1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements C++ semantic analysis for scope specifiers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/Basic/PartialDiagnostic.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/SemaInternal.h"
22#include "clang/Sema/Template.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace clang;
25
26/// Find the current instantiation that associated with the given type.
27static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                DeclContext *CurContext) {
29  if (T.isNull())
30    return nullptr;
31
32  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35    if (!Record->isDependentContext() ||
36        Record->isCurrentInstantiation(CurContext))
37      return Record;
38
39    return nullptr;
40  } else if (isa<InjectedClassNameType>(Ty))
41    return cast<InjectedClassNameType>(Ty)->getDecl();
42  else
43    return nullptr;
44}
45
46/// Compute the DeclContext that is associated with the given type.
47///
48/// \param T the type for which we are attempting to find a DeclContext.
49///
50/// \returns the declaration context represented by the type T,
51/// or NULL if the declaration context cannot be computed (e.g., because it is
52/// dependent and not the current instantiation).
53DeclContext *Sema::computeDeclContext(QualType T) {
54  if (!T->isDependentType())
55    if (const TagType *Tag = T->getAs<TagType>())
56      return Tag->getDecl();
57
58  return ::getCurrentInstantiationOf(T, CurContext);
59}
60
61/// Compute the DeclContext that is associated with the given
62/// scope specifier.
63///
64/// \param SS the C++ scope specifier as it appears in the source
65///
66/// \param EnteringContext when true, we will be entering the context of
67/// this scope specifier, so we can retrieve the declaration context of a
68/// class template or class template partial specialization even if it is
69/// not the current instantiation.
70///
71/// \returns the declaration context represented by the scope specifier @p SS,
72/// or NULL if the declaration context cannot be computed (e.g., because it is
73/// dependent and not the current instantiation).
74DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75                                      bool EnteringContext) {
76  if (!SS.isSet() || SS.isInvalid())
77    return nullptr;
78
79  NestedNameSpecifier *NNS = SS.getScopeRep();
80  if (NNS->isDependent()) {
81    // If this nested-name-specifier refers to the current
82    // instantiation, return its DeclContext.
83    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84      return Record;
85
86    if (EnteringContext) {
87      const Type *NNSType = NNS->getAsType();
88      if (!NNSType) {
89        return nullptr;
90      }
91
92      // Look through type alias templates, per C++0x [temp.dep.type]p1.
93      NNSType = Context.getCanonicalType(NNSType);
94      if (const TemplateSpecializationType *SpecType
95            = NNSType->getAs<TemplateSpecializationType>()) {
96        // We are entering the context of the nested name specifier, so try to
97        // match the nested name specifier to either a primary class template
98        // or a class template partial specialization.
99        if (ClassTemplateDecl *ClassTemplate
100              = dyn_cast_or_null<ClassTemplateDecl>(
101                            SpecType->getTemplateName().getAsTemplateDecl())) {
102          QualType ContextType
103            = Context.getCanonicalType(QualType(SpecType, 0));
104
105          // If the type of the nested name specifier is the same as the
106          // injected class name of the named class template, we're entering
107          // into that class template definition.
108          QualType Injected
109            = ClassTemplate->getInjectedClassNameSpecialization();
110          if (Context.hasSameType(Injected, ContextType))
111            return ClassTemplate->getTemplatedDecl();
112
113          // If the type of the nested name specifier is the same as the
114          // type of one of the class template's class template partial
115          // specializations, we're entering into the definition of that
116          // class template partial specialization.
117          if (ClassTemplatePartialSpecializationDecl *PartialSpec
118                = ClassTemplate->findPartialSpecialization(ContextType)) {
119            // A declaration of the partial specialization must be visible.
120            // We can always recover here, because this only happens when we're
121            // entering the context, and that can't happen in a SFINAE context.
122            assert(!isSFINAEContext() &&
123                   "partial specialization scope specifier in SFINAE context?");
124            if (!hasVisibleDeclaration(PartialSpec))
125              diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
126                                    MissingImportKind::PartialSpecialization,
127                                    /*Recover*/true);
128            return PartialSpec;
129          }
130        }
131      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
132        // The nested name specifier refers to a member of a class template.
133        return RecordT->getDecl();
134      }
135    }
136
137    return nullptr;
138  }
139
140  switch (NNS->getKind()) {
141  case NestedNameSpecifier::Identifier:
142    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
143
144  case NestedNameSpecifier::Namespace:
145    return NNS->getAsNamespace();
146
147  case NestedNameSpecifier::NamespaceAlias:
148    return NNS->getAsNamespaceAlias()->getNamespace();
149
150  case NestedNameSpecifier::TypeSpec:
151  case NestedNameSpecifier::TypeSpecWithTemplate: {
152    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
153    assert(Tag && "Non-tag type in nested-name-specifier");
154    return Tag->getDecl();
155  }
156
157  case NestedNameSpecifier::Global:
158    return Context.getTranslationUnitDecl();
159
160  case NestedNameSpecifier::Super:
161    return NNS->getAsRecordDecl();
162  }
163
164  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
165}
166
167bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
168  if (!SS.isSet() || SS.isInvalid())
169    return false;
170
171  return SS.getScopeRep()->isDependent();
172}
173
174/// If the given nested name specifier refers to the current
175/// instantiation, return the declaration that corresponds to that
176/// current instantiation (C++0x [temp.dep.type]p1).
177///
178/// \param NNS a dependent nested name specifier.
179CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
180  assert(getLangOpts().CPlusPlus && "Only callable in C++");
181  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
182
183  if (!NNS->getAsType())
184    return nullptr;
185
186  QualType T = QualType(NNS->getAsType(), 0);
187  return ::getCurrentInstantiationOf(T, CurContext);
188}
189
190/// Require that the context specified by SS be complete.
191///
192/// If SS refers to a type, this routine checks whether the type is
193/// complete enough (or can be made complete enough) for name lookup
194/// into the DeclContext. A type that is not yet completed can be
195/// considered "complete enough" if it is a class/struct/union/enum
196/// that is currently being defined. Or, if we have a type that names
197/// a class template specialization that is not a complete type, we
198/// will attempt to instantiate that class template.
199bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
200                                      DeclContext *DC) {
201  assert(DC && "given null context");
202
203  TagDecl *tag = dyn_cast<TagDecl>(DC);
204
205  // If this is a dependent type, then we consider it complete.
206  // FIXME: This is wrong; we should require a (visible) definition to
207  // exist in this case too.
208  if (!tag || tag->isDependentContext())
209    return false;
210
211  // Grab the tag definition, if there is one.
212  QualType type = Context.getTypeDeclType(tag);
213  tag = type->getAsTagDecl();
214
215  // If we're currently defining this type, then lookup into the
216  // type is okay: don't complain that it isn't complete yet.
217  if (tag->isBeingDefined())
218    return false;
219
220  SourceLocation loc = SS.getLastQualifierNameLoc();
221  if (loc.isInvalid()) loc = SS.getRange().getBegin();
222
223  // The type must be complete.
224  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225                          SS.getRange())) {
226    SS.SetInvalid(SS.getRange());
227    return true;
228  }
229
230  // Fixed enum types are complete, but they aren't valid as scopes
231  // until we see a definition, so awkwardly pull out this special
232  // case.
233  auto *EnumD = dyn_cast<EnumDecl>(tag);
234  if (!EnumD)
235    return false;
236  if (EnumD->isCompleteDefinition()) {
237    // If we know about the definition but it is not visible, complain.
238    NamedDecl *SuggestedDef = nullptr;
239    if (!hasVisibleDefinition(EnumD, &SuggestedDef,
240                              /*OnlyNeedComplete*/false)) {
241      // If the user is going to see an error here, recover by making the
242      // definition visible.
243      bool TreatAsComplete = !isSFINAEContext();
244      diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
245                            /*Recover*/TreatAsComplete);
246      return !TreatAsComplete;
247    }
248    return false;
249  }
250
251  // Try to instantiate the definition, if this is a specialization of an
252  // enumeration temploid.
253  if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
254    MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
255    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
256      if (InstantiateEnum(loc, EnumD, Pattern,
257                          getTemplateInstantiationArgs(EnumD),
258                          TSK_ImplicitInstantiation)) {
259        SS.SetInvalid(SS.getRange());
260        return true;
261      }
262      return false;
263    }
264  }
265
266  Diag(loc, diag::err_incomplete_nested_name_spec)
267    << type << SS.getRange();
268  SS.SetInvalid(SS.getRange());
269  return true;
270}
271
272bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
273                                        CXXScopeSpec &SS) {
274  SS.MakeGlobal(Context, CCLoc);
275  return false;
276}
277
278bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
279                                    SourceLocation ColonColonLoc,
280                                    CXXScopeSpec &SS) {
281  CXXRecordDecl *RD = nullptr;
282  for (Scope *S = getCurScope(); S; S = S->getParent()) {
283    if (S->isFunctionScope()) {
284      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
285        RD = MD->getParent();
286      break;
287    }
288    if (S->isClassScope()) {
289      RD = cast<CXXRecordDecl>(S->getEntity());
290      break;
291    }
292  }
293
294  if (!RD) {
295    Diag(SuperLoc, diag::err_invalid_super_scope);
296    return true;
297  } else if (RD->isLambda()) {
298    Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
299    return true;
300  } else if (RD->getNumBases() == 0) {
301    Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
302    return true;
303  }
304
305  SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
306  return false;
307}
308
309/// Determines whether the given declaration is an valid acceptable
310/// result for name lookup of a nested-name-specifier.
311/// \param SD Declaration checked for nested-name-specifier.
312/// \param IsExtension If not null and the declaration is accepted as an
313/// extension, the pointed variable is assigned true.
314bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
315                                           bool *IsExtension) {
316  if (!SD)
317    return false;
318
319  SD = SD->getUnderlyingDecl();
320
321  // Namespace and namespace aliases are fine.
322  if (isa<NamespaceDecl>(SD))
323    return true;
324
325  if (!isa<TypeDecl>(SD))
326    return false;
327
328  // Determine whether we have a class (or, in C++11, an enum) or
329  // a typedef thereof. If so, build the nested-name-specifier.
330  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
331  if (T->isDependentType())
332    return true;
333  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
334    if (TD->getUnderlyingType()->isRecordType())
335      return true;
336    if (TD->getUnderlyingType()->isEnumeralType()) {
337      if (Context.getLangOpts().CPlusPlus11)
338        return true;
339      if (IsExtension)
340        *IsExtension = true;
341    }
342  } else if (isa<RecordDecl>(SD)) {
343    return true;
344  } else if (isa<EnumDecl>(SD)) {
345    if (Context.getLangOpts().CPlusPlus11)
346      return true;
347    if (IsExtension)
348      *IsExtension = true;
349  }
350
351  return false;
352}
353
354/// If the given nested-name-specifier begins with a bare identifier
355/// (e.g., Base::), perform name lookup for that identifier as a
356/// nested-name-specifier within the given scope, and return the result of that
357/// name lookup.
358NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
359  if (!S || !NNS)
360    return nullptr;
361
362  while (NNS->getPrefix())
363    NNS = NNS->getPrefix();
364
365  if (NNS->getKind() != NestedNameSpecifier::Identifier)
366    return nullptr;
367
368  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
369                     LookupNestedNameSpecifierName);
370  LookupName(Found, S);
371  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
372
373  if (!Found.isSingleResult())
374    return nullptr;
375
376  NamedDecl *Result = Found.getFoundDecl();
377  if (isAcceptableNestedNameSpecifier(Result))
378    return Result;
379
380  return nullptr;
381}
382
383bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
384                                        NestedNameSpecInfo &IdInfo) {
385  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
386  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
387                     LookupNestedNameSpecifierName);
388
389  // Determine where to perform name lookup
390  DeclContext *LookupCtx = nullptr;
391  bool isDependent = false;
392  if (!ObjectType.isNull()) {
393    // This nested-name-specifier occurs in a member access expression, e.g.,
394    // x->B::f, and we are looking into the type of the object.
395    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
396    LookupCtx = computeDeclContext(ObjectType);
397    isDependent = ObjectType->isDependentType();
398  } else if (SS.isSet()) {
399    // This nested-name-specifier occurs after another nested-name-specifier,
400    // so long into the context associated with the prior nested-name-specifier.
401    LookupCtx = computeDeclContext(SS, false);
402    isDependent = isDependentScopeSpecifier(SS);
403    Found.setContextRange(SS.getRange());
404  }
405
406  if (LookupCtx) {
407    // Perform "qualified" name lookup into the declaration context we
408    // computed, which is either the type of the base of a member access
409    // expression or the declaration context associated with a prior
410    // nested-name-specifier.
411
412    // The declaration context must be complete.
413    if (!LookupCtx->isDependentContext() &&
414        RequireCompleteDeclContext(SS, LookupCtx))
415      return false;
416
417    LookupQualifiedName(Found, LookupCtx);
418  } else if (isDependent) {
419    return false;
420  } else {
421    LookupName(Found, S);
422  }
423  Found.suppressDiagnostics();
424
425  return Found.getAsSingle<NamespaceDecl>();
426}
427
428namespace {
429
430// Callback to only accept typo corrections that can be a valid C++ member
431// intializer: either a non-static field member or a base class.
432class NestedNameSpecifierValidatorCCC final
433    : public CorrectionCandidateCallback {
434public:
435  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
436      : SRef(SRef) {}
437
438  bool ValidateCandidate(const TypoCorrection &candidate) override {
439    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
440  }
441
442  std::unique_ptr<CorrectionCandidateCallback> clone() override {
443    return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
444  }
445
446 private:
447  Sema &SRef;
448};
449
450}
451
452/// Build a new nested-name-specifier for "identifier::", as described
453/// by ActOnCXXNestedNameSpecifier.
454///
455/// \param S Scope in which the nested-name-specifier occurs.
456/// \param IdInfo Parser information about an identifier in the
457///        nested-name-spec.
458/// \param EnteringContext If true, enter the context specified by the
459///        nested-name-specifier.
460/// \param SS Optional nested name specifier preceding the identifier.
461/// \param ScopeLookupResult Provides the result of name lookup within the
462///        scope of the nested-name-specifier that was computed at template
463///        definition time.
464/// \param ErrorRecoveryLookup Specifies if the method is called to improve
465///        error recovery and what kind of recovery is performed.
466/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
467///        are allowed.  The bool value pointed by this parameter is set to
468///       'true' if the identifier is treated as if it was followed by ':',
469///        not '::'.
470/// \param OnlyNamespace If true, only considers namespaces in lookup.
471///
472/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
473/// that it contains an extra parameter \p ScopeLookupResult, which provides
474/// the result of name lookup within the scope of the nested-name-specifier
475/// that was computed at template definition time.
476///
477/// If ErrorRecoveryLookup is true, then this call is used to improve error
478/// recovery.  This means that it should not emit diagnostics, it should
479/// just return true on failure.  It also means it should only return a valid
480/// scope if it *knows* that the result is correct.  It should not return in a
481/// dependent context, for example. Nor will it extend \p SS with the scope
482/// specifier.
483bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
484                                       bool EnteringContext, CXXScopeSpec &SS,
485                                       NamedDecl *ScopeLookupResult,
486                                       bool ErrorRecoveryLookup,
487                                       bool *IsCorrectedToColon,
488                                       bool OnlyNamespace) {
489  if (IdInfo.Identifier->isEditorPlaceholder())
490    return true;
491  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
492                     OnlyNamespace ? LookupNamespaceName
493                                   : LookupNestedNameSpecifierName);
494  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
495
496  // Determine where to perform name lookup
497  DeclContext *LookupCtx = nullptr;
498  bool isDependent = false;
499  if (IsCorrectedToColon)
500    *IsCorrectedToColon = false;
501  if (!ObjectType.isNull()) {
502    // This nested-name-specifier occurs in a member access expression, e.g.,
503    // x->B::f, and we are looking into the type of the object.
504    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
505    LookupCtx = computeDeclContext(ObjectType);
506    isDependent = ObjectType->isDependentType();
507  } else if (SS.isSet()) {
508    // This nested-name-specifier occurs after another nested-name-specifier,
509    // so look into the context associated with the prior nested-name-specifier.
510    LookupCtx = computeDeclContext(SS, EnteringContext);
511    isDependent = isDependentScopeSpecifier(SS);
512    Found.setContextRange(SS.getRange());
513  }
514
515  bool ObjectTypeSearchedInScope = false;
516  if (LookupCtx) {
517    // Perform "qualified" name lookup into the declaration context we
518    // computed, which is either the type of the base of a member access
519    // expression or the declaration context associated with a prior
520    // nested-name-specifier.
521
522    // The declaration context must be complete.
523    if (!LookupCtx->isDependentContext() &&
524        RequireCompleteDeclContext(SS, LookupCtx))
525      return true;
526
527    LookupQualifiedName(Found, LookupCtx);
528
529    if (!ObjectType.isNull() && Found.empty()) {
530      // C++ [basic.lookup.classref]p4:
531      //   If the id-expression in a class member access is a qualified-id of
532      //   the form
533      //
534      //        class-name-or-namespace-name::...
535      //
536      //   the class-name-or-namespace-name following the . or -> operator is
537      //   looked up both in the context of the entire postfix-expression and in
538      //   the scope of the class of the object expression. If the name is found
539      //   only in the scope of the class of the object expression, the name
540      //   shall refer to a class-name. If the name is found only in the
541      //   context of the entire postfix-expression, the name shall refer to a
542      //   class-name or namespace-name. [...]
543      //
544      // Qualified name lookup into a class will not find a namespace-name,
545      // so we do not need to diagnose that case specifically. However,
546      // this qualified name lookup may find nothing. In that case, perform
547      // unqualified name lookup in the given scope (if available) or
548      // reconstruct the result from when name lookup was performed at template
549      // definition time.
550      if (S)
551        LookupName(Found, S);
552      else if (ScopeLookupResult)
553        Found.addDecl(ScopeLookupResult);
554
555      ObjectTypeSearchedInScope = true;
556    }
557  } else if (!isDependent) {
558    // Perform unqualified name lookup in the current scope.
559    LookupName(Found, S);
560  }
561
562  if (Found.isAmbiguous())
563    return true;
564
565  // If we performed lookup into a dependent context and did not find anything,
566  // that's fine: just build a dependent nested-name-specifier.
567  if (Found.empty() && isDependent &&
568      !(LookupCtx && LookupCtx->isRecord() &&
569        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
570         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
571    // Don't speculate if we're just trying to improve error recovery.
572    if (ErrorRecoveryLookup)
573      return true;
574
575    // We were not able to compute the declaration context for a dependent
576    // base object type or prior nested-name-specifier, so this
577    // nested-name-specifier refers to an unknown specialization. Just build
578    // a dependent nested-name-specifier.
579    SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
580    return false;
581  }
582
583  if (Found.empty() && !ErrorRecoveryLookup) {
584    // If identifier is not found as class-name-or-namespace-name, but is found
585    // as other entity, don't look for typos.
586    LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
587    if (LookupCtx)
588      LookupQualifiedName(R, LookupCtx);
589    else if (S && !isDependent)
590      LookupName(R, S);
591    if (!R.empty()) {
592      // Don't diagnose problems with this speculative lookup.
593      R.suppressDiagnostics();
594      // The identifier is found in ordinary lookup. If correction to colon is
595      // allowed, suggest replacement to ':'.
596      if (IsCorrectedToColon) {
597        *IsCorrectedToColon = true;
598        Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
599            << IdInfo.Identifier << getLangOpts().CPlusPlus
600            << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
601        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
602          Diag(ND->getLocation(), diag::note_declared_at);
603        return true;
604      }
605      // Replacement '::' -> ':' is not allowed, just issue respective error.
606      Diag(R.getNameLoc(), OnlyNamespace
607                               ? unsigned(diag::err_expected_namespace_name)
608                               : unsigned(diag::err_expected_class_or_namespace))
609          << IdInfo.Identifier << getLangOpts().CPlusPlus;
610      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
611        Diag(ND->getLocation(), diag::note_entity_declared_at)
612            << IdInfo.Identifier;
613      return true;
614    }
615  }
616
617  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
618    // We haven't found anything, and we're not recovering from a
619    // different kind of error, so look for typos.
620    DeclarationName Name = Found.getLookupName();
621    Found.clear();
622    NestedNameSpecifierValidatorCCC CCC(*this);
623    if (TypoCorrection Corrected = CorrectTypo(
624            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
625            CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
626      if (LookupCtx) {
627        bool DroppedSpecifier =
628            Corrected.WillReplaceSpecifier() &&
629            Name.getAsString() == Corrected.getAsString(getLangOpts());
630        if (DroppedSpecifier)
631          SS.clear();
632        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
633                                  << Name << LookupCtx << DroppedSpecifier
634                                  << SS.getRange());
635      } else
636        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
637                                  << Name);
638
639      if (Corrected.getCorrectionSpecifier())
640        SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
641                       SourceRange(Found.getNameLoc()));
642
643      if (NamedDecl *ND = Corrected.getFoundDecl())
644        Found.addDecl(ND);
645      Found.setLookupName(Corrected.getCorrection());
646    } else {
647      Found.setLookupName(IdInfo.Identifier);
648    }
649  }
650
651  NamedDecl *SD =
652      Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
653  bool IsExtension = false;
654  bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
655  if (!AcceptSpec && IsExtension) {
656    AcceptSpec = true;
657    Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
658  }
659  if (AcceptSpec) {
660    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
661        !getLangOpts().CPlusPlus11) {
662      // C++03 [basic.lookup.classref]p4:
663      //   [...] If the name is found in both contexts, the
664      //   class-name-or-namespace-name shall refer to the same entity.
665      //
666      // We already found the name in the scope of the object. Now, look
667      // into the current scope (the scope of the postfix-expression) to
668      // see if we can find the same name there. As above, if there is no
669      // scope, reconstruct the result from the template instantiation itself.
670      //
671      // Note that C++11 does *not* perform this redundant lookup.
672      NamedDecl *OuterDecl;
673      if (S) {
674        LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
675                                LookupNestedNameSpecifierName);
676        LookupName(FoundOuter, S);
677        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
678      } else
679        OuterDecl = ScopeLookupResult;
680
681      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
682          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
683          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
684           !Context.hasSameType(
685                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
686                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
687        if (ErrorRecoveryLookup)
688          return true;
689
690         Diag(IdInfo.IdentifierLoc,
691              diag::err_nested_name_member_ref_lookup_ambiguous)
692           << IdInfo.Identifier;
693         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
694           << ObjectType;
695         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
696
697         // Fall through so that we'll pick the name we found in the object
698         // type, since that's probably what the user wanted anyway.
699       }
700    }
701
702    if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
703      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
704
705    // If we're just performing this lookup for error-recovery purposes,
706    // don't extend the nested-name-specifier. Just return now.
707    if (ErrorRecoveryLookup)
708      return false;
709
710    // The use of a nested name specifier may trigger deprecation warnings.
711    DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
712
713    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
714      SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
715      return false;
716    }
717
718    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
719      SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
720      return false;
721    }
722
723    QualType T =
724        Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
725    TypeLocBuilder TLB;
726    if (isa<InjectedClassNameType>(T)) {
727      InjectedClassNameTypeLoc InjectedTL
728        = TLB.push<InjectedClassNameTypeLoc>(T);
729      InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
730    } else if (isa<RecordType>(T)) {
731      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
732      RecordTL.setNameLoc(IdInfo.IdentifierLoc);
733    } else if (isa<TypedefType>(T)) {
734      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
735      TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
736    } else if (isa<EnumType>(T)) {
737      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
738      EnumTL.setNameLoc(IdInfo.IdentifierLoc);
739    } else if (isa<TemplateTypeParmType>(T)) {
740      TemplateTypeParmTypeLoc TemplateTypeTL
741        = TLB.push<TemplateTypeParmTypeLoc>(T);
742      TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
743    } else if (isa<UnresolvedUsingType>(T)) {
744      UnresolvedUsingTypeLoc UnresolvedTL
745        = TLB.push<UnresolvedUsingTypeLoc>(T);
746      UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
747    } else if (isa<SubstTemplateTypeParmType>(T)) {
748      SubstTemplateTypeParmTypeLoc TL
749        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
750      TL.setNameLoc(IdInfo.IdentifierLoc);
751    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
752      SubstTemplateTypeParmPackTypeLoc TL
753        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
754      TL.setNameLoc(IdInfo.IdentifierLoc);
755    } else {
756      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
757    }
758
759    if (T->isEnumeralType())
760      Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
761
762    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
763              IdInfo.CCLoc);
764    return false;
765  }
766
767  // Otherwise, we have an error case.  If we don't want diagnostics, just
768  // return an error now.
769  if (ErrorRecoveryLookup)
770    return true;
771
772  // If we didn't find anything during our lookup, try again with
773  // ordinary name lookup, which can help us produce better error
774  // messages.
775  if (Found.empty()) {
776    Found.clear(LookupOrdinaryName);
777    LookupName(Found, S);
778  }
779
780  // In Microsoft mode, if we are within a templated function and we can't
781  // resolve Identifier, then extend the SS with Identifier. This will have
782  // the effect of resolving Identifier during template instantiation.
783  // The goal is to be able to resolve a function call whose
784  // nested-name-specifier is located inside a dependent base class.
785  // Example:
786  //
787  // class C {
788  // public:
789  //    static void foo2() {  }
790  // };
791  // template <class T> class A { public: typedef C D; };
792  //
793  // template <class T> class B : public A<T> {
794  // public:
795  //   void foo() { D::foo2(); }
796  // };
797  if (getLangOpts().MSVCCompat) {
798    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
799    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
800      CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
801      if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
802        Diag(IdInfo.IdentifierLoc,
803             diag::ext_undeclared_unqual_id_with_dependent_base)
804            << IdInfo.Identifier << ContainingClass;
805        SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
806                  IdInfo.CCLoc);
807        return false;
808      }
809    }
810  }
811
812  if (!Found.empty()) {
813    if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
814      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
815          << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
816    else {
817      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
818          << IdInfo.Identifier << getLangOpts().CPlusPlus;
819      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
820        Diag(ND->getLocation(), diag::note_entity_declared_at)
821            << IdInfo.Identifier;
822    }
823  } else if (SS.isSet())
824    Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
825        << LookupCtx << SS.getRange();
826  else
827    Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
828        << IdInfo.Identifier;
829
830  return true;
831}
832
833bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
834                                       bool EnteringContext, CXXScopeSpec &SS,
835                                       bool ErrorRecoveryLookup,
836                                       bool *IsCorrectedToColon,
837                                       bool OnlyNamespace) {
838  if (SS.isInvalid())
839    return true;
840
841  return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
842                                     /*ScopeLookupResult=*/nullptr, false,
843                                     IsCorrectedToColon, OnlyNamespace);
844}
845
846bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
847                                               const DeclSpec &DS,
848                                               SourceLocation ColonColonLoc) {
849  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
850    return true;
851
852  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
853
854  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
855  if (T.isNull())
856    return true;
857
858  if (!T->isDependentType() && !T->getAs<TagType>()) {
859    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
860      << T << getLangOpts().CPlusPlus;
861    return true;
862  }
863
864  TypeLocBuilder TLB;
865  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
866  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
867  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
868            ColonColonLoc);
869  return false;
870}
871
872/// IsInvalidUnlessNestedName - This method is used for error recovery
873/// purposes to determine whether the specified identifier is only valid as
874/// a nested name specifier, for example a namespace name.  It is
875/// conservatively correct to always return false from this method.
876///
877/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
878bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
879                                     NestedNameSpecInfo &IdInfo,
880                                     bool EnteringContext) {
881  if (SS.isInvalid())
882    return false;
883
884  return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
885                                      /*ScopeLookupResult=*/nullptr, true);
886}
887
888bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
889                                       CXXScopeSpec &SS,
890                                       SourceLocation TemplateKWLoc,
891                                       TemplateTy OpaqueTemplate,
892                                       SourceLocation TemplateNameLoc,
893                                       SourceLocation LAngleLoc,
894                                       ASTTemplateArgsPtr TemplateArgsIn,
895                                       SourceLocation RAngleLoc,
896                                       SourceLocation CCLoc,
897                                       bool EnteringContext) {
898  if (SS.isInvalid())
899    return true;
900
901  TemplateName Template = OpaqueTemplate.get();
902
903  // Translate the parser's template argument list in our AST format.
904  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
905  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
906
907  DependentTemplateName *DTN = Template.getAsDependentTemplateName();
908  if (DTN && DTN->isIdentifier()) {
909    // Handle a dependent template specialization for which we cannot resolve
910    // the template name.
911    assert(DTN->getQualifier() == SS.getScopeRep());
912    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
913                                                          DTN->getQualifier(),
914                                                          DTN->getIdentifier(),
915                                                                TemplateArgs);
916
917    // Create source-location information for this type.
918    TypeLocBuilder Builder;
919    DependentTemplateSpecializationTypeLoc SpecTL
920      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
921    SpecTL.setElaboratedKeywordLoc(SourceLocation());
922    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
923    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
924    SpecTL.setTemplateNameLoc(TemplateNameLoc);
925    SpecTL.setLAngleLoc(LAngleLoc);
926    SpecTL.setRAngleLoc(RAngleLoc);
927    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
928      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
929
930    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
931              CCLoc);
932    return false;
933  }
934
935  // If we assumed an undeclared identifier was a template name, try to
936  // typo-correct it now.
937  if (Template.getAsAssumedTemplateName() &&
938      resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
939    return true;
940
941  TemplateDecl *TD = Template.getAsTemplateDecl();
942  if (Template.getAsOverloadedTemplate() || DTN ||
943      isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
944    SourceRange R(TemplateNameLoc, RAngleLoc);
945    if (SS.getRange().isValid())
946      R.setBegin(SS.getRange().getBegin());
947
948    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
949      << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
950    NoteAllFoundTemplates(Template);
951    return true;
952  }
953
954  // We were able to resolve the template name to an actual template.
955  // Build an appropriate nested-name-specifier.
956  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
957  if (T.isNull())
958    return true;
959
960  // Alias template specializations can produce types which are not valid
961  // nested name specifiers.
962  if (!T->isDependentType() && !T->getAs<TagType>()) {
963    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
964    NoteAllFoundTemplates(Template);
965    return true;
966  }
967
968  // Provide source-location information for the template specialization type.
969  TypeLocBuilder Builder;
970  TemplateSpecializationTypeLoc SpecTL
971    = Builder.push<TemplateSpecializationTypeLoc>(T);
972  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
973  SpecTL.setTemplateNameLoc(TemplateNameLoc);
974  SpecTL.setLAngleLoc(LAngleLoc);
975  SpecTL.setRAngleLoc(RAngleLoc);
976  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
977    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
978
979
980  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
981            CCLoc);
982  return false;
983}
984
985namespace {
986  /// A structure that stores a nested-name-specifier annotation,
987  /// including both the nested-name-specifier
988  struct NestedNameSpecifierAnnotation {
989    NestedNameSpecifier *NNS;
990  };
991}
992
993void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
994  if (SS.isEmpty() || SS.isInvalid())
995    return nullptr;
996
997  void *Mem = Context.Allocate(
998      (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
999      alignof(NestedNameSpecifierAnnotation));
1000  NestedNameSpecifierAnnotation *Annotation
1001    = new (Mem) NestedNameSpecifierAnnotation;
1002  Annotation->NNS = SS.getScopeRep();
1003  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1004  return Annotation;
1005}
1006
1007void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1008                                                SourceRange AnnotationRange,
1009                                                CXXScopeSpec &SS) {
1010  if (!AnnotationPtr) {
1011    SS.SetInvalid(AnnotationRange);
1012    return;
1013  }
1014
1015  NestedNameSpecifierAnnotation *Annotation
1016    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1017  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1018}
1019
1020bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1021  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1022
1023  // Don't enter a declarator context when the current context is an Objective-C
1024  // declaration.
1025  if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1026    return false;
1027
1028  NestedNameSpecifier *Qualifier = SS.getScopeRep();
1029
1030  // There are only two places a well-formed program may qualify a
1031  // declarator: first, when defining a namespace or class member
1032  // out-of-line, and second, when naming an explicitly-qualified
1033  // friend function.  The latter case is governed by
1034  // C++03 [basic.lookup.unqual]p10:
1035  //   In a friend declaration naming a member function, a name used
1036  //   in the function declarator and not part of a template-argument
1037  //   in a template-id is first looked up in the scope of the member
1038  //   function's class. If it is not found, or if the name is part of
1039  //   a template-argument in a template-id, the look up is as
1040  //   described for unqualified names in the definition of the class
1041  //   granting friendship.
1042  // i.e. we don't push a scope unless it's a class member.
1043
1044  switch (Qualifier->getKind()) {
1045  case NestedNameSpecifier::Global:
1046  case NestedNameSpecifier::Namespace:
1047  case NestedNameSpecifier::NamespaceAlias:
1048    // These are always namespace scopes.  We never want to enter a
1049    // namespace scope from anything but a file context.
1050    return CurContext->getRedeclContext()->isFileContext();
1051
1052  case NestedNameSpecifier::Identifier:
1053  case NestedNameSpecifier::TypeSpec:
1054  case NestedNameSpecifier::TypeSpecWithTemplate:
1055  case NestedNameSpecifier::Super:
1056    // These are never namespace scopes.
1057    return true;
1058  }
1059
1060  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1061}
1062
1063/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1064/// scope or nested-name-specifier) is parsed, part of a declarator-id.
1065/// After this method is called, according to [C++ 3.4.3p3], names should be
1066/// looked up in the declarator-id's scope, until the declarator is parsed and
1067/// ActOnCXXExitDeclaratorScope is called.
1068/// The 'SS' should be a non-empty valid CXXScopeSpec.
1069bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1070  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1071
1072  if (SS.isInvalid()) return true;
1073
1074  DeclContext *DC = computeDeclContext(SS, true);
1075  if (!DC) return true;
1076
1077  // Before we enter a declarator's context, we need to make sure that
1078  // it is a complete declaration context.
1079  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1080    return true;
1081
1082  EnterDeclaratorContext(S, DC);
1083
1084  // Rebuild the nested name specifier for the new scope.
1085  if (DC->isDependentContext())
1086    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1087
1088  return false;
1089}
1090
1091/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1092/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1093/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1094/// Used to indicate that names should revert to being looked up in the
1095/// defining scope.
1096void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1097  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1098  if (SS.isInvalid())
1099    return;
1100  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1101         "exiting declarator scope we never really entered");
1102  ExitDeclaratorContext(S);
1103}
1104