1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines analysis_warnings::[Policy,Executor].
10// Together they are used by Sema to issue warnings based on inexpensive
11// static analysis algorithms in libAnalysis.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/AnalysisBasedWarnings.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/EvaluatedExprVisitor.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/ParentMap.h"
22#include "clang/AST/RecursiveASTVisitor.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
27#include "clang/Analysis/Analyses/Consumed.h"
28#include "clang/Analysis/Analyses/ReachableCode.h"
29#include "clang/Analysis/Analyses/ThreadSafety.h"
30#include "clang/Analysis/Analyses/UninitializedValues.h"
31#include "clang/Analysis/AnalysisDeclContext.h"
32#include "clang/Analysis/CFG.h"
33#include "clang/Analysis/CFGStmtMap.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "llvm/ADT/BitVector.h"
40#include "llvm/ADT/MapVector.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringRef.h"
44#include "llvm/Support/Casting.h"
45#include <algorithm>
46#include <deque>
47#include <iterator>
48
49using namespace clang;
50
51//===----------------------------------------------------------------------===//
52// Unreachable code analysis.
53//===----------------------------------------------------------------------===//
54
55namespace {
56  class UnreachableCodeHandler : public reachable_code::Callback {
57    Sema &S;
58    SourceRange PreviousSilenceableCondVal;
59
60  public:
61    UnreachableCodeHandler(Sema &s) : S(s) {}
62
63    void HandleUnreachable(reachable_code::UnreachableKind UK,
64                           SourceLocation L,
65                           SourceRange SilenceableCondVal,
66                           SourceRange R1,
67                           SourceRange R2) override {
68      // Avoid reporting multiple unreachable code diagnostics that are
69      // triggered by the same conditional value.
70      if (PreviousSilenceableCondVal.isValid() &&
71          SilenceableCondVal.isValid() &&
72          PreviousSilenceableCondVal == SilenceableCondVal)
73        return;
74      PreviousSilenceableCondVal = SilenceableCondVal;
75
76      unsigned diag = diag::warn_unreachable;
77      switch (UK) {
78        case reachable_code::UK_Break:
79          diag = diag::warn_unreachable_break;
80          break;
81        case reachable_code::UK_Return:
82          diag = diag::warn_unreachable_return;
83          break;
84        case reachable_code::UK_Loop_Increment:
85          diag = diag::warn_unreachable_loop_increment;
86          break;
87        case reachable_code::UK_Other:
88          break;
89      }
90
91      S.Diag(L, diag) << R1 << R2;
92
93      SourceLocation Open = SilenceableCondVal.getBegin();
94      if (Open.isValid()) {
95        SourceLocation Close = SilenceableCondVal.getEnd();
96        Close = S.getLocForEndOfToken(Close);
97        if (Close.isValid()) {
98          S.Diag(Open, diag::note_unreachable_silence)
99            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
100            << FixItHint::CreateInsertion(Close, ")");
101        }
102      }
103    }
104  };
105} // anonymous namespace
106
107/// CheckUnreachable - Check for unreachable code.
108static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
109  // As a heuristic prune all diagnostics not in the main file.  Currently
110  // the majority of warnings in headers are false positives.  These
111  // are largely caused by configuration state, e.g. preprocessor
112  // defined code, etc.
113  //
114  // Note that this is also a performance optimization.  Analyzing
115  // headers many times can be expensive.
116  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
117    return;
118
119  UnreachableCodeHandler UC(S);
120  reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
121}
122
123namespace {
124/// Warn on logical operator errors in CFGBuilder
125class LogicalErrorHandler : public CFGCallback {
126  Sema &S;
127
128public:
129  LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
130
131  static bool HasMacroID(const Expr *E) {
132    if (E->getExprLoc().isMacroID())
133      return true;
134
135    // Recurse to children.
136    for (const Stmt *SubStmt : E->children())
137      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
138        if (HasMacroID(SubExpr))
139          return true;
140
141    return false;
142  }
143
144  void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
145    if (HasMacroID(B))
146      return;
147
148    SourceRange DiagRange = B->getSourceRange();
149    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
150        << DiagRange << isAlwaysTrue;
151  }
152
153  void compareBitwiseEquality(const BinaryOperator *B,
154                              bool isAlwaysTrue) override {
155    if (HasMacroID(B))
156      return;
157
158    SourceRange DiagRange = B->getSourceRange();
159    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
160        << DiagRange << isAlwaysTrue;
161  }
162
163  void compareBitwiseOr(const BinaryOperator *B) override {
164    if (HasMacroID(B))
165      return;
166
167    SourceRange DiagRange = B->getSourceRange();
168    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
169  }
170
171  static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
172                                   SourceLocation Loc) {
173    return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
174           !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
175  }
176};
177} // anonymous namespace
178
179//===----------------------------------------------------------------------===//
180// Check for infinite self-recursion in functions
181//===----------------------------------------------------------------------===//
182
183// Returns true if the function is called anywhere within the CFGBlock.
184// For member functions, the additional condition of being call from the
185// this pointer is required.
186static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
187  // Process all the Stmt's in this block to find any calls to FD.
188  for (const auto &B : Block) {
189    if (B.getKind() != CFGElement::Statement)
190      continue;
191
192    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
193    if (!CE || !CE->getCalleeDecl() ||
194        CE->getCalleeDecl()->getCanonicalDecl() != FD)
195      continue;
196
197    // Skip function calls which are qualified with a templated class.
198    if (const DeclRefExpr *DRE =
199            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
200      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
201        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
202            isa<TemplateSpecializationType>(NNS->getAsType())) {
203          continue;
204        }
205      }
206    }
207
208    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
209    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
210        !MCE->getMethodDecl()->isVirtual())
211      return true;
212  }
213  return false;
214}
215
216// Returns true if every path from the entry block passes through a call to FD.
217static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
218  llvm::SmallPtrSet<CFGBlock *, 16> Visited;
219  llvm::SmallVector<CFGBlock *, 16> WorkList;
220  // Keep track of whether we found at least one recursive path.
221  bool foundRecursion = false;
222
223  const unsigned ExitID = cfg->getExit().getBlockID();
224
225  // Seed the work list with the entry block.
226  WorkList.push_back(&cfg->getEntry());
227
228  while (!WorkList.empty()) {
229    CFGBlock *Block = WorkList.pop_back_val();
230
231    for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
232      if (CFGBlock *SuccBlock = *I) {
233        if (!Visited.insert(SuccBlock).second)
234          continue;
235
236        // Found a path to the exit node without a recursive call.
237        if (ExitID == SuccBlock->getBlockID())
238          return false;
239
240        // If the successor block contains a recursive call, end analysis there.
241        if (hasRecursiveCallInPath(FD, *SuccBlock)) {
242          foundRecursion = true;
243          continue;
244        }
245
246        WorkList.push_back(SuccBlock);
247      }
248    }
249  }
250  return foundRecursion;
251}
252
253static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
254                                   const Stmt *Body, AnalysisDeclContext &AC) {
255  FD = FD->getCanonicalDecl();
256
257  // Only run on non-templated functions and non-templated members of
258  // templated classes.
259  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
260      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
261    return;
262
263  CFG *cfg = AC.getCFG();
264  if (!cfg) return;
265
266  // If the exit block is unreachable, skip processing the function.
267  if (cfg->getExit().pred_empty())
268    return;
269
270  // Emit diagnostic if a recursive function call is detected for all paths.
271  if (checkForRecursiveFunctionCall(FD, cfg))
272    S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
273}
274
275//===----------------------------------------------------------------------===//
276// Check for throw in a non-throwing function.
277//===----------------------------------------------------------------------===//
278
279/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
280/// can reach ExitBlock.
281static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
282                         CFG *Body) {
283  SmallVector<CFGBlock *, 16> Stack;
284  llvm::BitVector Queued(Body->getNumBlockIDs());
285
286  Stack.push_back(&ThrowBlock);
287  Queued[ThrowBlock.getBlockID()] = true;
288
289  while (!Stack.empty()) {
290    CFGBlock &UnwindBlock = *Stack.back();
291    Stack.pop_back();
292
293    for (auto &Succ : UnwindBlock.succs()) {
294      if (!Succ.isReachable() || Queued[Succ->getBlockID()])
295        continue;
296
297      if (Succ->getBlockID() == Body->getExit().getBlockID())
298        return true;
299
300      if (auto *Catch =
301              dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
302        QualType Caught = Catch->getCaughtType();
303        if (Caught.isNull() || // catch (...) catches everything
304            !E->getSubExpr() || // throw; is considered cuaght by any handler
305            S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
306          // Exception doesn't escape via this path.
307          break;
308      } else {
309        Stack.push_back(Succ);
310        Queued[Succ->getBlockID()] = true;
311      }
312    }
313  }
314
315  return false;
316}
317
318static void visitReachableThrows(
319    CFG *BodyCFG,
320    llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
321  llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
322  clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
323  for (CFGBlock *B : *BodyCFG) {
324    if (!Reachable[B->getBlockID()])
325      continue;
326    for (CFGElement &E : *B) {
327      Optional<CFGStmt> S = E.getAs<CFGStmt>();
328      if (!S)
329        continue;
330      if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
331        Visit(Throw, *B);
332    }
333  }
334}
335
336static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
337                                                 const FunctionDecl *FD) {
338  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
339      FD->getTypeSourceInfo()) {
340    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
341    if (S.getLangOpts().CPlusPlus11 &&
342        (isa<CXXDestructorDecl>(FD) ||
343         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
344         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
345      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
346                                         getAs<FunctionProtoType>())
347        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
348            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
349            << FD->getExceptionSpecSourceRange();
350    } else
351      S.Diag(FD->getLocation(), diag::note_throw_in_function)
352          << FD->getExceptionSpecSourceRange();
353  }
354}
355
356static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
357                                        AnalysisDeclContext &AC) {
358  CFG *BodyCFG = AC.getCFG();
359  if (!BodyCFG)
360    return;
361  if (BodyCFG->getExit().pred_empty())
362    return;
363  visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
364    if (throwEscapes(S, Throw, Block, BodyCFG))
365      EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
366  });
367}
368
369static bool isNoexcept(const FunctionDecl *FD) {
370  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
371  if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
372    return true;
373  return false;
374}
375
376//===----------------------------------------------------------------------===//
377// Check for missing return value.
378//===----------------------------------------------------------------------===//
379
380enum ControlFlowKind {
381  UnknownFallThrough,
382  NeverFallThrough,
383  MaybeFallThrough,
384  AlwaysFallThrough,
385  NeverFallThroughOrReturn
386};
387
388/// CheckFallThrough - Check that we don't fall off the end of a
389/// Statement that should return a value.
390///
391/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
392/// MaybeFallThrough iff we might or might not fall off the end,
393/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
394/// return.  We assume NeverFallThrough iff we never fall off the end of the
395/// statement but we may return.  We assume that functions not marked noreturn
396/// will return.
397static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
398  CFG *cfg = AC.getCFG();
399  if (!cfg) return UnknownFallThrough;
400
401  // The CFG leaves in dead things, and we don't want the dead code paths to
402  // confuse us, so we mark all live things first.
403  llvm::BitVector live(cfg->getNumBlockIDs());
404  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
405                                                          live);
406
407  bool AddEHEdges = AC.getAddEHEdges();
408  if (!AddEHEdges && count != cfg->getNumBlockIDs())
409    // When there are things remaining dead, and we didn't add EH edges
410    // from CallExprs to the catch clauses, we have to go back and
411    // mark them as live.
412    for (const auto *B : *cfg) {
413      if (!live[B->getBlockID()]) {
414        if (B->pred_begin() == B->pred_end()) {
415          const Stmt *Term = B->getTerminatorStmt();
416          if (Term && isa<CXXTryStmt>(Term))
417            // When not adding EH edges from calls, catch clauses
418            // can otherwise seem dead.  Avoid noting them as dead.
419            count += reachable_code::ScanReachableFromBlock(B, live);
420          continue;
421        }
422      }
423    }
424
425  // Now we know what is live, we check the live precessors of the exit block
426  // and look for fall through paths, being careful to ignore normal returns,
427  // and exceptional paths.
428  bool HasLiveReturn = false;
429  bool HasFakeEdge = false;
430  bool HasPlainEdge = false;
431  bool HasAbnormalEdge = false;
432
433  // Ignore default cases that aren't likely to be reachable because all
434  // enums in a switch(X) have explicit case statements.
435  CFGBlock::FilterOptions FO;
436  FO.IgnoreDefaultsWithCoveredEnums = 1;
437
438  for (CFGBlock::filtered_pred_iterator I =
439           cfg->getExit().filtered_pred_start_end(FO);
440       I.hasMore(); ++I) {
441    const CFGBlock &B = **I;
442    if (!live[B.getBlockID()])
443      continue;
444
445    // Skip blocks which contain an element marked as no-return. They don't
446    // represent actually viable edges into the exit block, so mark them as
447    // abnormal.
448    if (B.hasNoReturnElement()) {
449      HasAbnormalEdge = true;
450      continue;
451    }
452
453    // Destructors can appear after the 'return' in the CFG.  This is
454    // normal.  We need to look pass the destructors for the return
455    // statement (if it exists).
456    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
457
458    for ( ; ri != re ; ++ri)
459      if (ri->getAs<CFGStmt>())
460        break;
461
462    // No more CFGElements in the block?
463    if (ri == re) {
464      const Stmt *Term = B.getTerminatorStmt();
465      if (Term && isa<CXXTryStmt>(Term)) {
466        HasAbnormalEdge = true;
467        continue;
468      }
469      // A labeled empty statement, or the entry block...
470      HasPlainEdge = true;
471      continue;
472    }
473
474    CFGStmt CS = ri->castAs<CFGStmt>();
475    const Stmt *S = CS.getStmt();
476    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
477      HasLiveReturn = true;
478      continue;
479    }
480    if (isa<ObjCAtThrowStmt>(S)) {
481      HasFakeEdge = true;
482      continue;
483    }
484    if (isa<CXXThrowExpr>(S)) {
485      HasFakeEdge = true;
486      continue;
487    }
488    if (isa<MSAsmStmt>(S)) {
489      // TODO: Verify this is correct.
490      HasFakeEdge = true;
491      HasLiveReturn = true;
492      continue;
493    }
494    if (isa<CXXTryStmt>(S)) {
495      HasAbnormalEdge = true;
496      continue;
497    }
498    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
499        == B.succ_end()) {
500      HasAbnormalEdge = true;
501      continue;
502    }
503
504    HasPlainEdge = true;
505  }
506  if (!HasPlainEdge) {
507    if (HasLiveReturn)
508      return NeverFallThrough;
509    return NeverFallThroughOrReturn;
510  }
511  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
512    return MaybeFallThrough;
513  // This says AlwaysFallThrough for calls to functions that are not marked
514  // noreturn, that don't return.  If people would like this warning to be more
515  // accurate, such functions should be marked as noreturn.
516  return AlwaysFallThrough;
517}
518
519namespace {
520
521struct CheckFallThroughDiagnostics {
522  unsigned diag_MaybeFallThrough_HasNoReturn;
523  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
524  unsigned diag_AlwaysFallThrough_HasNoReturn;
525  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
526  unsigned diag_NeverFallThroughOrReturn;
527  enum { Function, Block, Lambda, Coroutine } funMode;
528  SourceLocation FuncLoc;
529
530  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
531    CheckFallThroughDiagnostics D;
532    D.FuncLoc = Func->getLocation();
533    D.diag_MaybeFallThrough_HasNoReturn =
534      diag::warn_falloff_noreturn_function;
535    D.diag_MaybeFallThrough_ReturnsNonVoid =
536      diag::warn_maybe_falloff_nonvoid_function;
537    D.diag_AlwaysFallThrough_HasNoReturn =
538      diag::warn_falloff_noreturn_function;
539    D.diag_AlwaysFallThrough_ReturnsNonVoid =
540      diag::warn_falloff_nonvoid_function;
541
542    // Don't suggest that virtual functions be marked "noreturn", since they
543    // might be overridden by non-noreturn functions.
544    bool isVirtualMethod = false;
545    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
546      isVirtualMethod = Method->isVirtual();
547
548    // Don't suggest that template instantiations be marked "noreturn"
549    bool isTemplateInstantiation = false;
550    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
551      isTemplateInstantiation = Function->isTemplateInstantiation();
552
553    if (!isVirtualMethod && !isTemplateInstantiation)
554      D.diag_NeverFallThroughOrReturn =
555        diag::warn_suggest_noreturn_function;
556    else
557      D.diag_NeverFallThroughOrReturn = 0;
558
559    D.funMode = Function;
560    return D;
561  }
562
563  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
564    CheckFallThroughDiagnostics D;
565    D.FuncLoc = Func->getLocation();
566    D.diag_MaybeFallThrough_HasNoReturn = 0;
567    D.diag_MaybeFallThrough_ReturnsNonVoid =
568        diag::warn_maybe_falloff_nonvoid_coroutine;
569    D.diag_AlwaysFallThrough_HasNoReturn = 0;
570    D.diag_AlwaysFallThrough_ReturnsNonVoid =
571        diag::warn_falloff_nonvoid_coroutine;
572    D.funMode = Coroutine;
573    return D;
574  }
575
576  static CheckFallThroughDiagnostics MakeForBlock() {
577    CheckFallThroughDiagnostics D;
578    D.diag_MaybeFallThrough_HasNoReturn =
579      diag::err_noreturn_block_has_return_expr;
580    D.diag_MaybeFallThrough_ReturnsNonVoid =
581      diag::err_maybe_falloff_nonvoid_block;
582    D.diag_AlwaysFallThrough_HasNoReturn =
583      diag::err_noreturn_block_has_return_expr;
584    D.diag_AlwaysFallThrough_ReturnsNonVoid =
585      diag::err_falloff_nonvoid_block;
586    D.diag_NeverFallThroughOrReturn = 0;
587    D.funMode = Block;
588    return D;
589  }
590
591  static CheckFallThroughDiagnostics MakeForLambda() {
592    CheckFallThroughDiagnostics D;
593    D.diag_MaybeFallThrough_HasNoReturn =
594      diag::err_noreturn_lambda_has_return_expr;
595    D.diag_MaybeFallThrough_ReturnsNonVoid =
596      diag::warn_maybe_falloff_nonvoid_lambda;
597    D.diag_AlwaysFallThrough_HasNoReturn =
598      diag::err_noreturn_lambda_has_return_expr;
599    D.diag_AlwaysFallThrough_ReturnsNonVoid =
600      diag::warn_falloff_nonvoid_lambda;
601    D.diag_NeverFallThroughOrReturn = 0;
602    D.funMode = Lambda;
603    return D;
604  }
605
606  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
607                        bool HasNoReturn) const {
608    if (funMode == Function) {
609      return (ReturnsVoid ||
610              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
611                          FuncLoc)) &&
612             (!HasNoReturn ||
613              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
614                          FuncLoc)) &&
615             (!ReturnsVoid ||
616              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
617    }
618    if (funMode == Coroutine) {
619      return (ReturnsVoid ||
620              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
621              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
622                          FuncLoc)) &&
623             (!HasNoReturn);
624    }
625    // For blocks / lambdas.
626    return ReturnsVoid && !HasNoReturn;
627  }
628};
629
630} // anonymous namespace
631
632/// CheckFallThroughForBody - Check that we don't fall off the end of a
633/// function that should return a value.  Check that we don't fall off the end
634/// of a noreturn function.  We assume that functions and blocks not marked
635/// noreturn will return.
636static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
637                                    QualType BlockType,
638                                    const CheckFallThroughDiagnostics &CD,
639                                    AnalysisDeclContext &AC,
640                                    sema::FunctionScopeInfo *FSI) {
641
642  bool ReturnsVoid = false;
643  bool HasNoReturn = false;
644  bool IsCoroutine = FSI->isCoroutine();
645
646  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
647    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
648      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
649    else
650      ReturnsVoid = FD->getReturnType()->isVoidType();
651    HasNoReturn = FD->isNoReturn();
652  }
653  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
654    ReturnsVoid = MD->getReturnType()->isVoidType();
655    HasNoReturn = MD->hasAttr<NoReturnAttr>();
656  }
657  else if (isa<BlockDecl>(D)) {
658    if (const FunctionType *FT =
659          BlockType->getPointeeType()->getAs<FunctionType>()) {
660      if (FT->getReturnType()->isVoidType())
661        ReturnsVoid = true;
662      if (FT->getNoReturnAttr())
663        HasNoReturn = true;
664    }
665  }
666
667  DiagnosticsEngine &Diags = S.getDiagnostics();
668
669  // Short circuit for compilation speed.
670  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
671      return;
672  SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
673  auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
674    if (IsCoroutine)
675      S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
676    else
677      S.Diag(Loc, DiagID);
678  };
679
680  // cpu_dispatch functions permit empty function bodies for ICC compatibility.
681  if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
682    return;
683
684  // Either in a function body compound statement, or a function-try-block.
685  switch (CheckFallThrough(AC)) {
686    case UnknownFallThrough:
687      break;
688
689    case MaybeFallThrough:
690      if (HasNoReturn)
691        EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
692      else if (!ReturnsVoid)
693        EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
694      break;
695    case AlwaysFallThrough:
696      if (HasNoReturn)
697        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
698      else if (!ReturnsVoid)
699        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
700      break;
701    case NeverFallThroughOrReturn:
702      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
703        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
704          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
705        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
706          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
707        } else {
708          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
709        }
710      }
711      break;
712    case NeverFallThrough:
713      break;
714  }
715}
716
717//===----------------------------------------------------------------------===//
718// -Wuninitialized
719//===----------------------------------------------------------------------===//
720
721namespace {
722/// ContainsReference - A visitor class to search for references to
723/// a particular declaration (the needle) within any evaluated component of an
724/// expression (recursively).
725class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
726  bool FoundReference;
727  const DeclRefExpr *Needle;
728
729public:
730  typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
731
732  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
733    : Inherited(Context), FoundReference(false), Needle(Needle) {}
734
735  void VisitExpr(const Expr *E) {
736    // Stop evaluating if we already have a reference.
737    if (FoundReference)
738      return;
739
740    Inherited::VisitExpr(E);
741  }
742
743  void VisitDeclRefExpr(const DeclRefExpr *E) {
744    if (E == Needle)
745      FoundReference = true;
746    else
747      Inherited::VisitDeclRefExpr(E);
748  }
749
750  bool doesContainReference() const { return FoundReference; }
751};
752} // anonymous namespace
753
754static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
755  QualType VariableTy = VD->getType().getCanonicalType();
756  if (VariableTy->isBlockPointerType() &&
757      !VD->hasAttr<BlocksAttr>()) {
758    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
759        << VD->getDeclName()
760        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
761    return true;
762  }
763
764  // Don't issue a fixit if there is already an initializer.
765  if (VD->getInit())
766    return false;
767
768  // Don't suggest a fixit inside macros.
769  if (VD->getEndLoc().isMacroID())
770    return false;
771
772  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
773
774  // Suggest possible initialization (if any).
775  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
776  if (Init.empty())
777    return false;
778
779  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
780    << FixItHint::CreateInsertion(Loc, Init);
781  return true;
782}
783
784/// Create a fixit to remove an if-like statement, on the assumption that its
785/// condition is CondVal.
786static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
787                          const Stmt *Else, bool CondVal,
788                          FixItHint &Fixit1, FixItHint &Fixit2) {
789  if (CondVal) {
790    // If condition is always true, remove all but the 'then'.
791    Fixit1 = FixItHint::CreateRemoval(
792        CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
793    if (Else) {
794      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
795      Fixit2 =
796          FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
797    }
798  } else {
799    // If condition is always false, remove all but the 'else'.
800    if (Else)
801      Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
802          If->getBeginLoc(), Else->getBeginLoc()));
803    else
804      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
805  }
806}
807
808/// DiagUninitUse -- Helper function to produce a diagnostic for an
809/// uninitialized use of a variable.
810static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
811                          bool IsCapturedByBlock) {
812  bool Diagnosed = false;
813
814  switch (Use.getKind()) {
815  case UninitUse::Always:
816    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
817        << VD->getDeclName() << IsCapturedByBlock
818        << Use.getUser()->getSourceRange();
819    return;
820
821  case UninitUse::AfterDecl:
822  case UninitUse::AfterCall:
823    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
824      << VD->getDeclName() << IsCapturedByBlock
825      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
826      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
827      << VD->getSourceRange();
828    S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
829        << IsCapturedByBlock << Use.getUser()->getSourceRange();
830    return;
831
832  case UninitUse::Maybe:
833  case UninitUse::Sometimes:
834    // Carry on to report sometimes-uninitialized branches, if possible,
835    // or a 'may be used uninitialized' diagnostic otherwise.
836    break;
837  }
838
839  // Diagnose each branch which leads to a sometimes-uninitialized use.
840  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
841       I != E; ++I) {
842    assert(Use.getKind() == UninitUse::Sometimes);
843
844    const Expr *User = Use.getUser();
845    const Stmt *Term = I->Terminator;
846
847    // Information used when building the diagnostic.
848    unsigned DiagKind;
849    StringRef Str;
850    SourceRange Range;
851
852    // FixIts to suppress the diagnostic by removing the dead condition.
853    // For all binary terminators, branch 0 is taken if the condition is true,
854    // and branch 1 is taken if the condition is false.
855    int RemoveDiagKind = -1;
856    const char *FixitStr =
857        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
858                                  : (I->Output ? "1" : "0");
859    FixItHint Fixit1, Fixit2;
860
861    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
862    default:
863      // Don't know how to report this. Just fall back to 'may be used
864      // uninitialized'. FIXME: Can this happen?
865      continue;
866
867    // "condition is true / condition is false".
868    case Stmt::IfStmtClass: {
869      const IfStmt *IS = cast<IfStmt>(Term);
870      DiagKind = 0;
871      Str = "if";
872      Range = IS->getCond()->getSourceRange();
873      RemoveDiagKind = 0;
874      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
875                    I->Output, Fixit1, Fixit2);
876      break;
877    }
878    case Stmt::ConditionalOperatorClass: {
879      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
880      DiagKind = 0;
881      Str = "?:";
882      Range = CO->getCond()->getSourceRange();
883      RemoveDiagKind = 0;
884      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
885                    I->Output, Fixit1, Fixit2);
886      break;
887    }
888    case Stmt::BinaryOperatorClass: {
889      const BinaryOperator *BO = cast<BinaryOperator>(Term);
890      if (!BO->isLogicalOp())
891        continue;
892      DiagKind = 0;
893      Str = BO->getOpcodeStr();
894      Range = BO->getLHS()->getSourceRange();
895      RemoveDiagKind = 0;
896      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
897          (BO->getOpcode() == BO_LOr && !I->Output))
898        // true && y -> y, false || y -> y.
899        Fixit1 = FixItHint::CreateRemoval(
900            SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
901      else
902        // false && y -> false, true || y -> true.
903        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
904      break;
905    }
906
907    // "loop is entered / loop is exited".
908    case Stmt::WhileStmtClass:
909      DiagKind = 1;
910      Str = "while";
911      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
912      RemoveDiagKind = 1;
913      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
914      break;
915    case Stmt::ForStmtClass:
916      DiagKind = 1;
917      Str = "for";
918      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
919      RemoveDiagKind = 1;
920      if (I->Output)
921        Fixit1 = FixItHint::CreateRemoval(Range);
922      else
923        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
924      break;
925    case Stmt::CXXForRangeStmtClass:
926      if (I->Output == 1) {
927        // The use occurs if a range-based for loop's body never executes.
928        // That may be impossible, and there's no syntactic fix for this,
929        // so treat it as a 'may be uninitialized' case.
930        continue;
931      }
932      DiagKind = 1;
933      Str = "for";
934      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
935      break;
936
937    // "condition is true / loop is exited".
938    case Stmt::DoStmtClass:
939      DiagKind = 2;
940      Str = "do";
941      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
942      RemoveDiagKind = 1;
943      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
944      break;
945
946    // "switch case is taken".
947    case Stmt::CaseStmtClass:
948      DiagKind = 3;
949      Str = "case";
950      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
951      break;
952    case Stmt::DefaultStmtClass:
953      DiagKind = 3;
954      Str = "default";
955      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
956      break;
957    }
958
959    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
960      << VD->getDeclName() << IsCapturedByBlock << DiagKind
961      << Str << I->Output << Range;
962    S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
963        << IsCapturedByBlock << User->getSourceRange();
964    if (RemoveDiagKind != -1)
965      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
966        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
967
968    Diagnosed = true;
969  }
970
971  if (!Diagnosed)
972    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
973        << VD->getDeclName() << IsCapturedByBlock
974        << Use.getUser()->getSourceRange();
975}
976
977/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
978/// uninitialized variable. This manages the different forms of diagnostic
979/// emitted for particular types of uses. Returns true if the use was diagnosed
980/// as a warning. If a particular use is one we omit warnings for, returns
981/// false.
982static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
983                                     const UninitUse &Use,
984                                     bool alwaysReportSelfInit = false) {
985  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
986    // Inspect the initializer of the variable declaration which is
987    // being referenced prior to its initialization. We emit
988    // specialized diagnostics for self-initialization, and we
989    // specifically avoid warning about self references which take the
990    // form of:
991    //
992    //   int x = x;
993    //
994    // This is used to indicate to GCC that 'x' is intentionally left
995    // uninitialized. Proven code paths which access 'x' in
996    // an uninitialized state after this will still warn.
997    if (const Expr *Initializer = VD->getInit()) {
998      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
999        return false;
1000
1001      ContainsReference CR(S.Context, DRE);
1002      CR.Visit(Initializer);
1003      if (CR.doesContainReference()) {
1004        S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
1005            << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
1006        return true;
1007      }
1008    }
1009
1010    DiagUninitUse(S, VD, Use, false);
1011  } else {
1012    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
1013    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1014      S.Diag(BE->getBeginLoc(),
1015             diag::warn_uninit_byref_blockvar_captured_by_block)
1016          << VD->getDeclName()
1017          << VD->getType().getQualifiers().hasObjCLifetime();
1018    else
1019      DiagUninitUse(S, VD, Use, true);
1020  }
1021
1022  // Report where the variable was declared when the use wasn't within
1023  // the initializer of that declaration & we didn't already suggest
1024  // an initialization fixit.
1025  if (!SuggestInitializationFixit(S, VD))
1026    S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1027        << VD->getDeclName();
1028
1029  return true;
1030}
1031
1032namespace {
1033  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1034  public:
1035    FallthroughMapper(Sema &S)
1036      : FoundSwitchStatements(false),
1037        S(S) {
1038    }
1039
1040    bool foundSwitchStatements() const { return FoundSwitchStatements; }
1041
1042    void markFallthroughVisited(const AttributedStmt *Stmt) {
1043      bool Found = FallthroughStmts.erase(Stmt);
1044      assert(Found);
1045      (void)Found;
1046    }
1047
1048    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1049
1050    const AttrStmts &getFallthroughStmts() const {
1051      return FallthroughStmts;
1052    }
1053
1054    void fillReachableBlocks(CFG *Cfg) {
1055      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1056      std::deque<const CFGBlock *> BlockQueue;
1057
1058      ReachableBlocks.insert(&Cfg->getEntry());
1059      BlockQueue.push_back(&Cfg->getEntry());
1060      // Mark all case blocks reachable to avoid problems with switching on
1061      // constants, covered enums, etc.
1062      // These blocks can contain fall-through annotations, and we don't want to
1063      // issue a warn_fallthrough_attr_unreachable for them.
1064      for (const auto *B : *Cfg) {
1065        const Stmt *L = B->getLabel();
1066        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1067          BlockQueue.push_back(B);
1068      }
1069
1070      while (!BlockQueue.empty()) {
1071        const CFGBlock *P = BlockQueue.front();
1072        BlockQueue.pop_front();
1073        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1074                                           E = P->succ_end();
1075             I != E; ++I) {
1076          if (*I && ReachableBlocks.insert(*I).second)
1077            BlockQueue.push_back(*I);
1078        }
1079      }
1080    }
1081
1082    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1083                                   bool IsTemplateInstantiation) {
1084      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1085
1086      int UnannotatedCnt = 0;
1087      AnnotatedCnt = 0;
1088
1089      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1090      while (!BlockQueue.empty()) {
1091        const CFGBlock *P = BlockQueue.front();
1092        BlockQueue.pop_front();
1093        if (!P) continue;
1094
1095        const Stmt *Term = P->getTerminatorStmt();
1096        if (Term && isa<SwitchStmt>(Term))
1097          continue; // Switch statement, good.
1098
1099        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1100        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1101          continue; // Previous case label has no statements, good.
1102
1103        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1104        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1105          continue; // Case label is preceded with a normal label, good.
1106
1107        if (!ReachableBlocks.count(P)) {
1108          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1109                                                ElemEnd = P->rend();
1110               ElemIt != ElemEnd; ++ElemIt) {
1111            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1112              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1113                // Don't issue a warning for an unreachable fallthrough
1114                // attribute in template instantiations as it may not be
1115                // unreachable in all instantiations of the template.
1116                if (!IsTemplateInstantiation)
1117                  S.Diag(AS->getBeginLoc(),
1118                         diag::warn_fallthrough_attr_unreachable);
1119                markFallthroughVisited(AS);
1120                ++AnnotatedCnt;
1121                break;
1122              }
1123              // Don't care about other unreachable statements.
1124            }
1125          }
1126          // If there are no unreachable statements, this may be a special
1127          // case in CFG:
1128          // case X: {
1129          //    A a;  // A has a destructor.
1130          //    break;
1131          // }
1132          // // <<<< This place is represented by a 'hanging' CFG block.
1133          // case Y:
1134          continue;
1135        }
1136
1137        const Stmt *LastStmt = getLastStmt(*P);
1138        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1139          markFallthroughVisited(AS);
1140          ++AnnotatedCnt;
1141          continue; // Fallthrough annotation, good.
1142        }
1143
1144        if (!LastStmt) { // This block contains no executable statements.
1145          // Traverse its predecessors.
1146          std::copy(P->pred_begin(), P->pred_end(),
1147                    std::back_inserter(BlockQueue));
1148          continue;
1149        }
1150
1151        ++UnannotatedCnt;
1152      }
1153      return !!UnannotatedCnt;
1154    }
1155
1156    // RecursiveASTVisitor setup.
1157    bool shouldWalkTypesOfTypeLocs() const { return false; }
1158
1159    bool VisitAttributedStmt(AttributedStmt *S) {
1160      if (asFallThroughAttr(S))
1161        FallthroughStmts.insert(S);
1162      return true;
1163    }
1164
1165    bool VisitSwitchStmt(SwitchStmt *S) {
1166      FoundSwitchStatements = true;
1167      return true;
1168    }
1169
1170    // We don't want to traverse local type declarations. We analyze their
1171    // methods separately.
1172    bool TraverseDecl(Decl *D) { return true; }
1173
1174    // We analyze lambda bodies separately. Skip them here.
1175    bool TraverseLambdaExpr(LambdaExpr *LE) {
1176      // Traverse the captures, but not the body.
1177      for (const auto C : zip(LE->captures(), LE->capture_inits()))
1178        TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1179      return true;
1180    }
1181
1182  private:
1183
1184    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1185      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1186        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1187          return AS;
1188      }
1189      return nullptr;
1190    }
1191
1192    static const Stmt *getLastStmt(const CFGBlock &B) {
1193      if (const Stmt *Term = B.getTerminatorStmt())
1194        return Term;
1195      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1196                                            ElemEnd = B.rend();
1197                                            ElemIt != ElemEnd; ++ElemIt) {
1198        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1199          return CS->getStmt();
1200      }
1201      // Workaround to detect a statement thrown out by CFGBuilder:
1202      //   case X: {} case Y:
1203      //   case X: ; case Y:
1204      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1205        if (!isa<SwitchCase>(SW->getSubStmt()))
1206          return SW->getSubStmt();
1207
1208      return nullptr;
1209    }
1210
1211    bool FoundSwitchStatements;
1212    AttrStmts FallthroughStmts;
1213    Sema &S;
1214    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1215  };
1216} // anonymous namespace
1217
1218static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1219                                            SourceLocation Loc) {
1220  TokenValue FallthroughTokens[] = {
1221    tok::l_square, tok::l_square,
1222    PP.getIdentifierInfo("fallthrough"),
1223    tok::r_square, tok::r_square
1224  };
1225
1226  TokenValue ClangFallthroughTokens[] = {
1227    tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1228    tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1229    tok::r_square, tok::r_square
1230  };
1231
1232  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;
1233
1234  StringRef MacroName;
1235  if (PreferClangAttr)
1236    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1237  if (MacroName.empty())
1238    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1239  if (MacroName.empty() && !PreferClangAttr)
1240    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1241  if (MacroName.empty()) {
1242    if (!PreferClangAttr)
1243      MacroName = "[[fallthrough]]";
1244    else if (PP.getLangOpts().CPlusPlus)
1245      MacroName = "[[clang::fallthrough]]";
1246    else
1247      MacroName = "__attribute__((fallthrough))";
1248  }
1249  return MacroName;
1250}
1251
1252static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1253                                            bool PerFunction) {
1254  FallthroughMapper FM(S);
1255  FM.TraverseStmt(AC.getBody());
1256
1257  if (!FM.foundSwitchStatements())
1258    return;
1259
1260  if (PerFunction && FM.getFallthroughStmts().empty())
1261    return;
1262
1263  CFG *Cfg = AC.getCFG();
1264
1265  if (!Cfg)
1266    return;
1267
1268  FM.fillReachableBlocks(Cfg);
1269
1270  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1271    const Stmt *Label = B->getLabel();
1272
1273    if (!Label || !isa<SwitchCase>(Label))
1274      continue;
1275
1276    int AnnotatedCnt;
1277
1278    bool IsTemplateInstantiation = false;
1279    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1280      IsTemplateInstantiation = Function->isTemplateInstantiation();
1281    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1282                                      IsTemplateInstantiation))
1283      continue;
1284
1285    S.Diag(Label->getBeginLoc(),
1286           PerFunction ? diag::warn_unannotated_fallthrough_per_function
1287                       : diag::warn_unannotated_fallthrough);
1288
1289    if (!AnnotatedCnt) {
1290      SourceLocation L = Label->getBeginLoc();
1291      if (L.isMacroID())
1292        continue;
1293
1294      const Stmt *Term = B->getTerminatorStmt();
1295      // Skip empty cases.
1296      while (B->empty() && !Term && B->succ_size() == 1) {
1297        B = *B->succ_begin();
1298        Term = B->getTerminatorStmt();
1299      }
1300      if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1301        Preprocessor &PP = S.getPreprocessor();
1302        StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1303        SmallString<64> TextToInsert(AnnotationSpelling);
1304        TextToInsert += "; ";
1305        S.Diag(L, diag::note_insert_fallthrough_fixit)
1306            << AnnotationSpelling
1307            << FixItHint::CreateInsertion(L, TextToInsert);
1308      }
1309      S.Diag(L, diag::note_insert_break_fixit)
1310          << FixItHint::CreateInsertion(L, "break; ");
1311    }
1312  }
1313
1314  for (const auto *F : FM.getFallthroughStmts())
1315    S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1316}
1317
1318static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1319                     const Stmt *S) {
1320  assert(S);
1321
1322  do {
1323    switch (S->getStmtClass()) {
1324    case Stmt::ForStmtClass:
1325    case Stmt::WhileStmtClass:
1326    case Stmt::CXXForRangeStmtClass:
1327    case Stmt::ObjCForCollectionStmtClass:
1328      return true;
1329    case Stmt::DoStmtClass: {
1330      Expr::EvalResult Result;
1331      if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
1332        return true;
1333      return Result.Val.getInt().getBoolValue();
1334    }
1335    default:
1336      break;
1337    }
1338  } while ((S = PM.getParent(S)));
1339
1340  return false;
1341}
1342
1343static void diagnoseRepeatedUseOfWeak(Sema &S,
1344                                      const sema::FunctionScopeInfo *CurFn,
1345                                      const Decl *D,
1346                                      const ParentMap &PM) {
1347  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1348  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1349  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1350  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1351  StmtUsesPair;
1352
1353  ASTContext &Ctx = S.getASTContext();
1354
1355  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1356
1357  // Extract all weak objects that are referenced more than once.
1358  SmallVector<StmtUsesPair, 8> UsesByStmt;
1359  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1360       I != E; ++I) {
1361    const WeakUseVector &Uses = I->second;
1362
1363    // Find the first read of the weak object.
1364    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1365    for ( ; UI != UE; ++UI) {
1366      if (UI->isUnsafe())
1367        break;
1368    }
1369
1370    // If there were only writes to this object, don't warn.
1371    if (UI == UE)
1372      continue;
1373
1374    // If there was only one read, followed by any number of writes, and the
1375    // read is not within a loop, don't warn. Additionally, don't warn in a
1376    // loop if the base object is a local variable -- local variables are often
1377    // changed in loops.
1378    if (UI == Uses.begin()) {
1379      WeakUseVector::const_iterator UI2 = UI;
1380      for (++UI2; UI2 != UE; ++UI2)
1381        if (UI2->isUnsafe())
1382          break;
1383
1384      if (UI2 == UE) {
1385        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1386          continue;
1387
1388        const WeakObjectProfileTy &Profile = I->first;
1389        if (!Profile.isExactProfile())
1390          continue;
1391
1392        const NamedDecl *Base = Profile.getBase();
1393        if (!Base)
1394          Base = Profile.getProperty();
1395        assert(Base && "A profile always has a base or property.");
1396
1397        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1398          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1399            continue;
1400      }
1401    }
1402
1403    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1404  }
1405
1406  if (UsesByStmt.empty())
1407    return;
1408
1409  // Sort by first use so that we emit the warnings in a deterministic order.
1410  SourceManager &SM = S.getSourceManager();
1411  llvm::sort(UsesByStmt,
1412             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1413               return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1414                                                   RHS.first->getBeginLoc());
1415             });
1416
1417  // Classify the current code body for better warning text.
1418  // This enum should stay in sync with the cases in
1419  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1420  // FIXME: Should we use a common classification enum and the same set of
1421  // possibilities all throughout Sema?
1422  enum {
1423    Function,
1424    Method,
1425    Block,
1426    Lambda
1427  } FunctionKind;
1428
1429  if (isa<sema::BlockScopeInfo>(CurFn))
1430    FunctionKind = Block;
1431  else if (isa<sema::LambdaScopeInfo>(CurFn))
1432    FunctionKind = Lambda;
1433  else if (isa<ObjCMethodDecl>(D))
1434    FunctionKind = Method;
1435  else
1436    FunctionKind = Function;
1437
1438  // Iterate through the sorted problems and emit warnings for each.
1439  for (const auto &P : UsesByStmt) {
1440    const Stmt *FirstRead = P.first;
1441    const WeakObjectProfileTy &Key = P.second->first;
1442    const WeakUseVector &Uses = P.second->second;
1443
1444    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1445    // may not contain enough information to determine that these are different
1446    // properties. We can only be 100% sure of a repeated use in certain cases,
1447    // and we adjust the diagnostic kind accordingly so that the less certain
1448    // case can be turned off if it is too noisy.
1449    unsigned DiagKind;
1450    if (Key.isExactProfile())
1451      DiagKind = diag::warn_arc_repeated_use_of_weak;
1452    else
1453      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1454
1455    // Classify the weak object being accessed for better warning text.
1456    // This enum should stay in sync with the cases in
1457    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1458    enum {
1459      Variable,
1460      Property,
1461      ImplicitProperty,
1462      Ivar
1463    } ObjectKind;
1464
1465    const NamedDecl *KeyProp = Key.getProperty();
1466    if (isa<VarDecl>(KeyProp))
1467      ObjectKind = Variable;
1468    else if (isa<ObjCPropertyDecl>(KeyProp))
1469      ObjectKind = Property;
1470    else if (isa<ObjCMethodDecl>(KeyProp))
1471      ObjectKind = ImplicitProperty;
1472    else if (isa<ObjCIvarDecl>(KeyProp))
1473      ObjectKind = Ivar;
1474    else
1475      llvm_unreachable("Unexpected weak object kind!");
1476
1477    // Do not warn about IBOutlet weak property receivers being set to null
1478    // since they are typically only used from the main thread.
1479    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1480      if (Prop->hasAttr<IBOutletAttr>())
1481        continue;
1482
1483    // Show the first time the object was read.
1484    S.Diag(FirstRead->getBeginLoc(), DiagKind)
1485        << int(ObjectKind) << KeyProp << int(FunctionKind)
1486        << FirstRead->getSourceRange();
1487
1488    // Print all the other accesses as notes.
1489    for (const auto &Use : Uses) {
1490      if (Use.getUseExpr() == FirstRead)
1491        continue;
1492      S.Diag(Use.getUseExpr()->getBeginLoc(),
1493             diag::note_arc_weak_also_accessed_here)
1494          << Use.getUseExpr()->getSourceRange();
1495    }
1496  }
1497}
1498
1499namespace {
1500class UninitValsDiagReporter : public UninitVariablesHandler {
1501  Sema &S;
1502  typedef SmallVector<UninitUse, 2> UsesVec;
1503  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1504  // Prefer using MapVector to DenseMap, so that iteration order will be
1505  // the same as insertion order. This is needed to obtain a deterministic
1506  // order of diagnostics when calling flushDiagnostics().
1507  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1508  UsesMap uses;
1509
1510public:
1511  UninitValsDiagReporter(Sema &S) : S(S) {}
1512  ~UninitValsDiagReporter() override { flushDiagnostics(); }
1513
1514  MappedType &getUses(const VarDecl *vd) {
1515    MappedType &V = uses[vd];
1516    if (!V.getPointer())
1517      V.setPointer(new UsesVec());
1518    return V;
1519  }
1520
1521  void handleUseOfUninitVariable(const VarDecl *vd,
1522                                 const UninitUse &use) override {
1523    getUses(vd).getPointer()->push_back(use);
1524  }
1525
1526  void handleSelfInit(const VarDecl *vd) override {
1527    getUses(vd).setInt(true);
1528  }
1529
1530  void flushDiagnostics() {
1531    for (const auto &P : uses) {
1532      const VarDecl *vd = P.first;
1533      const MappedType &V = P.second;
1534
1535      UsesVec *vec = V.getPointer();
1536      bool hasSelfInit = V.getInt();
1537
1538      // Specially handle the case where we have uses of an uninitialized
1539      // variable, but the root cause is an idiomatic self-init.  We want
1540      // to report the diagnostic at the self-init since that is the root cause.
1541      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1542        DiagnoseUninitializedUse(S, vd,
1543                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
1544                                           /* isAlwaysUninit */ true),
1545                                 /* alwaysReportSelfInit */ true);
1546      else {
1547        // Sort the uses by their SourceLocations.  While not strictly
1548        // guaranteed to produce them in line/column order, this will provide
1549        // a stable ordering.
1550        llvm::sort(vec->begin(), vec->end(),
1551                   [](const UninitUse &a, const UninitUse &b) {
1552          // Prefer a more confident report over a less confident one.
1553          if (a.getKind() != b.getKind())
1554            return a.getKind() > b.getKind();
1555          return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1556        });
1557
1558        for (const auto &U : *vec) {
1559          // If we have self-init, downgrade all uses to 'may be uninitialized'.
1560          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1561
1562          if (DiagnoseUninitializedUse(S, vd, Use))
1563            // Skip further diagnostics for this variable. We try to warn only
1564            // on the first point at which a variable is used uninitialized.
1565            break;
1566        }
1567      }
1568
1569      // Release the uses vector.
1570      delete vec;
1571    }
1572
1573    uses.clear();
1574  }
1575
1576private:
1577  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1578    return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1579      return U.getKind() == UninitUse::Always ||
1580             U.getKind() == UninitUse::AfterCall ||
1581             U.getKind() == UninitUse::AfterDecl;
1582    });
1583  }
1584};
1585} // anonymous namespace
1586
1587namespace clang {
1588namespace {
1589typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1590typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1591typedef std::list<DelayedDiag> DiagList;
1592
1593struct SortDiagBySourceLocation {
1594  SourceManager &SM;
1595  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1596
1597  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1598    // Although this call will be slow, this is only called when outputting
1599    // multiple warnings.
1600    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1601  }
1602};
1603} // anonymous namespace
1604} // namespace clang
1605
1606//===----------------------------------------------------------------------===//
1607// -Wthread-safety
1608//===----------------------------------------------------------------------===//
1609namespace clang {
1610namespace threadSafety {
1611namespace {
1612class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1613  Sema &S;
1614  DiagList Warnings;
1615  SourceLocation FunLocation, FunEndLocation;
1616
1617  const FunctionDecl *CurrentFunction;
1618  bool Verbose;
1619
1620  OptionalNotes getNotes() const {
1621    if (Verbose && CurrentFunction) {
1622      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1623                                S.PDiag(diag::note_thread_warning_in_fun)
1624                                    << CurrentFunction);
1625      return OptionalNotes(1, FNote);
1626    }
1627    return OptionalNotes();
1628  }
1629
1630  OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1631    OptionalNotes ONS(1, Note);
1632    if (Verbose && CurrentFunction) {
1633      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1634                                S.PDiag(diag::note_thread_warning_in_fun)
1635                                    << CurrentFunction);
1636      ONS.push_back(std::move(FNote));
1637    }
1638    return ONS;
1639  }
1640
1641  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1642                         const PartialDiagnosticAt &Note2) const {
1643    OptionalNotes ONS;
1644    ONS.push_back(Note1);
1645    ONS.push_back(Note2);
1646    if (Verbose && CurrentFunction) {
1647      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1648                                S.PDiag(diag::note_thread_warning_in_fun)
1649                                    << CurrentFunction);
1650      ONS.push_back(std::move(FNote));
1651    }
1652    return ONS;
1653  }
1654
1655  OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
1656    return LocLocked.isValid()
1657               ? getNotes(PartialDiagnosticAt(
1658                     LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1659               : getNotes();
1660  }
1661
1662 public:
1663  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1664    : S(S), FunLocation(FL), FunEndLocation(FEL),
1665      CurrentFunction(nullptr), Verbose(false) {}
1666
1667  void setVerbose(bool b) { Verbose = b; }
1668
1669  /// Emit all buffered diagnostics in order of sourcelocation.
1670  /// We need to output diagnostics produced while iterating through
1671  /// the lockset in deterministic order, so this function orders diagnostics
1672  /// and outputs them.
1673  void emitDiagnostics() {
1674    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1675    for (const auto &Diag : Warnings) {
1676      S.Diag(Diag.first.first, Diag.first.second);
1677      for (const auto &Note : Diag.second)
1678        S.Diag(Note.first, Note.second);
1679    }
1680  }
1681
1682  void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1683    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1684                                         << Loc);
1685    Warnings.emplace_back(std::move(Warning), getNotes());
1686  }
1687
1688  void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1689                             SourceLocation Loc) override {
1690    if (Loc.isInvalid())
1691      Loc = FunLocation;
1692    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1693                                         << Kind << LockName);
1694    Warnings.emplace_back(std::move(Warning), getNotes());
1695  }
1696
1697  void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1698                                 LockKind Expected, LockKind Received,
1699                                 SourceLocation LocLocked,
1700                                 SourceLocation LocUnlock) override {
1701    if (LocUnlock.isInvalid())
1702      LocUnlock = FunLocation;
1703    PartialDiagnosticAt Warning(
1704        LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1705                       << Kind << LockName << Received << Expected);
1706    Warnings.emplace_back(std::move(Warning),
1707                          makeLockedHereNote(LocLocked, Kind));
1708  }
1709
1710  void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
1711                        SourceLocation LocDoubleLock) override {
1712    if (LocDoubleLock.isInvalid())
1713      LocDoubleLock = FunLocation;
1714    PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1715                                                   << Kind << LockName);
1716    Warnings.emplace_back(std::move(Warning),
1717                          makeLockedHereNote(LocLocked, Kind));
1718  }
1719
1720  void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1721                                 SourceLocation LocLocked,
1722                                 SourceLocation LocEndOfScope,
1723                                 LockErrorKind LEK) override {
1724    unsigned DiagID = 0;
1725    switch (LEK) {
1726      case LEK_LockedSomePredecessors:
1727        DiagID = diag::warn_lock_some_predecessors;
1728        break;
1729      case LEK_LockedSomeLoopIterations:
1730        DiagID = diag::warn_expecting_lock_held_on_loop;
1731        break;
1732      case LEK_LockedAtEndOfFunction:
1733        DiagID = diag::warn_no_unlock;
1734        break;
1735      case LEK_NotLockedAtEndOfFunction:
1736        DiagID = diag::warn_expecting_locked;
1737        break;
1738    }
1739    if (LocEndOfScope.isInvalid())
1740      LocEndOfScope = FunEndLocation;
1741
1742    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1743                                                               << LockName);
1744    Warnings.emplace_back(std::move(Warning),
1745                          makeLockedHereNote(LocLocked, Kind));
1746  }
1747
1748  void handleExclusiveAndShared(StringRef Kind, Name LockName,
1749                                SourceLocation Loc1,
1750                                SourceLocation Loc2) override {
1751    PartialDiagnosticAt Warning(Loc1,
1752                                S.PDiag(diag::warn_lock_exclusive_and_shared)
1753                                    << Kind << LockName);
1754    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1755                                       << Kind << LockName);
1756    Warnings.emplace_back(std::move(Warning), getNotes(Note));
1757  }
1758
1759  void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1760                         ProtectedOperationKind POK, AccessKind AK,
1761                         SourceLocation Loc) override {
1762    assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1763           "Only works for variables");
1764    unsigned DiagID = POK == POK_VarAccess?
1765                        diag::warn_variable_requires_any_lock:
1766                        diag::warn_var_deref_requires_any_lock;
1767    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1768      << D << getLockKindFromAccessKind(AK));
1769    Warnings.emplace_back(std::move(Warning), getNotes());
1770  }
1771
1772  void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1773                          ProtectedOperationKind POK, Name LockName,
1774                          LockKind LK, SourceLocation Loc,
1775                          Name *PossibleMatch) override {
1776    unsigned DiagID = 0;
1777    if (PossibleMatch) {
1778      switch (POK) {
1779        case POK_VarAccess:
1780          DiagID = diag::warn_variable_requires_lock_precise;
1781          break;
1782        case POK_VarDereference:
1783          DiagID = diag::warn_var_deref_requires_lock_precise;
1784          break;
1785        case POK_FunctionCall:
1786          DiagID = diag::warn_fun_requires_lock_precise;
1787          break;
1788        case POK_PassByRef:
1789          DiagID = diag::warn_guarded_pass_by_reference;
1790          break;
1791        case POK_PtPassByRef:
1792          DiagID = diag::warn_pt_guarded_pass_by_reference;
1793          break;
1794      }
1795      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1796                                                       << D
1797                                                       << LockName << LK);
1798      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1799                                        << *PossibleMatch);
1800      if (Verbose && POK == POK_VarAccess) {
1801        PartialDiagnosticAt VNote(D->getLocation(),
1802                                 S.PDiag(diag::note_guarded_by_declared_here)
1803                                     << D->getNameAsString());
1804        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1805      } else
1806        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1807    } else {
1808      switch (POK) {
1809        case POK_VarAccess:
1810          DiagID = diag::warn_variable_requires_lock;
1811          break;
1812        case POK_VarDereference:
1813          DiagID = diag::warn_var_deref_requires_lock;
1814          break;
1815        case POK_FunctionCall:
1816          DiagID = diag::warn_fun_requires_lock;
1817          break;
1818        case POK_PassByRef:
1819          DiagID = diag::warn_guarded_pass_by_reference;
1820          break;
1821        case POK_PtPassByRef:
1822          DiagID = diag::warn_pt_guarded_pass_by_reference;
1823          break;
1824      }
1825      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1826                                                       << D
1827                                                       << LockName << LK);
1828      if (Verbose && POK == POK_VarAccess) {
1829        PartialDiagnosticAt Note(D->getLocation(),
1830                                 S.PDiag(diag::note_guarded_by_declared_here));
1831        Warnings.emplace_back(std::move(Warning), getNotes(Note));
1832      } else
1833        Warnings.emplace_back(std::move(Warning), getNotes());
1834    }
1835  }
1836
1837  void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1838                             SourceLocation Loc) override {
1839    PartialDiagnosticAt Warning(Loc,
1840        S.PDiag(diag::warn_acquire_requires_negative_cap)
1841        << Kind << LockName << Neg);
1842    Warnings.emplace_back(std::move(Warning), getNotes());
1843  }
1844
1845  void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1846                             SourceLocation Loc) override {
1847    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1848                                         << Kind << FunName << LockName);
1849    Warnings.emplace_back(std::move(Warning), getNotes());
1850  }
1851
1852  void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1853                                SourceLocation Loc) override {
1854    PartialDiagnosticAt Warning(Loc,
1855      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1856    Warnings.emplace_back(std::move(Warning), getNotes());
1857  }
1858
1859  void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1860    PartialDiagnosticAt Warning(Loc,
1861      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1862    Warnings.emplace_back(std::move(Warning), getNotes());
1863  }
1864
1865  void enterFunction(const FunctionDecl* FD) override {
1866    CurrentFunction = FD;
1867  }
1868
1869  void leaveFunction(const FunctionDecl* FD) override {
1870    CurrentFunction = nullptr;
1871  }
1872};
1873} // anonymous namespace
1874} // namespace threadSafety
1875} // namespace clang
1876
1877//===----------------------------------------------------------------------===//
1878// -Wconsumed
1879//===----------------------------------------------------------------------===//
1880
1881namespace clang {
1882namespace consumed {
1883namespace {
1884class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1885
1886  Sema &S;
1887  DiagList Warnings;
1888
1889public:
1890
1891  ConsumedWarningsHandler(Sema &S) : S(S) {}
1892
1893  void emitDiagnostics() override {
1894    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1895    for (const auto &Diag : Warnings) {
1896      S.Diag(Diag.first.first, Diag.first.second);
1897      for (const auto &Note : Diag.second)
1898        S.Diag(Note.first, Note.second);
1899    }
1900  }
1901
1902  void warnLoopStateMismatch(SourceLocation Loc,
1903                             StringRef VariableName) override {
1904    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1905      VariableName);
1906
1907    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1908  }
1909
1910  void warnParamReturnTypestateMismatch(SourceLocation Loc,
1911                                        StringRef VariableName,
1912                                        StringRef ExpectedState,
1913                                        StringRef ObservedState) override {
1914
1915    PartialDiagnosticAt Warning(Loc, S.PDiag(
1916      diag::warn_param_return_typestate_mismatch) << VariableName <<
1917        ExpectedState << ObservedState);
1918
1919    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1920  }
1921
1922  void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1923                                  StringRef ObservedState) override {
1924
1925    PartialDiagnosticAt Warning(Loc, S.PDiag(
1926      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1927
1928    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1929  }
1930
1931  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1932                                              StringRef TypeName) override {
1933    PartialDiagnosticAt Warning(Loc, S.PDiag(
1934      diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1935
1936    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1937  }
1938
1939  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1940                                   StringRef ObservedState) override {
1941
1942    PartialDiagnosticAt Warning(Loc, S.PDiag(
1943      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1944
1945    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1946  }
1947
1948  void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1949                                   SourceLocation Loc) override {
1950
1951    PartialDiagnosticAt Warning(Loc, S.PDiag(
1952      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1953
1954    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1955  }
1956
1957  void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1958                             StringRef State, SourceLocation Loc) override {
1959
1960    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1961                                MethodName << VariableName << State);
1962
1963    Warnings.emplace_back(std::move(Warning), OptionalNotes());
1964  }
1965};
1966} // anonymous namespace
1967} // namespace consumed
1968} // namespace clang
1969
1970//===----------------------------------------------------------------------===//
1971// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1972//  warnings on a function, method, or block.
1973//===----------------------------------------------------------------------===//
1974
1975clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1976  enableCheckFallThrough = 1;
1977  enableCheckUnreachable = 0;
1978  enableThreadSafetyAnalysis = 0;
1979  enableConsumedAnalysis = 0;
1980}
1981
1982static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1983  return (unsigned)!D.isIgnored(diag, SourceLocation());
1984}
1985
1986clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1987  : S(s),
1988    NumFunctionsAnalyzed(0),
1989    NumFunctionsWithBadCFGs(0),
1990    NumCFGBlocks(0),
1991    MaxCFGBlocksPerFunction(0),
1992    NumUninitAnalysisFunctions(0),
1993    NumUninitAnalysisVariables(0),
1994    MaxUninitAnalysisVariablesPerFunction(0),
1995    NumUninitAnalysisBlockVisits(0),
1996    MaxUninitAnalysisBlockVisitsPerFunction(0) {
1997
1998  using namespace diag;
1999  DiagnosticsEngine &D = S.getDiagnostics();
2000
2001  DefaultPolicy.enableCheckUnreachable =
2002    isEnabled(D, warn_unreachable) ||
2003    isEnabled(D, warn_unreachable_break) ||
2004    isEnabled(D, warn_unreachable_return) ||
2005    isEnabled(D, warn_unreachable_loop_increment);
2006
2007  DefaultPolicy.enableThreadSafetyAnalysis =
2008    isEnabled(D, warn_double_lock);
2009
2010  DefaultPolicy.enableConsumedAnalysis =
2011    isEnabled(D, warn_use_in_invalid_state);
2012}
2013
2014static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2015  for (const auto &D : fscope->PossiblyUnreachableDiags)
2016    S.Diag(D.Loc, D.PD);
2017}
2018
2019void clang::sema::
2020AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
2021                                     sema::FunctionScopeInfo *fscope,
2022                                     const Decl *D, QualType BlockType) {
2023
2024  // We avoid doing analysis-based warnings when there are errors for
2025  // two reasons:
2026  // (1) The CFGs often can't be constructed (if the body is invalid), so
2027  //     don't bother trying.
2028  // (2) The code already has problems; running the analysis just takes more
2029  //     time.
2030  DiagnosticsEngine &Diags = S.getDiagnostics();
2031
2032  // Do not do any analysis if we are going to just ignore them.
2033  if (Diags.getIgnoreAllWarnings() ||
2034      (Diags.getSuppressSystemWarnings() &&
2035       S.SourceMgr.isInSystemHeader(D->getLocation())))
2036    return;
2037
2038  // For code in dependent contexts, we'll do this at instantiation time.
2039  if (cast<DeclContext>(D)->isDependentContext())
2040    return;
2041
2042  if (Diags.hasUncompilableErrorOccurred()) {
2043    // Flush out any possibly unreachable diagnostics.
2044    flushDiagnostics(S, fscope);
2045    return;
2046  }
2047
2048  const Stmt *Body = D->getBody();
2049  assert(Body);
2050
2051  // Construct the analysis context with the specified CFG build options.
2052  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2053
2054  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2055  // explosion for destructors that can result and the compile time hit.
2056  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2057  AC.getCFGBuildOptions().AddEHEdges = false;
2058  AC.getCFGBuildOptions().AddInitializers = true;
2059  AC.getCFGBuildOptions().AddImplicitDtors = true;
2060  AC.getCFGBuildOptions().AddTemporaryDtors = true;
2061  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2062  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2063
2064  // Force that certain expressions appear as CFGElements in the CFG.  This
2065  // is used to speed up various analyses.
2066  // FIXME: This isn't the right factoring.  This is here for initial
2067  // prototyping, but we need a way for analyses to say what expressions they
2068  // expect to always be CFGElements and then fill in the BuildOptions
2069  // appropriately.  This is essentially a layering violation.
2070  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2071      P.enableConsumedAnalysis) {
2072    // Unreachable code analysis and thread safety require a linearized CFG.
2073    AC.getCFGBuildOptions().setAllAlwaysAdd();
2074  }
2075  else {
2076    AC.getCFGBuildOptions()
2077      .setAlwaysAdd(Stmt::BinaryOperatorClass)
2078      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2079      .setAlwaysAdd(Stmt::BlockExprClass)
2080      .setAlwaysAdd(Stmt::CStyleCastExprClass)
2081      .setAlwaysAdd(Stmt::DeclRefExprClass)
2082      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2083      .setAlwaysAdd(Stmt::UnaryOperatorClass)
2084      .setAlwaysAdd(Stmt::AttributedStmtClass);
2085  }
2086
2087  // Install the logical handler.
2088  llvm::Optional<LogicalErrorHandler> LEH;
2089  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2090    LEH.emplace(S);
2091    AC.getCFGBuildOptions().Observer = &*LEH;
2092  }
2093
2094  // Emit delayed diagnostics.
2095  if (!fscope->PossiblyUnreachableDiags.empty()) {
2096    bool analyzed = false;
2097
2098    // Register the expressions with the CFGBuilder.
2099    for (const auto &D : fscope->PossiblyUnreachableDiags) {
2100      for (const Stmt *S : D.Stmts)
2101        AC.registerForcedBlockExpression(S);
2102    }
2103
2104    if (AC.getCFG()) {
2105      analyzed = true;
2106      for (const auto &D : fscope->PossiblyUnreachableDiags) {
2107        bool AllReachable = true;
2108        for (const Stmt *S : D.Stmts) {
2109          const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
2110          CFGReverseBlockReachabilityAnalysis *cra =
2111              AC.getCFGReachablityAnalysis();
2112          // FIXME: We should be able to assert that block is non-null, but
2113          // the CFG analysis can skip potentially-evaluated expressions in
2114          // edge cases; see test/Sema/vla-2.c.
2115          if (block && cra) {
2116            // Can this block be reached from the entrance?
2117            if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
2118              AllReachable = false;
2119              break;
2120            }
2121          }
2122          // If we cannot map to a basic block, assume the statement is
2123          // reachable.
2124        }
2125
2126        if (AllReachable)
2127          S.Diag(D.Loc, D.PD);
2128      }
2129    }
2130
2131    if (!analyzed)
2132      flushDiagnostics(S, fscope);
2133  }
2134
2135  // Warning: check missing 'return'
2136  if (P.enableCheckFallThrough) {
2137    const CheckFallThroughDiagnostics &CD =
2138        (isa<BlockDecl>(D)
2139             ? CheckFallThroughDiagnostics::MakeForBlock()
2140             : (isa<CXXMethodDecl>(D) &&
2141                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2142                cast<CXXMethodDecl>(D)->getParent()->isLambda())
2143                   ? CheckFallThroughDiagnostics::MakeForLambda()
2144                   : (fscope->isCoroutine()
2145                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2146                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
2147    CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
2148  }
2149
2150  // Warning: check for unreachable code
2151  if (P.enableCheckUnreachable) {
2152    // Only check for unreachable code on non-template instantiations.
2153    // Different template instantiations can effectively change the control-flow
2154    // and it is very difficult to prove that a snippet of code in a template
2155    // is unreachable for all instantiations.
2156    bool isTemplateInstantiation = false;
2157    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2158      isTemplateInstantiation = Function->isTemplateInstantiation();
2159    if (!isTemplateInstantiation)
2160      CheckUnreachable(S, AC);
2161  }
2162
2163  // Check for thread safety violations
2164  if (P.enableThreadSafetyAnalysis) {
2165    SourceLocation FL = AC.getDecl()->getLocation();
2166    SourceLocation FEL = AC.getDecl()->getEndLoc();
2167    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2168    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2169      Reporter.setIssueBetaWarnings(true);
2170    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2171      Reporter.setVerbose(true);
2172
2173    threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2174                                          &S.ThreadSafetyDeclCache);
2175    Reporter.emitDiagnostics();
2176  }
2177
2178  // Check for violations of consumed properties.
2179  if (P.enableConsumedAnalysis) {
2180    consumed::ConsumedWarningsHandler WarningHandler(S);
2181    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2182    Analyzer.run(AC);
2183  }
2184
2185  if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2186      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2187      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc())) {
2188    if (CFG *cfg = AC.getCFG()) {
2189      UninitValsDiagReporter reporter(S);
2190      UninitVariablesAnalysisStats stats;
2191      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2192      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2193                                        reporter, stats);
2194
2195      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2196        ++NumUninitAnalysisFunctions;
2197        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2198        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2199        MaxUninitAnalysisVariablesPerFunction =
2200            std::max(MaxUninitAnalysisVariablesPerFunction,
2201                     stats.NumVariablesAnalyzed);
2202        MaxUninitAnalysisBlockVisitsPerFunction =
2203            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2204                     stats.NumBlockVisits);
2205      }
2206    }
2207  }
2208
2209  bool FallThroughDiagFull =
2210      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2211  bool FallThroughDiagPerFunction = !Diags.isIgnored(
2212      diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2213  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2214      fscope->HasFallthroughStmt) {
2215    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2216  }
2217
2218  if (S.getLangOpts().ObjCWeak &&
2219      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2220    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2221
2222
2223  // Check for infinite self-recursion in functions
2224  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2225                       D->getBeginLoc())) {
2226    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2227      checkRecursiveFunction(S, FD, Body, AC);
2228    }
2229  }
2230
2231  // Check for throw out of non-throwing function.
2232  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2233    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2234      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2235        checkThrowInNonThrowingFunc(S, FD, AC);
2236
2237  // If none of the previous checks caused a CFG build, trigger one here
2238  // for the logical error handler.
2239  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2240    AC.getCFG();
2241  }
2242
2243  // Collect statistics about the CFG if it was built.
2244  if (S.CollectStats && AC.isCFGBuilt()) {
2245    ++NumFunctionsAnalyzed;
2246    if (CFG *cfg = AC.getCFG()) {
2247      // If we successfully built a CFG for this context, record some more
2248      // detail information about it.
2249      NumCFGBlocks += cfg->getNumBlockIDs();
2250      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2251                                         cfg->getNumBlockIDs());
2252    } else {
2253      ++NumFunctionsWithBadCFGs;
2254    }
2255  }
2256}
2257
2258void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2259  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2260
2261  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2262  unsigned AvgCFGBlocksPerFunction =
2263      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2264  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2265               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2266               << "  " << NumCFGBlocks << " CFG blocks built.\n"
2267               << "  " << AvgCFGBlocksPerFunction
2268               << " average CFG blocks per function.\n"
2269               << "  " << MaxCFGBlocksPerFunction
2270               << " max CFG blocks per function.\n";
2271
2272  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2273      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2274  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2275      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2276  llvm::errs() << NumUninitAnalysisFunctions
2277               << " functions analyzed for uninitialiazed variables\n"
2278               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2279               << "  " << AvgUninitVariablesPerFunction
2280               << " average variables per function.\n"
2281               << "  " << MaxUninitAnalysisVariablesPerFunction
2282               << " max variables per function.\n"
2283               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2284               << "  " << AvgUninitBlockVisitsPerFunction
2285               << " average block visits per function.\n"
2286               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2287               << " max block visits per function.\n";
2288}
2289