1//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/TemplateDeduction.h"
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclAccessPair.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TemplateBase.h"
29#include "clang/AST/TemplateName.h"
30#include "clang/AST/Type.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/UnresolvedSet.h"
33#include "clang/Basic/AddressSpaces.h"
34#include "clang/Basic/ExceptionSpecificationType.h"
35#include "clang/Basic/LLVM.h"
36#include "clang/Basic/LangOptions.h"
37#include "clang/Basic/PartialDiagnostic.h"
38#include "clang/Basic/SourceLocation.h"
39#include "clang/Basic/Specifiers.h"
40#include "clang/Sema/Ownership.h"
41#include "clang/Sema/Sema.h"
42#include "clang/Sema/Template.h"
43#include "llvm/ADT/APInt.h"
44#include "llvm/ADT/APSInt.h"
45#include "llvm/ADT/ArrayRef.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/FoldingSet.h"
48#include "llvm/ADT/Optional.h"
49#include "llvm/ADT/SmallBitVector.h"
50#include "llvm/ADT/SmallPtrSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/Support/Casting.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/ErrorHandling.h"
55#include <algorithm>
56#include <cassert>
57#include <tuple>
58#include <utility>
59
60namespace clang {
61
62  /// Various flags that control template argument deduction.
63  ///
64  /// These flags can be bitwise-OR'd together.
65  enum TemplateDeductionFlags {
66    /// No template argument deduction flags, which indicates the
67    /// strictest results for template argument deduction (as used for, e.g.,
68    /// matching class template partial specializations).
69    TDF_None = 0,
70
71    /// Within template argument deduction from a function call, we are
72    /// matching with a parameter type for which the original parameter was
73    /// a reference.
74    TDF_ParamWithReferenceType = 0x1,
75
76    /// Within template argument deduction from a function call, we
77    /// are matching in a case where we ignore cv-qualifiers.
78    TDF_IgnoreQualifiers = 0x02,
79
80    /// Within template argument deduction from a function call,
81    /// we are matching in a case where we can perform template argument
82    /// deduction from a template-id of a derived class of the argument type.
83    TDF_DerivedClass = 0x04,
84
85    /// Allow non-dependent types to differ, e.g., when performing
86    /// template argument deduction from a function call where conversions
87    /// may apply.
88    TDF_SkipNonDependent = 0x08,
89
90    /// Whether we are performing template argument deduction for
91    /// parameters and arguments in a top-level template argument
92    TDF_TopLevelParameterTypeList = 0x10,
93
94    /// Within template argument deduction from overload resolution per
95    /// C++ [over.over] allow matching function types that are compatible in
96    /// terms of noreturn and default calling convention adjustments, or
97    /// similarly matching a declared template specialization against a
98    /// possible template, per C++ [temp.deduct.decl]. In either case, permit
99    /// deduction where the parameter is a function type that can be converted
100    /// to the argument type.
101    TDF_AllowCompatibleFunctionType = 0x20,
102
103    /// Within template argument deduction for a conversion function, we are
104    /// matching with an argument type for which the original argument was
105    /// a reference.
106    TDF_ArgWithReferenceType = 0x40,
107  };
108}
109
110using namespace clang;
111using namespace sema;
112
113/// Compare two APSInts, extending and switching the sign as
114/// necessary to compare their values regardless of underlying type.
115static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
116  if (Y.getBitWidth() > X.getBitWidth())
117    X = X.extend(Y.getBitWidth());
118  else if (Y.getBitWidth() < X.getBitWidth())
119    Y = Y.extend(X.getBitWidth());
120
121  // If there is a signedness mismatch, correct it.
122  if (X.isSigned() != Y.isSigned()) {
123    // If the signed value is negative, then the values cannot be the same.
124    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
125      return false;
126
127    Y.setIsSigned(true);
128    X.setIsSigned(true);
129  }
130
131  return X == Y;
132}
133
134static Sema::TemplateDeductionResult
135DeduceTemplateArguments(Sema &S,
136                        TemplateParameterList *TemplateParams,
137                        const TemplateArgument &Param,
138                        TemplateArgument Arg,
139                        TemplateDeductionInfo &Info,
140                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
141
142static Sema::TemplateDeductionResult
143DeduceTemplateArgumentsByTypeMatch(Sema &S,
144                                   TemplateParameterList *TemplateParams,
145                                   QualType Param,
146                                   QualType Arg,
147                                   TemplateDeductionInfo &Info,
148                                   SmallVectorImpl<DeducedTemplateArgument> &
149                                                      Deduced,
150                                   unsigned TDF,
151                                   bool PartialOrdering = false,
152                                   bool DeducedFromArrayBound = false);
153
154static Sema::TemplateDeductionResult
155DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
156                        ArrayRef<TemplateArgument> Params,
157                        ArrayRef<TemplateArgument> Args,
158                        TemplateDeductionInfo &Info,
159                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
160                        bool NumberOfArgumentsMustMatch);
161
162static void MarkUsedTemplateParameters(ASTContext &Ctx,
163                                       const TemplateArgument &TemplateArg,
164                                       bool OnlyDeduced, unsigned Depth,
165                                       llvm::SmallBitVector &Used);
166
167static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
168                                       bool OnlyDeduced, unsigned Level,
169                                       llvm::SmallBitVector &Deduced);
170
171/// If the given expression is of a form that permits the deduction
172/// of a non-type template parameter, return the declaration of that
173/// non-type template parameter.
174static NonTypeTemplateParmDecl *
175getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
176  // If we are within an alias template, the expression may have undergone
177  // any number of parameter substitutions already.
178  while (true) {
179    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
180      E = IC->getSubExpr();
181    else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
182      E = CE->getSubExpr();
183    else if (SubstNonTypeTemplateParmExpr *Subst =
184               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
185      E = Subst->getReplacement();
186    else
187      break;
188  }
189
190  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
191    if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
192      if (NTTP->getDepth() == Info.getDeducedDepth())
193        return NTTP;
194
195  return nullptr;
196}
197
198/// Determine whether two declaration pointers refer to the same
199/// declaration.
200static bool isSameDeclaration(Decl *X, Decl *Y) {
201  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
202    X = NX->getUnderlyingDecl();
203  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
204    Y = NY->getUnderlyingDecl();
205
206  return X->getCanonicalDecl() == Y->getCanonicalDecl();
207}
208
209/// Verify that the given, deduced template arguments are compatible.
210///
211/// \returns The deduced template argument, or a NULL template argument if
212/// the deduced template arguments were incompatible.
213static DeducedTemplateArgument
214checkDeducedTemplateArguments(ASTContext &Context,
215                              const DeducedTemplateArgument &X,
216                              const DeducedTemplateArgument &Y) {
217  // We have no deduction for one or both of the arguments; they're compatible.
218  if (X.isNull())
219    return Y;
220  if (Y.isNull())
221    return X;
222
223  // If we have two non-type template argument values deduced for the same
224  // parameter, they must both match the type of the parameter, and thus must
225  // match each other's type. As we're only keeping one of them, we must check
226  // for that now. The exception is that if either was deduced from an array
227  // bound, the type is permitted to differ.
228  if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
229    QualType XType = X.getNonTypeTemplateArgumentType();
230    if (!XType.isNull()) {
231      QualType YType = Y.getNonTypeTemplateArgumentType();
232      if (YType.isNull() || !Context.hasSameType(XType, YType))
233        return DeducedTemplateArgument();
234    }
235  }
236
237  switch (X.getKind()) {
238  case TemplateArgument::Null:
239    llvm_unreachable("Non-deduced template arguments handled above");
240
241  case TemplateArgument::Type:
242    // If two template type arguments have the same type, they're compatible.
243    if (Y.getKind() == TemplateArgument::Type &&
244        Context.hasSameType(X.getAsType(), Y.getAsType()))
245      return X;
246
247    // If one of the two arguments was deduced from an array bound, the other
248    // supersedes it.
249    if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
250      return X.wasDeducedFromArrayBound() ? Y : X;
251
252    // The arguments are not compatible.
253    return DeducedTemplateArgument();
254
255  case TemplateArgument::Integral:
256    // If we deduced a constant in one case and either a dependent expression or
257    // declaration in another case, keep the integral constant.
258    // If both are integral constants with the same value, keep that value.
259    if (Y.getKind() == TemplateArgument::Expression ||
260        Y.getKind() == TemplateArgument::Declaration ||
261        (Y.getKind() == TemplateArgument::Integral &&
262         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
263      return X.wasDeducedFromArrayBound() ? Y : X;
264
265    // All other combinations are incompatible.
266    return DeducedTemplateArgument();
267
268  case TemplateArgument::Template:
269    if (Y.getKind() == TemplateArgument::Template &&
270        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
271      return X;
272
273    // All other combinations are incompatible.
274    return DeducedTemplateArgument();
275
276  case TemplateArgument::TemplateExpansion:
277    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
278        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
279                                    Y.getAsTemplateOrTemplatePattern()))
280      return X;
281
282    // All other combinations are incompatible.
283    return DeducedTemplateArgument();
284
285  case TemplateArgument::Expression: {
286    if (Y.getKind() != TemplateArgument::Expression)
287      return checkDeducedTemplateArguments(Context, Y, X);
288
289    // Compare the expressions for equality
290    llvm::FoldingSetNodeID ID1, ID2;
291    X.getAsExpr()->Profile(ID1, Context, true);
292    Y.getAsExpr()->Profile(ID2, Context, true);
293    if (ID1 == ID2)
294      return X.wasDeducedFromArrayBound() ? Y : X;
295
296    // Differing dependent expressions are incompatible.
297    return DeducedTemplateArgument();
298  }
299
300  case TemplateArgument::Declaration:
301    assert(!X.wasDeducedFromArrayBound());
302
303    // If we deduced a declaration and a dependent expression, keep the
304    // declaration.
305    if (Y.getKind() == TemplateArgument::Expression)
306      return X;
307
308    // If we deduced a declaration and an integral constant, keep the
309    // integral constant and whichever type did not come from an array
310    // bound.
311    if (Y.getKind() == TemplateArgument::Integral) {
312      if (Y.wasDeducedFromArrayBound())
313        return TemplateArgument(Context, Y.getAsIntegral(),
314                                X.getParamTypeForDecl());
315      return Y;
316    }
317
318    // If we deduced two declarations, make sure that they refer to the
319    // same declaration.
320    if (Y.getKind() == TemplateArgument::Declaration &&
321        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
322      return X;
323
324    // All other combinations are incompatible.
325    return DeducedTemplateArgument();
326
327  case TemplateArgument::NullPtr:
328    // If we deduced a null pointer and a dependent expression, keep the
329    // null pointer.
330    if (Y.getKind() == TemplateArgument::Expression)
331      return X;
332
333    // If we deduced a null pointer and an integral constant, keep the
334    // integral constant.
335    if (Y.getKind() == TemplateArgument::Integral)
336      return Y;
337
338    // If we deduced two null pointers, they are the same.
339    if (Y.getKind() == TemplateArgument::NullPtr)
340      return X;
341
342    // All other combinations are incompatible.
343    return DeducedTemplateArgument();
344
345  case TemplateArgument::Pack: {
346    if (Y.getKind() != TemplateArgument::Pack ||
347        X.pack_size() != Y.pack_size())
348      return DeducedTemplateArgument();
349
350    llvm::SmallVector<TemplateArgument, 8> NewPack;
351    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
352                                      XAEnd = X.pack_end(),
353                                         YA = Y.pack_begin();
354         XA != XAEnd; ++XA, ++YA) {
355      TemplateArgument Merged = checkDeducedTemplateArguments(
356          Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
357          DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
358      if (Merged.isNull())
359        return DeducedTemplateArgument();
360      NewPack.push_back(Merged);
361    }
362
363    return DeducedTemplateArgument(
364        TemplateArgument::CreatePackCopy(Context, NewPack),
365        X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
366  }
367  }
368
369  llvm_unreachable("Invalid TemplateArgument Kind!");
370}
371
372/// Deduce the value of the given non-type template parameter
373/// as the given deduced template argument. All non-type template parameter
374/// deduction is funneled through here.
375static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
376    Sema &S, TemplateParameterList *TemplateParams,
377    NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
378    QualType ValueType, TemplateDeductionInfo &Info,
379    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
380  assert(NTTP->getDepth() == Info.getDeducedDepth() &&
381         "deducing non-type template argument with wrong depth");
382
383  DeducedTemplateArgument Result = checkDeducedTemplateArguments(
384      S.Context, Deduced[NTTP->getIndex()], NewDeduced);
385  if (Result.isNull()) {
386    Info.Param = NTTP;
387    Info.FirstArg = Deduced[NTTP->getIndex()];
388    Info.SecondArg = NewDeduced;
389    return Sema::TDK_Inconsistent;
390  }
391
392  Deduced[NTTP->getIndex()] = Result;
393  if (!S.getLangOpts().CPlusPlus17)
394    return Sema::TDK_Success;
395
396  if (NTTP->isExpandedParameterPack())
397    // FIXME: We may still need to deduce parts of the type here! But we
398    // don't have any way to find which slice of the type to use, and the
399    // type stored on the NTTP itself is nonsense. Perhaps the type of an
400    // expanded NTTP should be a pack expansion type?
401    return Sema::TDK_Success;
402
403  // Get the type of the parameter for deduction. If it's a (dependent) array
404  // or function type, we will not have decayed it yet, so do that now.
405  QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
406  if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
407    ParamType = Expansion->getPattern();
408
409  // FIXME: It's not clear how deduction of a parameter of reference
410  // type from an argument (of non-reference type) should be performed.
411  // For now, we just remove reference types from both sides and let
412  // the final check for matching types sort out the mess.
413  return DeduceTemplateArgumentsByTypeMatch(
414      S, TemplateParams, ParamType.getNonReferenceType(),
415      ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
416      /*PartialOrdering=*/false,
417      /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
418}
419
420/// Deduce the value of the given non-type template parameter
421/// from the given integral constant.
422static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
423    Sema &S, TemplateParameterList *TemplateParams,
424    NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
425    QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
426    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
427  return DeduceNonTypeTemplateArgument(
428      S, TemplateParams, NTTP,
429      DeducedTemplateArgument(S.Context, Value, ValueType,
430                              DeducedFromArrayBound),
431      ValueType, Info, Deduced);
432}
433
434/// Deduce the value of the given non-type template parameter
435/// from the given null pointer template argument type.
436static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
437    Sema &S, TemplateParameterList *TemplateParams,
438    NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
439    TemplateDeductionInfo &Info,
440    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
441  Expr *Value =
442      S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
443                              S.Context.NullPtrTy, NTTP->getLocation()),
444                          NullPtrType, CK_NullToPointer)
445          .get();
446  return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
447                                       DeducedTemplateArgument(Value),
448                                       Value->getType(), Info, Deduced);
449}
450
451/// Deduce the value of the given non-type template parameter
452/// from the given type- or value-dependent expression.
453///
454/// \returns true if deduction succeeded, false otherwise.
455static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
456    Sema &S, TemplateParameterList *TemplateParams,
457    NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
458    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
459  return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
460                                       DeducedTemplateArgument(Value),
461                                       Value->getType(), Info, Deduced);
462}
463
464/// Deduce the value of the given non-type template parameter
465/// from the given declaration.
466///
467/// \returns true if deduction succeeded, false otherwise.
468static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
469    Sema &S, TemplateParameterList *TemplateParams,
470    NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
471    TemplateDeductionInfo &Info,
472    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
473  D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
474  TemplateArgument New(D, T);
475  return DeduceNonTypeTemplateArgument(
476      S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
477}
478
479static Sema::TemplateDeductionResult
480DeduceTemplateArguments(Sema &S,
481                        TemplateParameterList *TemplateParams,
482                        TemplateName Param,
483                        TemplateName Arg,
484                        TemplateDeductionInfo &Info,
485                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
486  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
487  if (!ParamDecl) {
488    // The parameter type is dependent and is not a template template parameter,
489    // so there is nothing that we can deduce.
490    return Sema::TDK_Success;
491  }
492
493  if (TemplateTemplateParmDecl *TempParam
494        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
495    // If we're not deducing at this depth, there's nothing to deduce.
496    if (TempParam->getDepth() != Info.getDeducedDepth())
497      return Sema::TDK_Success;
498
499    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
500    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
501                                                 Deduced[TempParam->getIndex()],
502                                                                   NewDeduced);
503    if (Result.isNull()) {
504      Info.Param = TempParam;
505      Info.FirstArg = Deduced[TempParam->getIndex()];
506      Info.SecondArg = NewDeduced;
507      return Sema::TDK_Inconsistent;
508    }
509
510    Deduced[TempParam->getIndex()] = Result;
511    return Sema::TDK_Success;
512  }
513
514  // Verify that the two template names are equivalent.
515  if (S.Context.hasSameTemplateName(Param, Arg))
516    return Sema::TDK_Success;
517
518  // Mismatch of non-dependent template parameter to argument.
519  Info.FirstArg = TemplateArgument(Param);
520  Info.SecondArg = TemplateArgument(Arg);
521  return Sema::TDK_NonDeducedMismatch;
522}
523
524/// Deduce the template arguments by comparing the template parameter
525/// type (which is a template-id) with the template argument type.
526///
527/// \param S the Sema
528///
529/// \param TemplateParams the template parameters that we are deducing
530///
531/// \param Param the parameter type
532///
533/// \param Arg the argument type
534///
535/// \param Info information about the template argument deduction itself
536///
537/// \param Deduced the deduced template arguments
538///
539/// \returns the result of template argument deduction so far. Note that a
540/// "success" result means that template argument deduction has not yet failed,
541/// but it may still fail, later, for other reasons.
542static Sema::TemplateDeductionResult
543DeduceTemplateArguments(Sema &S,
544                        TemplateParameterList *TemplateParams,
545                        const TemplateSpecializationType *Param,
546                        QualType Arg,
547                        TemplateDeductionInfo &Info,
548                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
549  assert(Arg.isCanonical() && "Argument type must be canonical");
550
551  // Treat an injected-class-name as its underlying template-id.
552  if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
553    Arg = Injected->getInjectedSpecializationType();
554
555  // Check whether the template argument is a dependent template-id.
556  if (const TemplateSpecializationType *SpecArg
557        = dyn_cast<TemplateSpecializationType>(Arg)) {
558    // Perform template argument deduction for the template name.
559    if (Sema::TemplateDeductionResult Result
560          = DeduceTemplateArguments(S, TemplateParams,
561                                    Param->getTemplateName(),
562                                    SpecArg->getTemplateName(),
563                                    Info, Deduced))
564      return Result;
565
566
567    // Perform template argument deduction on each template
568    // argument. Ignore any missing/extra arguments, since they could be
569    // filled in by default arguments.
570    return DeduceTemplateArguments(S, TemplateParams,
571                                   Param->template_arguments(),
572                                   SpecArg->template_arguments(), Info, Deduced,
573                                   /*NumberOfArgumentsMustMatch=*/false);
574  }
575
576  // If the argument type is a class template specialization, we
577  // perform template argument deduction using its template
578  // arguments.
579  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
580  if (!RecordArg) {
581    Info.FirstArg = TemplateArgument(QualType(Param, 0));
582    Info.SecondArg = TemplateArgument(Arg);
583    return Sema::TDK_NonDeducedMismatch;
584  }
585
586  ClassTemplateSpecializationDecl *SpecArg
587    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
588  if (!SpecArg) {
589    Info.FirstArg = TemplateArgument(QualType(Param, 0));
590    Info.SecondArg = TemplateArgument(Arg);
591    return Sema::TDK_NonDeducedMismatch;
592  }
593
594  // Perform template argument deduction for the template name.
595  if (Sema::TemplateDeductionResult Result
596        = DeduceTemplateArguments(S,
597                                  TemplateParams,
598                                  Param->getTemplateName(),
599                               TemplateName(SpecArg->getSpecializedTemplate()),
600                                  Info, Deduced))
601    return Result;
602
603  // Perform template argument deduction for the template arguments.
604  return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
605                                 SpecArg->getTemplateArgs().asArray(), Info,
606                                 Deduced, /*NumberOfArgumentsMustMatch=*/true);
607}
608
609/// Determines whether the given type is an opaque type that
610/// might be more qualified when instantiated.
611static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
612  switch (T->getTypeClass()) {
613  case Type::TypeOfExpr:
614  case Type::TypeOf:
615  case Type::DependentName:
616  case Type::Decltype:
617  case Type::UnresolvedUsing:
618  case Type::TemplateTypeParm:
619    return true;
620
621  case Type::ConstantArray:
622  case Type::IncompleteArray:
623  case Type::VariableArray:
624  case Type::DependentSizedArray:
625    return IsPossiblyOpaquelyQualifiedType(
626                                      cast<ArrayType>(T)->getElementType());
627
628  default:
629    return false;
630  }
631}
632
633/// Helper function to build a TemplateParameter when we don't
634/// know its type statically.
635static TemplateParameter makeTemplateParameter(Decl *D) {
636  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
637    return TemplateParameter(TTP);
638  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
639    return TemplateParameter(NTTP);
640
641  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
642}
643
644/// If \p Param is an expanded parameter pack, get the number of expansions.
645static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
646  if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
647    if (TTP->isExpandedParameterPack())
648      return TTP->getNumExpansionParameters();
649
650  if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
651    if (NTTP->isExpandedParameterPack())
652      return NTTP->getNumExpansionTypes();
653
654  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
655    if (TTP->isExpandedParameterPack())
656      return TTP->getNumExpansionTemplateParameters();
657
658  return None;
659}
660
661/// A pack that we're currently deducing.
662struct clang::DeducedPack {
663  // The index of the pack.
664  unsigned Index;
665
666  // The old value of the pack before we started deducing it.
667  DeducedTemplateArgument Saved;
668
669  // A deferred value of this pack from an inner deduction, that couldn't be
670  // deduced because this deduction hadn't happened yet.
671  DeducedTemplateArgument DeferredDeduction;
672
673  // The new value of the pack.
674  SmallVector<DeducedTemplateArgument, 4> New;
675
676  // The outer deduction for this pack, if any.
677  DeducedPack *Outer = nullptr;
678
679  DeducedPack(unsigned Index) : Index(Index) {}
680};
681
682namespace {
683
684/// A scope in which we're performing pack deduction.
685class PackDeductionScope {
686public:
687  /// Prepare to deduce the packs named within Pattern.
688  PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
689                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
690                     TemplateDeductionInfo &Info, TemplateArgument Pattern)
691      : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
692    unsigned NumNamedPacks = addPacks(Pattern);
693    finishConstruction(NumNamedPacks);
694  }
695
696  /// Prepare to directly deduce arguments of the parameter with index \p Index.
697  PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
698                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
699                     TemplateDeductionInfo &Info, unsigned Index)
700      : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
701    addPack(Index);
702    finishConstruction(1);
703  }
704
705private:
706  void addPack(unsigned Index) {
707    // Save the deduced template argument for the parameter pack expanded
708    // by this pack expansion, then clear out the deduction.
709    DeducedPack Pack(Index);
710    Pack.Saved = Deduced[Index];
711    Deduced[Index] = TemplateArgument();
712
713    // FIXME: What if we encounter multiple packs with different numbers of
714    // pre-expanded expansions? (This should already have been diagnosed
715    // during substitution.)
716    if (Optional<unsigned> ExpandedPackExpansions =
717            getExpandedPackSize(TemplateParams->getParam(Index)))
718      FixedNumExpansions = ExpandedPackExpansions;
719
720    Packs.push_back(Pack);
721  }
722
723  unsigned addPacks(TemplateArgument Pattern) {
724    // Compute the set of template parameter indices that correspond to
725    // parameter packs expanded by the pack expansion.
726    llvm::SmallBitVector SawIndices(TemplateParams->size());
727    llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
728
729    auto AddPack = [&](unsigned Index) {
730      if (SawIndices[Index])
731        return;
732      SawIndices[Index] = true;
733      addPack(Index);
734
735      // Deducing a parameter pack that is a pack expansion also constrains the
736      // packs appearing in that parameter to have the same deduced arity. Also,
737      // in C++17 onwards, deducing a non-type template parameter deduces its
738      // type, so we need to collect the pending deduced values for those packs.
739      if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
740              TemplateParams->getParam(Index))) {
741        if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
742          ExtraDeductions.push_back(Expansion->getPattern());
743      }
744      // FIXME: Also collect the unexpanded packs in any type and template
745      // parameter packs that are pack expansions.
746    };
747
748    auto Collect = [&](TemplateArgument Pattern) {
749      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
750      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
751      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
752        unsigned Depth, Index;
753        std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
754        if (Depth == Info.getDeducedDepth())
755          AddPack(Index);
756      }
757    };
758
759    // Look for unexpanded packs in the pattern.
760    Collect(Pattern);
761    assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
762
763    unsigned NumNamedPacks = Packs.size();
764
765    // Also look for unexpanded packs that are indirectly deduced by deducing
766    // the sizes of the packs in this pattern.
767    while (!ExtraDeductions.empty())
768      Collect(ExtraDeductions.pop_back_val());
769
770    return NumNamedPacks;
771  }
772
773  void finishConstruction(unsigned NumNamedPacks) {
774    // Dig out the partially-substituted pack, if there is one.
775    const TemplateArgument *PartialPackArgs = nullptr;
776    unsigned NumPartialPackArgs = 0;
777    std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
778    if (auto *Scope = S.CurrentInstantiationScope)
779      if (auto *Partial = Scope->getPartiallySubstitutedPack(
780              &PartialPackArgs, &NumPartialPackArgs))
781        PartialPackDepthIndex = getDepthAndIndex(Partial);
782
783    // This pack expansion will have been partially or fully expanded if
784    // it only names explicitly-specified parameter packs (including the
785    // partially-substituted one, if any).
786    bool IsExpanded = true;
787    for (unsigned I = 0; I != NumNamedPacks; ++I) {
788      if (Packs[I].Index >= Info.getNumExplicitArgs()) {
789        IsExpanded = false;
790        IsPartiallyExpanded = false;
791        break;
792      }
793      if (PartialPackDepthIndex ==
794            std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
795        IsPartiallyExpanded = true;
796      }
797    }
798
799    // Skip over the pack elements that were expanded into separate arguments.
800    // If we partially expanded, this is the number of partial arguments.
801    if (IsPartiallyExpanded)
802      PackElements += NumPartialPackArgs;
803    else if (IsExpanded)
804      PackElements += *FixedNumExpansions;
805
806    for (auto &Pack : Packs) {
807      if (Info.PendingDeducedPacks.size() > Pack.Index)
808        Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
809      else
810        Info.PendingDeducedPacks.resize(Pack.Index + 1);
811      Info.PendingDeducedPacks[Pack.Index] = &Pack;
812
813      if (PartialPackDepthIndex ==
814            std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
815        Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
816        // We pre-populate the deduced value of the partially-substituted
817        // pack with the specified value. This is not entirely correct: the
818        // value is supposed to have been substituted, not deduced, but the
819        // cases where this is observable require an exact type match anyway.
820        //
821        // FIXME: If we could represent a "depth i, index j, pack elem k"
822        // parameter, we could substitute the partially-substituted pack
823        // everywhere and avoid this.
824        if (!IsPartiallyExpanded)
825          Deduced[Pack.Index] = Pack.New[PackElements];
826      }
827    }
828  }
829
830public:
831  ~PackDeductionScope() {
832    for (auto &Pack : Packs)
833      Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
834  }
835
836  /// Determine whether this pack has already been partially expanded into a
837  /// sequence of (prior) function parameters / template arguments.
838  bool isPartiallyExpanded() { return IsPartiallyExpanded; }
839
840  /// Determine whether this pack expansion scope has a known, fixed arity.
841  /// This happens if it involves a pack from an outer template that has
842  /// (notionally) already been expanded.
843  bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
844
845  /// Determine whether the next element of the argument is still part of this
846  /// pack. This is the case unless the pack is already expanded to a fixed
847  /// length.
848  bool hasNextElement() {
849    return !FixedNumExpansions || *FixedNumExpansions > PackElements;
850  }
851
852  /// Move to deducing the next element in each pack that is being deduced.
853  void nextPackElement() {
854    // Capture the deduced template arguments for each parameter pack expanded
855    // by this pack expansion, add them to the list of arguments we've deduced
856    // for that pack, then clear out the deduced argument.
857    for (auto &Pack : Packs) {
858      DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
859      if (!Pack.New.empty() || !DeducedArg.isNull()) {
860        while (Pack.New.size() < PackElements)
861          Pack.New.push_back(DeducedTemplateArgument());
862        if (Pack.New.size() == PackElements)
863          Pack.New.push_back(DeducedArg);
864        else
865          Pack.New[PackElements] = DeducedArg;
866        DeducedArg = Pack.New.size() > PackElements + 1
867                         ? Pack.New[PackElements + 1]
868                         : DeducedTemplateArgument();
869      }
870    }
871    ++PackElements;
872  }
873
874  /// Finish template argument deduction for a set of argument packs,
875  /// producing the argument packs and checking for consistency with prior
876  /// deductions.
877  Sema::TemplateDeductionResult finish() {
878    // Build argument packs for each of the parameter packs expanded by this
879    // pack expansion.
880    for (auto &Pack : Packs) {
881      // Put back the old value for this pack.
882      Deduced[Pack.Index] = Pack.Saved;
883
884      // Always make sure the size of this pack is correct, even if we didn't
885      // deduce any values for it.
886      //
887      // FIXME: This isn't required by the normative wording, but substitution
888      // and post-substitution checking will always fail if the arity of any
889      // pack is not equal to the number of elements we processed. (Either that
890      // or something else has gone *very* wrong.) We're permitted to skip any
891      // hard errors from those follow-on steps by the intent (but not the
892      // wording) of C++ [temp.inst]p8:
893      //
894      //   If the function selected by overload resolution can be determined
895      //   without instantiating a class template definition, it is unspecified
896      //   whether that instantiation actually takes place
897      Pack.New.resize(PackElements);
898
899      // Build or find a new value for this pack.
900      DeducedTemplateArgument NewPack;
901      if (Pack.New.empty()) {
902        // If we deduced an empty argument pack, create it now.
903        NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
904      } else {
905        TemplateArgument *ArgumentPack =
906            new (S.Context) TemplateArgument[Pack.New.size()];
907        std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
908        NewPack = DeducedTemplateArgument(
909            TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
910            // FIXME: This is wrong, it's possible that some pack elements are
911            // deduced from an array bound and others are not:
912            //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
913            //   g({1, 2, 3}, {{}, {}});
914            // ... should deduce T = {int, size_t (from array bound)}.
915            Pack.New[0].wasDeducedFromArrayBound());
916      }
917
918      // Pick where we're going to put the merged pack.
919      DeducedTemplateArgument *Loc;
920      if (Pack.Outer) {
921        if (Pack.Outer->DeferredDeduction.isNull()) {
922          // Defer checking this pack until we have a complete pack to compare
923          // it against.
924          Pack.Outer->DeferredDeduction = NewPack;
925          continue;
926        }
927        Loc = &Pack.Outer->DeferredDeduction;
928      } else {
929        Loc = &Deduced[Pack.Index];
930      }
931
932      // Check the new pack matches any previous value.
933      DeducedTemplateArgument OldPack = *Loc;
934      DeducedTemplateArgument Result =
935          checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
936
937      // If we deferred a deduction of this pack, check that one now too.
938      if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
939        OldPack = Result;
940        NewPack = Pack.DeferredDeduction;
941        Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
942      }
943
944      NamedDecl *Param = TemplateParams->getParam(Pack.Index);
945      if (Result.isNull()) {
946        Info.Param = makeTemplateParameter(Param);
947        Info.FirstArg = OldPack;
948        Info.SecondArg = NewPack;
949        return Sema::TDK_Inconsistent;
950      }
951
952      // If we have a pre-expanded pack and we didn't deduce enough elements
953      // for it, fail deduction.
954      if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
955        if (*Expansions != PackElements) {
956          Info.Param = makeTemplateParameter(Param);
957          Info.FirstArg = Result;
958          return Sema::TDK_IncompletePack;
959        }
960      }
961
962      *Loc = Result;
963    }
964
965    return Sema::TDK_Success;
966  }
967
968private:
969  Sema &S;
970  TemplateParameterList *TemplateParams;
971  SmallVectorImpl<DeducedTemplateArgument> &Deduced;
972  TemplateDeductionInfo &Info;
973  unsigned PackElements = 0;
974  bool IsPartiallyExpanded = false;
975  /// The number of expansions, if we have a fully-expanded pack in this scope.
976  Optional<unsigned> FixedNumExpansions;
977
978  SmallVector<DeducedPack, 2> Packs;
979};
980
981} // namespace
982
983/// Deduce the template arguments by comparing the list of parameter
984/// types to the list of argument types, as in the parameter-type-lists of
985/// function types (C++ [temp.deduct.type]p10).
986///
987/// \param S The semantic analysis object within which we are deducing
988///
989/// \param TemplateParams The template parameters that we are deducing
990///
991/// \param Params The list of parameter types
992///
993/// \param NumParams The number of types in \c Params
994///
995/// \param Args The list of argument types
996///
997/// \param NumArgs The number of types in \c Args
998///
999/// \param Info information about the template argument deduction itself
1000///
1001/// \param Deduced the deduced template arguments
1002///
1003/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1004/// how template argument deduction is performed.
1005///
1006/// \param PartialOrdering If true, we are performing template argument
1007/// deduction for during partial ordering for a call
1008/// (C++0x [temp.deduct.partial]).
1009///
1010/// \returns the result of template argument deduction so far. Note that a
1011/// "success" result means that template argument deduction has not yet failed,
1012/// but it may still fail, later, for other reasons.
1013static Sema::TemplateDeductionResult
1014DeduceTemplateArguments(Sema &S,
1015                        TemplateParameterList *TemplateParams,
1016                        const QualType *Params, unsigned NumParams,
1017                        const QualType *Args, unsigned NumArgs,
1018                        TemplateDeductionInfo &Info,
1019                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1020                        unsigned TDF,
1021                        bool PartialOrdering = false) {
1022  // C++0x [temp.deduct.type]p10:
1023  //   Similarly, if P has a form that contains (T), then each parameter type
1024  //   Pi of the respective parameter-type- list of P is compared with the
1025  //   corresponding parameter type Ai of the corresponding parameter-type-list
1026  //   of A. [...]
1027  unsigned ArgIdx = 0, ParamIdx = 0;
1028  for (; ParamIdx != NumParams; ++ParamIdx) {
1029    // Check argument types.
1030    const PackExpansionType *Expansion
1031                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1032    if (!Expansion) {
1033      // Simple case: compare the parameter and argument types at this point.
1034
1035      // Make sure we have an argument.
1036      if (ArgIdx >= NumArgs)
1037        return Sema::TDK_MiscellaneousDeductionFailure;
1038
1039      if (isa<PackExpansionType>(Args[ArgIdx])) {
1040        // C++0x [temp.deduct.type]p22:
1041        //   If the original function parameter associated with A is a function
1042        //   parameter pack and the function parameter associated with P is not
1043        //   a function parameter pack, then template argument deduction fails.
1044        return Sema::TDK_MiscellaneousDeductionFailure;
1045      }
1046
1047      if (Sema::TemplateDeductionResult Result
1048            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1049                                                 Params[ParamIdx], Args[ArgIdx],
1050                                                 Info, Deduced, TDF,
1051                                                 PartialOrdering))
1052        return Result;
1053
1054      ++ArgIdx;
1055      continue;
1056    }
1057
1058    // C++0x [temp.deduct.type]p10:
1059    //   If the parameter-declaration corresponding to Pi is a function
1060    //   parameter pack, then the type of its declarator- id is compared with
1061    //   each remaining parameter type in the parameter-type-list of A. Each
1062    //   comparison deduces template arguments for subsequent positions in the
1063    //   template parameter packs expanded by the function parameter pack.
1064
1065    QualType Pattern = Expansion->getPattern();
1066    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1067
1068    // A pack scope with fixed arity is not really a pack any more, so is not
1069    // a non-deduced context.
1070    if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1071      for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1072        // Deduce template arguments from the pattern.
1073        if (Sema::TemplateDeductionResult Result
1074              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
1075                                                   Args[ArgIdx], Info, Deduced,
1076                                                   TDF, PartialOrdering))
1077          return Result;
1078
1079        PackScope.nextPackElement();
1080      }
1081    } else {
1082      // C++0x [temp.deduct.type]p5:
1083      //   The non-deduced contexts are:
1084      //     - A function parameter pack that does not occur at the end of the
1085      //       parameter-declaration-clause.
1086      //
1087      // FIXME: There is no wording to say what we should do in this case. We
1088      // choose to resolve this by applying the same rule that is applied for a
1089      // function call: that is, deduce all contained packs to their
1090      // explicitly-specified values (or to <> if there is no such value).
1091      //
1092      // This is seemingly-arbitrarily different from the case of a template-id
1093      // with a non-trailing pack-expansion in its arguments, which renders the
1094      // entire template-argument-list a non-deduced context.
1095
1096      // If the parameter type contains an explicitly-specified pack that we
1097      // could not expand, skip the number of parameters notionally created
1098      // by the expansion.
1099      Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1100      if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1101        for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1102             ++I, ++ArgIdx)
1103          PackScope.nextPackElement();
1104      }
1105    }
1106
1107    // Build argument packs for each of the parameter packs expanded by this
1108    // pack expansion.
1109    if (auto Result = PackScope.finish())
1110      return Result;
1111  }
1112
1113  // Make sure we don't have any extra arguments.
1114  if (ArgIdx < NumArgs)
1115    return Sema::TDK_MiscellaneousDeductionFailure;
1116
1117  return Sema::TDK_Success;
1118}
1119
1120/// Determine whether the parameter has qualifiers that the argument
1121/// lacks. Put another way, determine whether there is no way to add
1122/// a deduced set of qualifiers to the ParamType that would result in
1123/// its qualifiers matching those of the ArgType.
1124static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1125                                                  QualType ArgType) {
1126  Qualifiers ParamQs = ParamType.getQualifiers();
1127  Qualifiers ArgQs = ArgType.getQualifiers();
1128
1129  if (ParamQs == ArgQs)
1130    return false;
1131
1132  // Mismatched (but not missing) Objective-C GC attributes.
1133  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1134      ParamQs.hasObjCGCAttr())
1135    return true;
1136
1137  // Mismatched (but not missing) address spaces.
1138  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1139      ParamQs.hasAddressSpace())
1140    return true;
1141
1142  // Mismatched (but not missing) Objective-C lifetime qualifiers.
1143  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1144      ParamQs.hasObjCLifetime())
1145    return true;
1146
1147  // CVR qualifiers inconsistent or a superset.
1148  return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1149}
1150
1151/// Compare types for equality with respect to possibly compatible
1152/// function types (noreturn adjustment, implicit calling conventions). If any
1153/// of parameter and argument is not a function, just perform type comparison.
1154///
1155/// \param Param the template parameter type.
1156///
1157/// \param Arg the argument type.
1158bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
1159                                          CanQualType Arg) {
1160  const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
1161                     *ArgFunction   = Arg->getAs<FunctionType>();
1162
1163  // Just compare if not functions.
1164  if (!ParamFunction || !ArgFunction)
1165    return Param == Arg;
1166
1167  // Noreturn and noexcept adjustment.
1168  QualType AdjustedParam;
1169  if (IsFunctionConversion(Param, Arg, AdjustedParam))
1170    return Arg == Context.getCanonicalType(AdjustedParam);
1171
1172  // FIXME: Compatible calling conventions.
1173
1174  return Param == Arg;
1175}
1176
1177/// Get the index of the first template parameter that was originally from the
1178/// innermost template-parameter-list. This is 0 except when we concatenate
1179/// the template parameter lists of a class template and a constructor template
1180/// when forming an implicit deduction guide.
1181static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1182  auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1183  if (!Guide || !Guide->isImplicit())
1184    return 0;
1185  return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1186}
1187
1188/// Determine whether a type denotes a forwarding reference.
1189static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1190  // C++1z [temp.deduct.call]p3:
1191  //   A forwarding reference is an rvalue reference to a cv-unqualified
1192  //   template parameter that does not represent a template parameter of a
1193  //   class template.
1194  if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1195    if (ParamRef->getPointeeType().getQualifiers())
1196      return false;
1197    auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1198    return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1199  }
1200  return false;
1201}
1202
1203/// Deduce the template arguments by comparing the parameter type and
1204/// the argument type (C++ [temp.deduct.type]).
1205///
1206/// \param S the semantic analysis object within which we are deducing
1207///
1208/// \param TemplateParams the template parameters that we are deducing
1209///
1210/// \param ParamIn the parameter type
1211///
1212/// \param ArgIn the argument type
1213///
1214/// \param Info information about the template argument deduction itself
1215///
1216/// \param Deduced the deduced template arguments
1217///
1218/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1219/// how template argument deduction is performed.
1220///
1221/// \param PartialOrdering Whether we're performing template argument deduction
1222/// in the context of partial ordering (C++0x [temp.deduct.partial]).
1223///
1224/// \returns the result of template argument deduction so far. Note that a
1225/// "success" result means that template argument deduction has not yet failed,
1226/// but it may still fail, later, for other reasons.
1227static Sema::TemplateDeductionResult
1228DeduceTemplateArgumentsByTypeMatch(Sema &S,
1229                                   TemplateParameterList *TemplateParams,
1230                                   QualType ParamIn, QualType ArgIn,
1231                                   TemplateDeductionInfo &Info,
1232                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1233                                   unsigned TDF,
1234                                   bool PartialOrdering,
1235                                   bool DeducedFromArrayBound) {
1236  // We only want to look at the canonical types, since typedefs and
1237  // sugar are not part of template argument deduction.
1238  QualType Param = S.Context.getCanonicalType(ParamIn);
1239  QualType Arg = S.Context.getCanonicalType(ArgIn);
1240
1241  // If the argument type is a pack expansion, look at its pattern.
1242  // This isn't explicitly called out
1243  if (const PackExpansionType *ArgExpansion
1244                                            = dyn_cast<PackExpansionType>(Arg))
1245    Arg = ArgExpansion->getPattern();
1246
1247  if (PartialOrdering) {
1248    // C++11 [temp.deduct.partial]p5:
1249    //   Before the partial ordering is done, certain transformations are
1250    //   performed on the types used for partial ordering:
1251    //     - If P is a reference type, P is replaced by the type referred to.
1252    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1253    if (ParamRef)
1254      Param = ParamRef->getPointeeType();
1255
1256    //     - If A is a reference type, A is replaced by the type referred to.
1257    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1258    if (ArgRef)
1259      Arg = ArgRef->getPointeeType();
1260
1261    if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
1262      // C++11 [temp.deduct.partial]p9:
1263      //   If, for a given type, deduction succeeds in both directions (i.e.,
1264      //   the types are identical after the transformations above) and both
1265      //   P and A were reference types [...]:
1266      //     - if [one type] was an lvalue reference and [the other type] was
1267      //       not, [the other type] is not considered to be at least as
1268      //       specialized as [the first type]
1269      //     - if [one type] is more cv-qualified than [the other type],
1270      //       [the other type] is not considered to be at least as specialized
1271      //       as [the first type]
1272      // Objective-C ARC adds:
1273      //     - [one type] has non-trivial lifetime, [the other type] has
1274      //       __unsafe_unretained lifetime, and the types are otherwise
1275      //       identical
1276      //
1277      // A is "considered to be at least as specialized" as P iff deduction
1278      // succeeds, so we model this as a deduction failure. Note that
1279      // [the first type] is P and [the other type] is A here; the standard
1280      // gets this backwards.
1281      Qualifiers ParamQuals = Param.getQualifiers();
1282      Qualifiers ArgQuals = Arg.getQualifiers();
1283      if ((ParamRef->isLValueReferenceType() &&
1284           !ArgRef->isLValueReferenceType()) ||
1285          ParamQuals.isStrictSupersetOf(ArgQuals) ||
1286          (ParamQuals.hasNonTrivialObjCLifetime() &&
1287           ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1288           ParamQuals.withoutObjCLifetime() ==
1289               ArgQuals.withoutObjCLifetime())) {
1290        Info.FirstArg = TemplateArgument(ParamIn);
1291        Info.SecondArg = TemplateArgument(ArgIn);
1292        return Sema::TDK_NonDeducedMismatch;
1293      }
1294    }
1295
1296    // C++11 [temp.deduct.partial]p7:
1297    //   Remove any top-level cv-qualifiers:
1298    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1299    //       version of P.
1300    Param = Param.getUnqualifiedType();
1301    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1302    //       version of A.
1303    Arg = Arg.getUnqualifiedType();
1304  } else {
1305    // C++0x [temp.deduct.call]p4 bullet 1:
1306    //   - If the original P is a reference type, the deduced A (i.e., the type
1307    //     referred to by the reference) can be more cv-qualified than the
1308    //     transformed A.
1309    if (TDF & TDF_ParamWithReferenceType) {
1310      Qualifiers Quals;
1311      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1312      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1313                             Arg.getCVRQualifiers());
1314      Param = S.Context.getQualifiedType(UnqualParam, Quals);
1315    }
1316
1317    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1318      // C++0x [temp.deduct.type]p10:
1319      //   If P and A are function types that originated from deduction when
1320      //   taking the address of a function template (14.8.2.2) or when deducing
1321      //   template arguments from a function declaration (14.8.2.6) and Pi and
1322      //   Ai are parameters of the top-level parameter-type-list of P and A,
1323      //   respectively, Pi is adjusted if it is a forwarding reference and Ai
1324      //   is an lvalue reference, in
1325      //   which case the type of Pi is changed to be the template parameter
1326      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1327      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1328      //   deduced as X&. - end note ]
1329      TDF &= ~TDF_TopLevelParameterTypeList;
1330      if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
1331        Param = Param->getPointeeType();
1332    }
1333  }
1334
1335  // C++ [temp.deduct.type]p9:
1336  //   A template type argument T, a template template argument TT or a
1337  //   template non-type argument i can be deduced if P and A have one of
1338  //   the following forms:
1339  //
1340  //     T
1341  //     cv-list T
1342  if (const TemplateTypeParmType *TemplateTypeParm
1343        = Param->getAs<TemplateTypeParmType>()) {
1344    // Just skip any attempts to deduce from a placeholder type or a parameter
1345    // at a different depth.
1346    if (Arg->isPlaceholderType() ||
1347        Info.getDeducedDepth() != TemplateTypeParm->getDepth())
1348      return Sema::TDK_Success;
1349
1350    unsigned Index = TemplateTypeParm->getIndex();
1351    bool RecanonicalizeArg = false;
1352
1353    // If the argument type is an array type, move the qualifiers up to the
1354    // top level, so they can be matched with the qualifiers on the parameter.
1355    if (isa<ArrayType>(Arg)) {
1356      Qualifiers Quals;
1357      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1358      if (Quals) {
1359        Arg = S.Context.getQualifiedType(Arg, Quals);
1360        RecanonicalizeArg = true;
1361      }
1362    }
1363
1364    // The argument type can not be less qualified than the parameter
1365    // type.
1366    if (!(TDF & TDF_IgnoreQualifiers) &&
1367        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1368      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1369      Info.FirstArg = TemplateArgument(Param);
1370      Info.SecondArg = TemplateArgument(Arg);
1371      return Sema::TDK_Underqualified;
1372    }
1373
1374    // Do not match a function type with a cv-qualified type.
1375    // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1376    if (Arg->isFunctionType() && Param.hasQualifiers()) {
1377      return Sema::TDK_NonDeducedMismatch;
1378    }
1379
1380    assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
1381           "saw template type parameter with wrong depth");
1382    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1383    QualType DeducedType = Arg;
1384
1385    // Remove any qualifiers on the parameter from the deduced type.
1386    // We checked the qualifiers for consistency above.
1387    Qualifiers DeducedQs = DeducedType.getQualifiers();
1388    Qualifiers ParamQs = Param.getQualifiers();
1389    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1390    if (ParamQs.hasObjCGCAttr())
1391      DeducedQs.removeObjCGCAttr();
1392    if (ParamQs.hasAddressSpace())
1393      DeducedQs.removeAddressSpace();
1394    if (ParamQs.hasObjCLifetime())
1395      DeducedQs.removeObjCLifetime();
1396
1397    // Objective-C ARC:
1398    //   If template deduction would produce a lifetime qualifier on a type
1399    //   that is not a lifetime type, template argument deduction fails.
1400    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1401        !DeducedType->isDependentType()) {
1402      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1403      Info.FirstArg = TemplateArgument(Param);
1404      Info.SecondArg = TemplateArgument(Arg);
1405      return Sema::TDK_Underqualified;
1406    }
1407
1408    // Objective-C ARC:
1409    //   If template deduction would produce an argument type with lifetime type
1410    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1411    if (S.getLangOpts().ObjCAutoRefCount &&
1412        DeducedType->isObjCLifetimeType() &&
1413        !DeducedQs.hasObjCLifetime())
1414      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1415
1416    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1417                                             DeducedQs);
1418
1419    if (RecanonicalizeArg)
1420      DeducedType = S.Context.getCanonicalType(DeducedType);
1421
1422    DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1423    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1424                                                                 Deduced[Index],
1425                                                                   NewDeduced);
1426    if (Result.isNull()) {
1427      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1428      Info.FirstArg = Deduced[Index];
1429      Info.SecondArg = NewDeduced;
1430      return Sema::TDK_Inconsistent;
1431    }
1432
1433    Deduced[Index] = Result;
1434    return Sema::TDK_Success;
1435  }
1436
1437  // Set up the template argument deduction information for a failure.
1438  Info.FirstArg = TemplateArgument(ParamIn);
1439  Info.SecondArg = TemplateArgument(ArgIn);
1440
1441  // If the parameter is an already-substituted template parameter
1442  // pack, do nothing: we don't know which of its arguments to look
1443  // at, so we have to wait until all of the parameter packs in this
1444  // expansion have arguments.
1445  if (isa<SubstTemplateTypeParmPackType>(Param))
1446    return Sema::TDK_Success;
1447
1448  // Check the cv-qualifiers on the parameter and argument types.
1449  CanQualType CanParam = S.Context.getCanonicalType(Param);
1450  CanQualType CanArg = S.Context.getCanonicalType(Arg);
1451  if (!(TDF & TDF_IgnoreQualifiers)) {
1452    if (TDF & TDF_ParamWithReferenceType) {
1453      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1454        return Sema::TDK_NonDeducedMismatch;
1455    } else if (TDF & TDF_ArgWithReferenceType) {
1456      // C++ [temp.deduct.conv]p4:
1457      //   If the original A is a reference type, A can be more cv-qualified
1458      //   than the deduced A
1459      if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
1460        return Sema::TDK_NonDeducedMismatch;
1461
1462      // Strip out all extra qualifiers from the argument to figure out the
1463      // type we're converting to, prior to the qualification conversion.
1464      Qualifiers Quals;
1465      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1466      Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
1467    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1468      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1469        return Sema::TDK_NonDeducedMismatch;
1470    }
1471
1472    // If the parameter type is not dependent, there is nothing to deduce.
1473    if (!Param->isDependentType()) {
1474      if (!(TDF & TDF_SkipNonDependent)) {
1475        bool NonDeduced =
1476            (TDF & TDF_AllowCompatibleFunctionType)
1477                ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
1478                : Param != Arg;
1479        if (NonDeduced) {
1480          return Sema::TDK_NonDeducedMismatch;
1481        }
1482      }
1483      return Sema::TDK_Success;
1484    }
1485  } else if (!Param->isDependentType()) {
1486    CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1487                ArgUnqualType = CanArg.getUnqualifiedType();
1488    bool Success =
1489        (TDF & TDF_AllowCompatibleFunctionType)
1490            ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
1491            : ParamUnqualType == ArgUnqualType;
1492    if (Success)
1493      return Sema::TDK_Success;
1494  }
1495
1496  switch (Param->getTypeClass()) {
1497    // Non-canonical types cannot appear here.
1498#define NON_CANONICAL_TYPE(Class, Base) \
1499  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1500#define TYPE(Class, Base)
1501#include "clang/AST/TypeNodes.inc"
1502
1503    case Type::TemplateTypeParm:
1504    case Type::SubstTemplateTypeParmPack:
1505      llvm_unreachable("Type nodes handled above");
1506
1507    // These types cannot be dependent, so simply check whether the types are
1508    // the same.
1509    case Type::Builtin:
1510    case Type::VariableArray:
1511    case Type::Vector:
1512    case Type::FunctionNoProto:
1513    case Type::Record:
1514    case Type::Enum:
1515    case Type::ObjCObject:
1516    case Type::ObjCInterface:
1517    case Type::ObjCObjectPointer:
1518      if (TDF & TDF_SkipNonDependent)
1519        return Sema::TDK_Success;
1520
1521      if (TDF & TDF_IgnoreQualifiers) {
1522        Param = Param.getUnqualifiedType();
1523        Arg = Arg.getUnqualifiedType();
1524      }
1525
1526      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1527
1528    //     _Complex T   [placeholder extension]
1529    case Type::Complex:
1530      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1531        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1532                                    cast<ComplexType>(Param)->getElementType(),
1533                                    ComplexArg->getElementType(),
1534                                    Info, Deduced, TDF);
1535
1536      return Sema::TDK_NonDeducedMismatch;
1537
1538    //     _Atomic T   [extension]
1539    case Type::Atomic:
1540      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1541        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1542                                       cast<AtomicType>(Param)->getValueType(),
1543                                       AtomicArg->getValueType(),
1544                                       Info, Deduced, TDF);
1545
1546      return Sema::TDK_NonDeducedMismatch;
1547
1548    //     T *
1549    case Type::Pointer: {
1550      QualType PointeeType;
1551      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1552        PointeeType = PointerArg->getPointeeType();
1553      } else if (const ObjCObjectPointerType *PointerArg
1554                   = Arg->getAs<ObjCObjectPointerType>()) {
1555        PointeeType = PointerArg->getPointeeType();
1556      } else {
1557        return Sema::TDK_NonDeducedMismatch;
1558      }
1559
1560      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1561      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1562                                     cast<PointerType>(Param)->getPointeeType(),
1563                                     PointeeType,
1564                                     Info, Deduced, SubTDF);
1565    }
1566
1567    //     T &
1568    case Type::LValueReference: {
1569      const LValueReferenceType *ReferenceArg =
1570          Arg->getAs<LValueReferenceType>();
1571      if (!ReferenceArg)
1572        return Sema::TDK_NonDeducedMismatch;
1573
1574      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1575                           cast<LValueReferenceType>(Param)->getPointeeType(),
1576                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1577    }
1578
1579    //     T && [C++0x]
1580    case Type::RValueReference: {
1581      const RValueReferenceType *ReferenceArg =
1582          Arg->getAs<RValueReferenceType>();
1583      if (!ReferenceArg)
1584        return Sema::TDK_NonDeducedMismatch;
1585
1586      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1587                             cast<RValueReferenceType>(Param)->getPointeeType(),
1588                             ReferenceArg->getPointeeType(),
1589                             Info, Deduced, 0);
1590    }
1591
1592    //     T [] (implied, but not stated explicitly)
1593    case Type::IncompleteArray: {
1594      const IncompleteArrayType *IncompleteArrayArg =
1595        S.Context.getAsIncompleteArrayType(Arg);
1596      if (!IncompleteArrayArg)
1597        return Sema::TDK_NonDeducedMismatch;
1598
1599      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1600      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1601                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1602                    IncompleteArrayArg->getElementType(),
1603                    Info, Deduced, SubTDF);
1604    }
1605
1606    //     T [integer-constant]
1607    case Type::ConstantArray: {
1608      const ConstantArrayType *ConstantArrayArg =
1609        S.Context.getAsConstantArrayType(Arg);
1610      if (!ConstantArrayArg)
1611        return Sema::TDK_NonDeducedMismatch;
1612
1613      const ConstantArrayType *ConstantArrayParm =
1614        S.Context.getAsConstantArrayType(Param);
1615      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1616        return Sema::TDK_NonDeducedMismatch;
1617
1618      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1619      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1620                                           ConstantArrayParm->getElementType(),
1621                                           ConstantArrayArg->getElementType(),
1622                                           Info, Deduced, SubTDF);
1623    }
1624
1625    //     type [i]
1626    case Type::DependentSizedArray: {
1627      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1628      if (!ArrayArg)
1629        return Sema::TDK_NonDeducedMismatch;
1630
1631      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1632
1633      // Check the element type of the arrays
1634      const DependentSizedArrayType *DependentArrayParm
1635        = S.Context.getAsDependentSizedArrayType(Param);
1636      if (Sema::TemplateDeductionResult Result
1637            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1638                                          DependentArrayParm->getElementType(),
1639                                          ArrayArg->getElementType(),
1640                                          Info, Deduced, SubTDF))
1641        return Result;
1642
1643      // Determine the array bound is something we can deduce.
1644      NonTypeTemplateParmDecl *NTTP
1645        = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
1646      if (!NTTP)
1647        return Sema::TDK_Success;
1648
1649      // We can perform template argument deduction for the given non-type
1650      // template parameter.
1651      assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1652             "saw non-type template parameter with wrong depth");
1653      if (const ConstantArrayType *ConstantArrayArg
1654            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1655        llvm::APSInt Size(ConstantArrayArg->getSize());
1656        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
1657                                             S.Context.getSizeType(),
1658                                             /*ArrayBound=*/true,
1659                                             Info, Deduced);
1660      }
1661      if (const DependentSizedArrayType *DependentArrayArg
1662            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1663        if (DependentArrayArg->getSizeExpr())
1664          return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1665                                               DependentArrayArg->getSizeExpr(),
1666                                               Info, Deduced);
1667
1668      // Incomplete type does not match a dependently-sized array type
1669      return Sema::TDK_NonDeducedMismatch;
1670    }
1671
1672    //     type(*)(T)
1673    //     T(*)()
1674    //     T(*)(T)
1675    case Type::FunctionProto: {
1676      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1677      const FunctionProtoType *FunctionProtoArg =
1678        dyn_cast<FunctionProtoType>(Arg);
1679      if (!FunctionProtoArg)
1680        return Sema::TDK_NonDeducedMismatch;
1681
1682      const FunctionProtoType *FunctionProtoParam =
1683        cast<FunctionProtoType>(Param);
1684
1685      if (FunctionProtoParam->getMethodQuals()
1686            != FunctionProtoArg->getMethodQuals() ||
1687          FunctionProtoParam->getRefQualifier()
1688            != FunctionProtoArg->getRefQualifier() ||
1689          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1690        return Sema::TDK_NonDeducedMismatch;
1691
1692      // Check return types.
1693      if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1694              S, TemplateParams, FunctionProtoParam->getReturnType(),
1695              FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1696        return Result;
1697
1698      // Check parameter types.
1699      if (auto Result = DeduceTemplateArguments(
1700              S, TemplateParams, FunctionProtoParam->param_type_begin(),
1701              FunctionProtoParam->getNumParams(),
1702              FunctionProtoArg->param_type_begin(),
1703              FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
1704        return Result;
1705
1706      if (TDF & TDF_AllowCompatibleFunctionType)
1707        return Sema::TDK_Success;
1708
1709      // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1710      // deducing through the noexcept-specifier if it's part of the canonical
1711      // type. libstdc++ relies on this.
1712      Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
1713      if (NonTypeTemplateParmDecl *NTTP =
1714          NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1715                       : nullptr) {
1716        assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1717               "saw non-type template parameter with wrong depth");
1718
1719        llvm::APSInt Noexcept(1);
1720        switch (FunctionProtoArg->canThrow()) {
1721        case CT_Cannot:
1722          Noexcept = 1;
1723          LLVM_FALLTHROUGH;
1724
1725        case CT_Can:
1726          // We give E in noexcept(E) the "deduced from array bound" treatment.
1727          // FIXME: Should we?
1728          return DeduceNonTypeTemplateArgument(
1729              S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1730              /*ArrayBound*/true, Info, Deduced);
1731
1732        case CT_Dependent:
1733          if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
1734            return DeduceNonTypeTemplateArgument(
1735                S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1736          // Can't deduce anything from throw(T...).
1737          break;
1738        }
1739      }
1740      // FIXME: Detect non-deduced exception specification mismatches?
1741      //
1742      // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1743      // top-level differences in noexcept-specifications.
1744
1745      return Sema::TDK_Success;
1746    }
1747
1748    case Type::InjectedClassName:
1749      // Treat a template's injected-class-name as if the template
1750      // specialization type had been used.
1751      Param = cast<InjectedClassNameType>(Param)
1752        ->getInjectedSpecializationType();
1753      assert(isa<TemplateSpecializationType>(Param) &&
1754             "injected class name is not a template specialization type");
1755      LLVM_FALLTHROUGH;
1756
1757    //     template-name<T> (where template-name refers to a class template)
1758    //     template-name<i>
1759    //     TT<T>
1760    //     TT<i>
1761    //     TT<>
1762    case Type::TemplateSpecialization: {
1763      const TemplateSpecializationType *SpecParam =
1764          cast<TemplateSpecializationType>(Param);
1765
1766      // When Arg cannot be a derived class, we can just try to deduce template
1767      // arguments from the template-id.
1768      const RecordType *RecordT = Arg->getAs<RecordType>();
1769      if (!(TDF & TDF_DerivedClass) || !RecordT)
1770        return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
1771                                       Deduced);
1772
1773      SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1774                                                          Deduced.end());
1775
1776      Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
1777          S, TemplateParams, SpecParam, Arg, Info, Deduced);
1778
1779      if (Result == Sema::TDK_Success)
1780        return Result;
1781
1782      // We cannot inspect base classes as part of deduction when the type
1783      // is incomplete, so either instantiate any templates necessary to
1784      // complete the type, or skip over it if it cannot be completed.
1785      if (!S.isCompleteType(Info.getLocation(), Arg))
1786        return Result;
1787
1788      // C++14 [temp.deduct.call] p4b3:
1789      //   If P is a class and P has the form simple-template-id, then the
1790      //   transformed A can be a derived class of the deduced A. Likewise if
1791      //   P is a pointer to a class of the form simple-template-id, the
1792      //   transformed A can be a pointer to a derived class pointed to by the
1793      //   deduced A.
1794      //
1795      //   These alternatives are considered only if type deduction would
1796      //   otherwise fail. If they yield more than one possible deduced A, the
1797      //   type deduction fails.
1798
1799      // Reset the incorrectly deduced argument from above.
1800      Deduced = DeducedOrig;
1801
1802      // Use data recursion to crawl through the list of base classes.
1803      // Visited contains the set of nodes we have already visited, while
1804      // ToVisit is our stack of records that we still need to visit.
1805      llvm::SmallPtrSet<const RecordType *, 8> Visited;
1806      SmallVector<const RecordType *, 8> ToVisit;
1807      ToVisit.push_back(RecordT);
1808      bool Successful = false;
1809      SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
1810      while (!ToVisit.empty()) {
1811        // Retrieve the next class in the inheritance hierarchy.
1812        const RecordType *NextT = ToVisit.pop_back_val();
1813
1814        // If we have already seen this type, skip it.
1815        if (!Visited.insert(NextT).second)
1816          continue;
1817
1818        // If this is a base class, try to perform template argument
1819        // deduction from it.
1820        if (NextT != RecordT) {
1821          TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
1822          Sema::TemplateDeductionResult BaseResult =
1823              DeduceTemplateArguments(S, TemplateParams, SpecParam,
1824                                      QualType(NextT, 0), BaseInfo, Deduced);
1825
1826          // If template argument deduction for this base was successful,
1827          // note that we had some success. Otherwise, ignore any deductions
1828          // from this base class.
1829          if (BaseResult == Sema::TDK_Success) {
1830            // If we've already seen some success, then deduction fails due to
1831            // an ambiguity (temp.deduct.call p5).
1832            if (Successful)
1833              return Sema::TDK_MiscellaneousDeductionFailure;
1834
1835            Successful = true;
1836            std::swap(SuccessfulDeduced, Deduced);
1837
1838            Info.Param = BaseInfo.Param;
1839            Info.FirstArg = BaseInfo.FirstArg;
1840            Info.SecondArg = BaseInfo.SecondArg;
1841          }
1842
1843          Deduced = DeducedOrig;
1844        }
1845
1846        // Visit base classes
1847        CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1848        for (const auto &Base : Next->bases()) {
1849          assert(Base.getType()->isRecordType() &&
1850                 "Base class that isn't a record?");
1851          ToVisit.push_back(Base.getType()->getAs<RecordType>());
1852        }
1853      }
1854
1855      if (Successful) {
1856        std::swap(SuccessfulDeduced, Deduced);
1857        return Sema::TDK_Success;
1858      }
1859
1860      return Result;
1861    }
1862
1863    //     T type::*
1864    //     T T::*
1865    //     T (type::*)()
1866    //     type (T::*)()
1867    //     type (type::*)(T)
1868    //     type (T::*)(T)
1869    //     T (type::*)(T)
1870    //     T (T::*)()
1871    //     T (T::*)(T)
1872    case Type::MemberPointer: {
1873      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1874      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1875      if (!MemPtrArg)
1876        return Sema::TDK_NonDeducedMismatch;
1877
1878      QualType ParamPointeeType = MemPtrParam->getPointeeType();
1879      if (ParamPointeeType->isFunctionType())
1880        S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1881                                 /*IsCtorOrDtor=*/false, Info.getLocation());
1882      QualType ArgPointeeType = MemPtrArg->getPointeeType();
1883      if (ArgPointeeType->isFunctionType())
1884        S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1885                                 /*IsCtorOrDtor=*/false, Info.getLocation());
1886
1887      if (Sema::TemplateDeductionResult Result
1888            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1889                                                 ParamPointeeType,
1890                                                 ArgPointeeType,
1891                                                 Info, Deduced,
1892                                                 TDF & TDF_IgnoreQualifiers))
1893        return Result;
1894
1895      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1896                                           QualType(MemPtrParam->getClass(), 0),
1897                                           QualType(MemPtrArg->getClass(), 0),
1898                                           Info, Deduced,
1899                                           TDF & TDF_IgnoreQualifiers);
1900    }
1901
1902    //     (clang extension)
1903    //
1904    //     type(^)(T)
1905    //     T(^)()
1906    //     T(^)(T)
1907    case Type::BlockPointer: {
1908      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1909      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1910
1911      if (!BlockPtrArg)
1912        return Sema::TDK_NonDeducedMismatch;
1913
1914      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1915                                                BlockPtrParam->getPointeeType(),
1916                                                BlockPtrArg->getPointeeType(),
1917                                                Info, Deduced, 0);
1918    }
1919
1920    //     (clang extension)
1921    //
1922    //     T __attribute__(((ext_vector_type(<integral constant>))))
1923    case Type::ExtVector: {
1924      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1925      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1926        // Make sure that the vectors have the same number of elements.
1927        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1928          return Sema::TDK_NonDeducedMismatch;
1929
1930        // Perform deduction on the element types.
1931        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1932                                                  VectorParam->getElementType(),
1933                                                  VectorArg->getElementType(),
1934                                                  Info, Deduced, TDF);
1935      }
1936
1937      if (const DependentSizedExtVectorType *VectorArg
1938                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1939        // We can't check the number of elements, since the argument has a
1940        // dependent number of elements. This can only occur during partial
1941        // ordering.
1942
1943        // Perform deduction on the element types.
1944        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1945                                                  VectorParam->getElementType(),
1946                                                  VectorArg->getElementType(),
1947                                                  Info, Deduced, TDF);
1948      }
1949
1950      return Sema::TDK_NonDeducedMismatch;
1951    }
1952
1953    case Type::DependentVector: {
1954      const auto *VectorParam = cast<DependentVectorType>(Param);
1955
1956      if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
1957        // Perform deduction on the element types.
1958        if (Sema::TemplateDeductionResult Result =
1959                DeduceTemplateArgumentsByTypeMatch(
1960                    S, TemplateParams, VectorParam->getElementType(),
1961                    VectorArg->getElementType(), Info, Deduced, TDF))
1962          return Result;
1963
1964        // Perform deduction on the vector size, if we can.
1965        NonTypeTemplateParmDecl *NTTP =
1966            getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
1967        if (!NTTP)
1968          return Sema::TDK_Success;
1969
1970        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1971        ArgSize = VectorArg->getNumElements();
1972        // Note that we use the "array bound" rules here; just like in that
1973        // case, we don't have any particular type for the vector size, but
1974        // we can provide one if necessary.
1975        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
1976                                             S.Context.UnsignedIntTy, true,
1977                                             Info, Deduced);
1978      }
1979
1980      if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
1981        // Perform deduction on the element types.
1982        if (Sema::TemplateDeductionResult Result =
1983                DeduceTemplateArgumentsByTypeMatch(
1984                    S, TemplateParams, VectorParam->getElementType(),
1985                    VectorArg->getElementType(), Info, Deduced, TDF))
1986          return Result;
1987
1988        // Perform deduction on the vector size, if we can.
1989        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
1990            Info, VectorParam->getSizeExpr());
1991        if (!NTTP)
1992          return Sema::TDK_Success;
1993
1994        return DeduceNonTypeTemplateArgument(
1995            S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
1996      }
1997
1998      return Sema::TDK_NonDeducedMismatch;
1999    }
2000
2001    //     (clang extension)
2002    //
2003    //     T __attribute__(((ext_vector_type(N))))
2004    case Type::DependentSizedExtVector: {
2005      const DependentSizedExtVectorType *VectorParam
2006        = cast<DependentSizedExtVectorType>(Param);
2007
2008      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
2009        // Perform deduction on the element types.
2010        if (Sema::TemplateDeductionResult Result
2011              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2012                                                  VectorParam->getElementType(),
2013                                                   VectorArg->getElementType(),
2014                                                   Info, Deduced, TDF))
2015          return Result;
2016
2017        // Perform deduction on the vector size, if we can.
2018        NonTypeTemplateParmDecl *NTTP
2019          = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2020        if (!NTTP)
2021          return Sema::TDK_Success;
2022
2023        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2024        ArgSize = VectorArg->getNumElements();
2025        // Note that we use the "array bound" rules here; just like in that
2026        // case, we don't have any particular type for the vector size, but
2027        // we can provide one if necessary.
2028        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2029                                             S.Context.IntTy, true, Info,
2030                                             Deduced);
2031      }
2032
2033      if (const DependentSizedExtVectorType *VectorArg
2034                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2035        // Perform deduction on the element types.
2036        if (Sema::TemplateDeductionResult Result
2037            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2038                                                 VectorParam->getElementType(),
2039                                                 VectorArg->getElementType(),
2040                                                 Info, Deduced, TDF))
2041          return Result;
2042
2043        // Perform deduction on the vector size, if we can.
2044        NonTypeTemplateParmDecl *NTTP
2045          = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2046        if (!NTTP)
2047          return Sema::TDK_Success;
2048
2049        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2050                                             VectorArg->getSizeExpr(),
2051                                             Info, Deduced);
2052      }
2053
2054      return Sema::TDK_NonDeducedMismatch;
2055    }
2056
2057    //     (clang extension)
2058    //
2059    //     T __attribute__(((address_space(N))))
2060    case Type::DependentAddressSpace: {
2061      const DependentAddressSpaceType *AddressSpaceParam =
2062          cast<DependentAddressSpaceType>(Param);
2063
2064      if (const DependentAddressSpaceType *AddressSpaceArg =
2065              dyn_cast<DependentAddressSpaceType>(Arg)) {
2066        // Perform deduction on the pointer type.
2067        if (Sema::TemplateDeductionResult Result =
2068                DeduceTemplateArgumentsByTypeMatch(
2069                    S, TemplateParams, AddressSpaceParam->getPointeeType(),
2070                    AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
2071          return Result;
2072
2073        // Perform deduction on the address space, if we can.
2074        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2075            Info, AddressSpaceParam->getAddrSpaceExpr());
2076        if (!NTTP)
2077          return Sema::TDK_Success;
2078
2079        return DeduceNonTypeTemplateArgument(
2080            S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
2081            Deduced);
2082      }
2083
2084      if (isTargetAddressSpace(Arg.getAddressSpace())) {
2085        llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2086                                     false);
2087        ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
2088
2089        // Perform deduction on the pointer types.
2090        if (Sema::TemplateDeductionResult Result =
2091                DeduceTemplateArgumentsByTypeMatch(
2092                    S, TemplateParams, AddressSpaceParam->getPointeeType(),
2093                    S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
2094          return Result;
2095
2096        // Perform deduction on the address space, if we can.
2097        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2098            Info, AddressSpaceParam->getAddrSpaceExpr());
2099        if (!NTTP)
2100          return Sema::TDK_Success;
2101
2102        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2103                                             ArgAddressSpace, S.Context.IntTy,
2104                                             true, Info, Deduced);
2105      }
2106
2107      return Sema::TDK_NonDeducedMismatch;
2108    }
2109
2110    case Type::TypeOfExpr:
2111    case Type::TypeOf:
2112    case Type::DependentName:
2113    case Type::UnresolvedUsing:
2114    case Type::Decltype:
2115    case Type::UnaryTransform:
2116    case Type::Auto:
2117    case Type::DeducedTemplateSpecialization:
2118    case Type::DependentTemplateSpecialization:
2119    case Type::PackExpansion:
2120    case Type::Pipe:
2121      // No template argument deduction for these types
2122      return Sema::TDK_Success;
2123  }
2124
2125  llvm_unreachable("Invalid Type Class!");
2126}
2127
2128static Sema::TemplateDeductionResult
2129DeduceTemplateArguments(Sema &S,
2130                        TemplateParameterList *TemplateParams,
2131                        const TemplateArgument &Param,
2132                        TemplateArgument Arg,
2133                        TemplateDeductionInfo &Info,
2134                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2135  // If the template argument is a pack expansion, perform template argument
2136  // deduction against the pattern of that expansion. This only occurs during
2137  // partial ordering.
2138  if (Arg.isPackExpansion())
2139    Arg = Arg.getPackExpansionPattern();
2140
2141  switch (Param.getKind()) {
2142  case TemplateArgument::Null:
2143    llvm_unreachable("Null template argument in parameter list");
2144
2145  case TemplateArgument::Type:
2146    if (Arg.getKind() == TemplateArgument::Type)
2147      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2148                                                Param.getAsType(),
2149                                                Arg.getAsType(),
2150                                                Info, Deduced, 0);
2151    Info.FirstArg = Param;
2152    Info.SecondArg = Arg;
2153    return Sema::TDK_NonDeducedMismatch;
2154
2155  case TemplateArgument::Template:
2156    if (Arg.getKind() == TemplateArgument::Template)
2157      return DeduceTemplateArguments(S, TemplateParams,
2158                                     Param.getAsTemplate(),
2159                                     Arg.getAsTemplate(), Info, Deduced);
2160    Info.FirstArg = Param;
2161    Info.SecondArg = Arg;
2162    return Sema::TDK_NonDeducedMismatch;
2163
2164  case TemplateArgument::TemplateExpansion:
2165    llvm_unreachable("caller should handle pack expansions");
2166
2167  case TemplateArgument::Declaration:
2168    if (Arg.getKind() == TemplateArgument::Declaration &&
2169        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
2170      return Sema::TDK_Success;
2171
2172    Info.FirstArg = Param;
2173    Info.SecondArg = Arg;
2174    return Sema::TDK_NonDeducedMismatch;
2175
2176  case TemplateArgument::NullPtr:
2177    if (Arg.getKind() == TemplateArgument::NullPtr &&
2178        S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
2179      return Sema::TDK_Success;
2180
2181    Info.FirstArg = Param;
2182    Info.SecondArg = Arg;
2183    return Sema::TDK_NonDeducedMismatch;
2184
2185  case TemplateArgument::Integral:
2186    if (Arg.getKind() == TemplateArgument::Integral) {
2187      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
2188        return Sema::TDK_Success;
2189
2190      Info.FirstArg = Param;
2191      Info.SecondArg = Arg;
2192      return Sema::TDK_NonDeducedMismatch;
2193    }
2194
2195    if (Arg.getKind() == TemplateArgument::Expression) {
2196      Info.FirstArg = Param;
2197      Info.SecondArg = Arg;
2198      return Sema::TDK_NonDeducedMismatch;
2199    }
2200
2201    Info.FirstArg = Param;
2202    Info.SecondArg = Arg;
2203    return Sema::TDK_NonDeducedMismatch;
2204
2205  case TemplateArgument::Expression:
2206    if (NonTypeTemplateParmDecl *NTTP
2207          = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
2208      if (Arg.getKind() == TemplateArgument::Integral)
2209        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2210                                             Arg.getAsIntegral(),
2211                                             Arg.getIntegralType(),
2212                                             /*ArrayBound=*/false,
2213                                             Info, Deduced);
2214      if (Arg.getKind() == TemplateArgument::NullPtr)
2215        return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2216                                             Arg.getNullPtrType(),
2217                                             Info, Deduced);
2218      if (Arg.getKind() == TemplateArgument::Expression)
2219        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2220                                             Arg.getAsExpr(), Info, Deduced);
2221      if (Arg.getKind() == TemplateArgument::Declaration)
2222        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2223                                             Arg.getAsDecl(),
2224                                             Arg.getParamTypeForDecl(),
2225                                             Info, Deduced);
2226
2227      Info.FirstArg = Param;
2228      Info.SecondArg = Arg;
2229      return Sema::TDK_NonDeducedMismatch;
2230    }
2231
2232    // Can't deduce anything, but that's okay.
2233    return Sema::TDK_Success;
2234
2235  case TemplateArgument::Pack:
2236    llvm_unreachable("Argument packs should be expanded by the caller!");
2237  }
2238
2239  llvm_unreachable("Invalid TemplateArgument Kind!");
2240}
2241
2242/// Determine whether there is a template argument to be used for
2243/// deduction.
2244///
2245/// This routine "expands" argument packs in-place, overriding its input
2246/// parameters so that \c Args[ArgIdx] will be the available template argument.
2247///
2248/// \returns true if there is another template argument (which will be at
2249/// \c Args[ArgIdx]), false otherwise.
2250static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2251                                            unsigned &ArgIdx) {
2252  if (ArgIdx == Args.size())
2253    return false;
2254
2255  const TemplateArgument &Arg = Args[ArgIdx];
2256  if (Arg.getKind() != TemplateArgument::Pack)
2257    return true;
2258
2259  assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2260  Args = Arg.pack_elements();
2261  ArgIdx = 0;
2262  return ArgIdx < Args.size();
2263}
2264
2265/// Determine whether the given set of template arguments has a pack
2266/// expansion that is not the last template argument.
2267static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2268  bool FoundPackExpansion = false;
2269  for (const auto &A : Args) {
2270    if (FoundPackExpansion)
2271      return true;
2272
2273    if (A.getKind() == TemplateArgument::Pack)
2274      return hasPackExpansionBeforeEnd(A.pack_elements());
2275
2276    // FIXME: If this is a fixed-arity pack expansion from an outer level of
2277    // templates, it should not be treated as a pack expansion.
2278    if (A.isPackExpansion())
2279      FoundPackExpansion = true;
2280  }
2281
2282  return false;
2283}
2284
2285static Sema::TemplateDeductionResult
2286DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2287                        ArrayRef<TemplateArgument> Params,
2288                        ArrayRef<TemplateArgument> Args,
2289                        TemplateDeductionInfo &Info,
2290                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2291                        bool NumberOfArgumentsMustMatch) {
2292  // C++0x [temp.deduct.type]p9:
2293  //   If the template argument list of P contains a pack expansion that is not
2294  //   the last template argument, the entire template argument list is a
2295  //   non-deduced context.
2296  if (hasPackExpansionBeforeEnd(Params))
2297    return Sema::TDK_Success;
2298
2299  // C++0x [temp.deduct.type]p9:
2300  //   If P has a form that contains <T> or <i>, then each argument Pi of the
2301  //   respective template argument list P is compared with the corresponding
2302  //   argument Ai of the corresponding template argument list of A.
2303  unsigned ArgIdx = 0, ParamIdx = 0;
2304  for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
2305    if (!Params[ParamIdx].isPackExpansion()) {
2306      // The simple case: deduce template arguments by matching Pi and Ai.
2307
2308      // Check whether we have enough arguments.
2309      if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
2310        return NumberOfArgumentsMustMatch
2311                   ? Sema::TDK_MiscellaneousDeductionFailure
2312                   : Sema::TDK_Success;
2313
2314      // C++1z [temp.deduct.type]p9:
2315      //   During partial ordering, if Ai was originally a pack expansion [and]
2316      //   Pi is not a pack expansion, template argument deduction fails.
2317      if (Args[ArgIdx].isPackExpansion())
2318        return Sema::TDK_MiscellaneousDeductionFailure;
2319
2320      // Perform deduction for this Pi/Ai pair.
2321      if (Sema::TemplateDeductionResult Result
2322            = DeduceTemplateArguments(S, TemplateParams,
2323                                      Params[ParamIdx], Args[ArgIdx],
2324                                      Info, Deduced))
2325        return Result;
2326
2327      // Move to the next argument.
2328      ++ArgIdx;
2329      continue;
2330    }
2331
2332    // The parameter is a pack expansion.
2333
2334    // C++0x [temp.deduct.type]p9:
2335    //   If Pi is a pack expansion, then the pattern of Pi is compared with
2336    //   each remaining argument in the template argument list of A. Each
2337    //   comparison deduces template arguments for subsequent positions in the
2338    //   template parameter packs expanded by Pi.
2339    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
2340
2341    // Prepare to deduce the packs within the pattern.
2342    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2343
2344    // Keep track of the deduced template arguments for each parameter pack
2345    // expanded by this pack expansion (the outer index) and for each
2346    // template argument (the inner SmallVectors).
2347    for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
2348           PackScope.hasNextElement();
2349         ++ArgIdx) {
2350      // Deduce template arguments from the pattern.
2351      if (Sema::TemplateDeductionResult Result
2352            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
2353                                      Info, Deduced))
2354        return Result;
2355
2356      PackScope.nextPackElement();
2357    }
2358
2359    // Build argument packs for each of the parameter packs expanded by this
2360    // pack expansion.
2361    if (auto Result = PackScope.finish())
2362      return Result;
2363  }
2364
2365  return Sema::TDK_Success;
2366}
2367
2368static Sema::TemplateDeductionResult
2369DeduceTemplateArguments(Sema &S,
2370                        TemplateParameterList *TemplateParams,
2371                        const TemplateArgumentList &ParamList,
2372                        const TemplateArgumentList &ArgList,
2373                        TemplateDeductionInfo &Info,
2374                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2375  return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2376                                 ArgList.asArray(), Info, Deduced,
2377                                 /*NumberOfArgumentsMustMatch*/false);
2378}
2379
2380/// Determine whether two template arguments are the same.
2381static bool isSameTemplateArg(ASTContext &Context,
2382                              TemplateArgument X,
2383                              const TemplateArgument &Y,
2384                              bool PackExpansionMatchesPack = false) {
2385  // If we're checking deduced arguments (X) against original arguments (Y),
2386  // we will have flattened packs to non-expansions in X.
2387  if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2388    X = X.getPackExpansionPattern();
2389
2390  if (X.getKind() != Y.getKind())
2391    return false;
2392
2393  switch (X.getKind()) {
2394    case TemplateArgument::Null:
2395      llvm_unreachable("Comparing NULL template argument");
2396
2397    case TemplateArgument::Type:
2398      return Context.getCanonicalType(X.getAsType()) ==
2399             Context.getCanonicalType(Y.getAsType());
2400
2401    case TemplateArgument::Declaration:
2402      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2403
2404    case TemplateArgument::NullPtr:
2405      return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2406
2407    case TemplateArgument::Template:
2408    case TemplateArgument::TemplateExpansion:
2409      return Context.getCanonicalTemplateName(
2410                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2411             Context.getCanonicalTemplateName(
2412                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2413
2414    case TemplateArgument::Integral:
2415      return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2416
2417    case TemplateArgument::Expression: {
2418      llvm::FoldingSetNodeID XID, YID;
2419      X.getAsExpr()->Profile(XID, Context, true);
2420      Y.getAsExpr()->Profile(YID, Context, true);
2421      return XID == YID;
2422    }
2423
2424    case TemplateArgument::Pack:
2425      if (X.pack_size() != Y.pack_size())
2426        return false;
2427
2428      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
2429                                        XPEnd = X.pack_end(),
2430                                           YP = Y.pack_begin();
2431           XP != XPEnd; ++XP, ++YP)
2432        if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
2433          return false;
2434
2435      return true;
2436  }
2437
2438  llvm_unreachable("Invalid TemplateArgument Kind!");
2439}
2440
2441/// Allocate a TemplateArgumentLoc where all locations have
2442/// been initialized to the given location.
2443///
2444/// \param Arg The template argument we are producing template argument
2445/// location information for.
2446///
2447/// \param NTTPType For a declaration template argument, the type of
2448/// the non-type template parameter that corresponds to this template
2449/// argument. Can be null if no type sugar is available to add to the
2450/// type from the template argument.
2451///
2452/// \param Loc The source location to use for the resulting template
2453/// argument.
2454TemplateArgumentLoc
2455Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2456                                    QualType NTTPType, SourceLocation Loc) {
2457  switch (Arg.getKind()) {
2458  case TemplateArgument::Null:
2459    llvm_unreachable("Can't get a NULL template argument here");
2460
2461  case TemplateArgument::Type:
2462    return TemplateArgumentLoc(
2463        Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2464
2465  case TemplateArgument::Declaration: {
2466    if (NTTPType.isNull())
2467      NTTPType = Arg.getParamTypeForDecl();
2468    Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2469                  .getAs<Expr>();
2470    return TemplateArgumentLoc(TemplateArgument(E), E);
2471  }
2472
2473  case TemplateArgument::NullPtr: {
2474    if (NTTPType.isNull())
2475      NTTPType = Arg.getNullPtrType();
2476    Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2477                  .getAs<Expr>();
2478    return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2479                               E);
2480  }
2481
2482  case TemplateArgument::Integral: {
2483    Expr *E =
2484        BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2485    return TemplateArgumentLoc(TemplateArgument(E), E);
2486  }
2487
2488    case TemplateArgument::Template:
2489    case TemplateArgument::TemplateExpansion: {
2490      NestedNameSpecifierLocBuilder Builder;
2491      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2492      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2493        Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2494      else if (QualifiedTemplateName *QTN =
2495                   Template.getAsQualifiedTemplateName())
2496        Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2497
2498      if (Arg.getKind() == TemplateArgument::Template)
2499        return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2500                                   Loc);
2501
2502      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2503                                 Loc, Loc);
2504    }
2505
2506  case TemplateArgument::Expression:
2507    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2508
2509  case TemplateArgument::Pack:
2510    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2511  }
2512
2513  llvm_unreachable("Invalid TemplateArgument Kind!");
2514}
2515
2516TemplateArgumentLoc
2517Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
2518                                     SourceLocation Location) {
2519  return getTrivialTemplateArgumentLoc(
2520      Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2521}
2522
2523/// Convert the given deduced template argument and add it to the set of
2524/// fully-converted template arguments.
2525static bool
2526ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2527                               DeducedTemplateArgument Arg,
2528                               NamedDecl *Template,
2529                               TemplateDeductionInfo &Info,
2530                               bool IsDeduced,
2531                               SmallVectorImpl<TemplateArgument> &Output) {
2532  auto ConvertArg = [&](DeducedTemplateArgument Arg,
2533                        unsigned ArgumentPackIndex) {
2534    // Convert the deduced template argument into a template
2535    // argument that we can check, almost as if the user had written
2536    // the template argument explicitly.
2537    TemplateArgumentLoc ArgLoc =
2538        S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2539
2540    // Check the template argument, converting it as necessary.
2541    return S.CheckTemplateArgument(
2542        Param, ArgLoc, Template, Template->getLocation(),
2543        Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
2544        IsDeduced
2545            ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2546                                              : Sema::CTAK_Deduced)
2547            : Sema::CTAK_Specified);
2548  };
2549
2550  if (Arg.getKind() == TemplateArgument::Pack) {
2551    // This is a template argument pack, so check each of its arguments against
2552    // the template parameter.
2553    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2554    for (const auto &P : Arg.pack_elements()) {
2555      // When converting the deduced template argument, append it to the
2556      // general output list. We need to do this so that the template argument
2557      // checking logic has all of the prior template arguments available.
2558      DeducedTemplateArgument InnerArg(P);
2559      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2560      assert(InnerArg.getKind() != TemplateArgument::Pack &&
2561             "deduced nested pack");
2562      if (P.isNull()) {
2563        // We deduced arguments for some elements of this pack, but not for
2564        // all of them. This happens if we get a conditionally-non-deduced
2565        // context in a pack expansion (such as an overload set in one of the
2566        // arguments).
2567        S.Diag(Param->getLocation(),
2568               diag::err_template_arg_deduced_incomplete_pack)
2569          << Arg << Param;
2570        return true;
2571      }
2572      if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
2573        return true;
2574
2575      // Move the converted template argument into our argument pack.
2576      PackedArgsBuilder.push_back(Output.pop_back_val());
2577    }
2578
2579    // If the pack is empty, we still need to substitute into the parameter
2580    // itself, in case that substitution fails.
2581    if (PackedArgsBuilder.empty()) {
2582      LocalInstantiationScope Scope(S);
2583      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
2584      MultiLevelTemplateArgumentList Args(TemplateArgs);
2585
2586      if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2587        Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2588                                         NTTP, Output,
2589                                         Template->getSourceRange());
2590        if (Inst.isInvalid() ||
2591            S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2592                        NTTP->getDeclName()).isNull())
2593          return true;
2594      } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2595        Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2596                                         TTP, Output,
2597                                         Template->getSourceRange());
2598        if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2599          return true;
2600      }
2601      // For type parameters, no substitution is ever required.
2602    }
2603
2604    // Create the resulting argument pack.
2605    Output.push_back(
2606        TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2607    return false;
2608  }
2609
2610  return ConvertArg(Arg, 0);
2611}
2612
2613// FIXME: This should not be a template, but
2614// ClassTemplatePartialSpecializationDecl sadly does not derive from
2615// TemplateDecl.
2616template<typename TemplateDeclT>
2617static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2618    Sema &S, TemplateDeclT *Template, bool IsDeduced,
2619    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2620    TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
2621    LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2622    unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2623  TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2624
2625  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2626    NamedDecl *Param = TemplateParams->getParam(I);
2627
2628    // C++0x [temp.arg.explicit]p3:
2629    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2630    //    be deduced to an empty sequence of template arguments.
2631    // FIXME: Where did the word "trailing" come from?
2632    if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2633      if (auto Result =
2634              PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
2635        return Result;
2636    }
2637
2638    if (!Deduced[I].isNull()) {
2639      if (I < NumAlreadyConverted) {
2640        // We may have had explicitly-specified template arguments for a
2641        // template parameter pack (that may or may not have been extended
2642        // via additional deduced arguments).
2643        if (Param->isParameterPack() && CurrentInstantiationScope &&
2644            CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2645          // Forget the partially-substituted pack; its substitution is now
2646          // complete.
2647          CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2648          // We still need to check the argument in case it was extended by
2649          // deduction.
2650        } else {
2651          // We have already fully type-checked and converted this
2652          // argument, because it was explicitly-specified. Just record the
2653          // presence of this argument.
2654          Builder.push_back(Deduced[I]);
2655          continue;
2656        }
2657      }
2658
2659      // We may have deduced this argument, so it still needs to be
2660      // checked and converted.
2661      if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2662                                         IsDeduced, Builder)) {
2663        Info.Param = makeTemplateParameter(Param);
2664        // FIXME: These template arguments are temporary. Free them!
2665        Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2666        return Sema::TDK_SubstitutionFailure;
2667      }
2668
2669      continue;
2670    }
2671
2672    // Substitute into the default template argument, if available.
2673    bool HasDefaultArg = false;
2674    TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2675    if (!TD) {
2676      assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2677             isa<VarTemplatePartialSpecializationDecl>(Template));
2678      return Sema::TDK_Incomplete;
2679    }
2680
2681    TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2682        TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
2683        HasDefaultArg);
2684
2685    // If there was no default argument, deduction is incomplete.
2686    if (DefArg.getArgument().isNull()) {
2687      Info.Param = makeTemplateParameter(
2688          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2689      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2690      if (PartialOverloading) break;
2691
2692      return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2693                           : Sema::TDK_Incomplete;
2694    }
2695
2696    // Check whether we can actually use the default argument.
2697    if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
2698                                TD->getSourceRange().getEnd(), 0, Builder,
2699                                Sema::CTAK_Specified)) {
2700      Info.Param = makeTemplateParameter(
2701                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2702      // FIXME: These template arguments are temporary. Free them!
2703      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2704      return Sema::TDK_SubstitutionFailure;
2705    }
2706
2707    // If we get here, we successfully used the default template argument.
2708  }
2709
2710  return Sema::TDK_Success;
2711}
2712
2713static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2714  if (auto *DC = dyn_cast<DeclContext>(D))
2715    return DC;
2716  return D->getDeclContext();
2717}
2718
2719template<typename T> struct IsPartialSpecialization {
2720  static constexpr bool value = false;
2721};
2722template<>
2723struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2724  static constexpr bool value = true;
2725};
2726template<>
2727struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2728  static constexpr bool value = true;
2729};
2730
2731template<typename TemplateDeclT>
2732static Sema::TemplateDeductionResult
2733CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template,
2734                                ArrayRef<TemplateArgument> DeducedArgs,
2735                                TemplateDeductionInfo& Info) {
2736  llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
2737  Template->getAssociatedConstraints(AssociatedConstraints);
2738  if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints,
2739                                    DeducedArgs, Info.getLocation(),
2740                                    Info.AssociatedConstraintsSatisfaction) ||
2741      !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
2742    Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs));
2743    return Sema::TDK_ConstraintsNotSatisfied;
2744  }
2745  return Sema::TDK_Success;
2746}
2747
2748/// Complete template argument deduction for a partial specialization.
2749template <typename T>
2750static typename std::enable_if<IsPartialSpecialization<T>::value,
2751                               Sema::TemplateDeductionResult>::type
2752FinishTemplateArgumentDeduction(
2753    Sema &S, T *Partial, bool IsPartialOrdering,
2754    const TemplateArgumentList &TemplateArgs,
2755    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2756    TemplateDeductionInfo &Info) {
2757  // Unevaluated SFINAE context.
2758  EnterExpressionEvaluationContext Unevaluated(
2759      S, Sema::ExpressionEvaluationContext::Unevaluated);
2760  Sema::SFINAETrap Trap(S);
2761
2762  Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2763
2764  // C++ [temp.deduct.type]p2:
2765  //   [...] or if any template argument remains neither deduced nor
2766  //   explicitly specified, template argument deduction fails.
2767  SmallVector<TemplateArgument, 4> Builder;
2768  if (auto Result = ConvertDeducedTemplateArguments(
2769          S, Partial, IsPartialOrdering, Deduced, Info, Builder))
2770    return Result;
2771
2772  // Form the template argument list from the deduced template arguments.
2773  TemplateArgumentList *DeducedArgumentList
2774    = TemplateArgumentList::CreateCopy(S.Context, Builder);
2775
2776  Info.reset(DeducedArgumentList);
2777
2778  // Substitute the deduced template arguments into the template
2779  // arguments of the class template partial specialization, and
2780  // verify that the instantiated template arguments are both valid
2781  // and are equivalent to the template arguments originally provided
2782  // to the class template.
2783  LocalInstantiationScope InstScope(S);
2784  auto *Template = Partial->getSpecializedTemplate();
2785  const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2786      Partial->getTemplateArgsAsWritten();
2787  const TemplateArgumentLoc *PartialTemplateArgs =
2788      PartialTemplArgInfo->getTemplateArgs();
2789
2790  TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2791                                    PartialTemplArgInfo->RAngleLoc);
2792
2793  if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2794              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2795    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2796    if (ParamIdx >= Partial->getTemplateParameters()->size())
2797      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2798
2799    Decl *Param = const_cast<NamedDecl *>(
2800        Partial->getTemplateParameters()->getParam(ParamIdx));
2801    Info.Param = makeTemplateParameter(Param);
2802    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2803    return Sema::TDK_SubstitutionFailure;
2804  }
2805
2806  bool ConstraintsNotSatisfied;
2807  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2808  if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
2809                                  false, ConvertedInstArgs,
2810                                  /*UpdateArgsWithConversions=*/true,
2811                                  &ConstraintsNotSatisfied))
2812    return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied :
2813                                     Sema::TDK_SubstitutionFailure;
2814
2815  TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2816  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2817    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2818    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2819      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2820      Info.FirstArg = TemplateArgs[I];
2821      Info.SecondArg = InstArg;
2822      return Sema::TDK_NonDeducedMismatch;
2823    }
2824  }
2825
2826  if (Trap.hasErrorOccurred())
2827    return Sema::TDK_SubstitutionFailure;
2828
2829  if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info))
2830    return Result;
2831
2832  return Sema::TDK_Success;
2833}
2834
2835/// Complete template argument deduction for a class or variable template,
2836/// when partial ordering against a partial specialization.
2837// FIXME: Factor out duplication with partial specialization version above.
2838static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2839    Sema &S, TemplateDecl *Template, bool PartialOrdering,
2840    const TemplateArgumentList &TemplateArgs,
2841    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2842    TemplateDeductionInfo &Info) {
2843  // Unevaluated SFINAE context.
2844  EnterExpressionEvaluationContext Unevaluated(
2845      S, Sema::ExpressionEvaluationContext::Unevaluated);
2846  Sema::SFINAETrap Trap(S);
2847
2848  Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
2849
2850  // C++ [temp.deduct.type]p2:
2851  //   [...] or if any template argument remains neither deduced nor
2852  //   explicitly specified, template argument deduction fails.
2853  SmallVector<TemplateArgument, 4> Builder;
2854  if (auto Result = ConvertDeducedTemplateArguments(
2855          S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
2856    return Result;
2857
2858  // Check that we produced the correct argument list.
2859  TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2860  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2861    TemplateArgument InstArg = Builder[I];
2862    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
2863                           /*PackExpansionMatchesPack*/true)) {
2864      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2865      Info.FirstArg = TemplateArgs[I];
2866      Info.SecondArg = InstArg;
2867      return Sema::TDK_NonDeducedMismatch;
2868    }
2869  }
2870
2871  if (Trap.hasErrorOccurred())
2872    return Sema::TDK_SubstitutionFailure;
2873
2874  if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder,
2875                                                    Info))
2876    return Result;
2877
2878  return Sema::TDK_Success;
2879}
2880
2881/// Perform template argument deduction to determine whether
2882/// the given template arguments match the given class template
2883/// partial specialization per C++ [temp.class.spec.match].
2884Sema::TemplateDeductionResult
2885Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2886                              const TemplateArgumentList &TemplateArgs,
2887                              TemplateDeductionInfo &Info) {
2888  if (Partial->isInvalidDecl())
2889    return TDK_Invalid;
2890
2891  // C++ [temp.class.spec.match]p2:
2892  //   A partial specialization matches a given actual template
2893  //   argument list if the template arguments of the partial
2894  //   specialization can be deduced from the actual template argument
2895  //   list (14.8.2).
2896
2897  // Unevaluated SFINAE context.
2898  EnterExpressionEvaluationContext Unevaluated(
2899      *this, Sema::ExpressionEvaluationContext::Unevaluated);
2900  SFINAETrap Trap(*this);
2901
2902  SmallVector<DeducedTemplateArgument, 4> Deduced;
2903  Deduced.resize(Partial->getTemplateParameters()->size());
2904  if (TemplateDeductionResult Result
2905        = ::DeduceTemplateArguments(*this,
2906                                    Partial->getTemplateParameters(),
2907                                    Partial->getTemplateArgs(),
2908                                    TemplateArgs, Info, Deduced))
2909    return Result;
2910
2911  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2912  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2913                             Info);
2914  if (Inst.isInvalid())
2915    return TDK_InstantiationDepth;
2916
2917  if (Trap.hasErrorOccurred())
2918    return Sema::TDK_SubstitutionFailure;
2919
2920  return ::FinishTemplateArgumentDeduction(
2921      *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2922}
2923
2924/// Perform template argument deduction to determine whether
2925/// the given template arguments match the given variable template
2926/// partial specialization per C++ [temp.class.spec.match].
2927Sema::TemplateDeductionResult
2928Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2929                              const TemplateArgumentList &TemplateArgs,
2930                              TemplateDeductionInfo &Info) {
2931  if (Partial->isInvalidDecl())
2932    return TDK_Invalid;
2933
2934  // C++ [temp.class.spec.match]p2:
2935  //   A partial specialization matches a given actual template
2936  //   argument list if the template arguments of the partial
2937  //   specialization can be deduced from the actual template argument
2938  //   list (14.8.2).
2939
2940  // Unevaluated SFINAE context.
2941  EnterExpressionEvaluationContext Unevaluated(
2942      *this, Sema::ExpressionEvaluationContext::Unevaluated);
2943  SFINAETrap Trap(*this);
2944
2945  SmallVector<DeducedTemplateArgument, 4> Deduced;
2946  Deduced.resize(Partial->getTemplateParameters()->size());
2947  if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2948          *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2949          TemplateArgs, Info, Deduced))
2950    return Result;
2951
2952  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2953  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2954                             Info);
2955  if (Inst.isInvalid())
2956    return TDK_InstantiationDepth;
2957
2958  if (Trap.hasErrorOccurred())
2959    return Sema::TDK_SubstitutionFailure;
2960
2961  return ::FinishTemplateArgumentDeduction(
2962      *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2963}
2964
2965/// Determine whether the given type T is a simple-template-id type.
2966static bool isSimpleTemplateIdType(QualType T) {
2967  if (const TemplateSpecializationType *Spec
2968        = T->getAs<TemplateSpecializationType>())
2969    return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2970
2971  // C++17 [temp.local]p2:
2972  //   the injected-class-name [...] is equivalent to the template-name followed
2973  //   by the template-arguments of the class template specialization or partial
2974  //   specialization enclosed in <>
2975  // ... which means it's equivalent to a simple-template-id.
2976  //
2977  // This only arises during class template argument deduction for a copy
2978  // deduction candidate, where it permits slicing.
2979  if (T->getAs<InjectedClassNameType>())
2980    return true;
2981
2982  return false;
2983}
2984
2985/// Substitute the explicitly-provided template arguments into the
2986/// given function template according to C++ [temp.arg.explicit].
2987///
2988/// \param FunctionTemplate the function template into which the explicit
2989/// template arguments will be substituted.
2990///
2991/// \param ExplicitTemplateArgs the explicitly-specified template
2992/// arguments.
2993///
2994/// \param Deduced the deduced template arguments, which will be populated
2995/// with the converted and checked explicit template arguments.
2996///
2997/// \param ParamTypes will be populated with the instantiated function
2998/// parameters.
2999///
3000/// \param FunctionType if non-NULL, the result type of the function template
3001/// will also be instantiated and the pointed-to value will be updated with
3002/// the instantiated function type.
3003///
3004/// \param Info if substitution fails for any reason, this object will be
3005/// populated with more information about the failure.
3006///
3007/// \returns TDK_Success if substitution was successful, or some failure
3008/// condition.
3009Sema::TemplateDeductionResult
3010Sema::SubstituteExplicitTemplateArguments(
3011                                      FunctionTemplateDecl *FunctionTemplate,
3012                               TemplateArgumentListInfo &ExplicitTemplateArgs,
3013                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3014                                 SmallVectorImpl<QualType> &ParamTypes,
3015                                          QualType *FunctionType,
3016                                          TemplateDeductionInfo &Info) {
3017  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3018  TemplateParameterList *TemplateParams
3019    = FunctionTemplate->getTemplateParameters();
3020
3021  if (ExplicitTemplateArgs.size() == 0) {
3022    // No arguments to substitute; just copy over the parameter types and
3023    // fill in the function type.
3024    for (auto P : Function->parameters())
3025      ParamTypes.push_back(P->getType());
3026
3027    if (FunctionType)
3028      *FunctionType = Function->getType();
3029    return TDK_Success;
3030  }
3031
3032  // Unevaluated SFINAE context.
3033  EnterExpressionEvaluationContext Unevaluated(
3034      *this, Sema::ExpressionEvaluationContext::Unevaluated);
3035  SFINAETrap Trap(*this);
3036
3037  // C++ [temp.arg.explicit]p3:
3038  //   Template arguments that are present shall be specified in the
3039  //   declaration order of their corresponding template-parameters. The
3040  //   template argument list shall not specify more template-arguments than
3041  //   there are corresponding template-parameters.
3042  SmallVector<TemplateArgument, 4> Builder;
3043
3044  // Enter a new template instantiation context where we check the
3045  // explicitly-specified template arguments against this function template,
3046  // and then substitute them into the function parameter types.
3047  SmallVector<TemplateArgument, 4> DeducedArgs;
3048  InstantiatingTemplate Inst(
3049      *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3050      CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3051  if (Inst.isInvalid())
3052    return TDK_InstantiationDepth;
3053
3054  if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3055                                ExplicitTemplateArgs, true, Builder, false) ||
3056      Trap.hasErrorOccurred()) {
3057    unsigned Index = Builder.size();
3058    if (Index >= TemplateParams->size())
3059      return TDK_SubstitutionFailure;
3060    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3061    return TDK_InvalidExplicitArguments;
3062  }
3063
3064  // Form the template argument list from the explicitly-specified
3065  // template arguments.
3066  TemplateArgumentList *ExplicitArgumentList
3067    = TemplateArgumentList::CreateCopy(Context, Builder);
3068  Info.setExplicitArgs(ExplicitArgumentList);
3069
3070  // Template argument deduction and the final substitution should be
3071  // done in the context of the templated declaration.  Explicit
3072  // argument substitution, on the other hand, needs to happen in the
3073  // calling context.
3074  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3075
3076  // If we deduced template arguments for a template parameter pack,
3077  // note that the template argument pack is partially substituted and record
3078  // the explicit template arguments. They'll be used as part of deduction
3079  // for this template parameter pack.
3080  unsigned PartiallySubstitutedPackIndex = -1u;
3081  if (!Builder.empty()) {
3082    const TemplateArgument &Arg = Builder.back();
3083    if (Arg.getKind() == TemplateArgument::Pack) {
3084      auto *Param = TemplateParams->getParam(Builder.size() - 1);
3085      // If this is a fully-saturated fixed-size pack, it should be
3086      // fully-substituted, not partially-substituted.
3087      Optional<unsigned> Expansions = getExpandedPackSize(Param);
3088      if (!Expansions || Arg.pack_size() < *Expansions) {
3089        PartiallySubstitutedPackIndex = Builder.size() - 1;
3090        CurrentInstantiationScope->SetPartiallySubstitutedPack(
3091            Param, Arg.pack_begin(), Arg.pack_size());
3092      }
3093    }
3094  }
3095
3096  const FunctionProtoType *Proto
3097    = Function->getType()->getAs<FunctionProtoType>();
3098  assert(Proto && "Function template does not have a prototype?");
3099
3100  // Isolate our substituted parameters from our caller.
3101  LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3102
3103  ExtParameterInfoBuilder ExtParamInfos;
3104
3105  // Instantiate the types of each of the function parameters given the
3106  // explicitly-specified template arguments. If the function has a trailing
3107  // return type, substitute it after the arguments to ensure we substitute
3108  // in lexical order.
3109  if (Proto->hasTrailingReturn()) {
3110    if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3111                       Proto->getExtParameterInfosOrNull(),
3112                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3113                       ParamTypes, /*params*/ nullptr, ExtParamInfos))
3114      return TDK_SubstitutionFailure;
3115  }
3116
3117  // Instantiate the return type.
3118  QualType ResultType;
3119  {
3120    // C++11 [expr.prim.general]p3:
3121    //   If a declaration declares a member function or member function
3122    //   template of a class X, the expression this is a prvalue of type
3123    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3124    //   and the end of the function-definition, member-declarator, or
3125    //   declarator.
3126    Qualifiers ThisTypeQuals;
3127    CXXRecordDecl *ThisContext = nullptr;
3128    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3129      ThisContext = Method->getParent();
3130      ThisTypeQuals = Method->getMethodQualifiers();
3131    }
3132
3133    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3134                               getLangOpts().CPlusPlus11);
3135
3136    ResultType =
3137        SubstType(Proto->getReturnType(),
3138                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3139                  Function->getTypeSpecStartLoc(), Function->getDeclName());
3140    if (ResultType.isNull() || Trap.hasErrorOccurred())
3141      return TDK_SubstitutionFailure;
3142    // CUDA: Kernel function must have 'void' return type.
3143    if (getLangOpts().CUDA)
3144      if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3145        Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3146            << Function->getType() << Function->getSourceRange();
3147        return TDK_SubstitutionFailure;
3148      }
3149  }
3150
3151  // Instantiate the types of each of the function parameters given the
3152  // explicitly-specified template arguments if we didn't do so earlier.
3153  if (!Proto->hasTrailingReturn() &&
3154      SubstParmTypes(Function->getLocation(), Function->parameters(),
3155                     Proto->getExtParameterInfosOrNull(),
3156                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3157                     ParamTypes, /*params*/ nullptr, ExtParamInfos))
3158    return TDK_SubstitutionFailure;
3159
3160  if (FunctionType) {
3161    auto EPI = Proto->getExtProtoInfo();
3162    EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3163
3164    // In C++1z onwards, exception specifications are part of the function type,
3165    // so substitution into the type must also substitute into the exception
3166    // specification.
3167    SmallVector<QualType, 4> ExceptionStorage;
3168    if (getLangOpts().CPlusPlus17 &&
3169        SubstExceptionSpec(
3170            Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
3171            MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
3172      return TDK_SubstitutionFailure;
3173
3174    *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3175                                      Function->getLocation(),
3176                                      Function->getDeclName(),
3177                                      EPI);
3178    if (FunctionType->isNull() || Trap.hasErrorOccurred())
3179      return TDK_SubstitutionFailure;
3180  }
3181
3182  // C++ [temp.arg.explicit]p2:
3183  //   Trailing template arguments that can be deduced (14.8.2) may be
3184  //   omitted from the list of explicit template-arguments. If all of the
3185  //   template arguments can be deduced, they may all be omitted; in this
3186  //   case, the empty template argument list <> itself may also be omitted.
3187  //
3188  // Take all of the explicitly-specified arguments and put them into
3189  // the set of deduced template arguments. The partially-substituted
3190  // parameter pack, however, will be set to NULL since the deduction
3191  // mechanism handles the partially-substituted argument pack directly.
3192  Deduced.reserve(TemplateParams->size());
3193  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
3194    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
3195    if (I == PartiallySubstitutedPackIndex)
3196      Deduced.push_back(DeducedTemplateArgument());
3197    else
3198      Deduced.push_back(Arg);
3199  }
3200
3201  return TDK_Success;
3202}
3203
3204/// Check whether the deduced argument type for a call to a function
3205/// template matches the actual argument type per C++ [temp.deduct.call]p4.
3206static Sema::TemplateDeductionResult
3207CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3208                              Sema::OriginalCallArg OriginalArg,
3209                              QualType DeducedA) {
3210  ASTContext &Context = S.Context;
3211
3212  auto Failed = [&]() -> Sema::TemplateDeductionResult {
3213    Info.FirstArg = TemplateArgument(DeducedA);
3214    Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3215    Info.CallArgIndex = OriginalArg.ArgIdx;
3216    return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3217                                       : Sema::TDK_DeducedMismatch;
3218  };
3219
3220  QualType A = OriginalArg.OriginalArgType;
3221  QualType OriginalParamType = OriginalArg.OriginalParamType;
3222
3223  // Check for type equality (top-level cv-qualifiers are ignored).
3224  if (Context.hasSameUnqualifiedType(A, DeducedA))
3225    return Sema::TDK_Success;
3226
3227  // Strip off references on the argument types; they aren't needed for
3228  // the following checks.
3229  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3230    DeducedA = DeducedARef->getPointeeType();
3231  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3232    A = ARef->getPointeeType();
3233
3234  // C++ [temp.deduct.call]p4:
3235  //   [...] However, there are three cases that allow a difference:
3236  //     - If the original P is a reference type, the deduced A (i.e., the
3237  //       type referred to by the reference) can be more cv-qualified than
3238  //       the transformed A.
3239  if (const ReferenceType *OriginalParamRef
3240      = OriginalParamType->getAs<ReferenceType>()) {
3241    // We don't want to keep the reference around any more.
3242    OriginalParamType = OriginalParamRef->getPointeeType();
3243
3244    // FIXME: Resolve core issue (no number yet): if the original P is a
3245    // reference type and the transformed A is function type "noexcept F",
3246    // the deduced A can be F.
3247    QualType Tmp;
3248    if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3249      return Sema::TDK_Success;
3250
3251    Qualifiers AQuals = A.getQualifiers();
3252    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3253
3254    // Under Objective-C++ ARC, the deduced type may have implicitly
3255    // been given strong or (when dealing with a const reference)
3256    // unsafe_unretained lifetime. If so, update the original
3257    // qualifiers to include this lifetime.
3258    if (S.getLangOpts().ObjCAutoRefCount &&
3259        ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3260          AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3261         (DeducedAQuals.hasConst() &&
3262          DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3263      AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3264    }
3265
3266    if (AQuals == DeducedAQuals) {
3267      // Qualifiers match; there's nothing to do.
3268    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3269      return Failed();
3270    } else {
3271      // Qualifiers are compatible, so have the argument type adopt the
3272      // deduced argument type's qualifiers as if we had performed the
3273      // qualification conversion.
3274      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3275    }
3276  }
3277
3278  //    - The transformed A can be another pointer or pointer to member
3279  //      type that can be converted to the deduced A via a function pointer
3280  //      conversion and/or a qualification conversion.
3281  //
3282  // Also allow conversions which merely strip __attribute__((noreturn)) from
3283  // function types (recursively).
3284  bool ObjCLifetimeConversion = false;
3285  QualType ResultTy;
3286  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3287      (S.IsQualificationConversion(A, DeducedA, false,
3288                                   ObjCLifetimeConversion) ||
3289       S.IsFunctionConversion(A, DeducedA, ResultTy)))
3290    return Sema::TDK_Success;
3291
3292  //    - If P is a class and P has the form simple-template-id, then the
3293  //      transformed A can be a derived class of the deduced A. [...]
3294  //     [...] Likewise, if P is a pointer to a class of the form
3295  //      simple-template-id, the transformed A can be a pointer to a
3296  //      derived class pointed to by the deduced A.
3297  if (const PointerType *OriginalParamPtr
3298      = OriginalParamType->getAs<PointerType>()) {
3299    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3300      if (const PointerType *APtr = A->getAs<PointerType>()) {
3301        if (A->getPointeeType()->isRecordType()) {
3302          OriginalParamType = OriginalParamPtr->getPointeeType();
3303          DeducedA = DeducedAPtr->getPointeeType();
3304          A = APtr->getPointeeType();
3305        }
3306      }
3307    }
3308  }
3309
3310  if (Context.hasSameUnqualifiedType(A, DeducedA))
3311    return Sema::TDK_Success;
3312
3313  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3314      S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3315    return Sema::TDK_Success;
3316
3317  return Failed();
3318}
3319
3320/// Find the pack index for a particular parameter index in an instantiation of
3321/// a function template with specific arguments.
3322///
3323/// \return The pack index for whichever pack produced this parameter, or -1
3324///         if this was not produced by a parameter. Intended to be used as the
3325///         ArgumentPackSubstitutionIndex for further substitutions.
3326// FIXME: We should track this in OriginalCallArgs so we don't need to
3327// reconstruct it here.
3328static unsigned getPackIndexForParam(Sema &S,
3329                                     FunctionTemplateDecl *FunctionTemplate,
3330                                     const MultiLevelTemplateArgumentList &Args,
3331                                     unsigned ParamIdx) {
3332  unsigned Idx = 0;
3333  for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3334    if (PD->isParameterPack()) {
3335      unsigned NumExpansions =
3336          S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
3337      if (Idx + NumExpansions > ParamIdx)
3338        return ParamIdx - Idx;
3339      Idx += NumExpansions;
3340    } else {
3341      if (Idx == ParamIdx)
3342        return -1; // Not a pack expansion
3343      ++Idx;
3344    }
3345  }
3346
3347  llvm_unreachable("parameter index would not be produced from template");
3348}
3349
3350/// Finish template argument deduction for a function template,
3351/// checking the deduced template arguments for completeness and forming
3352/// the function template specialization.
3353///
3354/// \param OriginalCallArgs If non-NULL, the original call arguments against
3355/// which the deduced argument types should be compared.
3356Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3357    FunctionTemplateDecl *FunctionTemplate,
3358    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3359    unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3360    TemplateDeductionInfo &Info,
3361    SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3362    bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3363  // Unevaluated SFINAE context.
3364  EnterExpressionEvaluationContext Unevaluated(
3365      *this, Sema::ExpressionEvaluationContext::Unevaluated);
3366  SFINAETrap Trap(*this);
3367
3368  // Enter a new template instantiation context while we instantiate the
3369  // actual function declaration.
3370  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3371  InstantiatingTemplate Inst(
3372      *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3373      CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3374  if (Inst.isInvalid())
3375    return TDK_InstantiationDepth;
3376
3377  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3378
3379  // C++ [temp.deduct.type]p2:
3380  //   [...] or if any template argument remains neither deduced nor
3381  //   explicitly specified, template argument deduction fails.
3382  SmallVector<TemplateArgument, 4> Builder;
3383  if (auto Result = ConvertDeducedTemplateArguments(
3384          *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
3385          CurrentInstantiationScope, NumExplicitlySpecified,
3386          PartialOverloading))
3387    return Result;
3388
3389  // C++ [temp.deduct.call]p10: [DR1391]
3390  //   If deduction succeeds for all parameters that contain
3391  //   template-parameters that participate in template argument deduction,
3392  //   and all template arguments are explicitly specified, deduced, or
3393  //   obtained from default template arguments, remaining parameters are then
3394  //   compared with the corresponding arguments. For each remaining parameter
3395  //   P with a type that was non-dependent before substitution of any
3396  //   explicitly-specified template arguments, if the corresponding argument
3397  //   A cannot be implicitly converted to P, deduction fails.
3398  if (CheckNonDependent())
3399    return TDK_NonDependentConversionFailure;
3400
3401  // Form the template argument list from the deduced template arguments.
3402  TemplateArgumentList *DeducedArgumentList
3403    = TemplateArgumentList::CreateCopy(Context, Builder);
3404  Info.reset(DeducedArgumentList);
3405
3406  // Substitute the deduced template arguments into the function template
3407  // declaration to produce the function template specialization.
3408  DeclContext *Owner = FunctionTemplate->getDeclContext();
3409  if (FunctionTemplate->getFriendObjectKind())
3410    Owner = FunctionTemplate->getLexicalDeclContext();
3411  MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
3412  Specialization = cast_or_null<FunctionDecl>(
3413      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3414  if (!Specialization || Specialization->isInvalidDecl())
3415    return TDK_SubstitutionFailure;
3416
3417  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3418         FunctionTemplate->getCanonicalDecl());
3419
3420  // If the template argument list is owned by the function template
3421  // specialization, release it.
3422  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
3423      !Trap.hasErrorOccurred())
3424    Info.take();
3425
3426  // There may have been an error that did not prevent us from constructing a
3427  // declaration. Mark the declaration invalid and return with a substitution
3428  // failure.
3429  if (Trap.hasErrorOccurred()) {
3430    Specialization->setInvalidDecl(true);
3431    return TDK_SubstitutionFailure;
3432  }
3433
3434  // C++2a [temp.deduct]p5
3435  //   [...] When all template arguments have been deduced [...] all uses of
3436  //   template parameters [...] are replaced with the corresponding deduced
3437  //   or default argument values.
3438  //   [...] If the function template has associated constraints
3439  //   ([temp.constr.decl]), those constraints are checked for satisfaction
3440  //   ([temp.constr.constr]). If the constraints are not satisfied, type
3441  //   deduction fails.
3442  if (!PartialOverloading ||
3443      (Builder.size() == FunctionTemplate->getTemplateParameters()->size())) {
3444    if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(),
3445            Specialization, Builder, Info.AssociatedConstraintsSatisfaction))
3446      return TDK_MiscellaneousDeductionFailure;
3447
3448    if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
3449      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder));
3450      return TDK_ConstraintsNotSatisfied;
3451    }
3452  }
3453
3454  if (OriginalCallArgs) {
3455    // C++ [temp.deduct.call]p4:
3456    //   In general, the deduction process attempts to find template argument
3457    //   values that will make the deduced A identical to A (after the type A
3458    //   is transformed as described above). [...]
3459    llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3460    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3461      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3462
3463      auto ParamIdx = OriginalArg.ArgIdx;
3464      if (ParamIdx >= Specialization->getNumParams())
3465        // FIXME: This presumably means a pack ended up smaller than we
3466        // expected while deducing. Should this not result in deduction
3467        // failure? Can it even happen?
3468        continue;
3469
3470      QualType DeducedA;
3471      if (!OriginalArg.DecomposedParam) {
3472        // P is one of the function parameters, just look up its substituted
3473        // type.
3474        DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3475      } else {
3476        // P is a decomposed element of a parameter corresponding to a
3477        // braced-init-list argument. Substitute back into P to find the
3478        // deduced A.
3479        QualType &CacheEntry =
3480            DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3481        if (CacheEntry.isNull()) {
3482          ArgumentPackSubstitutionIndexRAII PackIndex(
3483              *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3484                                          ParamIdx));
3485          CacheEntry =
3486              SubstType(OriginalArg.OriginalParamType, SubstArgs,
3487                        Specialization->getTypeSpecStartLoc(),
3488                        Specialization->getDeclName());
3489        }
3490        DeducedA = CacheEntry;
3491      }
3492
3493      if (auto TDK =
3494              CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3495        return TDK;
3496    }
3497  }
3498
3499  // If we suppressed any diagnostics while performing template argument
3500  // deduction, and if we haven't already instantiated this declaration,
3501  // keep track of these diagnostics. They'll be emitted if this specialization
3502  // is actually used.
3503  if (Info.diag_begin() != Info.diag_end()) {
3504    SuppressedDiagnosticsMap::iterator
3505      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3506    if (Pos == SuppressedDiagnostics.end())
3507        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3508          .append(Info.diag_begin(), Info.diag_end());
3509  }
3510
3511  return TDK_Success;
3512}
3513
3514/// Gets the type of a function for template-argument-deducton
3515/// purposes when it's considered as part of an overload set.
3516static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3517                                  FunctionDecl *Fn) {
3518  // We may need to deduce the return type of the function now.
3519  if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3520      S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3521    return {};
3522
3523  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3524    if (Method->isInstance()) {
3525      // An instance method that's referenced in a form that doesn't
3526      // look like a member pointer is just invalid.
3527      if (!R.HasFormOfMemberPointer)
3528        return {};
3529
3530      return S.Context.getMemberPointerType(Fn->getType(),
3531               S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3532    }
3533
3534  if (!R.IsAddressOfOperand) return Fn->getType();
3535  return S.Context.getPointerType(Fn->getType());
3536}
3537
3538/// Apply the deduction rules for overload sets.
3539///
3540/// \return the null type if this argument should be treated as an
3541/// undeduced context
3542static QualType
3543ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3544                            Expr *Arg, QualType ParamType,
3545                            bool ParamWasReference) {
3546
3547  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3548
3549  OverloadExpr *Ovl = R.Expression;
3550
3551  // C++0x [temp.deduct.call]p4
3552  unsigned TDF = 0;
3553  if (ParamWasReference)
3554    TDF |= TDF_ParamWithReferenceType;
3555  if (R.IsAddressOfOperand)
3556    TDF |= TDF_IgnoreQualifiers;
3557
3558  // C++0x [temp.deduct.call]p6:
3559  //   When P is a function type, pointer to function type, or pointer
3560  //   to member function type:
3561
3562  if (!ParamType->isFunctionType() &&
3563      !ParamType->isFunctionPointerType() &&
3564      !ParamType->isMemberFunctionPointerType()) {
3565    if (Ovl->hasExplicitTemplateArgs()) {
3566      // But we can still look for an explicit specialization.
3567      if (FunctionDecl *ExplicitSpec
3568            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3569        return GetTypeOfFunction(S, R, ExplicitSpec);
3570    }
3571
3572    DeclAccessPair DAP;
3573    if (FunctionDecl *Viable =
3574            S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
3575      return GetTypeOfFunction(S, R, Viable);
3576
3577    return {};
3578  }
3579
3580  // Gather the explicit template arguments, if any.
3581  TemplateArgumentListInfo ExplicitTemplateArgs;
3582  if (Ovl->hasExplicitTemplateArgs())
3583    Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3584  QualType Match;
3585  for (UnresolvedSetIterator I = Ovl->decls_begin(),
3586         E = Ovl->decls_end(); I != E; ++I) {
3587    NamedDecl *D = (*I)->getUnderlyingDecl();
3588
3589    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3590      //   - If the argument is an overload set containing one or more
3591      //     function templates, the parameter is treated as a
3592      //     non-deduced context.
3593      if (!Ovl->hasExplicitTemplateArgs())
3594        return {};
3595
3596      // Otherwise, see if we can resolve a function type
3597      FunctionDecl *Specialization = nullptr;
3598      TemplateDeductionInfo Info(Ovl->getNameLoc());
3599      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3600                                    Specialization, Info))
3601        continue;
3602
3603      D = Specialization;
3604    }
3605
3606    FunctionDecl *Fn = cast<FunctionDecl>(D);
3607    QualType ArgType = GetTypeOfFunction(S, R, Fn);
3608    if (ArgType.isNull()) continue;
3609
3610    // Function-to-pointer conversion.
3611    if (!ParamWasReference && ParamType->isPointerType() &&
3612        ArgType->isFunctionType())
3613      ArgType = S.Context.getPointerType(ArgType);
3614
3615    //   - If the argument is an overload set (not containing function
3616    //     templates), trial argument deduction is attempted using each
3617    //     of the members of the set. If deduction succeeds for only one
3618    //     of the overload set members, that member is used as the
3619    //     argument value for the deduction. If deduction succeeds for
3620    //     more than one member of the overload set the parameter is
3621    //     treated as a non-deduced context.
3622
3623    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3624    //   Type deduction is done independently for each P/A pair, and
3625    //   the deduced template argument values are then combined.
3626    // So we do not reject deductions which were made elsewhere.
3627    SmallVector<DeducedTemplateArgument, 8>
3628      Deduced(TemplateParams->size());
3629    TemplateDeductionInfo Info(Ovl->getNameLoc());
3630    Sema::TemplateDeductionResult Result
3631      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3632                                           ArgType, Info, Deduced, TDF);
3633    if (Result) continue;
3634    if (!Match.isNull())
3635      return {};
3636    Match = ArgType;
3637  }
3638
3639  return Match;
3640}
3641
3642/// Perform the adjustments to the parameter and argument types
3643/// described in C++ [temp.deduct.call].
3644///
3645/// \returns true if the caller should not attempt to perform any template
3646/// argument deduction based on this P/A pair because the argument is an
3647/// overloaded function set that could not be resolved.
3648static bool AdjustFunctionParmAndArgTypesForDeduction(
3649    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3650    QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3651  // C++0x [temp.deduct.call]p3:
3652  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3653  //   are ignored for type deduction.
3654  if (ParamType.hasQualifiers())
3655    ParamType = ParamType.getUnqualifiedType();
3656
3657  //   [...] If P is a reference type, the type referred to by P is
3658  //   used for type deduction.
3659  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3660  if (ParamRefType)
3661    ParamType = ParamRefType->getPointeeType();
3662
3663  // Overload sets usually make this parameter an undeduced context,
3664  // but there are sometimes special circumstances.  Typically
3665  // involving a template-id-expr.
3666  if (ArgType == S.Context.OverloadTy) {
3667    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3668                                          Arg, ParamType,
3669                                          ParamRefType != nullptr);
3670    if (ArgType.isNull())
3671      return true;
3672  }
3673
3674  if (ParamRefType) {
3675    // If the argument has incomplete array type, try to complete its type.
3676    if (ArgType->isIncompleteArrayType()) {
3677      S.completeExprArrayBound(Arg);
3678      ArgType = Arg->getType();
3679    }
3680
3681    // C++1z [temp.deduct.call]p3:
3682    //   If P is a forwarding reference and the argument is an lvalue, the type
3683    //   "lvalue reference to A" is used in place of A for type deduction.
3684    if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3685        Arg->isLValue())
3686      ArgType = S.Context.getLValueReferenceType(ArgType);
3687  } else {
3688    // C++ [temp.deduct.call]p2:
3689    //   If P is not a reference type:
3690    //   - If A is an array type, the pointer type produced by the
3691    //     array-to-pointer standard conversion (4.2) is used in place of
3692    //     A for type deduction; otherwise,
3693    if (ArgType->isArrayType())
3694      ArgType = S.Context.getArrayDecayedType(ArgType);
3695    //   - If A is a function type, the pointer type produced by the
3696    //     function-to-pointer standard conversion (4.3) is used in place
3697    //     of A for type deduction; otherwise,
3698    else if (ArgType->isFunctionType())
3699      ArgType = S.Context.getPointerType(ArgType);
3700    else {
3701      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3702      //   type are ignored for type deduction.
3703      ArgType = ArgType.getUnqualifiedType();
3704    }
3705  }
3706
3707  // C++0x [temp.deduct.call]p4:
3708  //   In general, the deduction process attempts to find template argument
3709  //   values that will make the deduced A identical to A (after the type A
3710  //   is transformed as described above). [...]
3711  TDF = TDF_SkipNonDependent;
3712
3713  //     - If the original P is a reference type, the deduced A (i.e., the
3714  //       type referred to by the reference) can be more cv-qualified than
3715  //       the transformed A.
3716  if (ParamRefType)
3717    TDF |= TDF_ParamWithReferenceType;
3718  //     - The transformed A can be another pointer or pointer to member
3719  //       type that can be converted to the deduced A via a qualification
3720  //       conversion (4.4).
3721  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3722      ArgType->isObjCObjectPointerType())
3723    TDF |= TDF_IgnoreQualifiers;
3724  //     - If P is a class and P has the form simple-template-id, then the
3725  //       transformed A can be a derived class of the deduced A. Likewise,
3726  //       if P is a pointer to a class of the form simple-template-id, the
3727  //       transformed A can be a pointer to a derived class pointed to by
3728  //       the deduced A.
3729  if (isSimpleTemplateIdType(ParamType) ||
3730      (isa<PointerType>(ParamType) &&
3731       isSimpleTemplateIdType(
3732                              ParamType->getAs<PointerType>()->getPointeeType())))
3733    TDF |= TDF_DerivedClass;
3734
3735  return false;
3736}
3737
3738static bool
3739hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3740                               QualType T);
3741
3742static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3743    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3744    QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3745    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3746    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3747    bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3748
3749/// Attempt template argument deduction from an initializer list
3750///        deemed to be an argument in a function call.
3751static Sema::TemplateDeductionResult DeduceFromInitializerList(
3752    Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3753    InitListExpr *ILE, TemplateDeductionInfo &Info,
3754    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3755    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3756    unsigned TDF) {
3757  // C++ [temp.deduct.call]p1: (CWG 1591)
3758  //   If removing references and cv-qualifiers from P gives
3759  //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3760  //   a non-empty initializer list, then deduction is performed instead for
3761  //   each element of the initializer list, taking P0 as a function template
3762  //   parameter type and the initializer element as its argument
3763  //
3764  // We've already removed references and cv-qualifiers here.
3765  if (!ILE->getNumInits())
3766    return Sema::TDK_Success;
3767
3768  QualType ElTy;
3769  auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3770  if (ArrTy)
3771    ElTy = ArrTy->getElementType();
3772  else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3773    //   Otherwise, an initializer list argument causes the parameter to be
3774    //   considered a non-deduced context
3775    return Sema::TDK_Success;
3776  }
3777
3778  // Resolving a core issue: a braced-init-list containing any designators is
3779  // a non-deduced context.
3780  for (Expr *E : ILE->inits())
3781    if (isa<DesignatedInitExpr>(E))
3782      return Sema::TDK_Success;
3783
3784  // Deduction only needs to be done for dependent types.
3785  if (ElTy->isDependentType()) {
3786    for (Expr *E : ILE->inits()) {
3787      if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3788              S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3789              ArgIdx, TDF))
3790        return Result;
3791    }
3792  }
3793
3794  //   in the P0[N] case, if N is a non-type template parameter, N is deduced
3795  //   from the length of the initializer list.
3796  if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
3797    // Determine the array bound is something we can deduce.
3798    if (NonTypeTemplateParmDecl *NTTP =
3799            getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
3800      // We can perform template argument deduction for the given non-type
3801      // template parameter.
3802      // C++ [temp.deduct.type]p13:
3803      //   The type of N in the type T[N] is std::size_t.
3804      QualType T = S.Context.getSizeType();
3805      llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
3806      if (auto Result = DeduceNonTypeTemplateArgument(
3807              S, TemplateParams, NTTP, llvm::APSInt(Size), T,
3808              /*ArrayBound=*/true, Info, Deduced))
3809        return Result;
3810    }
3811  }
3812
3813  return Sema::TDK_Success;
3814}
3815
3816/// Perform template argument deduction per [temp.deduct.call] for a
3817///        single parameter / argument pair.
3818static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3819    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3820    QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3821    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3822    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3823    bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
3824  QualType ArgType = Arg->getType();
3825  QualType OrigParamType = ParamType;
3826
3827  //   If P is a reference type [...]
3828  //   If P is a cv-qualified type [...]
3829  if (AdjustFunctionParmAndArgTypesForDeduction(
3830          S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
3831    return Sema::TDK_Success;
3832
3833  //   If [...] the argument is a non-empty initializer list [...]
3834  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
3835    return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
3836                                     Deduced, OriginalCallArgs, ArgIdx, TDF);
3837
3838  //   [...] the deduction process attempts to find template argument values
3839  //   that will make the deduced A identical to A
3840  //
3841  // Keep track of the argument type and corresponding parameter index,
3842  // so we can check for compatibility between the deduced A and A.
3843  OriginalCallArgs.push_back(
3844      Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
3845  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3846                                            ArgType, Info, Deduced, TDF);
3847}
3848
3849/// Perform template argument deduction from a function call
3850/// (C++ [temp.deduct.call]).
3851///
3852/// \param FunctionTemplate the function template for which we are performing
3853/// template argument deduction.
3854///
3855/// \param ExplicitTemplateArgs the explicit template arguments provided
3856/// for this call.
3857///
3858/// \param Args the function call arguments
3859///
3860/// \param Specialization if template argument deduction was successful,
3861/// this will be set to the function template specialization produced by
3862/// template argument deduction.
3863///
3864/// \param Info the argument will be updated to provide additional information
3865/// about template argument deduction.
3866///
3867/// \param CheckNonDependent A callback to invoke to check conversions for
3868/// non-dependent parameters, between deduction and substitution, per DR1391.
3869/// If this returns true, substitution will be skipped and we return
3870/// TDK_NonDependentConversionFailure. The callback is passed the parameter
3871/// types (after substituting explicit template arguments).
3872///
3873/// \returns the result of template argument deduction.
3874Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3875    FunctionTemplateDecl *FunctionTemplate,
3876    TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3877    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3878    bool PartialOverloading,
3879    llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
3880  if (FunctionTemplate->isInvalidDecl())
3881    return TDK_Invalid;
3882
3883  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3884  unsigned NumParams = Function->getNumParams();
3885
3886  unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
3887
3888  // C++ [temp.deduct.call]p1:
3889  //   Template argument deduction is done by comparing each function template
3890  //   parameter type (call it P) with the type of the corresponding argument
3891  //   of the call (call it A) as described below.
3892  if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3893    return TDK_TooFewArguments;
3894  else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3895    const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
3896    if (Proto->isTemplateVariadic())
3897      /* Do nothing */;
3898    else if (!Proto->isVariadic())
3899      return TDK_TooManyArguments;
3900  }
3901
3902  // The types of the parameters from which we will perform template argument
3903  // deduction.
3904  LocalInstantiationScope InstScope(*this);
3905  TemplateParameterList *TemplateParams
3906    = FunctionTemplate->getTemplateParameters();
3907  SmallVector<DeducedTemplateArgument, 4> Deduced;
3908  SmallVector<QualType, 8> ParamTypes;
3909  unsigned NumExplicitlySpecified = 0;
3910  if (ExplicitTemplateArgs) {
3911    TemplateDeductionResult Result =
3912      SubstituteExplicitTemplateArguments(FunctionTemplate,
3913                                          *ExplicitTemplateArgs,
3914                                          Deduced,
3915                                          ParamTypes,
3916                                          nullptr,
3917                                          Info);
3918    if (Result)
3919      return Result;
3920
3921    NumExplicitlySpecified = Deduced.size();
3922  } else {
3923    // Just fill in the parameter types from the function declaration.
3924    for (unsigned I = 0; I != NumParams; ++I)
3925      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3926  }
3927
3928  SmallVector<OriginalCallArg, 8> OriginalCallArgs;
3929
3930  // Deduce an argument of type ParamType from an expression with index ArgIdx.
3931  auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
3932    // C++ [demp.deduct.call]p1: (DR1391)
3933    //   Template argument deduction is done by comparing each function template
3934    //   parameter that contains template-parameters that participate in
3935    //   template argument deduction ...
3936    if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3937      return Sema::TDK_Success;
3938
3939    //   ... with the type of the corresponding argument
3940    return DeduceTemplateArgumentsFromCallArgument(
3941        *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
3942        OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
3943  };
3944
3945  // Deduce template arguments from the function parameters.
3946  Deduced.resize(TemplateParams->size());
3947  SmallVector<QualType, 8> ParamTypesForArgChecking;
3948  for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
3949       ParamIdx != NumParamTypes; ++ParamIdx) {
3950    QualType ParamType = ParamTypes[ParamIdx];
3951
3952    const PackExpansionType *ParamExpansion =
3953        dyn_cast<PackExpansionType>(ParamType);
3954    if (!ParamExpansion) {
3955      // Simple case: matching a function parameter to a function argument.
3956      if (ArgIdx >= Args.size())
3957        break;
3958
3959      ParamTypesForArgChecking.push_back(ParamType);
3960      if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
3961        return Result;
3962
3963      continue;
3964    }
3965
3966    QualType ParamPattern = ParamExpansion->getPattern();
3967    PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3968                                 ParamPattern);
3969
3970    // C++0x [temp.deduct.call]p1:
3971    //   For a function parameter pack that occurs at the end of the
3972    //   parameter-declaration-list, the type A of each remaining argument of
3973    //   the call is compared with the type P of the declarator-id of the
3974    //   function parameter pack. Each comparison deduces template arguments
3975    //   for subsequent positions in the template parameter packs expanded by
3976    //   the function parameter pack. When a function parameter pack appears
3977    //   in a non-deduced context [not at the end of the list], the type of
3978    //   that parameter pack is never deduced.
3979    //
3980    // FIXME: The above rule allows the size of the parameter pack to change
3981    // after we skip it (in the non-deduced case). That makes no sense, so
3982    // we instead notionally deduce the pack against N arguments, where N is
3983    // the length of the explicitly-specified pack if it's expanded by the
3984    // parameter pack and 0 otherwise, and we treat each deduction as a
3985    // non-deduced context.
3986    if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
3987      for (; ArgIdx < Args.size() && PackScope.hasNextElement();
3988           PackScope.nextPackElement(), ++ArgIdx) {
3989        ParamTypesForArgChecking.push_back(ParamPattern);
3990        if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
3991          return Result;
3992      }
3993    } else {
3994      // If the parameter type contains an explicitly-specified pack that we
3995      // could not expand, skip the number of parameters notionally created
3996      // by the expansion.
3997      Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
3998      if (NumExpansions && !PackScope.isPartiallyExpanded()) {
3999        for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4000             ++I, ++ArgIdx) {
4001          ParamTypesForArgChecking.push_back(ParamPattern);
4002          // FIXME: Should we add OriginalCallArgs for these? What if the
4003          // corresponding argument is a list?
4004          PackScope.nextPackElement();
4005        }
4006      }
4007    }
4008
4009    // Build argument packs for each of the parameter packs expanded by this
4010    // pack expansion.
4011    if (auto Result = PackScope.finish())
4012      return Result;
4013  }
4014
4015  // Capture the context in which the function call is made. This is the context
4016  // that is needed when the accessibility of template arguments is checked.
4017  DeclContext *CallingCtx = CurContext;
4018
4019  return FinishTemplateArgumentDeduction(
4020      FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4021      &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
4022        ContextRAII SavedContext(*this, CallingCtx);
4023        return CheckNonDependent(ParamTypesForArgChecking);
4024      });
4025}
4026
4027QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
4028                                   QualType FunctionType,
4029                                   bool AdjustExceptionSpec) {
4030  if (ArgFunctionType.isNull())
4031    return ArgFunctionType;
4032
4033  const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4034  const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4035  FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4036  bool Rebuild = false;
4037
4038  CallingConv CC = FunctionTypeP->getCallConv();
4039  if (EPI.ExtInfo.getCC() != CC) {
4040    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4041    Rebuild = true;
4042  }
4043
4044  bool NoReturn = FunctionTypeP->getNoReturnAttr();
4045  if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4046    EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4047    Rebuild = true;
4048  }
4049
4050  if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4051                              ArgFunctionTypeP->hasExceptionSpec())) {
4052    EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4053    Rebuild = true;
4054  }
4055
4056  if (!Rebuild)
4057    return ArgFunctionType;
4058
4059  return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4060                                 ArgFunctionTypeP->getParamTypes(), EPI);
4061}
4062
4063/// Deduce template arguments when taking the address of a function
4064/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
4065/// a template.
4066///
4067/// \param FunctionTemplate the function template for which we are performing
4068/// template argument deduction.
4069///
4070/// \param ExplicitTemplateArgs the explicitly-specified template
4071/// arguments.
4072///
4073/// \param ArgFunctionType the function type that will be used as the
4074/// "argument" type (A) when performing template argument deduction from the
4075/// function template's function type. This type may be NULL, if there is no
4076/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4077///
4078/// \param Specialization if template argument deduction was successful,
4079/// this will be set to the function template specialization produced by
4080/// template argument deduction.
4081///
4082/// \param Info the argument will be updated to provide additional information
4083/// about template argument deduction.
4084///
4085/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4086/// the address of a function template per [temp.deduct.funcaddr] and
4087/// [over.over]. If \c false, we are looking up a function template
4088/// specialization based on its signature, per [temp.deduct.decl].
4089///
4090/// \returns the result of template argument deduction.
4091Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4092    FunctionTemplateDecl *FunctionTemplate,
4093    TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4094    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4095    bool IsAddressOfFunction) {
4096  if (FunctionTemplate->isInvalidDecl())
4097    return TDK_Invalid;
4098
4099  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4100  TemplateParameterList *TemplateParams
4101    = FunctionTemplate->getTemplateParameters();
4102  QualType FunctionType = Function->getType();
4103
4104  // Substitute any explicit template arguments.
4105  LocalInstantiationScope InstScope(*this);
4106  SmallVector<DeducedTemplateArgument, 4> Deduced;
4107  unsigned NumExplicitlySpecified = 0;
4108  SmallVector<QualType, 4> ParamTypes;
4109  if (ExplicitTemplateArgs) {
4110    if (TemplateDeductionResult Result
4111          = SubstituteExplicitTemplateArguments(FunctionTemplate,
4112                                                *ExplicitTemplateArgs,
4113                                                Deduced, ParamTypes,
4114                                                &FunctionType, Info))
4115      return Result;
4116
4117    NumExplicitlySpecified = Deduced.size();
4118  }
4119
4120  // When taking the address of a function, we require convertibility of
4121  // the resulting function type. Otherwise, we allow arbitrary mismatches
4122  // of calling convention and noreturn.
4123  if (!IsAddressOfFunction)
4124    ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4125                                          /*AdjustExceptionSpec*/false);
4126
4127  // Unevaluated SFINAE context.
4128  EnterExpressionEvaluationContext Unevaluated(
4129      *this, Sema::ExpressionEvaluationContext::Unevaluated);
4130  SFINAETrap Trap(*this);
4131
4132  Deduced.resize(TemplateParams->size());
4133
4134  // If the function has a deduced return type, substitute it for a dependent
4135  // type so that we treat it as a non-deduced context in what follows. If we
4136  // are looking up by signature, the signature type should also have a deduced
4137  // return type, which we instead expect to exactly match.
4138  bool HasDeducedReturnType = false;
4139  if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4140      Function->getReturnType()->getContainedAutoType()) {
4141    FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
4142    HasDeducedReturnType = true;
4143  }
4144
4145  if (!ArgFunctionType.isNull()) {
4146    unsigned TDF =
4147        TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4148    // Deduce template arguments from the function type.
4149    if (TemplateDeductionResult Result
4150          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4151                                               FunctionType, ArgFunctionType,
4152                                               Info, Deduced, TDF))
4153      return Result;
4154  }
4155
4156  if (TemplateDeductionResult Result
4157        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4158                                          NumExplicitlySpecified,
4159                                          Specialization, Info))
4160    return Result;
4161
4162  // If the function has a deduced return type, deduce it now, so we can check
4163  // that the deduced function type matches the requested type.
4164  if (HasDeducedReturnType &&
4165      Specialization->getReturnType()->isUndeducedType() &&
4166      DeduceReturnType(Specialization, Info.getLocation(), false))
4167    return TDK_MiscellaneousDeductionFailure;
4168
4169  // If the function has a dependent exception specification, resolve it now,
4170  // so we can check that the exception specification matches.
4171  auto *SpecializationFPT =
4172      Specialization->getType()->castAs<FunctionProtoType>();
4173  if (getLangOpts().CPlusPlus17 &&
4174      isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4175      !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4176    return TDK_MiscellaneousDeductionFailure;
4177
4178  // Adjust the exception specification of the argument to match the
4179  // substituted and resolved type we just formed. (Calling convention and
4180  // noreturn can't be dependent, so we don't actually need this for them
4181  // right now.)
4182  QualType SpecializationType = Specialization->getType();
4183  if (!IsAddressOfFunction)
4184    ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4185                                          /*AdjustExceptionSpec*/true);
4186
4187  // If the requested function type does not match the actual type of the
4188  // specialization with respect to arguments of compatible pointer to function
4189  // types, template argument deduction fails.
4190  if (!ArgFunctionType.isNull()) {
4191    if (IsAddressOfFunction &&
4192        !isSameOrCompatibleFunctionType(
4193            Context.getCanonicalType(SpecializationType),
4194            Context.getCanonicalType(ArgFunctionType)))
4195      return TDK_MiscellaneousDeductionFailure;
4196
4197    if (!IsAddressOfFunction &&
4198        !Context.hasSameType(SpecializationType, ArgFunctionType))
4199      return TDK_MiscellaneousDeductionFailure;
4200  }
4201
4202  return TDK_Success;
4203}
4204
4205/// Deduce template arguments for a templated conversion
4206/// function (C++ [temp.deduct.conv]) and, if successful, produce a
4207/// conversion function template specialization.
4208Sema::TemplateDeductionResult
4209Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4210                              QualType ToType,
4211                              CXXConversionDecl *&Specialization,
4212                              TemplateDeductionInfo &Info) {
4213  if (ConversionTemplate->isInvalidDecl())
4214    return TDK_Invalid;
4215
4216  CXXConversionDecl *ConversionGeneric
4217    = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4218
4219  QualType FromType = ConversionGeneric->getConversionType();
4220
4221  // Canonicalize the types for deduction.
4222  QualType P = Context.getCanonicalType(FromType);
4223  QualType A = Context.getCanonicalType(ToType);
4224
4225  // C++0x [temp.deduct.conv]p2:
4226  //   If P is a reference type, the type referred to by P is used for
4227  //   type deduction.
4228  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4229    P = PRef->getPointeeType();
4230
4231  // C++0x [temp.deduct.conv]p4:
4232  //   [...] If A is a reference type, the type referred to by A is used
4233  //   for type deduction.
4234  if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4235    A = ARef->getPointeeType();
4236    // We work around a defect in the standard here: cv-qualifiers are also
4237    // removed from P and A in this case, unless P was a reference type. This
4238    // seems to mostly match what other compilers are doing.
4239    if (!FromType->getAs<ReferenceType>()) {
4240      A = A.getUnqualifiedType();
4241      P = P.getUnqualifiedType();
4242    }
4243
4244  // C++ [temp.deduct.conv]p3:
4245  //
4246  //   If A is not a reference type:
4247  } else {
4248    assert(!A->isReferenceType() && "Reference types were handled above");
4249
4250    //   - If P is an array type, the pointer type produced by the
4251    //     array-to-pointer standard conversion (4.2) is used in place
4252    //     of P for type deduction; otherwise,
4253    if (P->isArrayType())
4254      P = Context.getArrayDecayedType(P);
4255    //   - If P is a function type, the pointer type produced by the
4256    //     function-to-pointer standard conversion (4.3) is used in
4257    //     place of P for type deduction; otherwise,
4258    else if (P->isFunctionType())
4259      P = Context.getPointerType(P);
4260    //   - If P is a cv-qualified type, the top level cv-qualifiers of
4261    //     P's type are ignored for type deduction.
4262    else
4263      P = P.getUnqualifiedType();
4264
4265    // C++0x [temp.deduct.conv]p4:
4266    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
4267    //   type are ignored for type deduction. If A is a reference type, the type
4268    //   referred to by A is used for type deduction.
4269    A = A.getUnqualifiedType();
4270  }
4271
4272  // Unevaluated SFINAE context.
4273  EnterExpressionEvaluationContext Unevaluated(
4274      *this, Sema::ExpressionEvaluationContext::Unevaluated);
4275  SFINAETrap Trap(*this);
4276
4277  // C++ [temp.deduct.conv]p1:
4278  //   Template argument deduction is done by comparing the return
4279  //   type of the template conversion function (call it P) with the
4280  //   type that is required as the result of the conversion (call it
4281  //   A) as described in 14.8.2.4.
4282  TemplateParameterList *TemplateParams
4283    = ConversionTemplate->getTemplateParameters();
4284  SmallVector<DeducedTemplateArgument, 4> Deduced;
4285  Deduced.resize(TemplateParams->size());
4286
4287  // C++0x [temp.deduct.conv]p4:
4288  //   In general, the deduction process attempts to find template
4289  //   argument values that will make the deduced A identical to
4290  //   A. However, there are two cases that allow a difference:
4291  unsigned TDF = 0;
4292  //     - If the original A is a reference type, A can be more
4293  //       cv-qualified than the deduced A (i.e., the type referred to
4294  //       by the reference)
4295  if (ToType->isReferenceType())
4296    TDF |= TDF_ArgWithReferenceType;
4297  //     - The deduced A can be another pointer or pointer to member
4298  //       type that can be converted to A via a qualification
4299  //       conversion.
4300  //
4301  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4302  // both P and A are pointers or member pointers. In this case, we
4303  // just ignore cv-qualifiers completely).
4304  if ((P->isPointerType() && A->isPointerType()) ||
4305      (P->isMemberPointerType() && A->isMemberPointerType()))
4306    TDF |= TDF_IgnoreQualifiers;
4307  if (TemplateDeductionResult Result
4308        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4309                                             P, A, Info, Deduced, TDF))
4310    return Result;
4311
4312  // Create an Instantiation Scope for finalizing the operator.
4313  LocalInstantiationScope InstScope(*this);
4314  // Finish template argument deduction.
4315  FunctionDecl *ConversionSpecialized = nullptr;
4316  TemplateDeductionResult Result
4317      = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4318                                        ConversionSpecialized, Info);
4319  Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4320  return Result;
4321}
4322
4323/// Deduce template arguments for a function template when there is
4324/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4325///
4326/// \param FunctionTemplate the function template for which we are performing
4327/// template argument deduction.
4328///
4329/// \param ExplicitTemplateArgs the explicitly-specified template
4330/// arguments.
4331///
4332/// \param Specialization if template argument deduction was successful,
4333/// this will be set to the function template specialization produced by
4334/// template argument deduction.
4335///
4336/// \param Info the argument will be updated to provide additional information
4337/// about template argument deduction.
4338///
4339/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4340/// the address of a function template in a context where we do not have a
4341/// target type, per [over.over]. If \c false, we are looking up a function
4342/// template specialization based on its signature, which only happens when
4343/// deducing a function parameter type from an argument that is a template-id
4344/// naming a function template specialization.
4345///
4346/// \returns the result of template argument deduction.
4347Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4348    FunctionTemplateDecl *FunctionTemplate,
4349    TemplateArgumentListInfo *ExplicitTemplateArgs,
4350    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4351    bool IsAddressOfFunction) {
4352  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4353                                 QualType(), Specialization, Info,
4354                                 IsAddressOfFunction);
4355}
4356
4357namespace {
4358  struct DependentAuto { bool IsPack; };
4359
4360  /// Substitute the 'auto' specifier or deduced template specialization type
4361  /// specifier within a type for a given replacement type.
4362  class SubstituteDeducedTypeTransform :
4363      public TreeTransform<SubstituteDeducedTypeTransform> {
4364    QualType Replacement;
4365    bool ReplacementIsPack;
4366    bool UseTypeSugar;
4367
4368  public:
4369    SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4370        : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
4371          ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4372
4373    SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4374                                   bool UseTypeSugar = true)
4375        : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4376          Replacement(Replacement), ReplacementIsPack(false),
4377          UseTypeSugar(UseTypeSugar) {}
4378
4379    QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4380      assert(isa<TemplateTypeParmType>(Replacement) &&
4381             "unexpected unsugared replacement kind");
4382      QualType Result = Replacement;
4383      TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4384      NewTL.setNameLoc(TL.getNameLoc());
4385      return Result;
4386    }
4387
4388    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4389      // If we're building the type pattern to deduce against, don't wrap the
4390      // substituted type in an AutoType. Certain template deduction rules
4391      // apply only when a template type parameter appears directly (and not if
4392      // the parameter is found through desugaring). For instance:
4393      //   auto &&lref = lvalue;
4394      // must transform into "rvalue reference to T" not "rvalue reference to
4395      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4396      //
4397      // FIXME: Is this still necessary?
4398      if (!UseTypeSugar)
4399        return TransformDesugared(TLB, TL);
4400
4401      QualType Result = SemaRef.Context.getAutoType(
4402          Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4403          ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
4404          TL.getTypePtr()->getTypeConstraintArguments());
4405      auto NewTL = TLB.push<AutoTypeLoc>(Result);
4406      NewTL.copy(TL);
4407      return Result;
4408    }
4409
4410    QualType TransformDeducedTemplateSpecializationType(
4411        TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4412      if (!UseTypeSugar)
4413        return TransformDesugared(TLB, TL);
4414
4415      QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4416          TL.getTypePtr()->getTemplateName(),
4417          Replacement, Replacement.isNull());
4418      auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4419      NewTL.setNameLoc(TL.getNameLoc());
4420      return Result;
4421    }
4422
4423    ExprResult TransformLambdaExpr(LambdaExpr *E) {
4424      // Lambdas never need to be transformed.
4425      return E;
4426    }
4427
4428    QualType Apply(TypeLoc TL) {
4429      // Create some scratch storage for the transformed type locations.
4430      // FIXME: We're just going to throw this information away. Don't build it.
4431      TypeLocBuilder TLB;
4432      TLB.reserve(TL.getFullDataSize());
4433      return TransformType(TLB, TL);
4434    }
4435  };
4436
4437} // namespace
4438
4439Sema::DeduceAutoResult
4440Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
4441                     Optional<unsigned> DependentDeductionDepth,
4442                     bool IgnoreConstraints) {
4443  return DeduceAutoType(Type->getTypeLoc(), Init, Result,
4444                        DependentDeductionDepth, IgnoreConstraints);
4445}
4446
4447/// Attempt to produce an informative diagostic explaining why auto deduction
4448/// failed.
4449/// \return \c true if diagnosed, \c false if not.
4450static bool diagnoseAutoDeductionFailure(Sema &S,
4451                                         Sema::TemplateDeductionResult TDK,
4452                                         TemplateDeductionInfo &Info,
4453                                         ArrayRef<SourceRange> Ranges) {
4454  switch (TDK) {
4455  case Sema::TDK_Inconsistent: {
4456    // Inconsistent deduction means we were deducing from an initializer list.
4457    auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
4458    D << Info.FirstArg << Info.SecondArg;
4459    for (auto R : Ranges)
4460      D << R;
4461    return true;
4462  }
4463
4464  // FIXME: Are there other cases for which a custom diagnostic is more useful
4465  // than the basic "types don't match" diagnostic?
4466
4467  default:
4468    return false;
4469  }
4470}
4471
4472static Sema::DeduceAutoResult
4473CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
4474                                   AutoTypeLoc TypeLoc, QualType Deduced) {
4475  ConstraintSatisfaction Satisfaction;
4476  ConceptDecl *Concept = Type.getTypeConstraintConcept();
4477  TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
4478                                        TypeLoc.getRAngleLoc());
4479  TemplateArgs.addArgument(
4480      TemplateArgumentLoc(TemplateArgument(Deduced),
4481                          S.Context.getTrivialTypeSourceInfo(
4482                              Deduced, TypeLoc.getNameLoc())));
4483  for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
4484    TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
4485
4486  llvm::SmallVector<TemplateArgument, 4> Converted;
4487  if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
4488                                  /*PartialTemplateArgs=*/false, Converted))
4489    return Sema::DAR_FailedAlreadyDiagnosed;
4490  if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
4491                                    Converted, TypeLoc.getLocalSourceRange(),
4492                                    Satisfaction))
4493    return Sema::DAR_FailedAlreadyDiagnosed;
4494  if (!Satisfaction.IsSatisfied) {
4495    std::string Buf;
4496    llvm::raw_string_ostream OS(Buf);
4497    OS << "'" << Concept->getName();
4498    if (TypeLoc.hasExplicitTemplateArgs()) {
4499      OS << "<";
4500      for (const auto &Arg : Type.getTypeConstraintArguments())
4501        Arg.print(S.getPrintingPolicy(), OS);
4502      OS << ">";
4503    }
4504    OS << "'";
4505    OS.flush();
4506    S.Diag(TypeLoc.getConceptNameLoc(),
4507           diag::err_placeholder_constraints_not_satisfied)
4508         << Deduced << Buf << TypeLoc.getLocalSourceRange();
4509    S.DiagnoseUnsatisfiedConstraint(Satisfaction);
4510    return Sema::DAR_FailedAlreadyDiagnosed;
4511  }
4512  return Sema::DAR_Succeeded;
4513}
4514
4515/// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4516///
4517/// Note that this is done even if the initializer is dependent. (This is
4518/// necessary to support partial ordering of templates using 'auto'.)
4519/// A dependent type will be produced when deducing from a dependent type.
4520///
4521/// \param Type the type pattern using the auto type-specifier.
4522/// \param Init the initializer for the variable whose type is to be deduced.
4523/// \param Result if type deduction was successful, this will be set to the
4524///        deduced type.
4525/// \param DependentDeductionDepth Set if we should permit deduction in
4526///        dependent cases. This is necessary for template partial ordering with
4527///        'auto' template parameters. The value specified is the template
4528///        parameter depth at which we should perform 'auto' deduction.
4529/// \param IgnoreConstraints Set if we should not fail if the deduced type does
4530///                          not satisfy the type-constraint in the auto type.
4531Sema::DeduceAutoResult
4532Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
4533                     Optional<unsigned> DependentDeductionDepth,
4534                     bool IgnoreConstraints) {
4535  if (Init->getType()->isNonOverloadPlaceholderType()) {
4536    ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4537    if (NonPlaceholder.isInvalid())
4538      return DAR_FailedAlreadyDiagnosed;
4539    Init = NonPlaceholder.get();
4540  }
4541
4542  DependentAuto DependentResult = {
4543      /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4544
4545  if (!DependentDeductionDepth &&
4546      (Type.getType()->isDependentType() || Init->isTypeDependent() ||
4547       Init->containsUnexpandedParameterPack())) {
4548    Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4549    assert(!Result.isNull() && "substituting DependentTy can't fail");
4550    return DAR_Succeeded;
4551  }
4552
4553  // Find the depth of template parameter to synthesize.
4554  unsigned Depth = DependentDeductionDepth.getValueOr(0);
4555
4556  // If this is a 'decltype(auto)' specifier, do the decltype dance.
4557  // Since 'decltype(auto)' can only occur at the top of the type, we
4558  // don't need to go digging for it.
4559  if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4560    if (AT->isDecltypeAuto()) {
4561      if (isa<InitListExpr>(Init)) {
4562        Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4563        return DAR_FailedAlreadyDiagnosed;
4564      }
4565
4566      ExprResult ER = CheckPlaceholderExpr(Init);
4567      if (ER.isInvalid())
4568        return DAR_FailedAlreadyDiagnosed;
4569      Init = ER.get();
4570      QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
4571      if (Deduced.isNull())
4572        return DAR_FailedAlreadyDiagnosed;
4573      // FIXME: Support a non-canonical deduced type for 'auto'.
4574      Deduced = Context.getCanonicalType(Deduced);
4575      if (AT->isConstrained() && !IgnoreConstraints) {
4576        auto ConstraintsResult =
4577            CheckDeducedPlaceholderConstraints(*this, *AT,
4578                                               Type.getContainedAutoTypeLoc(),
4579                                               Deduced);
4580        if (ConstraintsResult != DAR_Succeeded)
4581          return ConstraintsResult;
4582      }
4583      Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
4584      if (Result.isNull())
4585        return DAR_FailedAlreadyDiagnosed;
4586      return DAR_Succeeded;
4587    } else if (!getLangOpts().CPlusPlus) {
4588      if (isa<InitListExpr>(Init)) {
4589        Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4590        return DAR_FailedAlreadyDiagnosed;
4591      }
4592    }
4593  }
4594
4595  SourceLocation Loc = Init->getExprLoc();
4596
4597  LocalInstantiationScope InstScope(*this);
4598
4599  // Build template<class TemplParam> void Func(FuncParam);
4600  TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4601      Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false,
4602      false);
4603  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4604  NamedDecl *TemplParamPtr = TemplParam;
4605  FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4606      Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
4607
4608  QualType FuncParam =
4609      SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
4610          .Apply(Type);
4611  assert(!FuncParam.isNull() &&
4612         "substituting template parameter for 'auto' failed");
4613
4614  // Deduce type of TemplParam in Func(Init)
4615  SmallVector<DeducedTemplateArgument, 1> Deduced;
4616  Deduced.resize(1);
4617
4618  TemplateDeductionInfo Info(Loc, Depth);
4619
4620  // If deduction failed, don't diagnose if the initializer is dependent; it
4621  // might acquire a matching type in the instantiation.
4622  auto DeductionFailed = [&](TemplateDeductionResult TDK,
4623                             ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
4624    if (Init->isTypeDependent()) {
4625      Result =
4626          SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4627      assert(!Result.isNull() && "substituting DependentTy can't fail");
4628      return DAR_Succeeded;
4629    }
4630    if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
4631      return DAR_FailedAlreadyDiagnosed;
4632    return DAR_Failed;
4633  };
4634
4635  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4636
4637  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4638  if (InitList) {
4639    // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
4640    // against that. Such deduction only succeeds if removing cv-qualifiers and
4641    // references results in std::initializer_list<T>.
4642    if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4643      return DAR_Failed;
4644
4645    // Resolving a core issue: a braced-init-list containing any designators is
4646    // a non-deduced context.
4647    for (Expr *E : InitList->inits())
4648      if (isa<DesignatedInitExpr>(E))
4649        return DAR_Failed;
4650
4651    SourceRange DeducedFromInitRange;
4652    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4653      Expr *Init = InitList->getInit(i);
4654
4655      if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4656              *this, TemplateParamsSt.get(), 0, TemplArg, Init,
4657              Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
4658              /*ArgIdx*/ 0, /*TDF*/ 0))
4659        return DeductionFailed(TDK, {DeducedFromInitRange,
4660                                     Init->getSourceRange()});
4661
4662      if (DeducedFromInitRange.isInvalid() &&
4663          Deduced[0].getKind() != TemplateArgument::Null)
4664        DeducedFromInitRange = Init->getSourceRange();
4665    }
4666  } else {
4667    if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4668      Diag(Loc, diag::err_auto_bitfield);
4669      return DAR_FailedAlreadyDiagnosed;
4670    }
4671
4672    if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4673            *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4674            OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
4675      return DeductionFailed(TDK, {});
4676  }
4677
4678  // Could be null if somehow 'auto' appears in a non-deduced context.
4679  if (Deduced[0].getKind() != TemplateArgument::Type)
4680    return DeductionFailed(TDK_Incomplete, {});
4681
4682  QualType DeducedType = Deduced[0].getAsType();
4683
4684  if (InitList) {
4685    DeducedType = BuildStdInitializerList(DeducedType, Loc);
4686    if (DeducedType.isNull())
4687      return DAR_FailedAlreadyDiagnosed;
4688  }
4689
4690  if (const auto *AT = Type.getType()->getAs<AutoType>()) {
4691    if (AT->isConstrained() && !IgnoreConstraints) {
4692      auto ConstraintsResult =
4693          CheckDeducedPlaceholderConstraints(*this, *AT,
4694                                             Type.getContainedAutoTypeLoc(),
4695                                             DeducedType);
4696      if (ConstraintsResult != DAR_Succeeded)
4697        return ConstraintsResult;
4698    }
4699  }
4700
4701  Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4702  if (Result.isNull())
4703    return DAR_FailedAlreadyDiagnosed;
4704
4705  // Check that the deduced argument type is compatible with the original
4706  // argument type per C++ [temp.deduct.call]p4.
4707  QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4708  for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4709    assert((bool)InitList == OriginalArg.DecomposedParam &&
4710           "decomposed non-init-list in auto deduction?");
4711    if (auto TDK =
4712            CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4713      Result = QualType();
4714      return DeductionFailed(TDK, {});
4715    }
4716  }
4717
4718  return DAR_Succeeded;
4719}
4720
4721QualType Sema::SubstAutoType(QualType TypeWithAuto,
4722                             QualType TypeToReplaceAuto) {
4723  if (TypeToReplaceAuto->isDependentType())
4724    return SubstituteDeducedTypeTransform(
4725               *this, DependentAuto{
4726                          TypeToReplaceAuto->containsUnexpandedParameterPack()})
4727        .TransformType(TypeWithAuto);
4728  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4729      .TransformType(TypeWithAuto);
4730}
4731
4732TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4733                                              QualType TypeToReplaceAuto) {
4734  if (TypeToReplaceAuto->isDependentType())
4735    return SubstituteDeducedTypeTransform(
4736               *this,
4737               DependentAuto{
4738                   TypeToReplaceAuto->containsUnexpandedParameterPack()})
4739        .TransformType(TypeWithAuto);
4740  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4741      .TransformType(TypeWithAuto);
4742}
4743
4744QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4745                               QualType TypeToReplaceAuto) {
4746  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4747                                        /*UseTypeSugar*/ false)
4748      .TransformType(TypeWithAuto);
4749}
4750
4751void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4752  if (isa<InitListExpr>(Init))
4753    Diag(VDecl->getLocation(),
4754         VDecl->isInitCapture()
4755             ? diag::err_init_capture_deduction_failure_from_init_list
4756             : diag::err_auto_var_deduction_failure_from_init_list)
4757      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4758  else
4759    Diag(VDecl->getLocation(),
4760         VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4761                                : diag::err_auto_var_deduction_failure)
4762      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4763      << Init->getSourceRange();
4764}
4765
4766bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4767                            bool Diagnose) {
4768  assert(FD->getReturnType()->isUndeducedType());
4769
4770  // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4771  // within the return type from the call operator's type.
4772  if (isLambdaConversionOperator(FD)) {
4773    CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
4774    FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
4775
4776    // For a generic lambda, instantiate the call operator if needed.
4777    if (auto *Args = FD->getTemplateSpecializationArgs()) {
4778      CallOp = InstantiateFunctionDeclaration(
4779          CallOp->getDescribedFunctionTemplate(), Args, Loc);
4780      if (!CallOp || CallOp->isInvalidDecl())
4781        return true;
4782
4783      // We might need to deduce the return type by instantiating the definition
4784      // of the operator() function.
4785      if (CallOp->getReturnType()->isUndeducedType()) {
4786        runWithSufficientStackSpace(Loc, [&] {
4787          InstantiateFunctionDefinition(Loc, CallOp);
4788        });
4789      }
4790    }
4791
4792    if (CallOp->isInvalidDecl())
4793      return true;
4794    assert(!CallOp->getReturnType()->isUndeducedType() &&
4795           "failed to deduce lambda return type");
4796
4797    // Build the new return type from scratch.
4798    QualType RetType = getLambdaConversionFunctionResultType(
4799        CallOp->getType()->castAs<FunctionProtoType>());
4800    if (FD->getReturnType()->getAs<PointerType>())
4801      RetType = Context.getPointerType(RetType);
4802    else {
4803      assert(FD->getReturnType()->getAs<BlockPointerType>());
4804      RetType = Context.getBlockPointerType(RetType);
4805    }
4806    Context.adjustDeducedFunctionResultType(FD, RetType);
4807    return false;
4808  }
4809
4810  if (FD->getTemplateInstantiationPattern()) {
4811    runWithSufficientStackSpace(Loc, [&] {
4812      InstantiateFunctionDefinition(Loc, FD);
4813    });
4814  }
4815
4816  bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4817  if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4818    Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4819    Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4820  }
4821
4822  return StillUndeduced;
4823}
4824
4825/// If this is a non-static member function,
4826static void
4827AddImplicitObjectParameterType(ASTContext &Context,
4828                               CXXMethodDecl *Method,
4829                               SmallVectorImpl<QualType> &ArgTypes) {
4830  // C++11 [temp.func.order]p3:
4831  //   [...] The new parameter is of type "reference to cv A," where cv are
4832  //   the cv-qualifiers of the function template (if any) and A is
4833  //   the class of which the function template is a member.
4834  //
4835  // The standard doesn't say explicitly, but we pick the appropriate kind of
4836  // reference type based on [over.match.funcs]p4.
4837  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4838  ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
4839  if (Method->getRefQualifier() == RQ_RValue)
4840    ArgTy = Context.getRValueReferenceType(ArgTy);
4841  else
4842    ArgTy = Context.getLValueReferenceType(ArgTy);
4843  ArgTypes.push_back(ArgTy);
4844}
4845
4846/// Determine whether the function template \p FT1 is at least as
4847/// specialized as \p FT2.
4848static bool isAtLeastAsSpecializedAs(Sema &S,
4849                                     SourceLocation Loc,
4850                                     FunctionTemplateDecl *FT1,
4851                                     FunctionTemplateDecl *FT2,
4852                                     TemplatePartialOrderingContext TPOC,
4853                                     unsigned NumCallArguments1) {
4854  FunctionDecl *FD1 = FT1->getTemplatedDecl();
4855  FunctionDecl *FD2 = FT2->getTemplatedDecl();
4856  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4857  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4858
4859  assert(Proto1 && Proto2 && "Function templates must have prototypes");
4860  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4861  SmallVector<DeducedTemplateArgument, 4> Deduced;
4862  Deduced.resize(TemplateParams->size());
4863
4864  // C++0x [temp.deduct.partial]p3:
4865  //   The types used to determine the ordering depend on the context in which
4866  //   the partial ordering is done:
4867  TemplateDeductionInfo Info(Loc);
4868  SmallVector<QualType, 4> Args2;
4869  switch (TPOC) {
4870  case TPOC_Call: {
4871    //   - In the context of a function call, the function parameter types are
4872    //     used.
4873    CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4874    CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4875
4876    // C++11 [temp.func.order]p3:
4877    //   [...] If only one of the function templates is a non-static
4878    //   member, that function template is considered to have a new
4879    //   first parameter inserted in its function parameter list. The
4880    //   new parameter is of type "reference to cv A," where cv are
4881    //   the cv-qualifiers of the function template (if any) and A is
4882    //   the class of which the function template is a member.
4883    //
4884    // Note that we interpret this to mean "if one of the function
4885    // templates is a non-static member and the other is a non-member";
4886    // otherwise, the ordering rules for static functions against non-static
4887    // functions don't make any sense.
4888    //
4889    // C++98/03 doesn't have this provision but we've extended DR532 to cover
4890    // it as wording was broken prior to it.
4891    SmallVector<QualType, 4> Args1;
4892
4893    unsigned NumComparedArguments = NumCallArguments1;
4894
4895    if (!Method2 && Method1 && !Method1->isStatic()) {
4896      // Compare 'this' from Method1 against first parameter from Method2.
4897      AddImplicitObjectParameterType(S.Context, Method1, Args1);
4898      ++NumComparedArguments;
4899    } else if (!Method1 && Method2 && !Method2->isStatic()) {
4900      // Compare 'this' from Method2 against first parameter from Method1.
4901      AddImplicitObjectParameterType(S.Context, Method2, Args2);
4902    }
4903
4904    Args1.insert(Args1.end(), Proto1->param_type_begin(),
4905                 Proto1->param_type_end());
4906    Args2.insert(Args2.end(), Proto2->param_type_begin(),
4907                 Proto2->param_type_end());
4908
4909    // C++ [temp.func.order]p5:
4910    //   The presence of unused ellipsis and default arguments has no effect on
4911    //   the partial ordering of function templates.
4912    if (Args1.size() > NumComparedArguments)
4913      Args1.resize(NumComparedArguments);
4914    if (Args2.size() > NumComparedArguments)
4915      Args2.resize(NumComparedArguments);
4916    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4917                                Args1.data(), Args1.size(), Info, Deduced,
4918                                TDF_None, /*PartialOrdering=*/true))
4919      return false;
4920
4921    break;
4922  }
4923
4924  case TPOC_Conversion:
4925    //   - In the context of a call to a conversion operator, the return types
4926    //     of the conversion function templates are used.
4927    if (DeduceTemplateArgumentsByTypeMatch(
4928            S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4929            Info, Deduced, TDF_None,
4930            /*PartialOrdering=*/true))
4931      return false;
4932    break;
4933
4934  case TPOC_Other:
4935    //   - In other contexts (14.6.6.2) the function template's function type
4936    //     is used.
4937    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4938                                           FD2->getType(), FD1->getType(),
4939                                           Info, Deduced, TDF_None,
4940                                           /*PartialOrdering=*/true))
4941      return false;
4942    break;
4943  }
4944
4945  // C++0x [temp.deduct.partial]p11:
4946  //   In most cases, all template parameters must have values in order for
4947  //   deduction to succeed, but for partial ordering purposes a template
4948  //   parameter may remain without a value provided it is not used in the
4949  //   types being used for partial ordering. [ Note: a template parameter used
4950  //   in a non-deduced context is considered used. -end note]
4951  unsigned ArgIdx = 0, NumArgs = Deduced.size();
4952  for (; ArgIdx != NumArgs; ++ArgIdx)
4953    if (Deduced[ArgIdx].isNull())
4954      break;
4955
4956  // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
4957  // to substitute the deduced arguments back into the template and check that
4958  // we get the right type.
4959
4960  if (ArgIdx == NumArgs) {
4961    // All template arguments were deduced. FT1 is at least as specialized
4962    // as FT2.
4963    return true;
4964  }
4965
4966  // Figure out which template parameters were used.
4967  llvm::SmallBitVector UsedParameters(TemplateParams->size());
4968  switch (TPOC) {
4969  case TPOC_Call:
4970    for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4971      ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4972                                   TemplateParams->getDepth(),
4973                                   UsedParameters);
4974    break;
4975
4976  case TPOC_Conversion:
4977    ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4978                                 TemplateParams->getDepth(), UsedParameters);
4979    break;
4980
4981  case TPOC_Other:
4982    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4983                                 TemplateParams->getDepth(),
4984                                 UsedParameters);
4985    break;
4986  }
4987
4988  for (; ArgIdx != NumArgs; ++ArgIdx)
4989    // If this argument had no value deduced but was used in one of the types
4990    // used for partial ordering, then deduction fails.
4991    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4992      return false;
4993
4994  return true;
4995}
4996
4997/// Determine whether this a function template whose parameter-type-list
4998/// ends with a function parameter pack.
4999static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
5000  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
5001  unsigned NumParams = Function->getNumParams();
5002  if (NumParams == 0)
5003    return false;
5004
5005  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
5006  if (!Last->isParameterPack())
5007    return false;
5008
5009  // Make sure that no previous parameter is a parameter pack.
5010  while (--NumParams > 0) {
5011    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
5012      return false;
5013  }
5014
5015  return true;
5016}
5017
5018/// Returns the more specialized function template according
5019/// to the rules of function template partial ordering (C++ [temp.func.order]).
5020///
5021/// \param FT1 the first function template
5022///
5023/// \param FT2 the second function template
5024///
5025/// \param TPOC the context in which we are performing partial ordering of
5026/// function templates.
5027///
5028/// \param NumCallArguments1 The number of arguments in the call to FT1, used
5029/// only when \c TPOC is \c TPOC_Call.
5030///
5031/// \param NumCallArguments2 The number of arguments in the call to FT2, used
5032/// only when \c TPOC is \c TPOC_Call.
5033///
5034/// \returns the more specialized function template. If neither
5035/// template is more specialized, returns NULL.
5036FunctionTemplateDecl *
5037Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
5038                                 FunctionTemplateDecl *FT2,
5039                                 SourceLocation Loc,
5040                                 TemplatePartialOrderingContext TPOC,
5041                                 unsigned NumCallArguments1,
5042                                 unsigned NumCallArguments2) {
5043
5044  auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * {
5045    llvm::SmallVector<const Expr *, 3> AC1, AC2;
5046    FT1->getAssociatedConstraints(AC1);
5047    FT2->getAssociatedConstraints(AC2);
5048    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5049    if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
5050      return nullptr;
5051    if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
5052      return nullptr;
5053    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5054      return nullptr;
5055    return AtLeastAsConstrained1 ? FT1 : FT2;
5056  };
5057
5058  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
5059                                          NumCallArguments1);
5060  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
5061                                          NumCallArguments2);
5062
5063  if (Better1 != Better2) // We have a clear winner
5064    return Better1 ? FT1 : FT2;
5065
5066  if (!Better1 && !Better2) // Neither is better than the other
5067    return JudgeByConstraints();
5068
5069  // FIXME: This mimics what GCC implements, but doesn't match up with the
5070  // proposed resolution for core issue 692. This area needs to be sorted out,
5071  // but for now we attempt to maintain compatibility.
5072  bool Variadic1 = isVariadicFunctionTemplate(FT1);
5073  bool Variadic2 = isVariadicFunctionTemplate(FT2);
5074  if (Variadic1 != Variadic2)
5075    return Variadic1? FT2 : FT1;
5076
5077  return JudgeByConstraints();
5078}
5079
5080/// Determine if the two templates are equivalent.
5081static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
5082  if (T1 == T2)
5083    return true;
5084
5085  if (!T1 || !T2)
5086    return false;
5087
5088  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
5089}
5090
5091/// Retrieve the most specialized of the given function template
5092/// specializations.
5093///
5094/// \param SpecBegin the start iterator of the function template
5095/// specializations that we will be comparing.
5096///
5097/// \param SpecEnd the end iterator of the function template
5098/// specializations, paired with \p SpecBegin.
5099///
5100/// \param Loc the location where the ambiguity or no-specializations
5101/// diagnostic should occur.
5102///
5103/// \param NoneDiag partial diagnostic used to diagnose cases where there are
5104/// no matching candidates.
5105///
5106/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
5107/// occurs.
5108///
5109/// \param CandidateDiag partial diagnostic used for each function template
5110/// specialization that is a candidate in the ambiguous ordering. One parameter
5111/// in this diagnostic should be unbound, which will correspond to the string
5112/// describing the template arguments for the function template specialization.
5113///
5114/// \returns the most specialized function template specialization, if
5115/// found. Otherwise, returns SpecEnd.
5116UnresolvedSetIterator Sema::getMostSpecialized(
5117    UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
5118    TemplateSpecCandidateSet &FailedCandidates,
5119    SourceLocation Loc, const PartialDiagnostic &NoneDiag,
5120    const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
5121    bool Complain, QualType TargetType) {
5122  if (SpecBegin == SpecEnd) {
5123    if (Complain) {
5124      Diag(Loc, NoneDiag);
5125      FailedCandidates.NoteCandidates(*this, Loc);
5126    }
5127    return SpecEnd;
5128  }
5129
5130  if (SpecBegin + 1 == SpecEnd)
5131    return SpecBegin;
5132
5133  // Find the function template that is better than all of the templates it
5134  // has been compared to.
5135  UnresolvedSetIterator Best = SpecBegin;
5136  FunctionTemplateDecl *BestTemplate
5137    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
5138  assert(BestTemplate && "Not a function template specialization?");
5139  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
5140    FunctionTemplateDecl *Challenger
5141      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5142    assert(Challenger && "Not a function template specialization?");
5143    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5144                                                  Loc, TPOC_Other, 0, 0),
5145                       Challenger)) {
5146      Best = I;
5147      BestTemplate = Challenger;
5148    }
5149  }
5150
5151  // Make sure that the "best" function template is more specialized than all
5152  // of the others.
5153  bool Ambiguous = false;
5154  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5155    FunctionTemplateDecl *Challenger
5156      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5157    if (I != Best &&
5158        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5159                                                   Loc, TPOC_Other, 0, 0),
5160                        BestTemplate)) {
5161      Ambiguous = true;
5162      break;
5163    }
5164  }
5165
5166  if (!Ambiguous) {
5167    // We found an answer. Return it.
5168    return Best;
5169  }
5170
5171  // Diagnose the ambiguity.
5172  if (Complain) {
5173    Diag(Loc, AmbigDiag);
5174
5175    // FIXME: Can we order the candidates in some sane way?
5176    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5177      PartialDiagnostic PD = CandidateDiag;
5178      const auto *FD = cast<FunctionDecl>(*I);
5179      PD << FD << getTemplateArgumentBindingsText(
5180                      FD->getPrimaryTemplate()->getTemplateParameters(),
5181                      *FD->getTemplateSpecializationArgs());
5182      if (!TargetType.isNull())
5183        HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5184      Diag((*I)->getLocation(), PD);
5185    }
5186  }
5187
5188  return SpecEnd;
5189}
5190
5191/// Determine whether one partial specialization, P1, is at least as
5192/// specialized than another, P2.
5193///
5194/// \tparam TemplateLikeDecl The kind of P2, which must be a
5195/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5196/// \param T1 The injected-class-name of P1 (faked for a variable template).
5197/// \param T2 The injected-class-name of P2 (faked for a variable template).
5198template<typename TemplateLikeDecl>
5199static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5200                                     TemplateLikeDecl *P2,
5201                                     TemplateDeductionInfo &Info) {
5202  // C++ [temp.class.order]p1:
5203  //   For two class template partial specializations, the first is at least as
5204  //   specialized as the second if, given the following rewrite to two
5205  //   function templates, the first function template is at least as
5206  //   specialized as the second according to the ordering rules for function
5207  //   templates (14.6.6.2):
5208  //     - the first function template has the same template parameters as the
5209  //       first partial specialization and has a single function parameter
5210  //       whose type is a class template specialization with the template
5211  //       arguments of the first partial specialization, and
5212  //     - the second function template has the same template parameters as the
5213  //       second partial specialization and has a single function parameter
5214  //       whose type is a class template specialization with the template
5215  //       arguments of the second partial specialization.
5216  //
5217  // Rather than synthesize function templates, we merely perform the
5218  // equivalent partial ordering by performing deduction directly on
5219  // the template arguments of the class template partial
5220  // specializations. This computation is slightly simpler than the
5221  // general problem of function template partial ordering, because
5222  // class template partial specializations are more constrained. We
5223  // know that every template parameter is deducible from the class
5224  // template partial specialization's template arguments, for
5225  // example.
5226  SmallVector<DeducedTemplateArgument, 4> Deduced;
5227
5228  // Determine whether P1 is at least as specialized as P2.
5229  Deduced.resize(P2->getTemplateParameters()->size());
5230  if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5231                                         T2, T1, Info, Deduced, TDF_None,
5232                                         /*PartialOrdering=*/true))
5233    return false;
5234
5235  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5236                                               Deduced.end());
5237  Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5238                                   Info);
5239  auto *TST1 = T1->castAs<TemplateSpecializationType>();
5240  if (FinishTemplateArgumentDeduction(
5241          S, P2, /*IsPartialOrdering=*/true,
5242          TemplateArgumentList(TemplateArgumentList::OnStack,
5243                               TST1->template_arguments()),
5244          Deduced, Info))
5245    return false;
5246
5247  return true;
5248}
5249
5250/// Returns the more specialized class template partial specialization
5251/// according to the rules of partial ordering of class template partial
5252/// specializations (C++ [temp.class.order]).
5253///
5254/// \param PS1 the first class template partial specialization
5255///
5256/// \param PS2 the second class template partial specialization
5257///
5258/// \returns the more specialized class template partial specialization. If
5259/// neither partial specialization is more specialized, returns NULL.
5260ClassTemplatePartialSpecializationDecl *
5261Sema::getMoreSpecializedPartialSpecialization(
5262                                  ClassTemplatePartialSpecializationDecl *PS1,
5263                                  ClassTemplatePartialSpecializationDecl *PS2,
5264                                              SourceLocation Loc) {
5265  QualType PT1 = PS1->getInjectedSpecializationType();
5266  QualType PT2 = PS2->getInjectedSpecializationType();
5267
5268  TemplateDeductionInfo Info(Loc);
5269  bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5270  bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5271
5272  if (!Better1 && !Better2)
5273      return nullptr;
5274  if (Better1 && Better2) {
5275    llvm::SmallVector<const Expr *, 3> AC1, AC2;
5276    PS1->getAssociatedConstraints(AC1);
5277    PS2->getAssociatedConstraints(AC2);
5278    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5279    if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5280      return nullptr;
5281    if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5282      return nullptr;
5283    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5284      return nullptr;
5285    return AtLeastAsConstrained1 ? PS1 : PS2;
5286  }
5287
5288  return Better1 ? PS1 : PS2;
5289}
5290
5291bool Sema::isMoreSpecializedThanPrimary(
5292    ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5293  ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5294  QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5295  QualType PartialT = Spec->getInjectedSpecializationType();
5296  if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5297    return false;
5298  if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5299    return true;
5300  Info.clearSFINAEDiagnostic();
5301  llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5302  Primary->getAssociatedConstraints(PrimaryAC);
5303  Spec->getAssociatedConstraints(SpecAC);
5304  bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5305  if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5306                             AtLeastAsConstrainedSpec))
5307    return false;
5308  if (!AtLeastAsConstrainedSpec)
5309    return false;
5310  if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5311                             AtLeastAsConstrainedPrimary))
5312    return false;
5313  return !AtLeastAsConstrainedPrimary;
5314}
5315
5316VarTemplatePartialSpecializationDecl *
5317Sema::getMoreSpecializedPartialSpecialization(
5318    VarTemplatePartialSpecializationDecl *PS1,
5319    VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5320  // Pretend the variable template specializations are class template
5321  // specializations and form a fake injected class name type for comparison.
5322  assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5323         "the partial specializations being compared should specialize"
5324         " the same template.");
5325  TemplateName Name(PS1->getSpecializedTemplate());
5326  TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5327  QualType PT1 = Context.getTemplateSpecializationType(
5328      CanonTemplate, PS1->getTemplateArgs().asArray());
5329  QualType PT2 = Context.getTemplateSpecializationType(
5330      CanonTemplate, PS2->getTemplateArgs().asArray());
5331
5332  TemplateDeductionInfo Info(Loc);
5333  bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5334  bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5335
5336  if (!Better1 && !Better2)
5337    return nullptr;
5338  if (Better1 && Better2) {
5339    llvm::SmallVector<const Expr *, 3> AC1, AC2;
5340    PS1->getAssociatedConstraints(AC1);
5341    PS2->getAssociatedConstraints(AC2);
5342    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5343    if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5344      return nullptr;
5345    if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5346      return nullptr;
5347    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5348      return nullptr;
5349    return AtLeastAsConstrained1 ? PS1 : PS2;
5350  }
5351
5352  return Better1 ? PS1 : PS2;
5353}
5354
5355bool Sema::isMoreSpecializedThanPrimary(
5356    VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5357  TemplateDecl *Primary = Spec->getSpecializedTemplate();
5358  // FIXME: Cache the injected template arguments rather than recomputing
5359  // them for each partial specialization.
5360  SmallVector<TemplateArgument, 8> PrimaryArgs;
5361  Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
5362                                  PrimaryArgs);
5363
5364  TemplateName CanonTemplate =
5365      Context.getCanonicalTemplateName(TemplateName(Primary));
5366  QualType PrimaryT = Context.getTemplateSpecializationType(
5367      CanonTemplate, PrimaryArgs);
5368  QualType PartialT = Context.getTemplateSpecializationType(
5369      CanonTemplate, Spec->getTemplateArgs().asArray());
5370
5371  if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5372    return false;
5373  if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5374    return true;
5375  Info.clearSFINAEDiagnostic();
5376  llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5377  Primary->getAssociatedConstraints(PrimaryAC);
5378  Spec->getAssociatedConstraints(SpecAC);
5379  bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5380  if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5381                             AtLeastAsConstrainedSpec))
5382    return false;
5383  if (!AtLeastAsConstrainedSpec)
5384    return false;
5385  if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5386                             AtLeastAsConstrainedPrimary))
5387    return false;
5388  return !AtLeastAsConstrainedPrimary;
5389}
5390
5391bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5392     TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5393  // C++1z [temp.arg.template]p4: (DR 150)
5394  //   A template template-parameter P is at least as specialized as a
5395  //   template template-argument A if, given the following rewrite to two
5396  //   function templates...
5397
5398  // Rather than synthesize function templates, we merely perform the
5399  // equivalent partial ordering by performing deduction directly on
5400  // the template parameter lists of the template template parameters.
5401  //
5402  //   Given an invented class template X with the template parameter list of
5403  //   A (including default arguments):
5404  TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5405  TemplateParameterList *A = AArg->getTemplateParameters();
5406
5407  //    - Each function template has a single function parameter whose type is
5408  //      a specialization of X with template arguments corresponding to the
5409  //      template parameters from the respective function template
5410  SmallVector<TemplateArgument, 8> AArgs;
5411  Context.getInjectedTemplateArgs(A, AArgs);
5412
5413  // Check P's arguments against A's parameter list. This will fill in default
5414  // template arguments as needed. AArgs are already correct by construction.
5415  // We can't just use CheckTemplateIdType because that will expand alias
5416  // templates.
5417  SmallVector<TemplateArgument, 4> PArgs;
5418  {
5419    SFINAETrap Trap(*this);
5420
5421    Context.getInjectedTemplateArgs(P, PArgs);
5422    TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
5423                                      P->getRAngleLoc());
5424    for (unsigned I = 0, N = P->size(); I != N; ++I) {
5425      // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5426      // expansions, to form an "as written" argument list.
5427      TemplateArgument Arg = PArgs[I];
5428      if (Arg.getKind() == TemplateArgument::Pack) {
5429        assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5430        Arg = *Arg.pack_begin();
5431      }
5432      PArgList.addArgument(getTrivialTemplateArgumentLoc(
5433          Arg, QualType(), P->getParam(I)->getLocation()));
5434    }
5435    PArgs.clear();
5436
5437    // C++1z [temp.arg.template]p3:
5438    //   If the rewrite produces an invalid type, then P is not at least as
5439    //   specialized as A.
5440    if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
5441        Trap.hasErrorOccurred())
5442      return false;
5443  }
5444
5445  QualType AType = Context.getTemplateSpecializationType(X, AArgs);
5446  QualType PType = Context.getTemplateSpecializationType(X, PArgs);
5447
5448  //   ... the function template corresponding to P is at least as specialized
5449  //   as the function template corresponding to A according to the partial
5450  //   ordering rules for function templates.
5451  TemplateDeductionInfo Info(Loc, A->getDepth());
5452  return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5453}
5454
5455namespace {
5456struct MarkUsedTemplateParameterVisitor :
5457    RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
5458  llvm::SmallBitVector &Used;
5459  unsigned Depth;
5460
5461  MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
5462                                   unsigned Depth)
5463      : Used(Used), Depth(Depth) { }
5464
5465  bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
5466    if (T->getDepth() == Depth)
5467      Used[T->getIndex()] = true;
5468    return true;
5469  }
5470
5471  bool TraverseTemplateName(TemplateName Template) {
5472    if (auto *TTP =
5473            dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl()))
5474      if (TTP->getDepth() == Depth)
5475        Used[TTP->getIndex()] = true;
5476    RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
5477        TraverseTemplateName(Template);
5478    return true;
5479  }
5480
5481  bool VisitDeclRefExpr(DeclRefExpr *E) {
5482    if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
5483      if (NTTP->getDepth() == Depth)
5484        Used[NTTP->getIndex()] = true;
5485    return true;
5486  }
5487};
5488}
5489
5490/// Mark the template parameters that are used by the given
5491/// expression.
5492static void
5493MarkUsedTemplateParameters(ASTContext &Ctx,
5494                           const Expr *E,
5495                           bool OnlyDeduced,
5496                           unsigned Depth,
5497                           llvm::SmallBitVector &Used) {
5498  if (!OnlyDeduced) {
5499    MarkUsedTemplateParameterVisitor(Used, Depth)
5500        .TraverseStmt(const_cast<Expr *>(E));
5501    return;
5502  }
5503
5504  // We can deduce from a pack expansion.
5505  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5506    E = Expansion->getPattern();
5507
5508  // Skip through any implicit casts we added while type-checking, and any
5509  // substitutions performed by template alias expansion.
5510  while (true) {
5511    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
5512      E = ICE->getSubExpr();
5513    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
5514      E = CE->getSubExpr();
5515    else if (const SubstNonTypeTemplateParmExpr *Subst =
5516               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
5517      E = Subst->getReplacement();
5518    else
5519      break;
5520  }
5521
5522  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
5523  if (!DRE)
5524    return;
5525
5526  const NonTypeTemplateParmDecl *NTTP
5527    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
5528  if (!NTTP)
5529    return;
5530
5531  if (NTTP->getDepth() == Depth)
5532    Used[NTTP->getIndex()] = true;
5533
5534  // In C++17 mode, additional arguments may be deduced from the type of a
5535  // non-type argument.
5536  if (Ctx.getLangOpts().CPlusPlus17)
5537    MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5538}
5539
5540/// Mark the template parameters that are used by the given
5541/// nested name specifier.
5542static void
5543MarkUsedTemplateParameters(ASTContext &Ctx,
5544                           NestedNameSpecifier *NNS,
5545                           bool OnlyDeduced,
5546                           unsigned Depth,
5547                           llvm::SmallBitVector &Used) {
5548  if (!NNS)
5549    return;
5550
5551  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5552                             Used);
5553  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5554                             OnlyDeduced, Depth, Used);
5555}
5556
5557/// Mark the template parameters that are used by the given
5558/// template name.
5559static void
5560MarkUsedTemplateParameters(ASTContext &Ctx,
5561                           TemplateName Name,
5562                           bool OnlyDeduced,
5563                           unsigned Depth,
5564                           llvm::SmallBitVector &Used) {
5565  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5566    if (TemplateTemplateParmDecl *TTP
5567          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5568      if (TTP->getDepth() == Depth)
5569        Used[TTP->getIndex()] = true;
5570    }
5571    return;
5572  }
5573
5574  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5575    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5576                               Depth, Used);
5577  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5578    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5579                               Depth, Used);
5580}
5581
5582/// Mark the template parameters that are used by the given
5583/// type.
5584static void
5585MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5586                           bool OnlyDeduced,
5587                           unsigned Depth,
5588                           llvm::SmallBitVector &Used) {
5589  if (T.isNull())
5590    return;
5591
5592  // Non-dependent types have nothing deducible
5593  if (!T->isDependentType())
5594    return;
5595
5596  T = Ctx.getCanonicalType(T);
5597  switch (T->getTypeClass()) {
5598  case Type::Pointer:
5599    MarkUsedTemplateParameters(Ctx,
5600                               cast<PointerType>(T)->getPointeeType(),
5601                               OnlyDeduced,
5602                               Depth,
5603                               Used);
5604    break;
5605
5606  case Type::BlockPointer:
5607    MarkUsedTemplateParameters(Ctx,
5608                               cast<BlockPointerType>(T)->getPointeeType(),
5609                               OnlyDeduced,
5610                               Depth,
5611                               Used);
5612    break;
5613
5614  case Type::LValueReference:
5615  case Type::RValueReference:
5616    MarkUsedTemplateParameters(Ctx,
5617                               cast<ReferenceType>(T)->getPointeeType(),
5618                               OnlyDeduced,
5619                               Depth,
5620                               Used);
5621    break;
5622
5623  case Type::MemberPointer: {
5624    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5625    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5626                               Depth, Used);
5627    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5628                               OnlyDeduced, Depth, Used);
5629    break;
5630  }
5631
5632  case Type::DependentSizedArray:
5633    MarkUsedTemplateParameters(Ctx,
5634                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
5635                               OnlyDeduced, Depth, Used);
5636    // Fall through to check the element type
5637    LLVM_FALLTHROUGH;
5638
5639  case Type::ConstantArray:
5640  case Type::IncompleteArray:
5641    MarkUsedTemplateParameters(Ctx,
5642                               cast<ArrayType>(T)->getElementType(),
5643                               OnlyDeduced, Depth, Used);
5644    break;
5645
5646  case Type::Vector:
5647  case Type::ExtVector:
5648    MarkUsedTemplateParameters(Ctx,
5649                               cast<VectorType>(T)->getElementType(),
5650                               OnlyDeduced, Depth, Used);
5651    break;
5652
5653  case Type::DependentVector: {
5654    const auto *VecType = cast<DependentVectorType>(T);
5655    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5656                               Depth, Used);
5657    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5658                               Used);
5659    break;
5660  }
5661  case Type::DependentSizedExtVector: {
5662    const DependentSizedExtVectorType *VecType
5663      = cast<DependentSizedExtVectorType>(T);
5664    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5665                               Depth, Used);
5666    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5667                               Depth, Used);
5668    break;
5669  }
5670
5671  case Type::DependentAddressSpace: {
5672    const DependentAddressSpaceType *DependentASType =
5673        cast<DependentAddressSpaceType>(T);
5674    MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
5675                               OnlyDeduced, Depth, Used);
5676    MarkUsedTemplateParameters(Ctx,
5677                               DependentASType->getAddrSpaceExpr(),
5678                               OnlyDeduced, Depth, Used);
5679    break;
5680  }
5681
5682  case Type::FunctionProto: {
5683    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
5684    MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
5685                               Used);
5686    for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
5687      // C++17 [temp.deduct.type]p5:
5688      //   The non-deduced contexts are: [...]
5689      //   -- A function parameter pack that does not occur at the end of the
5690      //      parameter-declaration-list.
5691      if (!OnlyDeduced || I + 1 == N ||
5692          !Proto->getParamType(I)->getAs<PackExpansionType>()) {
5693        MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
5694                                   Depth, Used);
5695      } else {
5696        // FIXME: C++17 [temp.deduct.call]p1:
5697        //   When a function parameter pack appears in a non-deduced context,
5698        //   the type of that pack is never deduced.
5699        //
5700        // We should also track a set of "never deduced" parameters, and
5701        // subtract that from the list of deduced parameters after marking.
5702      }
5703    }
5704    if (auto *E = Proto->getNoexceptExpr())
5705      MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
5706    break;
5707  }
5708
5709  case Type::TemplateTypeParm: {
5710    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
5711    if (TTP->getDepth() == Depth)
5712      Used[TTP->getIndex()] = true;
5713    break;
5714  }
5715
5716  case Type::SubstTemplateTypeParmPack: {
5717    const SubstTemplateTypeParmPackType *Subst
5718      = cast<SubstTemplateTypeParmPackType>(T);
5719    MarkUsedTemplateParameters(Ctx,
5720                               QualType(Subst->getReplacedParameter(), 0),
5721                               OnlyDeduced, Depth, Used);
5722    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
5723                               OnlyDeduced, Depth, Used);
5724    break;
5725  }
5726
5727  case Type::InjectedClassName:
5728    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
5729    LLVM_FALLTHROUGH;
5730
5731  case Type::TemplateSpecialization: {
5732    const TemplateSpecializationType *Spec
5733      = cast<TemplateSpecializationType>(T);
5734    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
5735                               Depth, Used);
5736
5737    // C++0x [temp.deduct.type]p9:
5738    //   If the template argument list of P contains a pack expansion that is
5739    //   not the last template argument, the entire template argument list is a
5740    //   non-deduced context.
5741    if (OnlyDeduced &&
5742        hasPackExpansionBeforeEnd(Spec->template_arguments()))
5743      break;
5744
5745    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5746      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5747                                 Used);
5748    break;
5749  }
5750
5751  case Type::Complex:
5752    if (!OnlyDeduced)
5753      MarkUsedTemplateParameters(Ctx,
5754                                 cast<ComplexType>(T)->getElementType(),
5755                                 OnlyDeduced, Depth, Used);
5756    break;
5757
5758  case Type::Atomic:
5759    if (!OnlyDeduced)
5760      MarkUsedTemplateParameters(Ctx,
5761                                 cast<AtomicType>(T)->getValueType(),
5762                                 OnlyDeduced, Depth, Used);
5763    break;
5764
5765  case Type::DependentName:
5766    if (!OnlyDeduced)
5767      MarkUsedTemplateParameters(Ctx,
5768                                 cast<DependentNameType>(T)->getQualifier(),
5769                                 OnlyDeduced, Depth, Used);
5770    break;
5771
5772  case Type::DependentTemplateSpecialization: {
5773    // C++14 [temp.deduct.type]p5:
5774    //   The non-deduced contexts are:
5775    //     -- The nested-name-specifier of a type that was specified using a
5776    //        qualified-id
5777    //
5778    // C++14 [temp.deduct.type]p6:
5779    //   When a type name is specified in a way that includes a non-deduced
5780    //   context, all of the types that comprise that type name are also
5781    //   non-deduced.
5782    if (OnlyDeduced)
5783      break;
5784
5785    const DependentTemplateSpecializationType *Spec
5786      = cast<DependentTemplateSpecializationType>(T);
5787
5788    MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
5789                               OnlyDeduced, Depth, Used);
5790
5791    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5792      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5793                                 Used);
5794    break;
5795  }
5796
5797  case Type::TypeOf:
5798    if (!OnlyDeduced)
5799      MarkUsedTemplateParameters(Ctx,
5800                                 cast<TypeOfType>(T)->getUnderlyingType(),
5801                                 OnlyDeduced, Depth, Used);
5802    break;
5803
5804  case Type::TypeOfExpr:
5805    if (!OnlyDeduced)
5806      MarkUsedTemplateParameters(Ctx,
5807                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
5808                                 OnlyDeduced, Depth, Used);
5809    break;
5810
5811  case Type::Decltype:
5812    if (!OnlyDeduced)
5813      MarkUsedTemplateParameters(Ctx,
5814                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
5815                                 OnlyDeduced, Depth, Used);
5816    break;
5817
5818  case Type::UnaryTransform:
5819    if (!OnlyDeduced)
5820      MarkUsedTemplateParameters(Ctx,
5821                                 cast<UnaryTransformType>(T)->getUnderlyingType(),
5822                                 OnlyDeduced, Depth, Used);
5823    break;
5824
5825  case Type::PackExpansion:
5826    MarkUsedTemplateParameters(Ctx,
5827                               cast<PackExpansionType>(T)->getPattern(),
5828                               OnlyDeduced, Depth, Used);
5829    break;
5830
5831  case Type::Auto:
5832  case Type::DeducedTemplateSpecialization:
5833    MarkUsedTemplateParameters(Ctx,
5834                               cast<DeducedType>(T)->getDeducedType(),
5835                               OnlyDeduced, Depth, Used);
5836    break;
5837
5838  // None of these types have any template parameters in them.
5839  case Type::Builtin:
5840  case Type::VariableArray:
5841  case Type::FunctionNoProto:
5842  case Type::Record:
5843  case Type::Enum:
5844  case Type::ObjCInterface:
5845  case Type::ObjCObject:
5846  case Type::ObjCObjectPointer:
5847  case Type::UnresolvedUsing:
5848  case Type::Pipe:
5849#define TYPE(Class, Base)
5850#define ABSTRACT_TYPE(Class, Base)
5851#define DEPENDENT_TYPE(Class, Base)
5852#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5853#include "clang/AST/TypeNodes.inc"
5854    break;
5855  }
5856}
5857
5858/// Mark the template parameters that are used by this
5859/// template argument.
5860static void
5861MarkUsedTemplateParameters(ASTContext &Ctx,
5862                           const TemplateArgument &TemplateArg,
5863                           bool OnlyDeduced,
5864                           unsigned Depth,
5865                           llvm::SmallBitVector &Used) {
5866  switch (TemplateArg.getKind()) {
5867  case TemplateArgument::Null:
5868  case TemplateArgument::Integral:
5869  case TemplateArgument::Declaration:
5870    break;
5871
5872  case TemplateArgument::NullPtr:
5873    MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
5874                               Depth, Used);
5875    break;
5876
5877  case TemplateArgument::Type:
5878    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
5879                               Depth, Used);
5880    break;
5881
5882  case TemplateArgument::Template:
5883  case TemplateArgument::TemplateExpansion:
5884    MarkUsedTemplateParameters(Ctx,
5885                               TemplateArg.getAsTemplateOrTemplatePattern(),
5886                               OnlyDeduced, Depth, Used);
5887    break;
5888
5889  case TemplateArgument::Expression:
5890    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5891                               Depth, Used);
5892    break;
5893
5894  case TemplateArgument::Pack:
5895    for (const auto &P : TemplateArg.pack_elements())
5896      MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
5897    break;
5898  }
5899}
5900
5901/// Mark which template parameters are used in a given expression.
5902///
5903/// \param E the expression from which template parameters will be deduced.
5904///
5905/// \param Used a bit vector whose elements will be set to \c true
5906/// to indicate when the corresponding template parameter will be
5907/// deduced.
5908void
5909Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
5910                                 unsigned Depth,
5911                                 llvm::SmallBitVector &Used) {
5912  ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
5913}
5914
5915/// Mark which template parameters can be deduced from a given
5916/// template argument list.
5917///
5918/// \param TemplateArgs the template argument list from which template
5919/// parameters will be deduced.
5920///
5921/// \param Used a bit vector whose elements will be set to \c true
5922/// to indicate when the corresponding template parameter will be
5923/// deduced.
5924void
5925Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5926                                 bool OnlyDeduced, unsigned Depth,
5927                                 llvm::SmallBitVector &Used) {
5928  // C++0x [temp.deduct.type]p9:
5929  //   If the template argument list of P contains a pack expansion that is not
5930  //   the last template argument, the entire template argument list is a
5931  //   non-deduced context.
5932  if (OnlyDeduced &&
5933      hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
5934    return;
5935
5936  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5937    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5938                                 Depth, Used);
5939}
5940
5941/// Marks all of the template parameters that will be deduced by a
5942/// call to the given function template.
5943void Sema::MarkDeducedTemplateParameters(
5944    ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
5945    llvm::SmallBitVector &Deduced) {
5946  TemplateParameterList *TemplateParams
5947    = FunctionTemplate->getTemplateParameters();
5948  Deduced.clear();
5949  Deduced.resize(TemplateParams->size());
5950
5951  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5952  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5953    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5954                                 true, TemplateParams->getDepth(), Deduced);
5955}
5956
5957bool hasDeducibleTemplateParameters(Sema &S,
5958                                    FunctionTemplateDecl *FunctionTemplate,
5959                                    QualType T) {
5960  if (!T->isDependentType())
5961    return false;
5962
5963  TemplateParameterList *TemplateParams
5964    = FunctionTemplate->getTemplateParameters();
5965  llvm::SmallBitVector Deduced(TemplateParams->size());
5966  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5967                               Deduced);
5968
5969  return Deduced.any();
5970}
5971