1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ exception specification testing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/ASTMutationListener.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/StmtObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/Diagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallString.h"
24
25namespace clang {
26
27static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28{
29  if (const PointerType *PtrTy = T->getAs<PointerType>())
30    T = PtrTy->getPointeeType();
31  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32    T = RefTy->getPointeeType();
33  else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34    T = MPTy->getPointeeType();
35  return T->getAs<FunctionProtoType>();
36}
37
38/// HACK: libstdc++ has a bug where it shadows std::swap with a member
39/// swap function then tries to call std::swap unqualified from the exception
40/// specification of that function. This function detects whether we're in
41/// such a case and turns off delay-parsing of exception specifications.
42bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
43  auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
44
45  // All the problem cases are member functions named "swap" within class
46  // templates declared directly within namespace std or std::__debug or
47  // std::__profile.
48  if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
49      !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
50    return false;
51
52  auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
53  if (!ND)
54    return false;
55
56  bool IsInStd = ND->isStdNamespace();
57  if (!IsInStd) {
58    // This isn't a direct member of namespace std, but it might still be
59    // libstdc++'s std::__debug::array or std::__profile::array.
60    IdentifierInfo *II = ND->getIdentifier();
61    if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
62        !ND->isInStdNamespace())
63      return false;
64  }
65
66  // Only apply this hack within a system header.
67  if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
68    return false;
69
70  return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
71      .Case("array", true)
72      .Case("pair", IsInStd)
73      .Case("priority_queue", IsInStd)
74      .Case("stack", IsInStd)
75      .Case("queue", IsInStd)
76      .Default(false);
77}
78
79ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
80                                   Expr *NoexceptExpr,
81                                   ExceptionSpecificationType &EST) {
82  // FIXME: This is bogus, a noexcept expression is not a condition.
83  ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
84  if (Converted.isInvalid()) {
85    EST = EST_NoexceptFalse;
86
87    // Fill in an expression of 'false' as a fixup.
88    auto *BoolExpr = new (Context)
89        CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
90    llvm::APSInt Value{1};
91    Value = 0;
92    return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
93  }
94
95  if (Converted.get()->isValueDependent()) {
96    EST = EST_DependentNoexcept;
97    return Converted;
98  }
99
100  llvm::APSInt Result;
101  Converted = VerifyIntegerConstantExpression(
102      Converted.get(), &Result,
103      diag::err_noexcept_needs_constant_expression,
104      /*AllowFold*/ false);
105  if (!Converted.isInvalid())
106    EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
107  return Converted;
108}
109
110/// CheckSpecifiedExceptionType - Check if the given type is valid in an
111/// exception specification. Incomplete types, or pointers to incomplete types
112/// other than void are not allowed.
113///
114/// \param[in,out] T  The exception type. This will be decayed to a pointer type
115///                   when the input is an array or a function type.
116bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
117  // C++11 [except.spec]p2:
118  //   A type cv T, "array of T", or "function returning T" denoted
119  //   in an exception-specification is adjusted to type T, "pointer to T", or
120  //   "pointer to function returning T", respectively.
121  //
122  // We also apply this rule in C++98.
123  if (T->isArrayType())
124    T = Context.getArrayDecayedType(T);
125  else if (T->isFunctionType())
126    T = Context.getPointerType(T);
127
128  int Kind = 0;
129  QualType PointeeT = T;
130  if (const PointerType *PT = T->getAs<PointerType>()) {
131    PointeeT = PT->getPointeeType();
132    Kind = 1;
133
134    // cv void* is explicitly permitted, despite being a pointer to an
135    // incomplete type.
136    if (PointeeT->isVoidType())
137      return false;
138  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
139    PointeeT = RT->getPointeeType();
140    Kind = 2;
141
142    if (RT->isRValueReferenceType()) {
143      // C++11 [except.spec]p2:
144      //   A type denoted in an exception-specification shall not denote [...]
145      //   an rvalue reference type.
146      Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
147        << T << Range;
148      return true;
149    }
150  }
151
152  // C++11 [except.spec]p2:
153  //   A type denoted in an exception-specification shall not denote an
154  //   incomplete type other than a class currently being defined [...].
155  //   A type denoted in an exception-specification shall not denote a
156  //   pointer or reference to an incomplete type, other than (cv) void* or a
157  //   pointer or reference to a class currently being defined.
158  // In Microsoft mode, downgrade this to a warning.
159  unsigned DiagID = diag::err_incomplete_in_exception_spec;
160  bool ReturnValueOnError = true;
161  if (getLangOpts().MSVCCompat) {
162    DiagID = diag::ext_incomplete_in_exception_spec;
163    ReturnValueOnError = false;
164  }
165  if (!(PointeeT->isRecordType() &&
166        PointeeT->castAs<RecordType>()->isBeingDefined()) &&
167      RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
168    return ReturnValueOnError;
169
170  return false;
171}
172
173/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
174/// to member to a function with an exception specification. This means that
175/// it is invalid to add another level of indirection.
176bool Sema::CheckDistantExceptionSpec(QualType T) {
177  // C++17 removes this rule in favor of putting exception specifications into
178  // the type system.
179  if (getLangOpts().CPlusPlus17)
180    return false;
181
182  if (const PointerType *PT = T->getAs<PointerType>())
183    T = PT->getPointeeType();
184  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
185    T = PT->getPointeeType();
186  else
187    return false;
188
189  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
190  if (!FnT)
191    return false;
192
193  return FnT->hasExceptionSpec();
194}
195
196const FunctionProtoType *
197Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
198  if (FPT->getExceptionSpecType() == EST_Unparsed) {
199    Diag(Loc, diag::err_exception_spec_not_parsed);
200    return nullptr;
201  }
202
203  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
204    return FPT;
205
206  FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
207  const FunctionProtoType *SourceFPT =
208      SourceDecl->getType()->castAs<FunctionProtoType>();
209
210  // If the exception specification has already been resolved, just return it.
211  if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
212    return SourceFPT;
213
214  // Compute or instantiate the exception specification now.
215  if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
216    EvaluateImplicitExceptionSpec(Loc, SourceDecl);
217  else
218    InstantiateExceptionSpec(Loc, SourceDecl);
219
220  const FunctionProtoType *Proto =
221    SourceDecl->getType()->castAs<FunctionProtoType>();
222  if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
223    Diag(Loc, diag::err_exception_spec_not_parsed);
224    Proto = nullptr;
225  }
226  return Proto;
227}
228
229void
230Sema::UpdateExceptionSpec(FunctionDecl *FD,
231                          const FunctionProtoType::ExceptionSpecInfo &ESI) {
232  // If we've fully resolved the exception specification, notify listeners.
233  if (!isUnresolvedExceptionSpec(ESI.Type))
234    if (auto *Listener = getASTMutationListener())
235      Listener->ResolvedExceptionSpec(FD);
236
237  for (FunctionDecl *Redecl : FD->redecls())
238    Context.adjustExceptionSpec(Redecl, ESI);
239}
240
241static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
242  auto *MD = dyn_cast<CXXMethodDecl>(FD);
243  if (!MD)
244    return false;
245
246  auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
247  return EST == EST_Unparsed ||
248         (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
249}
250
251static bool CheckEquivalentExceptionSpecImpl(
252    Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
253    const FunctionProtoType *Old, SourceLocation OldLoc,
254    const FunctionProtoType *New, SourceLocation NewLoc,
255    bool *MissingExceptionSpecification = nullptr,
256    bool *MissingEmptyExceptionSpecification = nullptr,
257    bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
258
259/// Determine whether a function has an implicitly-generated exception
260/// specification.
261static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
262  if (!isa<CXXDestructorDecl>(Decl) &&
263      Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
264      Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
265    return false;
266
267  // For a function that the user didn't declare:
268  //  - if this is a destructor, its exception specification is implicit.
269  //  - if this is 'operator delete' or 'operator delete[]', the exception
270  //    specification is as-if an explicit exception specification was given
271  //    (per [basic.stc.dynamic]p2).
272  if (!Decl->getTypeSourceInfo())
273    return isa<CXXDestructorDecl>(Decl);
274
275  auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
276  return !Ty->hasExceptionSpec();
277}
278
279bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
280  // Just completely ignore this under -fno-exceptions prior to C++17.
281  // In C++17 onwards, the exception specification is part of the type and
282  // we will diagnose mismatches anyway, so it's better to check for them here.
283  if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
284    return false;
285
286  OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
287  bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
288  bool MissingExceptionSpecification = false;
289  bool MissingEmptyExceptionSpecification = false;
290
291  unsigned DiagID = diag::err_mismatched_exception_spec;
292  bool ReturnValueOnError = true;
293  if (getLangOpts().MSVCCompat) {
294    DiagID = diag::ext_mismatched_exception_spec;
295    ReturnValueOnError = false;
296  }
297
298  // If we're befriending a member function of a class that's currently being
299  // defined, we might not be able to work out its exception specification yet.
300  // If not, defer the check until later.
301  if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
302    DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
303    return false;
304  }
305
306  // Check the types as written: they must match before any exception
307  // specification adjustment is applied.
308  if (!CheckEquivalentExceptionSpecImpl(
309        *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
310        Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
311        New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
312        &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
313        /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
314    // C++11 [except.spec]p4 [DR1492]:
315    //   If a declaration of a function has an implicit
316    //   exception-specification, other declarations of the function shall
317    //   not specify an exception-specification.
318    if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
319        hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
320      Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
321        << hasImplicitExceptionSpec(Old);
322      if (Old->getLocation().isValid())
323        Diag(Old->getLocation(), diag::note_previous_declaration);
324    }
325    return false;
326  }
327
328  // The failure was something other than an missing exception
329  // specification; return an error, except in MS mode where this is a warning.
330  if (!MissingExceptionSpecification)
331    return ReturnValueOnError;
332
333  const FunctionProtoType *NewProto =
334    New->getType()->castAs<FunctionProtoType>();
335
336  // The new function declaration is only missing an empty exception
337  // specification "throw()". If the throw() specification came from a
338  // function in a system header that has C linkage, just add an empty
339  // exception specification to the "new" declaration. Note that C library
340  // implementations are permitted to add these nothrow exception
341  // specifications.
342  //
343  // Likewise if the old function is a builtin.
344  if (MissingEmptyExceptionSpecification && NewProto &&
345      (Old->getLocation().isInvalid() ||
346       Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
347       Old->getBuiltinID()) &&
348      Old->isExternC()) {
349    New->setType(Context.getFunctionType(
350        NewProto->getReturnType(), NewProto->getParamTypes(),
351        NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
352    return false;
353  }
354
355  const FunctionProtoType *OldProto =
356    Old->getType()->castAs<FunctionProtoType>();
357
358  FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
359  if (ESI.Type == EST_Dynamic) {
360    // FIXME: What if the exceptions are described in terms of the old
361    // prototype's parameters?
362    ESI.Exceptions = OldProto->exceptions();
363  }
364
365  if (ESI.Type == EST_NoexceptFalse)
366    ESI.Type = EST_None;
367  if (ESI.Type == EST_NoexceptTrue)
368    ESI.Type = EST_BasicNoexcept;
369
370  // For dependent noexcept, we can't just take the expression from the old
371  // prototype. It likely contains references to the old prototype's parameters.
372  if (ESI.Type == EST_DependentNoexcept) {
373    New->setInvalidDecl();
374  } else {
375    // Update the type of the function with the appropriate exception
376    // specification.
377    New->setType(Context.getFunctionType(
378        NewProto->getReturnType(), NewProto->getParamTypes(),
379        NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
380  }
381
382  if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) {
383    // Allow missing exception specifications in redeclarations as an extension.
384    DiagID = diag::ext_ms_missing_exception_specification;
385    ReturnValueOnError = false;
386  } else if (New->isReplaceableGlobalAllocationFunction() &&
387             ESI.Type != EST_DependentNoexcept) {
388    // Allow missing exception specifications in redeclarations as an extension,
389    // when declaring a replaceable global allocation function.
390    DiagID = diag::ext_missing_exception_specification;
391    ReturnValueOnError = false;
392  } else if (ESI.Type == EST_NoThrow) {
393    // Allow missing attribute 'nothrow' in redeclarations, since this is a very
394    // common omission.
395    DiagID = diag::ext_missing_exception_specification;
396    ReturnValueOnError = false;
397  } else {
398    DiagID = diag::err_missing_exception_specification;
399    ReturnValueOnError = true;
400  }
401
402  // Warn about the lack of exception specification.
403  SmallString<128> ExceptionSpecString;
404  llvm::raw_svector_ostream OS(ExceptionSpecString);
405  switch (OldProto->getExceptionSpecType()) {
406  case EST_DynamicNone:
407    OS << "throw()";
408    break;
409
410  case EST_Dynamic: {
411    OS << "throw(";
412    bool OnFirstException = true;
413    for (const auto &E : OldProto->exceptions()) {
414      if (OnFirstException)
415        OnFirstException = false;
416      else
417        OS << ", ";
418
419      OS << E.getAsString(getPrintingPolicy());
420    }
421    OS << ")";
422    break;
423  }
424
425  case EST_BasicNoexcept:
426    OS << "noexcept";
427    break;
428
429  case EST_DependentNoexcept:
430  case EST_NoexceptFalse:
431  case EST_NoexceptTrue:
432    OS << "noexcept(";
433    assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
434    OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
435    OS << ")";
436    break;
437  case EST_NoThrow:
438    OS <<"__attribute__((nothrow))";
439    break;
440  case EST_None:
441  case EST_MSAny:
442  case EST_Unevaluated:
443  case EST_Uninstantiated:
444  case EST_Unparsed:
445    llvm_unreachable("This spec type is compatible with none.");
446  }
447
448  SourceLocation FixItLoc;
449  if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
450    TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
451    // FIXME: Preserve enough information so that we can produce a correct fixit
452    // location when there is a trailing return type.
453    if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
454      if (!FTLoc.getTypePtr()->hasTrailingReturn())
455        FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
456  }
457
458  if (FixItLoc.isInvalid())
459    Diag(New->getLocation(), DiagID)
460      << New << OS.str();
461  else {
462    Diag(New->getLocation(), DiagID)
463      << New << OS.str()
464      << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
465  }
466
467  if (Old->getLocation().isValid())
468    Diag(Old->getLocation(), diag::note_previous_declaration);
469
470  return ReturnValueOnError;
471}
472
473/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
474/// exception specifications. Exception specifications are equivalent if
475/// they allow exactly the same set of exception types. It does not matter how
476/// that is achieved. See C++ [except.spec]p2.
477bool Sema::CheckEquivalentExceptionSpec(
478    const FunctionProtoType *Old, SourceLocation OldLoc,
479    const FunctionProtoType *New, SourceLocation NewLoc) {
480  if (!getLangOpts().CXXExceptions)
481    return false;
482
483  unsigned DiagID = diag::err_mismatched_exception_spec;
484  if (getLangOpts().MSVCCompat)
485    DiagID = diag::ext_mismatched_exception_spec;
486  bool Result = CheckEquivalentExceptionSpecImpl(
487      *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
488      Old, OldLoc, New, NewLoc);
489
490  // In Microsoft mode, mismatching exception specifications just cause a warning.
491  if (getLangOpts().MSVCCompat)
492    return false;
493  return Result;
494}
495
496/// CheckEquivalentExceptionSpec - Check if the two types have compatible
497/// exception specifications. See C++ [except.spec]p3.
498///
499/// \return \c false if the exception specifications match, \c true if there is
500/// a problem. If \c true is returned, either a diagnostic has already been
501/// produced or \c *MissingExceptionSpecification is set to \c true.
502static bool CheckEquivalentExceptionSpecImpl(
503    Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
504    const FunctionProtoType *Old, SourceLocation OldLoc,
505    const FunctionProtoType *New, SourceLocation NewLoc,
506    bool *MissingExceptionSpecification,
507    bool *MissingEmptyExceptionSpecification,
508    bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
509  if (MissingExceptionSpecification)
510    *MissingExceptionSpecification = false;
511
512  if (MissingEmptyExceptionSpecification)
513    *MissingEmptyExceptionSpecification = false;
514
515  Old = S.ResolveExceptionSpec(NewLoc, Old);
516  if (!Old)
517    return false;
518  New = S.ResolveExceptionSpec(NewLoc, New);
519  if (!New)
520    return false;
521
522  // C++0x [except.spec]p3: Two exception-specifications are compatible if:
523  //   - both are non-throwing, regardless of their form,
524  //   - both have the form noexcept(constant-expression) and the constant-
525  //     expressions are equivalent,
526  //   - both are dynamic-exception-specifications that have the same set of
527  //     adjusted types.
528  //
529  // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
530  //   of the form throw(), noexcept, or noexcept(constant-expression) where the
531  //   constant-expression yields true.
532  //
533  // C++0x [except.spec]p4: If any declaration of a function has an exception-
534  //   specifier that is not a noexcept-specification allowing all exceptions,
535  //   all declarations [...] of that function shall have a compatible
536  //   exception-specification.
537  //
538  // That last point basically means that noexcept(false) matches no spec.
539  // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
540
541  ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
542  ExceptionSpecificationType NewEST = New->getExceptionSpecType();
543
544  assert(!isUnresolvedExceptionSpec(OldEST) &&
545         !isUnresolvedExceptionSpec(NewEST) &&
546         "Shouldn't see unknown exception specifications here");
547
548  CanThrowResult OldCanThrow = Old->canThrow();
549  CanThrowResult NewCanThrow = New->canThrow();
550
551  // Any non-throwing specifications are compatible.
552  if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
553    return false;
554
555  // Any throws-anything specifications are usually compatible.
556  if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
557      NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
558    // The exception is that the absence of an exception specification only
559    // matches noexcept(false) for functions, as described above.
560    if (!AllowNoexceptAllMatchWithNoSpec &&
561        ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
562         (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
563      // This is the disallowed case.
564    } else {
565      return false;
566    }
567  }
568
569  // C++14 [except.spec]p3:
570  //   Two exception-specifications are compatible if [...] both have the form
571  //   noexcept(constant-expression) and the constant-expressions are equivalent
572  if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
573    llvm::FoldingSetNodeID OldFSN, NewFSN;
574    Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
575    New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
576    if (OldFSN == NewFSN)
577      return false;
578  }
579
580  // Dynamic exception specifications with the same set of adjusted types
581  // are compatible.
582  if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
583    bool Success = true;
584    // Both have a dynamic exception spec. Collect the first set, then compare
585    // to the second.
586    llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
587    for (const auto &I : Old->exceptions())
588      OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
589
590    for (const auto &I : New->exceptions()) {
591      CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
592      if (OldTypes.count(TypePtr))
593        NewTypes.insert(TypePtr);
594      else {
595        Success = false;
596        break;
597      }
598    }
599
600    if (Success && OldTypes.size() == NewTypes.size())
601      return false;
602  }
603
604  // As a special compatibility feature, under C++0x we accept no spec and
605  // throw(std::bad_alloc) as equivalent for operator new and operator new[].
606  // This is because the implicit declaration changed, but old code would break.
607  if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
608    const FunctionProtoType *WithExceptions = nullptr;
609    if (OldEST == EST_None && NewEST == EST_Dynamic)
610      WithExceptions = New;
611    else if (OldEST == EST_Dynamic && NewEST == EST_None)
612      WithExceptions = Old;
613    if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
614      // One has no spec, the other throw(something). If that something is
615      // std::bad_alloc, all conditions are met.
616      QualType Exception = *WithExceptions->exception_begin();
617      if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
618        IdentifierInfo* Name = ExRecord->getIdentifier();
619        if (Name && Name->getName() == "bad_alloc") {
620          // It's called bad_alloc, but is it in std?
621          if (ExRecord->isInStdNamespace()) {
622            return false;
623          }
624        }
625      }
626    }
627  }
628
629  // If the caller wants to handle the case that the new function is
630  // incompatible due to a missing exception specification, let it.
631  if (MissingExceptionSpecification && OldEST != EST_None &&
632      NewEST == EST_None) {
633    // The old type has an exception specification of some sort, but
634    // the new type does not.
635    *MissingExceptionSpecification = true;
636
637    if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
638      // The old type has a throw() or noexcept(true) exception specification
639      // and the new type has no exception specification, and the caller asked
640      // to handle this itself.
641      *MissingEmptyExceptionSpecification = true;
642    }
643
644    return true;
645  }
646
647  S.Diag(NewLoc, DiagID);
648  if (NoteID.getDiagID() != 0 && OldLoc.isValid())
649    S.Diag(OldLoc, NoteID);
650  return true;
651}
652
653bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
654                                        const PartialDiagnostic &NoteID,
655                                        const FunctionProtoType *Old,
656                                        SourceLocation OldLoc,
657                                        const FunctionProtoType *New,
658                                        SourceLocation NewLoc) {
659  if (!getLangOpts().CXXExceptions)
660    return false;
661  return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
662                                          New, NewLoc);
663}
664
665bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
666  // [except.handle]p3:
667  //   A handler is a match for an exception object of type E if:
668
669  // HandlerType must be ExceptionType or derived from it, or pointer or
670  // reference to such types.
671  const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
672  if (RefTy)
673    HandlerType = RefTy->getPointeeType();
674
675  //   -- the handler is of type cv T or cv T& and E and T are the same type
676  if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
677    return true;
678
679  // FIXME: ObjC pointer types?
680  if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
681    if (RefTy && (!HandlerType.isConstQualified() ||
682                  HandlerType.isVolatileQualified()))
683      return false;
684
685    // -- the handler is of type cv T or const T& where T is a pointer or
686    //    pointer to member type and E is std::nullptr_t
687    if (ExceptionType->isNullPtrType())
688      return true;
689
690    // -- the handler is of type cv T or const T& where T is a pointer or
691    //    pointer to member type and E is a pointer or pointer to member type
692    //    that can be converted to T by one or more of
693    //    -- a qualification conversion
694    //    -- a function pointer conversion
695    bool LifetimeConv;
696    QualType Result;
697    // FIXME: Should we treat the exception as catchable if a lifetime
698    // conversion is required?
699    if (IsQualificationConversion(ExceptionType, HandlerType, false,
700                                  LifetimeConv) ||
701        IsFunctionConversion(ExceptionType, HandlerType, Result))
702      return true;
703
704    //    -- a standard pointer conversion [...]
705    if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
706      return false;
707
708    // Handle the "qualification conversion" portion.
709    Qualifiers EQuals, HQuals;
710    ExceptionType = Context.getUnqualifiedArrayType(
711        ExceptionType->getPointeeType(), EQuals);
712    HandlerType = Context.getUnqualifiedArrayType(
713        HandlerType->getPointeeType(), HQuals);
714    if (!HQuals.compatiblyIncludes(EQuals))
715      return false;
716
717    if (HandlerType->isVoidType() && ExceptionType->isObjectType())
718      return true;
719
720    // The only remaining case is a derived-to-base conversion.
721  }
722
723  //   -- the handler is of type cg T or cv T& and T is an unambiguous public
724  //      base class of E
725  if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
726    return false;
727  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
728                     /*DetectVirtual=*/false);
729  if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
730      Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
731    return false;
732
733  // Do this check from a context without privileges.
734  switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
735                               Paths.front(),
736                               /*Diagnostic*/ 0,
737                               /*ForceCheck*/ true,
738                               /*ForceUnprivileged*/ true)) {
739  case AR_accessible: return true;
740  case AR_inaccessible: return false;
741  case AR_dependent:
742    llvm_unreachable("access check dependent for unprivileged context");
743  case AR_delayed:
744    llvm_unreachable("access check delayed in non-declaration");
745  }
746  llvm_unreachable("unexpected access check result");
747}
748
749/// CheckExceptionSpecSubset - Check whether the second function type's
750/// exception specification is a subset (or equivalent) of the first function
751/// type. This is used by override and pointer assignment checks.
752bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
753                                    const PartialDiagnostic &NestedDiagID,
754                                    const PartialDiagnostic &NoteID,
755                                    const PartialDiagnostic &NoThrowDiagID,
756                                    const FunctionProtoType *Superset,
757                                    SourceLocation SuperLoc,
758                                    const FunctionProtoType *Subset,
759                                    SourceLocation SubLoc) {
760
761  // Just auto-succeed under -fno-exceptions.
762  if (!getLangOpts().CXXExceptions)
763    return false;
764
765  // FIXME: As usual, we could be more specific in our error messages, but
766  // that better waits until we've got types with source locations.
767
768  if (!SubLoc.isValid())
769    SubLoc = SuperLoc;
770
771  // Resolve the exception specifications, if needed.
772  Superset = ResolveExceptionSpec(SuperLoc, Superset);
773  if (!Superset)
774    return false;
775  Subset = ResolveExceptionSpec(SubLoc, Subset);
776  if (!Subset)
777    return false;
778
779  ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
780  ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
781  assert(!isUnresolvedExceptionSpec(SuperEST) &&
782         !isUnresolvedExceptionSpec(SubEST) &&
783         "Shouldn't see unknown exception specifications here");
784
785  // If there are dependent noexcept specs, assume everything is fine. Unlike
786  // with the equivalency check, this is safe in this case, because we don't
787  // want to merge declarations. Checks after instantiation will catch any
788  // omissions we make here.
789  if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
790    return false;
791
792  CanThrowResult SuperCanThrow = Superset->canThrow();
793  CanThrowResult SubCanThrow = Subset->canThrow();
794
795  // If the superset contains everything or the subset contains nothing, we're
796  // done.
797  if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
798      SubCanThrow == CT_Cannot)
799    return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
800                                   Subset, SubLoc);
801
802  // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
803  // some cases.
804  if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
805      SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
806    Diag(SubLoc, NoThrowDiagID);
807    if (NoteID.getDiagID() != 0)
808      Diag(SuperLoc, NoteID);
809    return true;
810  }
811
812  // If the subset contains everything or the superset contains nothing, we've
813  // failed.
814  if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
815      SuperCanThrow == CT_Cannot) {
816    Diag(SubLoc, DiagID);
817    if (NoteID.getDiagID() != 0)
818      Diag(SuperLoc, NoteID);
819    return true;
820  }
821
822  assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
823         "Exception spec subset: non-dynamic case slipped through.");
824
825  // Neither contains everything or nothing. Do a proper comparison.
826  for (QualType SubI : Subset->exceptions()) {
827    if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
828      SubI = RefTy->getPointeeType();
829
830    // Make sure it's in the superset.
831    bool Contained = false;
832    for (QualType SuperI : Superset->exceptions()) {
833      // [except.spec]p5:
834      //   the target entity shall allow at least the exceptions allowed by the
835      //   source
836      //
837      // We interpret this as meaning that a handler for some target type would
838      // catch an exception of each source type.
839      if (handlerCanCatch(SuperI, SubI)) {
840        Contained = true;
841        break;
842      }
843    }
844    if (!Contained) {
845      Diag(SubLoc, DiagID);
846      if (NoteID.getDiagID() != 0)
847        Diag(SuperLoc, NoteID);
848      return true;
849    }
850  }
851  // We've run half the gauntlet.
852  return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
853                                 Subset, SubLoc);
854}
855
856static bool
857CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
858                            const PartialDiagnostic &NoteID, QualType Target,
859                            SourceLocation TargetLoc, QualType Source,
860                            SourceLocation SourceLoc) {
861  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
862  if (!TFunc)
863    return false;
864  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
865  if (!SFunc)
866    return false;
867
868  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
869                                        SFunc, SourceLoc);
870}
871
872/// CheckParamExceptionSpec - Check if the parameter and return types of the
873/// two functions have equivalent exception specs. This is part of the
874/// assignment and override compatibility check. We do not check the parameters
875/// of parameter function pointers recursively, as no sane programmer would
876/// even be able to write such a function type.
877bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
878                                   const PartialDiagnostic &NoteID,
879                                   const FunctionProtoType *Target,
880                                   SourceLocation TargetLoc,
881                                   const FunctionProtoType *Source,
882                                   SourceLocation SourceLoc) {
883  auto RetDiag = DiagID;
884  RetDiag << 0;
885  if (CheckSpecForTypesEquivalent(
886          *this, RetDiag, PDiag(),
887          Target->getReturnType(), TargetLoc, Source->getReturnType(),
888          SourceLoc))
889    return true;
890
891  // We shouldn't even be testing this unless the arguments are otherwise
892  // compatible.
893  assert(Target->getNumParams() == Source->getNumParams() &&
894         "Functions have different argument counts.");
895  for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
896    auto ParamDiag = DiagID;
897    ParamDiag << 1;
898    if (CheckSpecForTypesEquivalent(
899            *this, ParamDiag, PDiag(),
900            Target->getParamType(i), TargetLoc, Source->getParamType(i),
901            SourceLoc))
902      return true;
903  }
904  return false;
905}
906
907bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
908  // First we check for applicability.
909  // Target type must be a function, function pointer or function reference.
910  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
911  if (!ToFunc || ToFunc->hasDependentExceptionSpec())
912    return false;
913
914  // SourceType must be a function or function pointer.
915  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
916  if (!FromFunc || FromFunc->hasDependentExceptionSpec())
917    return false;
918
919  unsigned DiagID = diag::err_incompatible_exception_specs;
920  unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
921  // This is not an error in C++17 onwards, unless the noexceptness doesn't
922  // match, but in that case we have a full-on type mismatch, not just a
923  // type sugar mismatch.
924  if (getLangOpts().CPlusPlus17) {
925    DiagID = diag::warn_incompatible_exception_specs;
926    NestedDiagID = diag::warn_deep_exception_specs_differ;
927  }
928
929  // Now we've got the correct types on both sides, check their compatibility.
930  // This means that the source of the conversion can only throw a subset of
931  // the exceptions of the target, and any exception specs on arguments or
932  // return types must be equivalent.
933  //
934  // FIXME: If there is a nested dependent exception specification, we should
935  // not be checking it here. This is fine:
936  //   template<typename T> void f() {
937  //     void (*p)(void (*) throw(T));
938  //     void (*q)(void (*) throw(int)) = p;
939  //   }
940  // ... because it might be instantiated with T=int.
941  return CheckExceptionSpecSubset(
942             PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
943             From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
944         !getLangOpts().CPlusPlus17;
945}
946
947bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
948                                                const CXXMethodDecl *Old) {
949  // If the new exception specification hasn't been parsed yet, skip the check.
950  // We'll get called again once it's been parsed.
951  if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
952      EST_Unparsed)
953    return false;
954
955  // Don't check uninstantiated template destructors at all. We can only
956  // synthesize correct specs after the template is instantiated.
957  if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
958    return false;
959
960  // If the old exception specification hasn't been parsed yet, or the new
961  // exception specification can't be computed yet, remember that we need to
962  // perform this check when we get to the end of the outermost
963  // lexically-surrounding class.
964  if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
965    DelayedOverridingExceptionSpecChecks.push_back({New, Old});
966    return false;
967  }
968
969  unsigned DiagID = diag::err_override_exception_spec;
970  if (getLangOpts().MSVCCompat)
971    DiagID = diag::ext_override_exception_spec;
972  return CheckExceptionSpecSubset(PDiag(DiagID),
973                                  PDiag(diag::err_deep_exception_specs_differ),
974                                  PDiag(diag::note_overridden_virtual_function),
975                                  PDiag(diag::ext_override_exception_spec),
976                                  Old->getType()->castAs<FunctionProtoType>(),
977                                  Old->getLocation(),
978                                  New->getType()->castAs<FunctionProtoType>(),
979                                  New->getLocation());
980}
981
982static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
983  CanThrowResult R = CT_Cannot;
984  for (const Stmt *SubStmt : S->children()) {
985    if (!SubStmt)
986      continue;
987    R = mergeCanThrow(R, Self.canThrow(SubStmt));
988    if (R == CT_Can)
989      break;
990  }
991  return R;
992}
993
994/// Determine whether the callee of a particular function call can throw.
995/// E and D are both optional, but at least one of E and Loc must be specified.
996static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
997                                     SourceLocation Loc = SourceLocation()) {
998  // As an extension, we assume that __attribute__((nothrow)) functions don't
999  // throw.
1000  if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1001    return CT_Cannot;
1002
1003  QualType T;
1004
1005  // In C++1z, just look at the function type of the callee.
1006  if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1007    E = cast<CallExpr>(E)->getCallee();
1008    T = E->getType();
1009    if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1010      // Sadly we don't preserve the actual type as part of the "bound member"
1011      // placeholder, so we need to reconstruct it.
1012      E = E->IgnoreParenImpCasts();
1013
1014      // Could be a call to a pointer-to-member or a plain member access.
1015      if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1016        assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1017        T = Op->getRHS()->getType()
1018              ->castAs<MemberPointerType>()->getPointeeType();
1019      } else {
1020        T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1021      }
1022    }
1023  } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1024    T = VD->getType();
1025  else
1026    // If we have no clue what we're calling, assume the worst.
1027    return CT_Can;
1028
1029  const FunctionProtoType *FT;
1030  if ((FT = T->getAs<FunctionProtoType>())) {
1031  } else if (const PointerType *PT = T->getAs<PointerType>())
1032    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1033  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1034    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1035  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1036    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1037  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1038    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1039
1040  if (!FT)
1041    return CT_Can;
1042
1043  FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1044  if (!FT)
1045    return CT_Can;
1046
1047  return FT->canThrow();
1048}
1049
1050static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1051  CanThrowResult CT = CT_Cannot;
1052
1053  // Initialization might throw.
1054  if (!VD->isUsableInConstantExpressions(Self.Context))
1055    if (const Expr *Init = VD->getInit())
1056      CT = mergeCanThrow(CT, Self.canThrow(Init));
1057
1058  // Destructor might throw.
1059  if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1060    if (auto *RD =
1061            VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1062      if (auto *Dtor = RD->getDestructor()) {
1063        CT = mergeCanThrow(
1064            CT, canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1065      }
1066    }
1067  }
1068
1069  // If this is a decomposition declaration, bindings might throw.
1070  if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1071    for (auto *B : DD->bindings())
1072      if (auto *HD = B->getHoldingVar())
1073        CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1074
1075  return CT;
1076}
1077
1078static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1079  if (DC->isTypeDependent())
1080    return CT_Dependent;
1081
1082  if (!DC->getTypeAsWritten()->isReferenceType())
1083    return CT_Cannot;
1084
1085  if (DC->getSubExpr()->isTypeDependent())
1086    return CT_Dependent;
1087
1088  return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1089}
1090
1091static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1092  if (DC->isTypeOperand())
1093    return CT_Cannot;
1094
1095  Expr *Op = DC->getExprOperand();
1096  if (Op->isTypeDependent())
1097    return CT_Dependent;
1098
1099  const RecordType *RT = Op->getType()->getAs<RecordType>();
1100  if (!RT)
1101    return CT_Cannot;
1102
1103  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1104    return CT_Cannot;
1105
1106  if (Op->Classify(S.Context).isPRValue())
1107    return CT_Cannot;
1108
1109  return CT_Can;
1110}
1111
1112CanThrowResult Sema::canThrow(const Stmt *S) {
1113  // C++ [expr.unary.noexcept]p3:
1114  //   [Can throw] if in a potentially-evaluated context the expression would
1115  //   contain:
1116  switch (S->getStmtClass()) {
1117  case Expr::ConstantExprClass:
1118    return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1119
1120  case Expr::CXXThrowExprClass:
1121    //   - a potentially evaluated throw-expression
1122    return CT_Can;
1123
1124  case Expr::CXXDynamicCastExprClass: {
1125    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1126    //     where T is a reference type, that requires a run-time check
1127    auto *CE = cast<CXXDynamicCastExpr>(S);
1128    // FIXME: Properly determine whether a variably-modified type can throw.
1129    if (CE->getType()->isVariablyModifiedType())
1130      return CT_Can;
1131    CanThrowResult CT = canDynamicCastThrow(CE);
1132    if (CT == CT_Can)
1133      return CT;
1134    return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1135  }
1136
1137  case Expr::CXXTypeidExprClass:
1138    //   - a potentially evaluated typeid expression applied to a glvalue
1139    //     expression whose type is a polymorphic class type
1140    return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1141
1142    //   - a potentially evaluated call to a function, member function, function
1143    //     pointer, or member function pointer that does not have a non-throwing
1144    //     exception-specification
1145  case Expr::CallExprClass:
1146  case Expr::CXXMemberCallExprClass:
1147  case Expr::CXXOperatorCallExprClass:
1148  case Expr::UserDefinedLiteralClass: {
1149    const CallExpr *CE = cast<CallExpr>(S);
1150    CanThrowResult CT;
1151    if (CE->isTypeDependent())
1152      CT = CT_Dependent;
1153    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1154      CT = CT_Cannot;
1155    else
1156      CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1157    if (CT == CT_Can)
1158      return CT;
1159    return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1160  }
1161
1162  case Expr::CXXConstructExprClass:
1163  case Expr::CXXTemporaryObjectExprClass: {
1164    auto *CE = cast<CXXConstructExpr>(S);
1165    // FIXME: Properly determine whether a variably-modified type can throw.
1166    if (CE->getType()->isVariablyModifiedType())
1167      return CT_Can;
1168    CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1169    if (CT == CT_Can)
1170      return CT;
1171    return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1172  }
1173
1174  case Expr::CXXInheritedCtorInitExprClass: {
1175    auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1176    return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1177  }
1178
1179  case Expr::LambdaExprClass: {
1180    const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1181    CanThrowResult CT = CT_Cannot;
1182    for (LambdaExpr::const_capture_init_iterator
1183             Cap = Lambda->capture_init_begin(),
1184             CapEnd = Lambda->capture_init_end();
1185         Cap != CapEnd; ++Cap)
1186      CT = mergeCanThrow(CT, canThrow(*Cap));
1187    return CT;
1188  }
1189
1190  case Expr::CXXNewExprClass: {
1191    auto *NE = cast<CXXNewExpr>(S);
1192    CanThrowResult CT;
1193    if (NE->isTypeDependent())
1194      CT = CT_Dependent;
1195    else
1196      CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1197    if (CT == CT_Can)
1198      return CT;
1199    return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1200  }
1201
1202  case Expr::CXXDeleteExprClass: {
1203    auto *DE = cast<CXXDeleteExpr>(S);
1204    CanThrowResult CT;
1205    QualType DTy = DE->getDestroyedType();
1206    if (DTy.isNull() || DTy->isDependentType()) {
1207      CT = CT_Dependent;
1208    } else {
1209      CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1210      if (const RecordType *RT = DTy->getAs<RecordType>()) {
1211        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1212        const CXXDestructorDecl *DD = RD->getDestructor();
1213        if (DD)
1214          CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1215      }
1216      if (CT == CT_Can)
1217        return CT;
1218    }
1219    return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1220  }
1221
1222  case Expr::CXXBindTemporaryExprClass: {
1223    auto *BTE = cast<CXXBindTemporaryExpr>(S);
1224    // The bound temporary has to be destroyed again, which might throw.
1225    CanThrowResult CT =
1226        canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1227    if (CT == CT_Can)
1228      return CT;
1229    return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1230  }
1231
1232  case Expr::PseudoObjectExprClass: {
1233    auto *POE = cast<PseudoObjectExpr>(S);
1234    CanThrowResult CT = CT_Cannot;
1235    for (const Expr *E : POE->semantics()) {
1236      CT = mergeCanThrow(CT, canThrow(E));
1237      if (CT == CT_Can)
1238        break;
1239    }
1240    return CT;
1241  }
1242
1243    // ObjC message sends are like function calls, but never have exception
1244    // specs.
1245  case Expr::ObjCMessageExprClass:
1246  case Expr::ObjCPropertyRefExprClass:
1247  case Expr::ObjCSubscriptRefExprClass:
1248    return CT_Can;
1249
1250    // All the ObjC literals that are implemented as calls are
1251    // potentially throwing unless we decide to close off that
1252    // possibility.
1253  case Expr::ObjCArrayLiteralClass:
1254  case Expr::ObjCDictionaryLiteralClass:
1255  case Expr::ObjCBoxedExprClass:
1256    return CT_Can;
1257
1258    // Many other things have subexpressions, so we have to test those.
1259    // Some are simple:
1260  case Expr::CoawaitExprClass:
1261  case Expr::ConditionalOperatorClass:
1262  case Expr::CoyieldExprClass:
1263  case Expr::CXXRewrittenBinaryOperatorClass:
1264  case Expr::CXXStdInitializerListExprClass:
1265  case Expr::DesignatedInitExprClass:
1266  case Expr::DesignatedInitUpdateExprClass:
1267  case Expr::ExprWithCleanupsClass:
1268  case Expr::ExtVectorElementExprClass:
1269  case Expr::InitListExprClass:
1270  case Expr::ArrayInitLoopExprClass:
1271  case Expr::MemberExprClass:
1272  case Expr::ObjCIsaExprClass:
1273  case Expr::ObjCIvarRefExprClass:
1274  case Expr::ParenExprClass:
1275  case Expr::ParenListExprClass:
1276  case Expr::ShuffleVectorExprClass:
1277  case Expr::StmtExprClass:
1278  case Expr::ConvertVectorExprClass:
1279  case Expr::VAArgExprClass:
1280    return canSubStmtsThrow(*this, S);
1281
1282  case Expr::CompoundLiteralExprClass:
1283  case Expr::CXXConstCastExprClass:
1284  case Expr::CXXReinterpretCastExprClass:
1285  case Expr::BuiltinBitCastExprClass:
1286      // FIXME: Properly determine whether a variably-modified type can throw.
1287    if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1288      return CT_Can;
1289    return canSubStmtsThrow(*this, S);
1290
1291    // Some might be dependent for other reasons.
1292  case Expr::ArraySubscriptExprClass:
1293  case Expr::OMPArraySectionExprClass:
1294  case Expr::BinaryOperatorClass:
1295  case Expr::DependentCoawaitExprClass:
1296  case Expr::CompoundAssignOperatorClass:
1297  case Expr::CStyleCastExprClass:
1298  case Expr::CXXStaticCastExprClass:
1299  case Expr::CXXFunctionalCastExprClass:
1300  case Expr::ImplicitCastExprClass:
1301  case Expr::MaterializeTemporaryExprClass:
1302  case Expr::UnaryOperatorClass: {
1303    // FIXME: Properly determine whether a variably-modified type can throw.
1304    if (auto *CE = dyn_cast<CastExpr>(S))
1305      if (CE->getType()->isVariablyModifiedType())
1306        return CT_Can;
1307    CanThrowResult CT =
1308        cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1309    return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1310  }
1311
1312  case Expr::CXXDefaultArgExprClass:
1313    return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1314
1315  case Expr::CXXDefaultInitExprClass:
1316    return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1317
1318  case Expr::ChooseExprClass: {
1319    auto *CE = cast<ChooseExpr>(S);
1320    if (CE->isTypeDependent() || CE->isValueDependent())
1321      return CT_Dependent;
1322    return canThrow(CE->getChosenSubExpr());
1323  }
1324
1325  case Expr::GenericSelectionExprClass:
1326    if (cast<GenericSelectionExpr>(S)->isResultDependent())
1327      return CT_Dependent;
1328    return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1329
1330    // Some expressions are always dependent.
1331  case Expr::CXXDependentScopeMemberExprClass:
1332  case Expr::CXXUnresolvedConstructExprClass:
1333  case Expr::DependentScopeDeclRefExprClass:
1334  case Expr::CXXFoldExprClass:
1335    return CT_Dependent;
1336
1337  case Expr::AsTypeExprClass:
1338  case Expr::BinaryConditionalOperatorClass:
1339  case Expr::BlockExprClass:
1340  case Expr::CUDAKernelCallExprClass:
1341  case Expr::DeclRefExprClass:
1342  case Expr::ObjCBridgedCastExprClass:
1343  case Expr::ObjCIndirectCopyRestoreExprClass:
1344  case Expr::ObjCProtocolExprClass:
1345  case Expr::ObjCSelectorExprClass:
1346  case Expr::ObjCAvailabilityCheckExprClass:
1347  case Expr::OffsetOfExprClass:
1348  case Expr::PackExpansionExprClass:
1349  case Expr::SubstNonTypeTemplateParmExprClass:
1350  case Expr::SubstNonTypeTemplateParmPackExprClass:
1351  case Expr::FunctionParmPackExprClass:
1352  case Expr::UnaryExprOrTypeTraitExprClass:
1353  case Expr::UnresolvedLookupExprClass:
1354  case Expr::UnresolvedMemberExprClass:
1355  case Expr::TypoExprClass:
1356    // FIXME: Many of the above can throw.
1357    return CT_Cannot;
1358
1359  case Expr::AddrLabelExprClass:
1360  case Expr::ArrayTypeTraitExprClass:
1361  case Expr::AtomicExprClass:
1362  case Expr::TypeTraitExprClass:
1363  case Expr::CXXBoolLiteralExprClass:
1364  case Expr::CXXNoexceptExprClass:
1365  case Expr::CXXNullPtrLiteralExprClass:
1366  case Expr::CXXPseudoDestructorExprClass:
1367  case Expr::CXXScalarValueInitExprClass:
1368  case Expr::CXXThisExprClass:
1369  case Expr::CXXUuidofExprClass:
1370  case Expr::CharacterLiteralClass:
1371  case Expr::ExpressionTraitExprClass:
1372  case Expr::FloatingLiteralClass:
1373  case Expr::GNUNullExprClass:
1374  case Expr::ImaginaryLiteralClass:
1375  case Expr::ImplicitValueInitExprClass:
1376  case Expr::IntegerLiteralClass:
1377  case Expr::FixedPointLiteralClass:
1378  case Expr::ArrayInitIndexExprClass:
1379  case Expr::NoInitExprClass:
1380  case Expr::ObjCEncodeExprClass:
1381  case Expr::ObjCStringLiteralClass:
1382  case Expr::ObjCBoolLiteralExprClass:
1383  case Expr::OpaqueValueExprClass:
1384  case Expr::PredefinedExprClass:
1385  case Expr::SizeOfPackExprClass:
1386  case Expr::StringLiteralClass:
1387  case Expr::SourceLocExprClass:
1388  case Expr::ConceptSpecializationExprClass:
1389  case Expr::RequiresExprClass:
1390    // These expressions can never throw.
1391    return CT_Cannot;
1392
1393  case Expr::MSPropertyRefExprClass:
1394  case Expr::MSPropertySubscriptExprClass:
1395    llvm_unreachable("Invalid class for expression");
1396
1397    // Most statements can throw if any substatement can throw.
1398  case Stmt::AttributedStmtClass:
1399  case Stmt::BreakStmtClass:
1400  case Stmt::CapturedStmtClass:
1401  case Stmt::CaseStmtClass:
1402  case Stmt::CompoundStmtClass:
1403  case Stmt::ContinueStmtClass:
1404  case Stmt::CoreturnStmtClass:
1405  case Stmt::CoroutineBodyStmtClass:
1406  case Stmt::CXXCatchStmtClass:
1407  case Stmt::CXXForRangeStmtClass:
1408  case Stmt::DefaultStmtClass:
1409  case Stmt::DoStmtClass:
1410  case Stmt::ForStmtClass:
1411  case Stmt::GCCAsmStmtClass:
1412  case Stmt::GotoStmtClass:
1413  case Stmt::IndirectGotoStmtClass:
1414  case Stmt::LabelStmtClass:
1415  case Stmt::MSAsmStmtClass:
1416  case Stmt::MSDependentExistsStmtClass:
1417  case Stmt::NullStmtClass:
1418  case Stmt::ObjCAtCatchStmtClass:
1419  case Stmt::ObjCAtFinallyStmtClass:
1420  case Stmt::ObjCAtSynchronizedStmtClass:
1421  case Stmt::ObjCAutoreleasePoolStmtClass:
1422  case Stmt::ObjCForCollectionStmtClass:
1423  case Stmt::OMPAtomicDirectiveClass:
1424  case Stmt::OMPBarrierDirectiveClass:
1425  case Stmt::OMPCancelDirectiveClass:
1426  case Stmt::OMPCancellationPointDirectiveClass:
1427  case Stmt::OMPCriticalDirectiveClass:
1428  case Stmt::OMPDistributeDirectiveClass:
1429  case Stmt::OMPDistributeParallelForDirectiveClass:
1430  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1431  case Stmt::OMPDistributeSimdDirectiveClass:
1432  case Stmt::OMPFlushDirectiveClass:
1433  case Stmt::OMPForDirectiveClass:
1434  case Stmt::OMPForSimdDirectiveClass:
1435  case Stmt::OMPMasterDirectiveClass:
1436  case Stmt::OMPMasterTaskLoopDirectiveClass:
1437  case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1438  case Stmt::OMPOrderedDirectiveClass:
1439  case Stmt::OMPParallelDirectiveClass:
1440  case Stmt::OMPParallelForDirectiveClass:
1441  case Stmt::OMPParallelForSimdDirectiveClass:
1442  case Stmt::OMPParallelMasterDirectiveClass:
1443  case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1444  case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1445  case Stmt::OMPParallelSectionsDirectiveClass:
1446  case Stmt::OMPSectionDirectiveClass:
1447  case Stmt::OMPSectionsDirectiveClass:
1448  case Stmt::OMPSimdDirectiveClass:
1449  case Stmt::OMPSingleDirectiveClass:
1450  case Stmt::OMPTargetDataDirectiveClass:
1451  case Stmt::OMPTargetDirectiveClass:
1452  case Stmt::OMPTargetEnterDataDirectiveClass:
1453  case Stmt::OMPTargetExitDataDirectiveClass:
1454  case Stmt::OMPTargetParallelDirectiveClass:
1455  case Stmt::OMPTargetParallelForDirectiveClass:
1456  case Stmt::OMPTargetParallelForSimdDirectiveClass:
1457  case Stmt::OMPTargetSimdDirectiveClass:
1458  case Stmt::OMPTargetTeamsDirectiveClass:
1459  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1460  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1461  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1462  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1463  case Stmt::OMPTargetUpdateDirectiveClass:
1464  case Stmt::OMPTaskDirectiveClass:
1465  case Stmt::OMPTaskgroupDirectiveClass:
1466  case Stmt::OMPTaskLoopDirectiveClass:
1467  case Stmt::OMPTaskLoopSimdDirectiveClass:
1468  case Stmt::OMPTaskwaitDirectiveClass:
1469  case Stmt::OMPTaskyieldDirectiveClass:
1470  case Stmt::OMPTeamsDirectiveClass:
1471  case Stmt::OMPTeamsDistributeDirectiveClass:
1472  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1473  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1474  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1475  case Stmt::ReturnStmtClass:
1476  case Stmt::SEHExceptStmtClass:
1477  case Stmt::SEHFinallyStmtClass:
1478  case Stmt::SEHLeaveStmtClass:
1479  case Stmt::SEHTryStmtClass:
1480  case Stmt::SwitchStmtClass:
1481  case Stmt::WhileStmtClass:
1482    return canSubStmtsThrow(*this, S);
1483
1484  case Stmt::DeclStmtClass: {
1485    CanThrowResult CT = CT_Cannot;
1486    for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1487      if (auto *VD = dyn_cast<VarDecl>(D))
1488        CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1489
1490      // FIXME: Properly determine whether a variably-modified type can throw.
1491      if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1492        if (TND->getUnderlyingType()->isVariablyModifiedType())
1493          return CT_Can;
1494      if (auto *VD = dyn_cast<ValueDecl>(D))
1495        if (VD->getType()->isVariablyModifiedType())
1496          return CT_Can;
1497    }
1498    return CT;
1499  }
1500
1501  case Stmt::IfStmtClass: {
1502    auto *IS = cast<IfStmt>(S);
1503    CanThrowResult CT = CT_Cannot;
1504    if (const Stmt *Init = IS->getInit())
1505      CT = mergeCanThrow(CT, canThrow(Init));
1506    if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1507      CT = mergeCanThrow(CT, canThrow(CondDS));
1508    CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1509
1510    // For 'if constexpr', consider only the non-discarded case.
1511    // FIXME: We should add a DiscardedStmt marker to the AST.
1512    if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1513      return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1514
1515    CanThrowResult Then = canThrow(IS->getThen());
1516    CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1517    if (Then == Else)
1518      return mergeCanThrow(CT, Then);
1519
1520    // For a dependent 'if constexpr', the result is dependent if it depends on
1521    // the value of the condition.
1522    return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1523                                               : mergeCanThrow(Then, Else));
1524  }
1525
1526  case Stmt::CXXTryStmtClass: {
1527    auto *TS = cast<CXXTryStmt>(S);
1528    // try /*...*/ catch (...) { H } can throw only if H can throw.
1529    // Any other try-catch can throw if any substatement can throw.
1530    const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1531    if (!FinalHandler->getExceptionDecl())
1532      return canThrow(FinalHandler->getHandlerBlock());
1533    return canSubStmtsThrow(*this, S);
1534  }
1535
1536  case Stmt::ObjCAtThrowStmtClass:
1537    return CT_Can;
1538
1539  case Stmt::ObjCAtTryStmtClass: {
1540    auto *TS = cast<ObjCAtTryStmt>(S);
1541
1542    // @catch(...) need not be last in Objective-C. Walk backwards until we
1543    // see one or hit the @try.
1544    CanThrowResult CT = CT_Cannot;
1545    if (const Stmt *Finally = TS->getFinallyStmt())
1546      CT = mergeCanThrow(CT, canThrow(Finally));
1547    for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1548      const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1549      CT = mergeCanThrow(CT, canThrow(Catch));
1550      // If we reach a @catch(...), no earlier exceptions can escape.
1551      if (Catch->hasEllipsis())
1552        return CT;
1553    }
1554
1555    // Didn't find an @catch(...). Exceptions from the @try body can escape.
1556    return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1557  }
1558
1559  case Stmt::NoStmtClass:
1560    llvm_unreachable("Invalid class for statement");
1561  }
1562  llvm_unreachable("Bogus StmtClass");
1563}
1564
1565} // end namespace clang
1566