return {};
587  }
588
589  return RuntimeDefinition(*CTUDeclOrError);
590}
591
592void AnyFunctionCall::getInitialStackFrameContents(
593                                        const StackFrameContext *CalleeCtx,
594                                        BindingsTy &Bindings) const {
595  const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
596  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
597  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
598                               D->parameters());
599}
600
601bool AnyFunctionCall::argumentsMayEscape() const {
602  if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
603    return true;
604
605  const FunctionDecl *D = getDecl();
606  if (!D)
607    return true;
608
609  const IdentifierInfo *II = D->getIdentifier();
610  if (!II)
611    return false;
612
613  // This set of "escaping" APIs is
614
615  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
616  //   value into thread local storage. The value can later be retrieved with
617  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
618  //   parameter is 'const void *', the region escapes through the call.
619  if (II->isStr("pthread_setspecific"))
620    return true;
621
622  // - xpc_connection_set_context stores a value which can be retrieved later
623  //   with xpc_connection_get_context.
624  if (II->isStr("xpc_connection_set_context"))
625    return true;
626
627  // - funopen - sets a buffer for future IO calls.
628  if (II->isStr("funopen"))
629    return true;
630
631  // - __cxa_demangle - can reallocate memory and can return the pointer to
632  // the input buffer.
633  if (II->isStr("__cxa_demangle"))
634    return true;
635
636  StringRef FName = II->getName();
637
638  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
639  //   buffer even if it is const.
640  if (FName.endswith("NoCopy"))
641    return true;
642
643  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
644  //   be deallocated by NSMapRemove.
645  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
646    return true;
647
648  // - Many CF containers allow objects to escape through custom
649  //   allocators/deallocators upon container construction. (PR12101)
650  if (FName.startswith("CF") || FName.startswith("CG")) {
651    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
652           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
653           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
654           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
655           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
656           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
657  }
658
659  return false;
660}
661
662const FunctionDecl *SimpleFunctionCall::getDecl() const {
663  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
664  if (D)
665    return D;
666
667  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
668}
669
670const FunctionDecl *CXXInstanceCall::getDecl() const {
671  const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
672  if (!CE)
673    return AnyFunctionCall::getDecl();
674
675  const FunctionDecl *D = CE->getDirectCallee();
676  if (D)
677    return D;
678
679  return getSVal(CE->getCallee()).getAsFunctionDecl();
680}
681
682void CXXInstanceCall::getExtraInvalidatedValues(
683    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
684  SVal ThisVal = getCXXThisVal();
685  Values.push_back(ThisVal);
686
687  // Don't invalidate if the method is const and there are no mutable fields.
688  if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
689    if (!D->isConst())
690      return;
691    // Get the record decl for the class of 'This'. D->getParent() may return a
692    // base class decl, rather than the class of the instance which needs to be
693    // checked for mutable fields.
694    // TODO: We might as well look at the dynamic type of the object.
695    const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
696    QualType T = Ex->getType();
697    if (T->isPointerType()) // Arrow or implicit-this syntax?
698      T = T->getPointeeType();
699    const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
700    assert(ParentRecord);
701    if (ParentRecord->hasMutableFields())
702      return;
703    // Preserve CXXThis.
704    const MemRegion *ThisRegion = ThisVal.getAsRegion();
705    if (!ThisRegion)
706      return;
707
708    ETraits->setTrait(ThisRegion->getBaseRegion(),
709                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
710  }
711}
712
713SVal CXXInstanceCall::getCXXThisVal() const {
714  const Expr *Base = getCXXThisExpr();
715  // FIXME: This doesn't handle an overloaded ->* operator.
716  if (!Base)
717    return UnknownVal();
718
719  SVal ThisVal = getSVal(Base);
720  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
721  return ThisVal;
722}
723
724RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
725  // Do we have a decl at all?
726  const Decl *D = getDecl();
727  if (!D)
728    return {};
729
730  // If the method is non-virtual, we know we can inline it.
731  const auto *MD = cast<CXXMethodDecl>(D);
732  if (!MD->isVirtual())
733    return AnyFunctionCall::getRuntimeDefinition();
734
735  // Do we know the implicit 'this' object being called?
736  const MemRegion *R = getCXXThisVal().getAsRegion();
737  if (!R)
738    return {};
739
740  // Do we know anything about the type of 'this'?
741  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
742  if (!DynType.isValid())
743    return {};
744
745  // Is the type a C++ class? (This is mostly a defensive check.)
746  QualType RegionType = DynType.getType()->getPointeeType();
747  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
748
749  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
750  if (!RD || !RD->hasDefinition())
751    return {};
752
753  // Find the decl for this method in that class.
754  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
755  if (!Result) {
756    // We might not even get the original statically-resolved method due to
757    // some particularly nasty casting (e.g. casts to sister classes).
758    // However, we should at least be able to search up and down our own class
759    // hierarchy, and some real bugs have been caught by checking this.
760    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
761
762    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
763    // the static type. However, because we currently don't update
764    // DynamicTypeInfo when an object is cast, we can't actually be sure the
765    // DynamicTypeInfo is up to date. This assert should be re-enabled once
766    // this is fixed. <rdar://problem/12287087>
767    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
768
769    return {};
770  }
771
772  // Does the decl that we found have an implementation?
773  const FunctionDecl *Definition;
774  if (!Result->hasBody(Definition)) {
775    if (!DynType.canBeASubClass())
776      return AnyFunctionCall::getRuntimeDefinition();
777    return {};
778  }
779
780  // We found a definition. If we're not sure that this devirtualization is
781  // actually what will happen at runtime, make sure to provide the region so
782  // that ExprEngine can decide what to do with it.
783  if (DynType.canBeASubClass())
784    return RuntimeDefinition(Definition, R->StripCasts());
785  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
786}
787
788void CXXInstanceCall::getInitialStackFrameContents(
789                                            const StackFrameContext *CalleeCtx,
790                                            BindingsTy &Bindings) const {
791  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
792
793  // Handle the binding of 'this' in the new stack frame.
794  SVal ThisVal = getCXXThisVal();
795  if (!ThisVal.isUnknown()) {
796    ProgramStateManager &StateMgr = getState()->getStateManager();
797    SValBuilder &SVB = StateMgr.getSValBuilder();
798
799    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
800    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
801
802    // If we devirtualized to a different member function, we need to make sure
803    // we have the proper layering of CXXBaseObjectRegions.
804    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
805      ASTContext &Ctx = SVB.getContext();
806      const CXXRecordDecl *Class = MD->getParent();
807      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
808
809      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
810      bool Failed;
811      ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
812      if (Failed) {
813        // We might have suffered some sort of placement new earlier, so
814        // we're constructing in a completely unexpected storage.
815        // Fall back to a generic pointer cast for this-value.
816        const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
817        const CXXRecordDecl *StaticClass = StaticMD->getParent();
818        QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
819        ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
820      }
821    }
822
823    if (!ThisVal.isUnknown())
824      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
825  }
826}
827
828const Expr *CXXMemberCall::getCXXThisExpr() const {
829  return getOriginExpr()->getImplicitObjectArgument();
830}
831
832RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
833  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
834  // id-expression in the class member access expression is a qualified-id,
835  // that function is called. Otherwise, its final overrider in the dynamic type
836  // of the object expression is called.
837  if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
838    if (ME->hasQualifier())
839      return AnyFunctionCall::getRuntimeDefinition();
840
841  return CXXInstanceCall::getRuntimeDefinition();
842}
843
844const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
845  return getOriginExpr()->getArg(0);
846}
847
848const BlockDataRegion *BlockCall::getBlockRegion() const {
849  const Expr *Callee = getOriginExpr()->getCallee();
850  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
851
852  return dyn_cast_or_null<BlockDataRegion>(DataReg);
853}
854
855ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
856  const BlockDecl *D = getDecl();
857  if (!D)
858    return None;
859  return D->parameters();
860}
861
862void BlockCall::getExtraInvalidatedValues(ValueList &Values,
863                  RegionAndSymbolInvalidationTraits *ETraits) const {
864  // FIXME: This also needs to invalidate captured globals.
865  if (const MemRegion *R = getBlockRegion())
866    Values.push_back(loc::MemRegionVal(R));
867}
868
869void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
870                                             BindingsTy &Bindings) const {
871  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
872  ArrayRef<ParmVarDecl*> Params;
873  if (isConversionFromLambda()) {
874    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
875    Params = LambdaOperatorDecl->parameters();
876
877    // For blocks converted from a C++ lambda, the callee declaration is the
878    // operator() method on the lambda so we bind "this" to
879    // the lambda captured by the block.
880    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
881    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
882    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
883    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
884  } else {
885    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
886  }
887
888  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
889                               Params);
890}
891
892SVal CXXConstructorCall::getCXXThisVal() const {
893  if (Data)
894    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
895  return UnknownVal();
896}
897
898void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
899                           RegionAndSymbolInvalidationTraits *ETraits) const {
900  if (Data) {
901    loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
902    if (SymbolRef Sym = MV.getAsSymbol(true))
903      ETraits->setTrait(Sym,
904                        RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
905    Values.push_back(MV);
906  }
907}
908
909void CXXConstructorCall::getInitialStackFrameContents(
910                                             const StackFrameContext *CalleeCtx,
911                                             BindingsTy &Bindings) const {
912  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
913
914  SVal ThisVal = getCXXThisVal();
915  if (!ThisVal.isUnknown()) {
916    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
917    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
918    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
919    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
920  }
921}
922
923SVal CXXDestructorCall::getCXXThisVal() const {
924  if (Data)
925    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
926  return UnknownVal();
927}
928
929RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
930  // Base destructors are always called non-virtually.
931  // Skip CXXInstanceCall's devirtualization logic in this case.
932  if (isBaseDestructor())
933    return AnyFunctionCall::getRuntimeDefinition();
934
935  return CXXInstanceCall::getRuntimeDefinition();
936}
937
938ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
939  const ObjCMethodDecl *D = getDecl();
940  if (!D)
941    return None;
942  return D->parameters();
943}
944
945void ObjCMethodCall::getExtraInvalidatedValues(
946    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
947
948  // If the method call is a setter for property known to be backed by
949  // an instance variable, don't invalidate the entire receiver, just
950  // the storage for that instance variable.
951  if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
952    if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
953      SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
954      if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
955        ETraits->setTrait(
956          IvarRegion,
957          RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
958        ETraits->setTrait(
959          IvarRegion,
960          RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
961        Values.push_back(IvarLVal);
962      }
963      return;
964    }
965  }
966
967  Values.push_back(getReceiverSVal());
968}
969
970SVal ObjCMethodCall::getSelfSVal() const {
971  const LocationContext *LCtx = getLocationContext();
972  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
973  if (!SelfDecl)
974    return SVal();
975  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
976}
977
978SVal ObjCMethodCall::getReceiverSVal() const {
979  // FIXME: Is this the best way to handle class receivers?
980  if (!isInstanceMessage())
981    return UnknownVal();
982
983  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
984    return getSVal(RecE);
985
986  // An instance message with no expression means we are sending to super.
987  // In this case the object reference is the same as 'self'.
988  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
989  SVal SelfVal = getSelfSVal();
990  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
991  return SelfVal;
992}
993
994bool ObjCMethodCall::isReceiverSelfOrSuper() const {
995  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
996      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
997      return true;
998
999  if (!isInstanceMessage())
1000    return false;
1001
1002  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1003
1004  return (RecVal == getSelfSVal());
1005}
1006
1007SourceRange ObjCMethodCall::getSourceRange() const {
1008  switch (getMessageKind()) {
1009  case OCM_Message:
1010    return getOriginExpr()->getSourceRange();
1011  case OCM_PropertyAccess:
1012  case OCM_Subscript:
1013    return getContainingPseudoObjectExpr()->getSourceRange();
1014  }
1015  llvm_unreachable("unknown message kind");
1016}
1017
1018using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1019
1020const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1021  assert(Data && "Lazy lookup not yet performed.");
1022  assert(getMessageKind() != OCM_Message && "Explicit message send.");
1023  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1024}
1025
1026static const Expr *
1027getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1028  const Expr *Syntactic = POE->getSyntacticForm();
1029
1030  // This handles the funny case of assigning to the result of a getter.
1031  // This can happen if the getter returns a non-const reference.
1032  if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1033    Syntactic = BO->getLHS();
1034
1035  return Syntactic;
1036}
1037
1038ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1039  if (!Data) {
1040    // Find the parent, ignoring implicit casts.
1041    const ParentMap &PM = getLocationContext()->getParentMap();
1042    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1043
1044    // Check if parent is a PseudoObjectExpr.
1045    if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1046      const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1047
1048      ObjCMessageKind K;
1049      switch (Syntactic->getStmtClass()) {
1050      case Stmt::ObjCPropertyRefExprClass:
1051        K = OCM_PropertyAccess;
1052        break;
1053      case Stmt::ObjCSubscriptRefExprClass:
1054        K = OCM_Subscript;
1055        break;
1056      default:
1057        // FIXME: Can this ever happen?
1058        K = OCM_Message;
1059        break;
1060      }
1061
1062      if (K != OCM_Message) {
1063        const_cast<ObjCMethodCall *>(this)->Data
1064          = ObjCMessageDataTy(POE, K).getOpaqueValue();
1065        assert(getMessageKind() == K);
1066        return K;
1067      }
1068    }
1069
1070    const_cast<ObjCMethodCall *>(this)->Data
1071      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1072    assert(getMessageKind() == OCM_Message);
1073    return OCM_Message;
1074  }
1075
1076  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1077  if (!Info.getPointer())
1078    return OCM_Message;
1079  return static_cast<ObjCMessageKind>(Info.getInt());
1080}
1081
1082const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1083  // Look for properties accessed with property syntax (foo.bar = ...)
1084  if (getMessageKind() == OCM_PropertyAccess) {
1085    const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1086    assert(POE && "Property access without PseudoObjectExpr?");
1087
1088    const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1089    auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1090
1091    if (RefExpr->isExplicitProperty())
1092      return RefExpr->getExplicitProperty();
1093  }
1094
1095  // Look for properties accessed with method syntax ([foo setBar:...]).
1096  const ObjCMethodDecl *MD = getDecl();
1097  if (!MD || !MD->isPropertyAccessor())
1098    return nullptr;
1099
1100  // Note: This is potentially quite slow.
1101  return MD->findPropertyDecl();
1102}
1103
1104bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1105                                             Selector Sel) const {
1106  assert(IDecl);
1107  AnalysisManager &AMgr =
1108      getState()->getStateManager().getOwningEngine().getAnalysisManager();
1109  // If the class interface is declared inside the main file, assume it is not
1110  // subcassed.
1111  // TODO: It could actually be subclassed if the subclass is private as well.
1112  // This is probably very rare.
1113  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1114  if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1115    return false;
1116
1117  // Assume that property accessors are not overridden.
1118  if (getMessageKind() == OCM_PropertyAccess)
1119    return false;
1120
1121  // We assume that if the method is public (declared outside of main file) or
1122  // has a parent which publicly declares the method, the method could be
1123  // overridden in a subclass.
1124
1125  // Find the first declaration in the class hierarchy that declares
1126  // the selector.
1127  ObjCMethodDecl *D = nullptr;
1128  while (true) {
1129    D = IDecl->lookupMethod(Sel, true);
1130
1131    // Cannot find a public definition.
1132    if (!D)
1133      return false;
1134
1135    // If outside the main file,
1136    if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1137      return true;
1138
1139    if (D->isOverriding()) {
1140      // Search in the superclass on the next iteration.
1141      IDecl = D->getClassInterface();
1142      if (!IDecl)
1143        return false;
1144
1145      IDecl = IDecl->getSuperClass();
1146      if (!IDecl)
1147        return false;
1148
1149      continue;
1150    }
1151
1152    return false;
1153  };
1154
1155  llvm_unreachable("The while loop should always terminate.");
1156}
1157
1158static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1159  if (!MD)
1160    return MD;
1161
1162  // Find the redeclaration that defines the method.
1163  if (!MD->hasBody()) {
1164    for (auto I : MD->redecls())
1165      if (I->hasBody())
1166        MD = cast<ObjCMethodDecl>(I);
1167  }
1168  return MD;
1169}
1170
1171static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1172  const Expr* InstRec = ME->getInstanceReceiver();
1173  if (!InstRec)
1174    return false;
1175  const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1176
1177  // Check that receiver is called 'self'.
1178  if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1179      !InstRecIg->getFoundDecl()->getName().equals("self"))
1180    return false;
1181
1182  // Check that the method name is 'class'.
1183  if (ME->getSelector().getNumArgs() != 0 ||
1184      !ME->getSelector().getNameForSlot(0).equals("class"))
1185    return false;
1186
1187  return true;
1188}
1189
1190RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1191  const ObjCMessageExpr *E = getOriginExpr();
1192  assert(E);
1193  Selector Sel = E->getSelector();
1194
1195  if (E->isInstanceMessage()) {
1196    // Find the receiver type.
1197    const ObjCObjectPointerType *ReceiverT = nullptr;
1198    bool CanBeSubClassed = false;
1199    QualType SupersType = E->getSuperType();
1200    const MemRegion *Receiver = nullptr;
1201
1202    if (!SupersType.isNull()) {
1203      // The receiver is guaranteed to be 'super' in this case.
1204      // Super always means the type of immediate predecessor to the method
1205      // where the call occurs.
1206      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1207    } else {
1208      Receiver = getReceiverSVal().getAsRegion();
1209      if (!Receiver)
1210        return {};
1211
1212      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1213      if (!DTI.isValid()) {
1214        assert(isa<AllocaRegion>(Receiver) &&
1215               "Unhandled untyped region class!");
1216        return {};
1217      }
1218
1219      QualType DynType = DTI.getType();
1220      CanBeSubClassed = DTI.canBeASubClass();
1221      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1222
1223      if (ReceiverT && CanBeSubClassed)
1224        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1225          if (!canBeOverridenInSubclass(IDecl, Sel))
1226            CanBeSubClassed = false;
1227    }
1228
1229    // Handle special cases of '[self classMethod]' and
1230    // '[[self class] classMethod]', which are treated by the compiler as
1231    // instance (not class) messages. We will statically dispatch to those.
1232    if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1233      // For [self classMethod], return the compiler visible declaration.
1234      if (PT->getObjectType()->isObjCClass() &&
1235          Receiver == getSelfSVal().getAsRegion())
1236        return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1237
1238      // Similarly, handle [[self class] classMethod].
1239      // TODO: We are currently doing a syntactic match for this pattern with is
1240      // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1241      // shows. A better way would be to associate the meta type with the symbol
1242      // using the dynamic type info tracking and use it here. We can add a new
1243      // SVal for ObjC 'Class' values that know what interface declaration they
1244      // come from. Then 'self' in a class method would be filled in with
1245      // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1246      // do proper dynamic dispatch for class methods just like we do for
1247      // instance methods now.
1248      if (E->getInstanceReceiver())
1249        if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1250          if (isCallToSelfClass(M))
1251            return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1252    }
1253
1254    // Lookup the instance method implementation.
1255    if (ReceiverT)
1256      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1257        // Repeatedly calling lookupPrivateMethod() is expensive, especially
1258        // when in many cases it returns null.  We cache the results so
1259        // that repeated queries on the same ObjCIntefaceDecl and Selector
1260        // don't incur the same cost.  On some test cases, we can see the
1261        // same query being issued thousands of times.
1262        //
1263        // NOTE: This cache is essentially a "global" variable, but it
1264        // only gets lazily created when we get here.  The value of the
1265        // cache probably comes from it being global across ExprEngines,
1266        // where the same queries may get issued.  If we are worried about
1267        // concurrency, or possibly loading/unloading ASTs, etc., we may
1268        // need to revisit this someday.  In terms of memory, this table
1269        // stays around until clang quits, which also may be bad if we
1270        // need to release memory.
1271        using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1272        using PrivateMethodCache =
1273            llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1274
1275        static PrivateMethodCache PMC;
1276        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1277
1278        // Query lookupPrivateMethod() if the cache does not hit.
1279        if (!Val.hasValue()) {
1280          Val = IDecl->lookupPrivateMethod(Sel);
1281
1282          // If the method is a property accessor, we should try to "inline" it
1283          // even if we don't actually have an implementation.
1284          if (!*Val)
1285            if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1286              if (CompileTimeMD->isPropertyAccessor()) {
1287                if (!CompileTimeMD->getSelfDecl() &&
1288                    isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1289                  // If the method is an accessor in a category, and it doesn't
1290                  // have a self declaration, first
1291                  // try to find the method in a class extension. This
1292                  // works around a bug in Sema where multiple accessors
1293                  // are synthesized for properties in class
1294                  // extensions that are redeclared in a category and the
1295                  // the implicit parameters are not filled in for
1296                  // the method on the category.
1297                  // This ensures we find the accessor in the extension, which
1298                  // has the implicit parameters filled in.
1299                  auto *ID = CompileTimeMD->getClassInterface();
1300                  for (auto *CatDecl : ID->visible_extensions()) {
1301                    Val = CatDecl->getMethod(Sel,
1302                                             CompileTimeMD->isInstanceMethod());
1303                    if (*Val)
1304                      break;
1305                  }
1306                }
1307                if (!*Val)
1308                  Val = IDecl->lookupInstanceMethod(Sel);
1309              }
1310        }
1311
1312        const ObjCMethodDecl *MD = Val.getValue();
1313        if (MD && !MD->hasBody())
1314          MD = MD->getCanonicalDecl();
1315        if (CanBeSubClassed)
1316          return RuntimeDefinition(MD, Receiver);
1317        else
1318          return RuntimeDefinition(MD, nullptr);
1319      }
1320  } else {
1321    // This is a class method.
1322    // If we have type info for the receiver class, we are calling via
1323    // class name.
1324    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1325      // Find/Return the method implementation.
1326      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1327    }
1328  }
1329
1330  return {};
1331}
1332
1333bool ObjCMethodCall::argumentsMayEscape() const {
1334  if (isInSystemHeader() && !isInstanceMessage()) {
1335    Selector Sel = getSelector();
1336    if (Sel.getNumArgs() == 1 &&
1337        Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1338      return true;
1339  }
1340
1341  return CallEvent::argumentsMayEscape();
1342}
1343
1344void ObjCMethodCall::getInitialStackFrameContents(
1345                                             const StackFrameContext *CalleeCtx,
1346                                             BindingsTy &Bindings) const {
1347  const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1348  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1349  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1350                               D->parameters());
1351
1352  SVal SelfVal = getReceiverSVal();
1353  if (!SelfVal.isUnknown()) {
1354    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1355    MemRegionManager &MRMgr = SVB.getRegionManager();
1356    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1357    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1358  }
1359}
1360
1361CallEventRef<>
1362CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1363                                const LocationContext *LCtx) {
1364  if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1365    return create<CXXMemberCall>(MCE, State, LCtx);
1366
1367  if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1368    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1369    if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1370      if (MD->isInstance())
1371        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1372
1373  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1374    return create<BlockCall>(CE, State, LCtx);
1375  }
1376
1377  // Otherwise, it's a normal function call, static member function call, or
1378  // something we can't reason about.
1379  return create<SimpleFunctionCall>(CE, State, LCtx);
1380}
1381
1382CallEventRef<>
1383CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1384                            ProgramStateRef State) {
1385  const LocationContext *ParentCtx = CalleeCtx->getParent();
1386  const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1387  assert(CallerCtx && "This should not be used for top-level stack frames");
1388
1389  const Stmt *CallSite = CalleeCtx->getCallSite();
1390
1391  if (CallSite) {
1392    if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1393      return Out;
1394
1395    // All other cases are handled by getCall.
1396    assert(isa<CXXConstructExpr>(CallSite) &&
1397           "This is not an inlineable statement");
1398
1399    SValBuilder &SVB = State->getStateManager().getSValBuilder();
1400    const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1401    Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1402    SVal ThisVal = State->getSVal(ThisPtr);
1403
1404    return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1405                                 ThisVal.getAsRegion(), State, CallerCtx);
1406  }
1407
1408  // Fall back to the CFG. The only thing we haven't handled yet is
1409  // destructors, though this could change in the future.
1410  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1411  CFGElement E = (*B)[CalleeCtx->getIndex()];
1412  assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1413         "All other CFG elements should have exprs");
1414
1415  SValBuilder &SVB = State->getStateManager().getSValBuilder();
1416  const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1417  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1418  SVal ThisVal = State->getSVal(ThisPtr);
1419
1420  const Stmt *Trigger;
1421  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1422    Trigger = AutoDtor->getTriggerStmt();
1423  else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1424    Trigger = DeleteDtor->getDeleteExpr();
1425  else
1426    Trigger = Dtor->getBody();
1427
1428  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1429                              E.getAs<CFGBaseDtor>().hasValue(), State,
1430                              CallerCtx);
1431}
1432
1433CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1434                                         const LocationContext *LC) {
1435  if (const auto *CE = dyn_cast<CallExpr>(S)) {
1436    return getSimpleCall(CE, State, LC);
1437  } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1438    return getCXXAllocatorCall(NE, State, LC);
1439  } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1440    return getObjCMethodCall(ME, State, LC);
1441  } else {
1442    return nullptr;
1443  }
1444}
1445