AnalysisBasedWarnings.cpp revision 321369
1299241Sadrian//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2299241Sadrian//
3299241Sadrian//                     The LLVM Compiler Infrastructure
4299241Sadrian//
5299241Sadrian// This file is distributed under the University of Illinois Open Source
6299241Sadrian// License. See LICENSE.TXT for details.
7299241Sadrian//
8299241Sadrian//===----------------------------------------------------------------------===//
9299241Sadrian//
10299241Sadrian// This file defines analysis_warnings::[Policy,Executor].
11299241Sadrian// Together they are used by Sema to issue warnings based on inexpensive
12299241Sadrian// static analysis algorithms in libAnalysis.
13299241Sadrian//
14299241Sadrian//===----------------------------------------------------------------------===//
15299241Sadrian
16299241Sadrian#include "clang/Sema/AnalysisBasedWarnings.h"
17299241Sadrian#include "clang/AST/DeclCXX.h"
18299241Sadrian#include "clang/AST/DeclObjC.h"
19299241Sadrian#include "clang/AST/EvaluatedExprVisitor.h"
20299241Sadrian#include "clang/AST/ExprCXX.h"
21299241Sadrian#include "clang/AST/ExprObjC.h"
22299241Sadrian#include "clang/AST/ParentMap.h"
23299241Sadrian#include "clang/AST/RecursiveASTVisitor.h"
24299241Sadrian#include "clang/AST/StmtCXX.h"
25299241Sadrian#include "clang/AST/StmtObjC.h"
26299241Sadrian#include "clang/AST/StmtVisitor.h"
27299241Sadrian#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28299241Sadrian#include "clang/Analysis/Analyses/Consumed.h"
29299241Sadrian#include "clang/Analysis/Analyses/ReachableCode.h"
30299241Sadrian#include "clang/Analysis/Analyses/ThreadSafety.h"
31299241Sadrian#include "clang/Analysis/Analyses/UninitializedValues.h"
32299241Sadrian#include "clang/Analysis/AnalysisContext.h"
33299241Sadrian#include "clang/Analysis/CFG.h"
34299241Sadrian#include "clang/Analysis/CFGStmtMap.h"
35299241Sadrian#include "clang/Basic/SourceLocation.h"
36299241Sadrian#include "clang/Basic/SourceManager.h"
37299241Sadrian#include "clang/Lex/Preprocessor.h"
38299241Sadrian#include "clang/Sema/ScopeInfo.h"
39299241Sadrian#include "clang/Sema/SemaInternal.h"
40299241Sadrian#include "llvm/ADT/BitVector.h"
41299241Sadrian#include "llvm/ADT/MapVector.h"
42299241Sadrian#include "llvm/ADT/SmallString.h"
43299241Sadrian#include "llvm/ADT/SmallVector.h"
44299241Sadrian#include "llvm/ADT/StringRef.h"
45299241Sadrian#include "llvm/Support/Casting.h"
46299241Sadrian#include <algorithm>
47299241Sadrian#include <deque>
48299241Sadrian#include <iterator>
49299241Sadrian
50299241Sadrianusing namespace clang;
51299241Sadrian
52299241Sadrian//===----------------------------------------------------------------------===//
53299241Sadrian// Unreachable code analysis.
54299241Sadrian//===----------------------------------------------------------------------===//
55299241Sadrian
56299241Sadriannamespace {
57299241Sadrian  class UnreachableCodeHandler : public reachable_code::Callback {
58299241Sadrian    Sema &S;
59299241Sadrian    SourceRange PreviousSilenceableCondVal;
60299241Sadrian
61299241Sadrian  public:
62299241Sadrian    UnreachableCodeHandler(Sema &s) : S(s) {}
63299241Sadrian
64299241Sadrian    void HandleUnreachable(reachable_code::UnreachableKind UK,
65299241Sadrian                           SourceLocation L,
66299241Sadrian                           SourceRange SilenceableCondVal,
67299241Sadrian                           SourceRange R1,
68299241Sadrian                           SourceRange R2) override {
69299241Sadrian      // Avoid reporting multiple unreachable code diagnostics that are
70299241Sadrian      // triggered by the same conditional value.
71299241Sadrian      if (PreviousSilenceableCondVal.isValid() &&
72299241Sadrian          SilenceableCondVal.isValid() &&
73299241Sadrian          PreviousSilenceableCondVal == SilenceableCondVal)
74299241Sadrian        return;
75299241Sadrian      PreviousSilenceableCondVal = SilenceableCondVal;
76299241Sadrian
77299241Sadrian      unsigned diag = diag::warn_unreachable;
78299241Sadrian      switch (UK) {
79299241Sadrian        case reachable_code::UK_Break:
80299241Sadrian          diag = diag::warn_unreachable_break;
81299241Sadrian          break;
82299241Sadrian        case reachable_code::UK_Return:
83299241Sadrian          diag = diag::warn_unreachable_return;
84299241Sadrian          break;
85299241Sadrian        case reachable_code::UK_Loop_Increment:
86299241Sadrian          diag = diag::warn_unreachable_loop_increment;
87299241Sadrian          break;
88299241Sadrian        case reachable_code::UK_Other:
89299241Sadrian          break;
90299241Sadrian      }
91299241Sadrian
92299241Sadrian      S.Diag(L, diag) << R1 << R2;
93299241Sadrian
94299241Sadrian      SourceLocation Open = SilenceableCondVal.getBegin();
95299241Sadrian      if (Open.isValid()) {
96299241Sadrian        SourceLocation Close = SilenceableCondVal.getEnd();
97299241Sadrian        Close = S.getLocForEndOfToken(Close);
98299241Sadrian        if (Close.isValid()) {
99299241Sadrian          S.Diag(Open, diag::note_unreachable_silence)
100299241Sadrian            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
101299241Sadrian            << FixItHint::CreateInsertion(Close, ")");
102299241Sadrian        }
103299241Sadrian      }
104299241Sadrian    }
105299241Sadrian  };
106299241Sadrian} // anonymous namespace
107299241Sadrian
108299241Sadrian/// CheckUnreachable - Check for unreachable code.
109299241Sadrianstatic void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
110299241Sadrian  // As a heuristic prune all diagnostics not in the main file.  Currently
111299241Sadrian  // the majority of warnings in headers are false positives.  These
112299241Sadrian  // are largely caused by configuration state, e.g. preprocessor
113299241Sadrian  // defined code, etc.
114299241Sadrian  //
115299241Sadrian  // Note that this is also a performance optimization.  Analyzing
116299241Sadrian  // headers many times can be expensive.
117299241Sadrian  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
118299241Sadrian    return;
119299241Sadrian
120299241Sadrian  UnreachableCodeHandler UC(S);
121299241Sadrian  reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
122299241Sadrian}
123299241Sadrian
124299241Sadriannamespace {
125299241Sadrian/// \brief Warn on logical operator errors in CFGBuilder
126299241Sadrianclass LogicalErrorHandler : public CFGCallback {
127299241Sadrian  Sema &S;
128299241Sadrian
129public:
130  LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
131
132  static bool HasMacroID(const Expr *E) {
133    if (E->getExprLoc().isMacroID())
134      return true;
135
136    // Recurse to children.
137    for (const Stmt *SubStmt : E->children())
138      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
139        if (HasMacroID(SubExpr))
140          return true;
141
142    return false;
143  }
144
145  void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
146    if (HasMacroID(B))
147      return;
148
149    SourceRange DiagRange = B->getSourceRange();
150    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
151        << DiagRange << isAlwaysTrue;
152  }
153
154  void compareBitwiseEquality(const BinaryOperator *B,
155                              bool isAlwaysTrue) override {
156    if (HasMacroID(B))
157      return;
158
159    SourceRange DiagRange = B->getSourceRange();
160    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
161        << DiagRange << isAlwaysTrue;
162  }
163};
164} // anonymous namespace
165
166//===----------------------------------------------------------------------===//
167// Check for infinite self-recursion in functions
168//===----------------------------------------------------------------------===//
169
170// Returns true if the function is called anywhere within the CFGBlock.
171// For member functions, the additional condition of being call from the
172// this pointer is required.
173static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
174  // Process all the Stmt's in this block to find any calls to FD.
175  for (const auto &B : Block) {
176    if (B.getKind() != CFGElement::Statement)
177      continue;
178
179    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
180    if (!CE || !CE->getCalleeDecl() ||
181        CE->getCalleeDecl()->getCanonicalDecl() != FD)
182      continue;
183
184    // Skip function calls which are qualified with a templated class.
185    if (const DeclRefExpr *DRE =
186            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
187      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
188        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
189            isa<TemplateSpecializationType>(NNS->getAsType())) {
190          continue;
191        }
192      }
193    }
194
195    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
196    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
197        !MCE->getMethodDecl()->isVirtual())
198      return true;
199  }
200  return false;
201}
202
203// All blocks are in one of three states.  States are ordered so that blocks
204// can only move to higher states.
205enum RecursiveState {
206  FoundNoPath,
207  FoundPath,
208  FoundPathWithNoRecursiveCall
209};
210
211// Returns true if there exists a path to the exit block and every path
212// to the exit block passes through a call to FD.
213static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
214
215  const unsigned ExitID = cfg->getExit().getBlockID();
216
217  // Mark all nodes as FoundNoPath, then set the status of the entry block.
218  SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath);
219  States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall;
220
221  // Make the processing stack and seed it with the entry block.
222  SmallVector<CFGBlock *, 16> Stack;
223  Stack.push_back(&cfg->getEntry());
224
225  while (!Stack.empty()) {
226    CFGBlock *CurBlock = Stack.back();
227    Stack.pop_back();
228
229    unsigned ID = CurBlock->getBlockID();
230    RecursiveState CurState = States[ID];
231
232    if (CurState == FoundPathWithNoRecursiveCall) {
233      // Found a path to the exit node without a recursive call.
234      if (ExitID == ID)
235        return false;
236
237      // Only change state if the block has a recursive call.
238      if (hasRecursiveCallInPath(FD, *CurBlock))
239        CurState = FoundPath;
240    }
241
242    // Loop over successor blocks and add them to the Stack if their state
243    // changes.
244    for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I)
245      if (*I) {
246        unsigned next_ID = (*I)->getBlockID();
247        if (States[next_ID] < CurState) {
248          States[next_ID] = CurState;
249          Stack.push_back(*I);
250        }
251      }
252  }
253
254  // Return true if the exit node is reachable, and only reachable through
255  // a recursive call.
256  return States[ExitID] == FoundPath;
257}
258
259static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
260                                   const Stmt *Body, AnalysisDeclContext &AC) {
261  FD = FD->getCanonicalDecl();
262
263  // Only run on non-templated functions and non-templated members of
264  // templated classes.
265  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
266      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
267    return;
268
269  CFG *cfg = AC.getCFG();
270  if (!cfg) return;
271
272  // If the exit block is unreachable, skip processing the function.
273  if (cfg->getExit().pred_empty())
274    return;
275
276  // Emit diagnostic if a recursive function call is detected for all paths.
277  if (checkForRecursiveFunctionCall(FD, cfg))
278    S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
279}
280
281//===----------------------------------------------------------------------===//
282// Check for throw in a non-throwing function.
283//===----------------------------------------------------------------------===//
284enum ThrowState {
285  FoundNoPathForThrow,
286  FoundPathForThrow,
287  FoundPathWithNoThrowOutFunction,
288};
289
290static bool isThrowCaught(const CXXThrowExpr *Throw,
291                          const CXXCatchStmt *Catch) {
292  const Type *ThrowType = nullptr;
293  if (Throw->getSubExpr())
294    ThrowType = Throw->getSubExpr()->getType().getTypePtrOrNull();
295  if (!ThrowType)
296    return false;
297  const Type *CaughtType = Catch->getCaughtType().getTypePtrOrNull();
298  if (!CaughtType)
299    return true;
300  if (ThrowType->isReferenceType())
301    ThrowType = ThrowType->castAs<ReferenceType>()
302                    ->getPointeeType()
303                    ->getUnqualifiedDesugaredType();
304  if (CaughtType->isReferenceType())
305    CaughtType = CaughtType->castAs<ReferenceType>()
306                     ->getPointeeType()
307                     ->getUnqualifiedDesugaredType();
308  if (ThrowType->isPointerType() && CaughtType->isPointerType()) {
309    ThrowType = ThrowType->getPointeeType()->getUnqualifiedDesugaredType();
310    CaughtType = CaughtType->getPointeeType()->getUnqualifiedDesugaredType();
311  }
312  if (CaughtType == ThrowType)
313    return true;
314  const CXXRecordDecl *CaughtAsRecordType =
315      CaughtType->getAsCXXRecordDecl();
316  const CXXRecordDecl *ThrowTypeAsRecordType = ThrowType->getAsCXXRecordDecl();
317  if (CaughtAsRecordType && ThrowTypeAsRecordType)
318    return ThrowTypeAsRecordType->isDerivedFrom(CaughtAsRecordType);
319  return false;
320}
321
322static bool isThrowCaughtByHandlers(const CXXThrowExpr *CE,
323                                    const CXXTryStmt *TryStmt) {
324  for (unsigned H = 0, E = TryStmt->getNumHandlers(); H < E; ++H) {
325    if (isThrowCaught(CE, TryStmt->getHandler(H)))
326      return true;
327  }
328  return false;
329}
330
331static bool doesThrowEscapePath(CFGBlock Block, SourceLocation &OpLoc) {
332  for (const auto &B : Block) {
333    if (B.getKind() != CFGElement::Statement)
334      continue;
335    const auto *CE = dyn_cast<CXXThrowExpr>(B.getAs<CFGStmt>()->getStmt());
336    if (!CE)
337      continue;
338
339    OpLoc = CE->getThrowLoc();
340    for (const auto &I : Block.succs()) {
341      if (!I.isReachable())
342        continue;
343      if (const auto *Terminator =
344              dyn_cast_or_null<CXXTryStmt>(I->getTerminator()))
345        if (isThrowCaughtByHandlers(CE, Terminator))
346          return false;
347    }
348    return true;
349  }
350  return false;
351}
352
353static bool hasThrowOutNonThrowingFunc(SourceLocation &OpLoc, CFG *BodyCFG) {
354
355  unsigned ExitID = BodyCFG->getExit().getBlockID();
356
357  SmallVector<ThrowState, 16> States(BodyCFG->getNumBlockIDs(),
358                                     FoundNoPathForThrow);
359  States[BodyCFG->getEntry().getBlockID()] = FoundPathWithNoThrowOutFunction;
360
361  SmallVector<CFGBlock *, 16> Stack;
362  Stack.push_back(&BodyCFG->getEntry());
363  while (!Stack.empty()) {
364    CFGBlock *CurBlock = Stack.back();
365    Stack.pop_back();
366
367    unsigned ID = CurBlock->getBlockID();
368    ThrowState CurState = States[ID];
369    if (CurState == FoundPathWithNoThrowOutFunction) {
370      if (ExitID == ID)
371        continue;
372
373      if (doesThrowEscapePath(*CurBlock, OpLoc))
374        CurState = FoundPathForThrow;
375    }
376
377    // Loop over successor blocks and add them to the Stack if their state
378    // changes.
379    for (const auto &I : CurBlock->succs())
380      if (I.isReachable()) {
381        unsigned NextID = I->getBlockID();
382        if (NextID == ExitID && CurState == FoundPathForThrow) {
383          States[NextID] = CurState;
384        } else if (States[NextID] < CurState) {
385          States[NextID] = CurState;
386          Stack.push_back(I);
387        }
388      }
389  }
390  // Return true if the exit node is reachable, and only reachable through
391  // a throw expression.
392  return States[ExitID] == FoundPathForThrow;
393}
394
395static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
396                                                 const FunctionDecl *FD) {
397  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
398      FD->getTypeSourceInfo()) {
399    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
400    if (S.getLangOpts().CPlusPlus11 &&
401        (isa<CXXDestructorDecl>(FD) ||
402         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
403         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
404      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
405                                         getAs<FunctionProtoType>())
406        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
407            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
408            << FD->getExceptionSpecSourceRange();
409    } else
410      S.Diag(FD->getLocation(), diag::note_throw_in_function)
411          << FD->getExceptionSpecSourceRange();
412  }
413}
414
415static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
416                                        AnalysisDeclContext &AC) {
417  CFG *BodyCFG = AC.getCFG();
418  if (!BodyCFG)
419    return;
420  if (BodyCFG->getExit().pred_empty())
421    return;
422  SourceLocation OpLoc;
423  if (hasThrowOutNonThrowingFunc(OpLoc, BodyCFG))
424    EmitDiagForCXXThrowInNonThrowingFunc(S, OpLoc, FD);
425}
426
427static bool isNoexcept(const FunctionDecl *FD) {
428  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
429  if (FPT->isNothrow(FD->getASTContext()))
430    return true;
431  return false;
432}
433
434//===----------------------------------------------------------------------===//
435// Check for missing return value.
436//===----------------------------------------------------------------------===//
437
438enum ControlFlowKind {
439  UnknownFallThrough,
440  NeverFallThrough,
441  MaybeFallThrough,
442  AlwaysFallThrough,
443  NeverFallThroughOrReturn
444};
445
446/// CheckFallThrough - Check that we don't fall off the end of a
447/// Statement that should return a value.
448///
449/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
450/// MaybeFallThrough iff we might or might not fall off the end,
451/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
452/// return.  We assume NeverFallThrough iff we never fall off the end of the
453/// statement but we may return.  We assume that functions not marked noreturn
454/// will return.
455static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
456  CFG *cfg = AC.getCFG();
457  if (!cfg) return UnknownFallThrough;
458
459  // The CFG leaves in dead things, and we don't want the dead code paths to
460  // confuse us, so we mark all live things first.
461  llvm::BitVector live(cfg->getNumBlockIDs());
462  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
463                                                          live);
464
465  bool AddEHEdges = AC.getAddEHEdges();
466  if (!AddEHEdges && count != cfg->getNumBlockIDs())
467    // When there are things remaining dead, and we didn't add EH edges
468    // from CallExprs to the catch clauses, we have to go back and
469    // mark them as live.
470    for (const auto *B : *cfg) {
471      if (!live[B->getBlockID()]) {
472        if (B->pred_begin() == B->pred_end()) {
473          if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
474            // When not adding EH edges from calls, catch clauses
475            // can otherwise seem dead.  Avoid noting them as dead.
476            count += reachable_code::ScanReachableFromBlock(B, live);
477          continue;
478        }
479      }
480    }
481
482  // Now we know what is live, we check the live precessors of the exit block
483  // and look for fall through paths, being careful to ignore normal returns,
484  // and exceptional paths.
485  bool HasLiveReturn = false;
486  bool HasFakeEdge = false;
487  bool HasPlainEdge = false;
488  bool HasAbnormalEdge = false;
489
490  // Ignore default cases that aren't likely to be reachable because all
491  // enums in a switch(X) have explicit case statements.
492  CFGBlock::FilterOptions FO;
493  FO.IgnoreDefaultsWithCoveredEnums = 1;
494
495  for (CFGBlock::filtered_pred_iterator
496	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
497    const CFGBlock& B = **I;
498    if (!live[B.getBlockID()])
499      continue;
500
501    // Skip blocks which contain an element marked as no-return. They don't
502    // represent actually viable edges into the exit block, so mark them as
503    // abnormal.
504    if (B.hasNoReturnElement()) {
505      HasAbnormalEdge = true;
506      continue;
507    }
508
509    // Destructors can appear after the 'return' in the CFG.  This is
510    // normal.  We need to look pass the destructors for the return
511    // statement (if it exists).
512    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
513
514    for ( ; ri != re ; ++ri)
515      if (ri->getAs<CFGStmt>())
516        break;
517
518    // No more CFGElements in the block?
519    if (ri == re) {
520      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
521        HasAbnormalEdge = true;
522        continue;
523      }
524      // A labeled empty statement, or the entry block...
525      HasPlainEdge = true;
526      continue;
527    }
528
529    CFGStmt CS = ri->castAs<CFGStmt>();
530    const Stmt *S = CS.getStmt();
531    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
532      HasLiveReturn = true;
533      continue;
534    }
535    if (isa<ObjCAtThrowStmt>(S)) {
536      HasFakeEdge = true;
537      continue;
538    }
539    if (isa<CXXThrowExpr>(S)) {
540      HasFakeEdge = true;
541      continue;
542    }
543    if (isa<MSAsmStmt>(S)) {
544      // TODO: Verify this is correct.
545      HasFakeEdge = true;
546      HasLiveReturn = true;
547      continue;
548    }
549    if (isa<CXXTryStmt>(S)) {
550      HasAbnormalEdge = true;
551      continue;
552    }
553    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
554        == B.succ_end()) {
555      HasAbnormalEdge = true;
556      continue;
557    }
558
559    HasPlainEdge = true;
560  }
561  if (!HasPlainEdge) {
562    if (HasLiveReturn)
563      return NeverFallThrough;
564    return NeverFallThroughOrReturn;
565  }
566  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
567    return MaybeFallThrough;
568  // This says AlwaysFallThrough for calls to functions that are not marked
569  // noreturn, that don't return.  If people would like this warning to be more
570  // accurate, such functions should be marked as noreturn.
571  return AlwaysFallThrough;
572}
573
574namespace {
575
576struct CheckFallThroughDiagnostics {
577  unsigned diag_MaybeFallThrough_HasNoReturn;
578  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
579  unsigned diag_AlwaysFallThrough_HasNoReturn;
580  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
581  unsigned diag_NeverFallThroughOrReturn;
582  enum { Function, Block, Lambda, Coroutine } funMode;
583  SourceLocation FuncLoc;
584
585  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
586    CheckFallThroughDiagnostics D;
587    D.FuncLoc = Func->getLocation();
588    D.diag_MaybeFallThrough_HasNoReturn =
589      diag::warn_falloff_noreturn_function;
590    D.diag_MaybeFallThrough_ReturnsNonVoid =
591      diag::warn_maybe_falloff_nonvoid_function;
592    D.diag_AlwaysFallThrough_HasNoReturn =
593      diag::warn_falloff_noreturn_function;
594    D.diag_AlwaysFallThrough_ReturnsNonVoid =
595      diag::warn_falloff_nonvoid_function;
596
597    // Don't suggest that virtual functions be marked "noreturn", since they
598    // might be overridden by non-noreturn functions.
599    bool isVirtualMethod = false;
600    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
601      isVirtualMethod = Method->isVirtual();
602
603    // Don't suggest that template instantiations be marked "noreturn"
604    bool isTemplateInstantiation = false;
605    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
606      isTemplateInstantiation = Function->isTemplateInstantiation();
607
608    if (!isVirtualMethod && !isTemplateInstantiation)
609      D.diag_NeverFallThroughOrReturn =
610        diag::warn_suggest_noreturn_function;
611    else
612      D.diag_NeverFallThroughOrReturn = 0;
613
614    D.funMode = Function;
615    return D;
616  }
617
618  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
619    CheckFallThroughDiagnostics D;
620    D.FuncLoc = Func->getLocation();
621    D.diag_MaybeFallThrough_HasNoReturn = 0;
622    D.diag_MaybeFallThrough_ReturnsNonVoid =
623        diag::warn_maybe_falloff_nonvoid_coroutine;
624    D.diag_AlwaysFallThrough_HasNoReturn = 0;
625    D.diag_AlwaysFallThrough_ReturnsNonVoid =
626        diag::warn_falloff_nonvoid_coroutine;
627    D.funMode = Coroutine;
628    return D;
629  }
630
631  static CheckFallThroughDiagnostics MakeForBlock() {
632    CheckFallThroughDiagnostics D;
633    D.diag_MaybeFallThrough_HasNoReturn =
634      diag::err_noreturn_block_has_return_expr;
635    D.diag_MaybeFallThrough_ReturnsNonVoid =
636      diag::err_maybe_falloff_nonvoid_block;
637    D.diag_AlwaysFallThrough_HasNoReturn =
638      diag::err_noreturn_block_has_return_expr;
639    D.diag_AlwaysFallThrough_ReturnsNonVoid =
640      diag::err_falloff_nonvoid_block;
641    D.diag_NeverFallThroughOrReturn = 0;
642    D.funMode = Block;
643    return D;
644  }
645
646  static CheckFallThroughDiagnostics MakeForLambda() {
647    CheckFallThroughDiagnostics D;
648    D.diag_MaybeFallThrough_HasNoReturn =
649      diag::err_noreturn_lambda_has_return_expr;
650    D.diag_MaybeFallThrough_ReturnsNonVoid =
651      diag::warn_maybe_falloff_nonvoid_lambda;
652    D.diag_AlwaysFallThrough_HasNoReturn =
653      diag::err_noreturn_lambda_has_return_expr;
654    D.diag_AlwaysFallThrough_ReturnsNonVoid =
655      diag::warn_falloff_nonvoid_lambda;
656    D.diag_NeverFallThroughOrReturn = 0;
657    D.funMode = Lambda;
658    return D;
659  }
660
661  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
662                        bool HasNoReturn) const {
663    if (funMode == Function) {
664      return (ReturnsVoid ||
665              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
666                          FuncLoc)) &&
667             (!HasNoReturn ||
668              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
669                          FuncLoc)) &&
670             (!ReturnsVoid ||
671              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
672    }
673    if (funMode == Coroutine) {
674      return (ReturnsVoid ||
675              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
676              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
677                          FuncLoc)) &&
678             (!HasNoReturn);
679    }
680    // For blocks / lambdas.
681    return ReturnsVoid && !HasNoReturn;
682  }
683};
684
685} // anonymous namespace
686
687/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
688/// function that should return a value.  Check that we don't fall off the end
689/// of a noreturn function.  We assume that functions and blocks not marked
690/// noreturn will return.
691static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
692                                    const BlockExpr *blkExpr,
693                                    const CheckFallThroughDiagnostics& CD,
694                                    AnalysisDeclContext &AC) {
695
696  bool ReturnsVoid = false;
697  bool HasNoReturn = false;
698  bool IsCoroutine = S.getCurFunction() && S.getCurFunction()->isCoroutine();
699
700  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
701    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
702      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
703    else
704      ReturnsVoid = FD->getReturnType()->isVoidType();
705    HasNoReturn = FD->isNoReturn();
706  }
707  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
708    ReturnsVoid = MD->getReturnType()->isVoidType();
709    HasNoReturn = MD->hasAttr<NoReturnAttr>();
710  }
711  else if (isa<BlockDecl>(D)) {
712    QualType BlockTy = blkExpr->getType();
713    if (const FunctionType *FT =
714          BlockTy->getPointeeType()->getAs<FunctionType>()) {
715      if (FT->getReturnType()->isVoidType())
716        ReturnsVoid = true;
717      if (FT->getNoReturnAttr())
718        HasNoReturn = true;
719    }
720  }
721
722  DiagnosticsEngine &Diags = S.getDiagnostics();
723
724  // Short circuit for compilation speed.
725  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
726      return;
727  SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
728  auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
729    if (IsCoroutine)
730      S.Diag(Loc, DiagID) << S.getCurFunction()->CoroutinePromise->getType();
731    else
732      S.Diag(Loc, DiagID);
733  };
734  // Either in a function body compound statement, or a function-try-block.
735  switch (CheckFallThrough(AC)) {
736    case UnknownFallThrough:
737      break;
738
739    case MaybeFallThrough:
740      if (HasNoReturn)
741        EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
742      else if (!ReturnsVoid)
743        EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
744      break;
745    case AlwaysFallThrough:
746      if (HasNoReturn)
747        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
748      else if (!ReturnsVoid)
749        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
750      break;
751    case NeverFallThroughOrReturn:
752      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
753        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
754          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
755        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
756          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
757        } else {
758          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
759        }
760      }
761      break;
762    case NeverFallThrough:
763      break;
764  }
765}
766
767//===----------------------------------------------------------------------===//
768// -Wuninitialized
769//===----------------------------------------------------------------------===//
770
771namespace {
772/// ContainsReference - A visitor class to search for references to
773/// a particular declaration (the needle) within any evaluated component of an
774/// expression (recursively).
775class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
776  bool FoundReference;
777  const DeclRefExpr *Needle;
778
779public:
780  typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
781
782  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
783    : Inherited(Context), FoundReference(false), Needle(Needle) {}
784
785  void VisitExpr(const Expr *E) {
786    // Stop evaluating if we already have a reference.
787    if (FoundReference)
788      return;
789
790    Inherited::VisitExpr(E);
791  }
792
793  void VisitDeclRefExpr(const DeclRefExpr *E) {
794    if (E == Needle)
795      FoundReference = true;
796    else
797      Inherited::VisitDeclRefExpr(E);
798  }
799
800  bool doesContainReference() const { return FoundReference; }
801};
802} // anonymous namespace
803
804static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
805  QualType VariableTy = VD->getType().getCanonicalType();
806  if (VariableTy->isBlockPointerType() &&
807      !VD->hasAttr<BlocksAttr>()) {
808    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
809        << VD->getDeclName()
810        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
811    return true;
812  }
813
814  // Don't issue a fixit if there is already an initializer.
815  if (VD->getInit())
816    return false;
817
818  // Don't suggest a fixit inside macros.
819  if (VD->getLocEnd().isMacroID())
820    return false;
821
822  SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
823
824  // Suggest possible initialization (if any).
825  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
826  if (Init.empty())
827    return false;
828
829  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
830    << FixItHint::CreateInsertion(Loc, Init);
831  return true;
832}
833
834/// Create a fixit to remove an if-like statement, on the assumption that its
835/// condition is CondVal.
836static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
837                          const Stmt *Else, bool CondVal,
838                          FixItHint &Fixit1, FixItHint &Fixit2) {
839  if (CondVal) {
840    // If condition is always true, remove all but the 'then'.
841    Fixit1 = FixItHint::CreateRemoval(
842        CharSourceRange::getCharRange(If->getLocStart(),
843                                      Then->getLocStart()));
844    if (Else) {
845      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
846      Fixit2 = FixItHint::CreateRemoval(
847          SourceRange(ElseKwLoc, Else->getLocEnd()));
848    }
849  } else {
850    // If condition is always false, remove all but the 'else'.
851    if (Else)
852      Fixit1 = FixItHint::CreateRemoval(
853          CharSourceRange::getCharRange(If->getLocStart(),
854                                        Else->getLocStart()));
855    else
856      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
857  }
858}
859
860/// DiagUninitUse -- Helper function to produce a diagnostic for an
861/// uninitialized use of a variable.
862static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
863                          bool IsCapturedByBlock) {
864  bool Diagnosed = false;
865
866  switch (Use.getKind()) {
867  case UninitUse::Always:
868    S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
869        << VD->getDeclName() << IsCapturedByBlock
870        << Use.getUser()->getSourceRange();
871    return;
872
873  case UninitUse::AfterDecl:
874  case UninitUse::AfterCall:
875    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
876      << VD->getDeclName() << IsCapturedByBlock
877      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
878      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
879      << VD->getSourceRange();
880    S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
881      << IsCapturedByBlock << Use.getUser()->getSourceRange();
882    return;
883
884  case UninitUse::Maybe:
885  case UninitUse::Sometimes:
886    // Carry on to report sometimes-uninitialized branches, if possible,
887    // or a 'may be used uninitialized' diagnostic otherwise.
888    break;
889  }
890
891  // Diagnose each branch which leads to a sometimes-uninitialized use.
892  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
893       I != E; ++I) {
894    assert(Use.getKind() == UninitUse::Sometimes);
895
896    const Expr *User = Use.getUser();
897    const Stmt *Term = I->Terminator;
898
899    // Information used when building the diagnostic.
900    unsigned DiagKind;
901    StringRef Str;
902    SourceRange Range;
903
904    // FixIts to suppress the diagnostic by removing the dead condition.
905    // For all binary terminators, branch 0 is taken if the condition is true,
906    // and branch 1 is taken if the condition is false.
907    int RemoveDiagKind = -1;
908    const char *FixitStr =
909        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
910                                  : (I->Output ? "1" : "0");
911    FixItHint Fixit1, Fixit2;
912
913    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
914    default:
915      // Don't know how to report this. Just fall back to 'may be used
916      // uninitialized'. FIXME: Can this happen?
917      continue;
918
919    // "condition is true / condition is false".
920    case Stmt::IfStmtClass: {
921      const IfStmt *IS = cast<IfStmt>(Term);
922      DiagKind = 0;
923      Str = "if";
924      Range = IS->getCond()->getSourceRange();
925      RemoveDiagKind = 0;
926      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
927                    I->Output, Fixit1, Fixit2);
928      break;
929    }
930    case Stmt::ConditionalOperatorClass: {
931      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
932      DiagKind = 0;
933      Str = "?:";
934      Range = CO->getCond()->getSourceRange();
935      RemoveDiagKind = 0;
936      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
937                    I->Output, Fixit1, Fixit2);
938      break;
939    }
940    case Stmt::BinaryOperatorClass: {
941      const BinaryOperator *BO = cast<BinaryOperator>(Term);
942      if (!BO->isLogicalOp())
943        continue;
944      DiagKind = 0;
945      Str = BO->getOpcodeStr();
946      Range = BO->getLHS()->getSourceRange();
947      RemoveDiagKind = 0;
948      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
949          (BO->getOpcode() == BO_LOr && !I->Output))
950        // true && y -> y, false || y -> y.
951        Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
952                                                      BO->getOperatorLoc()));
953      else
954        // false && y -> false, true || y -> true.
955        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
956      break;
957    }
958
959    // "loop is entered / loop is exited".
960    case Stmt::WhileStmtClass:
961      DiagKind = 1;
962      Str = "while";
963      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
964      RemoveDiagKind = 1;
965      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
966      break;
967    case Stmt::ForStmtClass:
968      DiagKind = 1;
969      Str = "for";
970      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
971      RemoveDiagKind = 1;
972      if (I->Output)
973        Fixit1 = FixItHint::CreateRemoval(Range);
974      else
975        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
976      break;
977    case Stmt::CXXForRangeStmtClass:
978      if (I->Output == 1) {
979        // The use occurs if a range-based for loop's body never executes.
980        // That may be impossible, and there's no syntactic fix for this,
981        // so treat it as a 'may be uninitialized' case.
982        continue;
983      }
984      DiagKind = 1;
985      Str = "for";
986      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
987      break;
988
989    // "condition is true / loop is exited".
990    case Stmt::DoStmtClass:
991      DiagKind = 2;
992      Str = "do";
993      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
994      RemoveDiagKind = 1;
995      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
996      break;
997
998    // "switch case is taken".
999    case Stmt::CaseStmtClass:
1000      DiagKind = 3;
1001      Str = "case";
1002      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
1003      break;
1004    case Stmt::DefaultStmtClass:
1005      DiagKind = 3;
1006      Str = "default";
1007      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
1008      break;
1009    }
1010
1011    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
1012      << VD->getDeclName() << IsCapturedByBlock << DiagKind
1013      << Str << I->Output << Range;
1014    S.Diag(User->getLocStart(), diag::note_uninit_var_use)
1015      << IsCapturedByBlock << User->getSourceRange();
1016    if (RemoveDiagKind != -1)
1017      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
1018        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
1019
1020    Diagnosed = true;
1021  }
1022
1023  if (!Diagnosed)
1024    S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
1025        << VD->getDeclName() << IsCapturedByBlock
1026        << Use.getUser()->getSourceRange();
1027}
1028
1029/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
1030/// uninitialized variable. This manages the different forms of diagnostic
1031/// emitted for particular types of uses. Returns true if the use was diagnosed
1032/// as a warning. If a particular use is one we omit warnings for, returns
1033/// false.
1034static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
1035                                     const UninitUse &Use,
1036                                     bool alwaysReportSelfInit = false) {
1037  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
1038    // Inspect the initializer of the variable declaration which is
1039    // being referenced prior to its initialization. We emit
1040    // specialized diagnostics for self-initialization, and we
1041    // specifically avoid warning about self references which take the
1042    // form of:
1043    //
1044    //   int x = x;
1045    //
1046    // This is used to indicate to GCC that 'x' is intentionally left
1047    // uninitialized. Proven code paths which access 'x' in
1048    // an uninitialized state after this will still warn.
1049    if (const Expr *Initializer = VD->getInit()) {
1050      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
1051        return false;
1052
1053      ContainsReference CR(S.Context, DRE);
1054      CR.Visit(Initializer);
1055      if (CR.doesContainReference()) {
1056        S.Diag(DRE->getLocStart(),
1057               diag::warn_uninit_self_reference_in_init)
1058          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
1059        return true;
1060      }
1061    }
1062
1063    DiagUninitUse(S, VD, Use, false);
1064  } else {
1065    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
1066    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1067      S.Diag(BE->getLocStart(),
1068             diag::warn_uninit_byref_blockvar_captured_by_block)
1069        << VD->getDeclName();
1070    else
1071      DiagUninitUse(S, VD, Use, true);
1072  }
1073
1074  // Report where the variable was declared when the use wasn't within
1075  // the initializer of that declaration & we didn't already suggest
1076  // an initialization fixit.
1077  if (!SuggestInitializationFixit(S, VD))
1078    S.Diag(VD->getLocStart(), diag::note_var_declared_here)
1079      << VD->getDeclName();
1080
1081  return true;
1082}
1083
1084namespace {
1085  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1086  public:
1087    FallthroughMapper(Sema &S)
1088      : FoundSwitchStatements(false),
1089        S(S) {
1090    }
1091
1092    bool foundSwitchStatements() const { return FoundSwitchStatements; }
1093
1094    void markFallthroughVisited(const AttributedStmt *Stmt) {
1095      bool Found = FallthroughStmts.erase(Stmt);
1096      assert(Found);
1097      (void)Found;
1098    }
1099
1100    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1101
1102    const AttrStmts &getFallthroughStmts() const {
1103      return FallthroughStmts;
1104    }
1105
1106    void fillReachableBlocks(CFG *Cfg) {
1107      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1108      std::deque<const CFGBlock *> BlockQueue;
1109
1110      ReachableBlocks.insert(&Cfg->getEntry());
1111      BlockQueue.push_back(&Cfg->getEntry());
1112      // Mark all case blocks reachable to avoid problems with switching on
1113      // constants, covered enums, etc.
1114      // These blocks can contain fall-through annotations, and we don't want to
1115      // issue a warn_fallthrough_attr_unreachable for them.
1116      for (const auto *B : *Cfg) {
1117        const Stmt *L = B->getLabel();
1118        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1119          BlockQueue.push_back(B);
1120      }
1121
1122      while (!BlockQueue.empty()) {
1123        const CFGBlock *P = BlockQueue.front();
1124        BlockQueue.pop_front();
1125        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1126                                           E = P->succ_end();
1127             I != E; ++I) {
1128          if (*I && ReachableBlocks.insert(*I).second)
1129            BlockQueue.push_back(*I);
1130        }
1131      }
1132    }
1133
1134    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1135                                   bool IsTemplateInstantiation) {
1136      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1137
1138      int UnannotatedCnt = 0;
1139      AnnotatedCnt = 0;
1140
1141      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1142      while (!BlockQueue.empty()) {
1143        const CFGBlock *P = BlockQueue.front();
1144        BlockQueue.pop_front();
1145        if (!P) continue;
1146
1147        const Stmt *Term = P->getTerminator();
1148        if (Term && isa<SwitchStmt>(Term))
1149          continue; // Switch statement, good.
1150
1151        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1152        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1153          continue; // Previous case label has no statements, good.
1154
1155        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1156        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1157          continue; // Case label is preceded with a normal label, good.
1158
1159        if (!ReachableBlocks.count(P)) {
1160          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1161                                                ElemEnd = P->rend();
1162               ElemIt != ElemEnd; ++ElemIt) {
1163            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1164              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1165                // Don't issue a warning for an unreachable fallthrough
1166                // attribute in template instantiations as it may not be
1167                // unreachable in all instantiations of the template.
1168                if (!IsTemplateInstantiation)
1169                  S.Diag(AS->getLocStart(),
1170                         diag::warn_fallthrough_attr_unreachable);
1171                markFallthroughVisited(AS);
1172                ++AnnotatedCnt;
1173                break;
1174              }
1175              // Don't care about other unreachable statements.
1176            }
1177          }
1178          // If there are no unreachable statements, this may be a special
1179          // case in CFG:
1180          // case X: {
1181          //    A a;  // A has a destructor.
1182          //    break;
1183          // }
1184          // // <<<< This place is represented by a 'hanging' CFG block.
1185          // case Y:
1186          continue;
1187        }
1188
1189        const Stmt *LastStmt = getLastStmt(*P);
1190        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1191          markFallthroughVisited(AS);
1192          ++AnnotatedCnt;
1193          continue; // Fallthrough annotation, good.
1194        }
1195
1196        if (!LastStmt) { // This block contains no executable statements.
1197          // Traverse its predecessors.
1198          std::copy(P->pred_begin(), P->pred_end(),
1199                    std::back_inserter(BlockQueue));
1200          continue;
1201        }
1202
1203        ++UnannotatedCnt;
1204      }
1205      return !!UnannotatedCnt;
1206    }
1207
1208    // RecursiveASTVisitor setup.
1209    bool shouldWalkTypesOfTypeLocs() const { return false; }
1210
1211    bool VisitAttributedStmt(AttributedStmt *S) {
1212      if (asFallThroughAttr(S))
1213        FallthroughStmts.insert(S);
1214      return true;
1215    }
1216
1217    bool VisitSwitchStmt(SwitchStmt *S) {
1218      FoundSwitchStatements = true;
1219      return true;
1220    }
1221
1222    // We don't want to traverse local type declarations. We analyze their
1223    // methods separately.
1224    bool TraverseDecl(Decl *D) { return true; }
1225
1226    // We analyze lambda bodies separately. Skip them here.
1227    bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1228
1229  private:
1230
1231    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1232      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1233        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1234          return AS;
1235      }
1236      return nullptr;
1237    }
1238
1239    static const Stmt *getLastStmt(const CFGBlock &B) {
1240      if (const Stmt *Term = B.getTerminator())
1241        return Term;
1242      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1243                                            ElemEnd = B.rend();
1244                                            ElemIt != ElemEnd; ++ElemIt) {
1245        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1246          return CS->getStmt();
1247      }
1248      // Workaround to detect a statement thrown out by CFGBuilder:
1249      //   case X: {} case Y:
1250      //   case X: ; case Y:
1251      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1252        if (!isa<SwitchCase>(SW->getSubStmt()))
1253          return SW->getSubStmt();
1254
1255      return nullptr;
1256    }
1257
1258    bool FoundSwitchStatements;
1259    AttrStmts FallthroughStmts;
1260    Sema &S;
1261    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1262  };
1263} // anonymous namespace
1264
1265static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1266                                            SourceLocation Loc) {
1267  TokenValue FallthroughTokens[] = {
1268    tok::l_square, tok::l_square,
1269    PP.getIdentifierInfo("fallthrough"),
1270    tok::r_square, tok::r_square
1271  };
1272
1273  TokenValue ClangFallthroughTokens[] = {
1274    tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1275    tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1276    tok::r_square, tok::r_square
1277  };
1278
1279  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus1z;
1280
1281  StringRef MacroName;
1282  if (PreferClangAttr)
1283    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1284  if (MacroName.empty())
1285    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1286  if (MacroName.empty() && !PreferClangAttr)
1287    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1288  if (MacroName.empty())
1289    MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]";
1290  return MacroName;
1291}
1292
1293static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1294                                            bool PerFunction) {
1295  // Only perform this analysis when using C++11.  There is no good workflow
1296  // for this warning when not using C++11.  There is no good way to silence
1297  // the warning (no attribute is available) unless we are using C++11's support
1298  // for generalized attributes.  Once could use pragmas to silence the warning,
1299  // but as a general solution that is gross and not in the spirit of this
1300  // warning.
1301  //
1302  // NOTE: This an intermediate solution.  There are on-going discussions on
1303  // how to properly support this warning outside of C++11 with an annotation.
1304  if (!AC.getASTContext().getLangOpts().CPlusPlus11)
1305    return;
1306
1307  FallthroughMapper FM(S);
1308  FM.TraverseStmt(AC.getBody());
1309
1310  if (!FM.foundSwitchStatements())
1311    return;
1312
1313  if (PerFunction && FM.getFallthroughStmts().empty())
1314    return;
1315
1316  CFG *Cfg = AC.getCFG();
1317
1318  if (!Cfg)
1319    return;
1320
1321  FM.fillReachableBlocks(Cfg);
1322
1323  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1324    const Stmt *Label = B->getLabel();
1325
1326    if (!Label || !isa<SwitchCase>(Label))
1327      continue;
1328
1329    int AnnotatedCnt;
1330
1331    bool IsTemplateInstantiation = false;
1332    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1333      IsTemplateInstantiation = Function->isTemplateInstantiation();
1334    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1335                                      IsTemplateInstantiation))
1336      continue;
1337
1338    S.Diag(Label->getLocStart(),
1339        PerFunction ? diag::warn_unannotated_fallthrough_per_function
1340                    : diag::warn_unannotated_fallthrough);
1341
1342    if (!AnnotatedCnt) {
1343      SourceLocation L = Label->getLocStart();
1344      if (L.isMacroID())
1345        continue;
1346      if (S.getLangOpts().CPlusPlus11) {
1347        const Stmt *Term = B->getTerminator();
1348        // Skip empty cases.
1349        while (B->empty() && !Term && B->succ_size() == 1) {
1350          B = *B->succ_begin();
1351          Term = B->getTerminator();
1352        }
1353        if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1354          Preprocessor &PP = S.getPreprocessor();
1355          StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1356          SmallString<64> TextToInsert(AnnotationSpelling);
1357          TextToInsert += "; ";
1358          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1359              AnnotationSpelling <<
1360              FixItHint::CreateInsertion(L, TextToInsert);
1361        }
1362      }
1363      S.Diag(L, diag::note_insert_break_fixit) <<
1364        FixItHint::CreateInsertion(L, "break; ");
1365    }
1366  }
1367
1368  for (const auto *F : FM.getFallthroughStmts())
1369    S.Diag(F->getLocStart(), diag::err_fallthrough_attr_invalid_placement);
1370}
1371
1372static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1373                     const Stmt *S) {
1374  assert(S);
1375
1376  do {
1377    switch (S->getStmtClass()) {
1378    case Stmt::ForStmtClass:
1379    case Stmt::WhileStmtClass:
1380    case Stmt::CXXForRangeStmtClass:
1381    case Stmt::ObjCForCollectionStmtClass:
1382      return true;
1383    case Stmt::DoStmtClass: {
1384      const Expr *Cond = cast<DoStmt>(S)->getCond();
1385      llvm::APSInt Val;
1386      if (!Cond->EvaluateAsInt(Val, Ctx))
1387        return true;
1388      return Val.getBoolValue();
1389    }
1390    default:
1391      break;
1392    }
1393  } while ((S = PM.getParent(S)));
1394
1395  return false;
1396}
1397
1398static void diagnoseRepeatedUseOfWeak(Sema &S,
1399                                      const sema::FunctionScopeInfo *CurFn,
1400                                      const Decl *D,
1401                                      const ParentMap &PM) {
1402  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1403  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1404  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1405  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1406  StmtUsesPair;
1407
1408  ASTContext &Ctx = S.getASTContext();
1409
1410  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1411
1412  // Extract all weak objects that are referenced more than once.
1413  SmallVector<StmtUsesPair, 8> UsesByStmt;
1414  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1415       I != E; ++I) {
1416    const WeakUseVector &Uses = I->second;
1417
1418    // Find the first read of the weak object.
1419    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1420    for ( ; UI != UE; ++UI) {
1421      if (UI->isUnsafe())
1422        break;
1423    }
1424
1425    // If there were only writes to this object, don't warn.
1426    if (UI == UE)
1427      continue;
1428
1429    // If there was only one read, followed by any number of writes, and the
1430    // read is not within a loop, don't warn. Additionally, don't warn in a
1431    // loop if the base object is a local variable -- local variables are often
1432    // changed in loops.
1433    if (UI == Uses.begin()) {
1434      WeakUseVector::const_iterator UI2 = UI;
1435      for (++UI2; UI2 != UE; ++UI2)
1436        if (UI2->isUnsafe())
1437          break;
1438
1439      if (UI2 == UE) {
1440        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1441          continue;
1442
1443        const WeakObjectProfileTy &Profile = I->first;
1444        if (!Profile.isExactProfile())
1445          continue;
1446
1447        const NamedDecl *Base = Profile.getBase();
1448        if (!Base)
1449          Base = Profile.getProperty();
1450        assert(Base && "A profile always has a base or property.");
1451
1452        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1453          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1454            continue;
1455      }
1456    }
1457
1458    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1459  }
1460
1461  if (UsesByStmt.empty())
1462    return;
1463
1464  // Sort by first use so that we emit the warnings in a deterministic order.
1465  SourceManager &SM = S.getSourceManager();
1466  std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1467            [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1468    return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1469                                        RHS.first->getLocStart());
1470  });
1471
1472  // Classify the current code body for better warning text.
1473  // This enum should stay in sync with the cases in
1474  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1475  // FIXME: Should we use a common classification enum and the same set of
1476  // possibilities all throughout Sema?
1477  enum {
1478    Function,
1479    Method,
1480    Block,
1481    Lambda
1482  } FunctionKind;
1483
1484  if (isa<sema::BlockScopeInfo>(CurFn))
1485    FunctionKind = Block;
1486  else if (isa<sema::LambdaScopeInfo>(CurFn))
1487    FunctionKind = Lambda;
1488  else if (isa<ObjCMethodDecl>(D))
1489    FunctionKind = Method;
1490  else
1491    FunctionKind = Function;
1492
1493  // Iterate through the sorted problems and emit warnings for each.
1494  for (const auto &P : UsesByStmt) {
1495    const Stmt *FirstRead = P.first;
1496    const WeakObjectProfileTy &Key = P.second->first;
1497    const WeakUseVector &Uses = P.second->second;
1498
1499    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1500    // may not contain enough information to determine that these are different
1501    // properties. We can only be 100% sure of a repeated use in certain cases,
1502    // and we adjust the diagnostic kind accordingly so that the less certain
1503    // case can be turned off if it is too noisy.
1504    unsigned DiagKind;
1505    if (Key.isExactProfile())
1506      DiagKind = diag::warn_arc_repeated_use_of_weak;
1507    else
1508      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1509
1510    // Classify the weak object being accessed for better warning text.
1511    // This enum should stay in sync with the cases in
1512    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1513    enum {
1514      Variable,
1515      Property,
1516      ImplicitProperty,
1517      Ivar
1518    } ObjectKind;
1519
1520    const NamedDecl *KeyProp = Key.getProperty();
1521    if (isa<VarDecl>(KeyProp))
1522      ObjectKind = Variable;
1523    else if (isa<ObjCPropertyDecl>(KeyProp))
1524      ObjectKind = Property;
1525    else if (isa<ObjCMethodDecl>(KeyProp))
1526      ObjectKind = ImplicitProperty;
1527    else if (isa<ObjCIvarDecl>(KeyProp))
1528      ObjectKind = Ivar;
1529    else
1530      llvm_unreachable("Unexpected weak object kind!");
1531
1532    // Do not warn about IBOutlet weak property receivers being set to null
1533    // since they are typically only used from the main thread.
1534    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1535      if (Prop->hasAttr<IBOutletAttr>())
1536        continue;
1537
1538    // Show the first time the object was read.
1539    S.Diag(FirstRead->getLocStart(), DiagKind)
1540      << int(ObjectKind) << KeyProp << int(FunctionKind)
1541      << FirstRead->getSourceRange();
1542
1543    // Print all the other accesses as notes.
1544    for (const auto &Use : Uses) {
1545      if (Use.getUseExpr() == FirstRead)
1546        continue;
1547      S.Diag(Use.getUseExpr()->getLocStart(),
1548             diag::note_arc_weak_also_accessed_here)
1549          << Use.getUseExpr()->getSourceRange();
1550    }
1551  }
1552}
1553
1554namespace {
1555class UninitValsDiagReporter : public UninitVariablesHandler {
1556  Sema &S;
1557  typedef SmallVector<UninitUse, 2> UsesVec;
1558  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1559  // Prefer using MapVector to DenseMap, so that iteration order will be
1560  // the same as insertion order. This is needed to obtain a deterministic
1561  // order of diagnostics when calling flushDiagnostics().
1562  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1563  UsesMap uses;
1564
1565public:
1566  UninitValsDiagReporter(Sema &S) : S(S) {}
1567  ~UninitValsDiagReporter() override { flushDiagnostics(); }
1568
1569  MappedType &getUses(const VarDecl *vd) {
1570    MappedType &V = uses[vd];
1571    if (!V.getPointer())
1572      V.setPointer(new UsesVec());
1573    return V;
1574  }
1575
1576  void handleUseOfUninitVariable(const VarDecl *vd,
1577                                 const UninitUse &use) override {
1578    getUses(vd).getPointer()->push_back(use);
1579  }
1580
1581  void handleSelfInit(const VarDecl *vd) override {
1582    getUses(vd).setInt(true);
1583  }
1584
1585  void flushDiagnostics() {
1586    for (const auto &P : uses) {
1587      const VarDecl *vd = P.first;
1588      const MappedType &V = P.second;
1589
1590      UsesVec *vec = V.getPointer();
1591      bool hasSelfInit = V.getInt();
1592
1593      // Specially handle the case where we have uses of an uninitialized
1594      // variable, but the root cause is an idiomatic self-init.  We want
1595      // to report the diagnostic at the self-init since that is the root cause.
1596      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1597        DiagnoseUninitializedUse(S, vd,
1598                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
1599                                           /* isAlwaysUninit */ true),
1600                                 /* alwaysReportSelfInit */ true);
1601      else {
1602        // Sort the uses by their SourceLocations.  While not strictly
1603        // guaranteed to produce them in line/column order, this will provide
1604        // a stable ordering.
1605        std::sort(vec->begin(), vec->end(),
1606                  [](const UninitUse &a, const UninitUse &b) {
1607          // Prefer a more confident report over a less confident one.
1608          if (a.getKind() != b.getKind())
1609            return a.getKind() > b.getKind();
1610          return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1611        });
1612
1613        for (const auto &U : *vec) {
1614          // If we have self-init, downgrade all uses to 'may be uninitialized'.
1615          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1616
1617          if (DiagnoseUninitializedUse(S, vd, Use))
1618            // Skip further diagnostics for this variable. We try to warn only
1619            // on the first point at which a variable is used uninitialized.
1620            break;
1621        }
1622      }
1623
1624      // Release the uses vector.
1625      delete vec;
1626    }
1627
1628    uses.clear();
1629  }
1630
1631private:
1632  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1633    return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1634      return U.getKind() == UninitUse::Always ||
1635             U.getKind() == UninitUse::AfterCall ||
1636             U.getKind() == UninitUse::AfterDecl;
1637    });
1638  }
1639};
1640} // anonymous namespace
1641
1642namespace clang {
1643namespace {
1644typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1645typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1646typedef std::list<DelayedDiag> DiagList;
1647
1648struct SortDiagBySourceLocation {
1649  SourceManager &SM;
1650  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1651
1652  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1653    // Although this call will be slow, this is only called when outputting
1654    // multiple warnings.
1655    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1656  }
1657};
1658} // anonymous namespace
1659} // namespace clang
1660
1661//===----------------------------------------------------------------------===//
1662// -Wthread-safety
1663//===----------------------------------------------------------------------===//
1664namespace clang {
1665namespace threadSafety {
1666namespace {
1667class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1668  Sema &S;
1669  DiagList Warnings;
1670  SourceLocation FunLocation, FunEndLocation;
1671
1672  const FunctionDecl *CurrentFunction;
1673  bool Verbose;
1674
1675  OptionalNotes getNotes() const {
1676    if (Verbose && CurrentFunction) {
1677      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1678                                S.PDiag(diag::note_thread_warning_in_fun)
1679                                    << CurrentFunction->getNameAsString());
1680      return OptionalNotes(1, FNote);
1681    }
1682    return OptionalNotes();
1683  }
1684
1685  OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1686    OptionalNotes ONS(1, Note);
1687    if (Verbose && CurrentFunction) {
1688      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1689                                S.PDiag(diag::note_thread_warning_in_fun)
1690                                    << CurrentFunction->getNameAsString());
1691      ONS.push_back(std::move(FNote));
1692    }
1693    return ONS;
1694  }
1695
1696  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1697                         const PartialDiagnosticAt &Note2) const {
1698    OptionalNotes ONS;
1699    ONS.push_back(Note1);
1700    ONS.push_back(Note2);
1701    if (Verbose && CurrentFunction) {
1702      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1703                                S.PDiag(diag::note_thread_warning_in_fun)
1704                                    << CurrentFunction->getNameAsString());
1705      ONS.push_back(std::move(FNote));
1706    }
1707    return ONS;
1708  }
1709
1710  // Helper functions
1711  void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1712                        SourceLocation Loc) {
1713    // Gracefully handle rare cases when the analysis can't get a more
1714    // precise source location.
1715    if (!Loc.isValid())
1716      Loc = FunLocation;
1717    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1718    Warnings.emplace_back(std::move(Warning), getNotes());
1719  }
1720
1721 public:
1722  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1723    : S(S), FunLocation(FL), FunEndLocation(FEL),
1724      CurrentFunction(nullptr), Verbose(false) {}
1725
1726  void setVerbose(bool b) { Verbose = b; }
1727
1728  /// \brief Emit all buffered diagnostics in order of sourcelocation.
1729  /// We need to output diagnostics produced while iterating through
1730  /// the lockset in deterministic order, so this function orders diagnostics
1731  /// and outputs them.
1732  void emitDiagnostics() {
1733    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1734    for (const auto &Diag : Warnings) {
1735      S.Diag(Diag.first.first, Diag.first.second);
1736      for (const auto &Note : Diag.second)
1737        S.Diag(Note.first, Note.second);
1738    }
1739  }
1740
1741  void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1742    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1743                                         << Loc);
1744    Warnings.emplace_back(std::move(Warning), getNotes());
1745  }
1746
1747  void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1748                             SourceLocation Loc) override {
1749    warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1750  }
1751
1752  void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1753                                 LockKind Expected, LockKind Received,
1754                                 SourceLocation Loc) override {
1755    if (Loc.isInvalid())
1756      Loc = FunLocation;
1757    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1758                                         << Kind << LockName << Received
1759                                         << Expected);
1760    Warnings.emplace_back(std::move(Warning), getNotes());
1761  }
1762
1763  void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1764    warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1765  }
1766
1767  void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1768                                 SourceLocation LocLocked,
1769                                 SourceLocation LocEndOfScope,
1770                                 LockErrorKind LEK) override {
1771    unsigned DiagID = 0;
1772    switch (LEK) {
1773      case LEK_LockedSomePredecessors:
1774        DiagID = diag::warn_lock_some_predecessors;
1775        break;
1776      case LEK_LockedSomeLoopIterations:
1777        DiagID = diag::warn_expecting_lock_held_on_loop;
1778        break;
1779      case LEK_LockedAtEndOfFunction:
1780        DiagID = diag::warn_no_unlock;
1781        break;
1782      case LEK_NotLockedAtEndOfFunction:
1783        DiagID = diag::warn_expecting_locked;
1784        break;
1785    }
1786    if (LocEndOfScope.isInvalid())
1787      LocEndOfScope = FunEndLocation;
1788
1789    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1790                                                               << LockName);
1791    if (LocLocked.isValid()) {
1792      PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1793                                              << Kind);
1794      Warnings.emplace_back(std::move(Warning), getNotes(Note));
1795      return;
1796    }
1797    Warnings.emplace_back(std::move(Warning), getNotes());
1798  }
1799
1800  void handleExclusiveAndShared(StringRef Kind, Name LockName,
1801                                SourceLocation Loc1,
1802                                SourceLocation Loc2) override {
1803    PartialDiagnosticAt Warning(Loc1,
1804                                S.PDiag(diag::warn_lock_exclusive_and_shared)
1805                                    << Kind << LockName);
1806    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1807                                       << Kind << LockName);
1808    Warnings.emplace_back(std::move(Warning), getNotes(Note));
1809  }
1810
1811  void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1812                         ProtectedOperationKind POK, AccessKind AK,
1813                         SourceLocation Loc) override {
1814    assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1815           "Only works for variables");
1816    unsigned DiagID = POK == POK_VarAccess?
1817                        diag::warn_variable_requires_any_lock:
1818                        diag::warn_var_deref_requires_any_lock;
1819    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1820      << D->getNameAsString() << getLockKindFromAccessKind(AK));
1821    Warnings.emplace_back(std::move(Warning), getNotes());
1822  }
1823
1824  void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1825                          ProtectedOperationKind POK, Name LockName,
1826                          LockKind LK, SourceLocation Loc,
1827                          Name *PossibleMatch) override {
1828    unsigned DiagID = 0;
1829    if (PossibleMatch) {
1830      switch (POK) {
1831        case POK_VarAccess:
1832          DiagID = diag::warn_variable_requires_lock_precise;
1833          break;
1834        case POK_VarDereference:
1835          DiagID = diag::warn_var_deref_requires_lock_precise;
1836          break;
1837        case POK_FunctionCall:
1838          DiagID = diag::warn_fun_requires_lock_precise;
1839          break;
1840        case POK_PassByRef:
1841          DiagID = diag::warn_guarded_pass_by_reference;
1842          break;
1843        case POK_PtPassByRef:
1844          DiagID = diag::warn_pt_guarded_pass_by_reference;
1845          break;
1846      }
1847      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1848                                                       << D->getNameAsString()
1849                                                       << LockName << LK);
1850      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1851                                        << *PossibleMatch);
1852      if (Verbose && POK == POK_VarAccess) {
1853        PartialDiagnosticAt VNote(D->getLocation(),
1854                                 S.PDiag(diag::note_guarded_by_declared_here)
1855                                     << D->getNameAsString());
1856        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1857      } else
1858        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1859    } else {
1860      switch (POK) {
1861        case POK_VarAccess:
1862          DiagID = diag::warn_variable_requires_lock;
1863          break;
1864        case POK_VarDereference:
1865          DiagID = diag::warn_var_deref_requires_lock;
1866          break;
1867        case POK_FunctionCall:
1868          DiagID = diag::warn_fun_requires_lock;
1869          break;
1870        case POK_PassByRef:
1871          DiagID = diag::warn_guarded_pass_by_reference;
1872          break;
1873        case POK_PtPassByRef:
1874          DiagID = diag::warn_pt_guarded_pass_by_reference;
1875          break;
1876      }
1877      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1878                                                       << D->getNameAsString()
1879                                                       << LockName << LK);
1880      if (Verbose && POK == POK_VarAccess) {
1881        PartialDiagnosticAt Note(D->getLocation(),
1882                                 S.PDiag(diag::note_guarded_by_declared_here)
1883                                     << D->getNameAsString());
1884        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1885      } else
1886        Warnings.emplace_back(std::move(Warning), getNotes());
1887    }
1888  }
1889
1890  void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1891                             SourceLocation Loc) override {
1892    PartialDiagnosticAt Warning(Loc,
1893        S.PDiag(diag::warn_acquire_requires_negative_cap)
1894        << Kind << LockName << Neg);
1895    Warnings.emplace_back(std::move(Warning), getNotes());
1896  }
1897
1898  void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1899                             SourceLocation Loc) override {
1900    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1901                                         << Kind << FunName << LockName);
1902    Warnings.emplace_back(std::move(Warning), getNotes());
1903  }
1904
1905  void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1906                                SourceLocation Loc) override {
1907    PartialDiagnosticAt Warning(Loc,
1908      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1909    Warnings.emplace_back(std::move(Warning), getNotes());
1910  }
1911
1912  void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1913    PartialDiagnosticAt Warning(Loc,
1914      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1915    Warnings.emplace_back(std::move(Warning), getNotes());
1916  }
1917
1918  void enterFunction(const FunctionDecl* FD) override {
1919    CurrentFunction = FD;
1920  }
1921
1922  void leaveFunction(const FunctionDecl* FD) override {
1923    CurrentFunction = nullptr;
1924  }
1925};
1926} // anonymous namespace
1927} // namespace threadSafety
1928} // namespace clang
1929
1930//===----------------------------------------------------------------------===//
1931// -Wconsumed
1932//===----------------------------------------------------------------------===//
1933
1934namespace clang {
1935namespace consumed {
1936namespace {
1937class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1938
1939  Sema &S;
1940  DiagList Warnings;
1941
1942public:
1943
1944  ConsumedWarningsHandler(Sema &S) : S(S) {}
1945
1946  void emitDiagnostics() override {
1947    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1948    for (const auto &Diag : Warnings) {
1949      S.Diag(Diag.first.first, Diag.first.second);
1950      for (const auto &Note : Diag.second)
1951        S.Diag(Note.first, Note.second);
1952    }
1953  }
1954
1955  void warnLoopStateMismatch(SourceLocation Loc,
1956                             StringRef VariableName) override {
1957    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1958      VariableName);
1959
1960    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1961  }
1962
1963  void warnParamReturnTypestateMismatch(SourceLocation Loc,
1964                                        StringRef VariableName,
1965                                        StringRef ExpectedState,
1966                                        StringRef ObservedState) override {
1967
1968    PartialDiagnosticAt Warning(Loc, S.PDiag(
1969      diag::warn_param_return_typestate_mismatch) << VariableName <<
1970        ExpectedState << ObservedState);
1971
1972    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1973  }
1974
1975  void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1976                                  StringRef ObservedState) override {
1977
1978    PartialDiagnosticAt Warning(Loc, S.PDiag(
1979      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1980
1981    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1982  }
1983
1984  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1985                                              StringRef TypeName) override {
1986    PartialDiagnosticAt Warning(Loc, S.PDiag(
1987      diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1988
1989    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1990  }
1991
1992  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1993                                   StringRef ObservedState) override {
1994
1995    PartialDiagnosticAt Warning(Loc, S.PDiag(
1996      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1997
1998    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1999  }
2000
2001  void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
2002                                   SourceLocation Loc) override {
2003
2004    PartialDiagnosticAt Warning(Loc, S.PDiag(
2005      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
2006
2007    Warnings.emplace_back(std::move(Warning), OptionalNotes());
2008  }
2009
2010  void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
2011                             StringRef State, SourceLocation Loc) override {
2012
2013    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
2014                                MethodName << VariableName << State);
2015
2016    Warnings.emplace_back(std::move(Warning), OptionalNotes());
2017  }
2018};
2019} // anonymous namespace
2020} // namespace consumed
2021} // namespace clang
2022
2023//===----------------------------------------------------------------------===//
2024// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
2025//  warnings on a function, method, or block.
2026//===----------------------------------------------------------------------===//
2027
2028clang::sema::AnalysisBasedWarnings::Policy::Policy() {
2029  enableCheckFallThrough = 1;
2030  enableCheckUnreachable = 0;
2031  enableThreadSafetyAnalysis = 0;
2032  enableConsumedAnalysis = 0;
2033}
2034
2035static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
2036  return (unsigned)!D.isIgnored(diag, SourceLocation());
2037}
2038
2039clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
2040  : S(s),
2041    NumFunctionsAnalyzed(0),
2042    NumFunctionsWithBadCFGs(0),
2043    NumCFGBlocks(0),
2044    MaxCFGBlocksPerFunction(0),
2045    NumUninitAnalysisFunctions(0),
2046    NumUninitAnalysisVariables(0),
2047    MaxUninitAnalysisVariablesPerFunction(0),
2048    NumUninitAnalysisBlockVisits(0),
2049    MaxUninitAnalysisBlockVisitsPerFunction(0) {
2050
2051  using namespace diag;
2052  DiagnosticsEngine &D = S.getDiagnostics();
2053
2054  DefaultPolicy.enableCheckUnreachable =
2055    isEnabled(D, warn_unreachable) ||
2056    isEnabled(D, warn_unreachable_break) ||
2057    isEnabled(D, warn_unreachable_return) ||
2058    isEnabled(D, warn_unreachable_loop_increment);
2059
2060  DefaultPolicy.enableThreadSafetyAnalysis =
2061    isEnabled(D, warn_double_lock);
2062
2063  DefaultPolicy.enableConsumedAnalysis =
2064    isEnabled(D, warn_use_in_invalid_state);
2065}
2066
2067static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2068  for (const auto &D : fscope->PossiblyUnreachableDiags)
2069    S.Diag(D.Loc, D.PD);
2070}
2071
2072void clang::sema::
2073AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
2074                                     sema::FunctionScopeInfo *fscope,
2075                                     const Decl *D, const BlockExpr *blkExpr) {
2076
2077  // We avoid doing analysis-based warnings when there are errors for
2078  // two reasons:
2079  // (1) The CFGs often can't be constructed (if the body is invalid), so
2080  //     don't bother trying.
2081  // (2) The code already has problems; running the analysis just takes more
2082  //     time.
2083  DiagnosticsEngine &Diags = S.getDiagnostics();
2084
2085  // Do not do any analysis for declarations in system headers if we are
2086  // going to just ignore them.
2087  if (Diags.getSuppressSystemWarnings() &&
2088      S.SourceMgr.isInSystemHeader(D->getLocation()))
2089    return;
2090
2091  // For code in dependent contexts, we'll do this at instantiation time.
2092  if (cast<DeclContext>(D)->isDependentContext())
2093    return;
2094
2095  if (Diags.hasUncompilableErrorOccurred()) {
2096    // Flush out any possibly unreachable diagnostics.
2097    flushDiagnostics(S, fscope);
2098    return;
2099  }
2100
2101  const Stmt *Body = D->getBody();
2102  assert(Body);
2103
2104  // Construct the analysis context with the specified CFG build options.
2105  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2106
2107  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2108  // explosion for destructors that can result and the compile time hit.
2109  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2110  AC.getCFGBuildOptions().AddEHEdges = false;
2111  AC.getCFGBuildOptions().AddInitializers = true;
2112  AC.getCFGBuildOptions().AddImplicitDtors = true;
2113  AC.getCFGBuildOptions().AddTemporaryDtors = true;
2114  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2115  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2116
2117  // Force that certain expressions appear as CFGElements in the CFG.  This
2118  // is used to speed up various analyses.
2119  // FIXME: This isn't the right factoring.  This is here for initial
2120  // prototyping, but we need a way for analyses to say what expressions they
2121  // expect to always be CFGElements and then fill in the BuildOptions
2122  // appropriately.  This is essentially a layering violation.
2123  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2124      P.enableConsumedAnalysis) {
2125    // Unreachable code analysis and thread safety require a linearized CFG.
2126    AC.getCFGBuildOptions().setAllAlwaysAdd();
2127  }
2128  else {
2129    AC.getCFGBuildOptions()
2130      .setAlwaysAdd(Stmt::BinaryOperatorClass)
2131      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2132      .setAlwaysAdd(Stmt::BlockExprClass)
2133      .setAlwaysAdd(Stmt::CStyleCastExprClass)
2134      .setAlwaysAdd(Stmt::DeclRefExprClass)
2135      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2136      .setAlwaysAdd(Stmt::UnaryOperatorClass)
2137      .setAlwaysAdd(Stmt::AttributedStmtClass);
2138  }
2139
2140  // Install the logical handler for -Wtautological-overlap-compare
2141  std::unique_ptr<LogicalErrorHandler> LEH;
2142  if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2143                       D->getLocStart())) {
2144    LEH.reset(new LogicalErrorHandler(S));
2145    AC.getCFGBuildOptions().Observer = LEH.get();
2146  }
2147
2148  // Emit delayed diagnostics.
2149  if (!fscope->PossiblyUnreachableDiags.empty()) {
2150    bool analyzed = false;
2151
2152    // Register the expressions with the CFGBuilder.
2153    for (const auto &D : fscope->PossiblyUnreachableDiags) {
2154      if (D.stmt)
2155        AC.registerForcedBlockExpression(D.stmt);
2156    }
2157
2158    if (AC.getCFG()) {
2159      analyzed = true;
2160      for (const auto &D : fscope->PossiblyUnreachableDiags) {
2161        bool processed = false;
2162        if (D.stmt) {
2163          const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
2164          CFGReverseBlockReachabilityAnalysis *cra =
2165              AC.getCFGReachablityAnalysis();
2166          // FIXME: We should be able to assert that block is non-null, but
2167          // the CFG analysis can skip potentially-evaluated expressions in
2168          // edge cases; see test/Sema/vla-2.c.
2169          if (block && cra) {
2170            // Can this block be reached from the entrance?
2171            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
2172              S.Diag(D.Loc, D.PD);
2173            processed = true;
2174          }
2175        }
2176        if (!processed) {
2177          // Emit the warning anyway if we cannot map to a basic block.
2178          S.Diag(D.Loc, D.PD);
2179        }
2180      }
2181    }
2182
2183    if (!analyzed)
2184      flushDiagnostics(S, fscope);
2185  }
2186
2187  // Warning: check missing 'return'
2188  if (P.enableCheckFallThrough) {
2189    const CheckFallThroughDiagnostics &CD =
2190        (isa<BlockDecl>(D)
2191             ? CheckFallThroughDiagnostics::MakeForBlock()
2192             : (isa<CXXMethodDecl>(D) &&
2193                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2194                cast<CXXMethodDecl>(D)->getParent()->isLambda())
2195                   ? CheckFallThroughDiagnostics::MakeForLambda()
2196                   : (fscope->isCoroutine()
2197                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2198                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
2199    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
2200  }
2201
2202  // Warning: check for unreachable code
2203  if (P.enableCheckUnreachable) {
2204    // Only check for unreachable code on non-template instantiations.
2205    // Different template instantiations can effectively change the control-flow
2206    // and it is very difficult to prove that a snippet of code in a template
2207    // is unreachable for all instantiations.
2208    bool isTemplateInstantiation = false;
2209    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2210      isTemplateInstantiation = Function->isTemplateInstantiation();
2211    if (!isTemplateInstantiation)
2212      CheckUnreachable(S, AC);
2213  }
2214
2215  // Check for thread safety violations
2216  if (P.enableThreadSafetyAnalysis) {
2217    SourceLocation FL = AC.getDecl()->getLocation();
2218    SourceLocation FEL = AC.getDecl()->getLocEnd();
2219    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2220    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
2221      Reporter.setIssueBetaWarnings(true);
2222    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
2223      Reporter.setVerbose(true);
2224
2225    threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2226                                          &S.ThreadSafetyDeclCache);
2227    Reporter.emitDiagnostics();
2228  }
2229
2230  // Check for violations of consumed properties.
2231  if (P.enableConsumedAnalysis) {
2232    consumed::ConsumedWarningsHandler WarningHandler(S);
2233    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2234    Analyzer.run(AC);
2235  }
2236
2237  if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
2238      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
2239      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
2240    if (CFG *cfg = AC.getCFG()) {
2241      UninitValsDiagReporter reporter(S);
2242      UninitVariablesAnalysisStats stats;
2243      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2244      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2245                                        reporter, stats);
2246
2247      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2248        ++NumUninitAnalysisFunctions;
2249        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2250        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2251        MaxUninitAnalysisVariablesPerFunction =
2252            std::max(MaxUninitAnalysisVariablesPerFunction,
2253                     stats.NumVariablesAnalyzed);
2254        MaxUninitAnalysisBlockVisitsPerFunction =
2255            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2256                     stats.NumBlockVisits);
2257      }
2258    }
2259  }
2260
2261  bool FallThroughDiagFull =
2262      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
2263  bool FallThroughDiagPerFunction = !Diags.isIgnored(
2264      diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
2265  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2266      fscope->HasFallthroughStmt) {
2267    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2268  }
2269
2270  if (S.getLangOpts().ObjCWeak &&
2271      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
2272    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2273
2274
2275  // Check for infinite self-recursion in functions
2276  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2277                       D->getLocStart())) {
2278    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2279      checkRecursiveFunction(S, FD, Body, AC);
2280    }
2281  }
2282
2283  // Check for throw out of non-throwing function.
2284  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getLocStart()))
2285    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2286      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2287        checkThrowInNonThrowingFunc(S, FD, AC);
2288
2289  // If none of the previous checks caused a CFG build, trigger one here
2290  // for -Wtautological-overlap-compare
2291  if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2292                               D->getLocStart())) {
2293    AC.getCFG();
2294  }
2295
2296  // Collect statistics about the CFG if it was built.
2297  if (S.CollectStats && AC.isCFGBuilt()) {
2298    ++NumFunctionsAnalyzed;
2299    if (CFG *cfg = AC.getCFG()) {
2300      // If we successfully built a CFG for this context, record some more
2301      // detail information about it.
2302      NumCFGBlocks += cfg->getNumBlockIDs();
2303      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2304                                         cfg->getNumBlockIDs());
2305    } else {
2306      ++NumFunctionsWithBadCFGs;
2307    }
2308  }
2309}
2310
2311void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2312  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2313
2314  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2315  unsigned AvgCFGBlocksPerFunction =
2316      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2317  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2318               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2319               << "  " << NumCFGBlocks << " CFG blocks built.\n"
2320               << "  " << AvgCFGBlocksPerFunction
2321               << " average CFG blocks per function.\n"
2322               << "  " << MaxCFGBlocksPerFunction
2323               << " max CFG blocks per function.\n";
2324
2325  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2326      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2327  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2328      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2329  llvm::errs() << NumUninitAnalysisFunctions
2330               << " functions analyzed for uninitialiazed variables\n"
2331               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2332               << "  " << AvgUninitVariablesPerFunction
2333               << " average variables per function.\n"
2334               << "  " << MaxUninitAnalysisVariablesPerFunction
2335               << " max variables per function.\n"
2336               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2337               << "  " << AvgUninitBlockVisitsPerFunction
2338               << " average block visits per function.\n"
2339               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2340               << " max block visits per function.\n";
2341}
2342