ParseDecl.cpp revision 341825
1//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/RAIIObjectsForParser.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/PrettyDeclStackTrace.h"
19#include "clang/Basic/AddressSpaces.h"
20#include "clang/Basic/Attributes.h"
21#include "clang/Basic/CharInfo.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Parse/ParseDiagnostic.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/SemaDiagnostic.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringSwitch.h"
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// C99 6.7: Declarations.
37//===----------------------------------------------------------------------===//
38
39/// ParseTypeName
40///       type-name: [C99 6.7.6]
41///         specifier-qualifier-list abstract-declarator[opt]
42///
43/// Called type-id in C++.
44TypeResult Parser::ParseTypeName(SourceRange *Range,
45                                 DeclaratorContext Context,
46                                 AccessSpecifier AS,
47                                 Decl **OwnedType,
48                                 ParsedAttributes *Attrs) {
49  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50  if (DSC == DeclSpecContext::DSC_normal)
51    DSC = DeclSpecContext::DSC_type_specifier;
52
53  // Parse the common declaration-specifiers piece.
54  DeclSpec DS(AttrFactory);
55  if (Attrs)
56    DS.addAttributes(*Attrs);
57  ParseSpecifierQualifierList(DS, AS, DSC);
58  if (OwnedType)
59    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60
61  // Parse the abstract-declarator, if present.
62  Declarator DeclaratorInfo(DS, Context);
63  ParseDeclarator(DeclaratorInfo);
64  if (Range)
65    *Range = DeclaratorInfo.getSourceRange();
66
67  if (DeclaratorInfo.isInvalidType())
68    return true;
69
70  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
71}
72
73/// Normalizes an attribute name by dropping prefixed and suffixed __.
74static StringRef normalizeAttrName(StringRef Name) {
75  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
76    return Name.drop_front(2).drop_back(2);
77  return Name;
78}
79
80/// isAttributeLateParsed - Return true if the attribute has arguments that
81/// require late parsing.
82static bool isAttributeLateParsed(const IdentifierInfo &II) {
83#define CLANG_ATTR_LATE_PARSED_LIST
84    return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
85#include "clang/Parse/AttrParserStringSwitches.inc"
86        .Default(false);
87#undef CLANG_ATTR_LATE_PARSED_LIST
88}
89
90/// ParseGNUAttributes - Parse a non-empty attributes list.
91///
92/// [GNU] attributes:
93///         attribute
94///         attributes attribute
95///
96/// [GNU]  attribute:
97///          '__attribute__' '(' '(' attribute-list ')' ')'
98///
99/// [GNU]  attribute-list:
100///          attrib
101///          attribute_list ',' attrib
102///
103/// [GNU]  attrib:
104///          empty
105///          attrib-name
106///          attrib-name '(' identifier ')'
107///          attrib-name '(' identifier ',' nonempty-expr-list ')'
108///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
109///
110/// [GNU]  attrib-name:
111///          identifier
112///          typespec
113///          typequal
114///          storageclass
115///
116/// Whether an attribute takes an 'identifier' is determined by the
117/// attrib-name. GCC's behavior here is not worth imitating:
118///
119///  * In C mode, if the attribute argument list starts with an identifier
120///    followed by a ',' or an ')', and the identifier doesn't resolve to
121///    a type, it is parsed as an identifier. If the attribute actually
122///    wanted an expression, it's out of luck (but it turns out that no
123///    attributes work that way, because C constant expressions are very
124///    limited).
125///  * In C++ mode, if the attribute argument list starts with an identifier,
126///    and the attribute *wants* an identifier, it is parsed as an identifier.
127///    At block scope, any additional tokens between the identifier and the
128///    ',' or ')' are ignored, otherwise they produce a parse error.
129///
130/// We follow the C++ model, but don't allow junk after the identifier.
131void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
132                                SourceLocation *endLoc,
133                                LateParsedAttrList *LateAttrs,
134                                Declarator *D) {
135  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
136
137  while (Tok.is(tok::kw___attribute)) {
138    ConsumeToken();
139    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
140                         "attribute")) {
141      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
142      return;
143    }
144    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
145      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
146      return;
147    }
148    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
149    while (true) {
150      // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
151      if (TryConsumeToken(tok::comma))
152        continue;
153
154      // Expect an identifier or declaration specifier (const, int, etc.)
155      if (Tok.isAnnotation())
156        break;
157      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
158      if (!AttrName)
159        break;
160
161      SourceLocation AttrNameLoc = ConsumeToken();
162
163      if (Tok.isNot(tok::l_paren)) {
164        attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
165                     ParsedAttr::AS_GNU);
166        continue;
167      }
168
169      // Handle "parameterized" attributes
170      if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
171        ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
172                              SourceLocation(), ParsedAttr::AS_GNU, D);
173        continue;
174      }
175
176      // Handle attributes with arguments that require late parsing.
177      LateParsedAttribute *LA =
178          new LateParsedAttribute(this, *AttrName, AttrNameLoc);
179      LateAttrs->push_back(LA);
180
181      // Attributes in a class are parsed at the end of the class, along
182      // with other late-parsed declarations.
183      if (!ClassStack.empty() && !LateAttrs->parseSoon())
184        getCurrentClass().LateParsedDeclarations.push_back(LA);
185
186      // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
187      // recursively consumes balanced parens.
188      LA->Toks.push_back(Tok);
189      ConsumeParen();
190      // Consume everything up to and including the matching right parens.
191      ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
192
193      Token Eof;
194      Eof.startToken();
195      Eof.setLocation(Tok.getLocation());
196      LA->Toks.push_back(Eof);
197    }
198
199    if (ExpectAndConsume(tok::r_paren))
200      SkipUntil(tok::r_paren, StopAtSemi);
201    SourceLocation Loc = Tok.getLocation();
202    if (ExpectAndConsume(tok::r_paren))
203      SkipUntil(tok::r_paren, StopAtSemi);
204    if (endLoc)
205      *endLoc = Loc;
206  }
207}
208
209/// Determine whether the given attribute has an identifier argument.
210static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
211#define CLANG_ATTR_IDENTIFIER_ARG_LIST
212  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
213#include "clang/Parse/AttrParserStringSwitches.inc"
214           .Default(false);
215#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
216}
217
218/// Determine whether the given attribute has a variadic identifier argument.
219static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
220#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
221  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
222#include "clang/Parse/AttrParserStringSwitches.inc"
223           .Default(false);
224#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
225}
226
227/// Determine whether the given attribute parses a type argument.
228static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
229#define CLANG_ATTR_TYPE_ARG_LIST
230  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
231#include "clang/Parse/AttrParserStringSwitches.inc"
232           .Default(false);
233#undef CLANG_ATTR_TYPE_ARG_LIST
234}
235
236/// Determine whether the given attribute requires parsing its arguments
237/// in an unevaluated context or not.
238static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
239#define CLANG_ATTR_ARG_CONTEXT_LIST
240  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
241#include "clang/Parse/AttrParserStringSwitches.inc"
242           .Default(false);
243#undef CLANG_ATTR_ARG_CONTEXT_LIST
244}
245
246IdentifierLoc *Parser::ParseIdentifierLoc() {
247  assert(Tok.is(tok::identifier) && "expected an identifier");
248  IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
249                                            Tok.getLocation(),
250                                            Tok.getIdentifierInfo());
251  ConsumeToken();
252  return IL;
253}
254
255void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
256                                       SourceLocation AttrNameLoc,
257                                       ParsedAttributes &Attrs,
258                                       SourceLocation *EndLoc,
259                                       IdentifierInfo *ScopeName,
260                                       SourceLocation ScopeLoc,
261                                       ParsedAttr::Syntax Syntax) {
262  BalancedDelimiterTracker Parens(*this, tok::l_paren);
263  Parens.consumeOpen();
264
265  TypeResult T;
266  if (Tok.isNot(tok::r_paren))
267    T = ParseTypeName();
268
269  if (Parens.consumeClose())
270    return;
271
272  if (T.isInvalid())
273    return;
274
275  if (T.isUsable())
276    Attrs.addNewTypeAttr(&AttrName,
277                         SourceRange(AttrNameLoc, Parens.getCloseLocation()),
278                         ScopeName, ScopeLoc, T.get(), Syntax);
279  else
280    Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
281                 ScopeName, ScopeLoc, nullptr, 0, Syntax);
282}
283
284unsigned Parser::ParseAttributeArgsCommon(
285    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
286    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
287    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
288  // Ignore the left paren location for now.
289  ConsumeParen();
290
291  ArgsVector ArgExprs;
292  if (Tok.is(tok::identifier)) {
293    // If this attribute wants an 'identifier' argument, make it so.
294    bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
295                           attributeHasVariadicIdentifierArg(*AttrName);
296    ParsedAttr::Kind AttrKind =
297        ParsedAttr::getKind(AttrName, ScopeName, Syntax);
298
299    // If we don't know how to parse this attribute, but this is the only
300    // token in this argument, assume it's meant to be an identifier.
301    if (AttrKind == ParsedAttr::UnknownAttribute ||
302        AttrKind == ParsedAttr::IgnoredAttribute) {
303      const Token &Next = NextToken();
304      IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
305    }
306
307    if (IsIdentifierArg)
308      ArgExprs.push_back(ParseIdentifierLoc());
309  }
310
311  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
312    // Eat the comma.
313    if (!ArgExprs.empty())
314      ConsumeToken();
315
316    // Parse the non-empty comma-separated list of expressions.
317    do {
318      ExprResult ArgExpr;
319      if (Tok.is(tok::identifier) &&
320          attributeHasVariadicIdentifierArg(*AttrName)) {
321        ArgExprs.push_back(ParseIdentifierLoc());
322      } else {
323        bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
324        EnterExpressionEvaluationContext Unevaluated(
325            Actions,
326            Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
327                   : Sema::ExpressionEvaluationContext::ConstantEvaluated);
328
329        ExprResult ArgExpr(
330            Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
331        if (ArgExpr.isInvalid()) {
332          SkipUntil(tok::r_paren, StopAtSemi);
333          return 0;
334        }
335        ArgExprs.push_back(ArgExpr.get());
336      }
337      // Eat the comma, move to the next argument
338    } while (TryConsumeToken(tok::comma));
339  }
340
341  SourceLocation RParen = Tok.getLocation();
342  if (!ExpectAndConsume(tok::r_paren)) {
343    SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
344    Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
345                 ArgExprs.data(), ArgExprs.size(), Syntax);
346  }
347
348  if (EndLoc)
349    *EndLoc = RParen;
350
351  return static_cast<unsigned>(ArgExprs.size());
352}
353
354/// Parse the arguments to a parameterized GNU attribute or
355/// a C++11 attribute in "gnu" namespace.
356void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
357                                   SourceLocation AttrNameLoc,
358                                   ParsedAttributes &Attrs,
359                                   SourceLocation *EndLoc,
360                                   IdentifierInfo *ScopeName,
361                                   SourceLocation ScopeLoc,
362                                   ParsedAttr::Syntax Syntax,
363                                   Declarator *D) {
364
365  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
366
367  ParsedAttr::Kind AttrKind =
368      ParsedAttr::getKind(AttrName, ScopeName, Syntax);
369
370  if (AttrKind == ParsedAttr::AT_Availability) {
371    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
372                               ScopeLoc, Syntax);
373    return;
374  } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
375    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
376                                       ScopeName, ScopeLoc, Syntax);
377    return;
378  } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
379    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
380                                    ScopeName, ScopeLoc, Syntax);
381    return;
382  } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
383    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
384                                     ScopeName, ScopeLoc, Syntax);
385    return;
386  } else if (attributeIsTypeArgAttr(*AttrName)) {
387    ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
388                              ScopeLoc, Syntax);
389    return;
390  }
391
392  // These may refer to the function arguments, but need to be parsed early to
393  // participate in determining whether it's a redeclaration.
394  llvm::Optional<ParseScope> PrototypeScope;
395  if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
396      D && D->isFunctionDeclarator()) {
397    DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
398    PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
399                                     Scope::FunctionDeclarationScope |
400                                     Scope::DeclScope);
401    for (unsigned i = 0; i != FTI.NumParams; ++i) {
402      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
403      Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
404    }
405  }
406
407  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
408                           ScopeLoc, Syntax);
409}
410
411unsigned Parser::ParseClangAttributeArgs(
412    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
413    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
414    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
415  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
416
417  ParsedAttr::Kind AttrKind =
418      ParsedAttr::getKind(AttrName, ScopeName, Syntax);
419
420  switch (AttrKind) {
421  default:
422    return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
423                                    ScopeName, ScopeLoc, Syntax);
424  case ParsedAttr::AT_ExternalSourceSymbol:
425    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
426                                       ScopeName, ScopeLoc, Syntax);
427    break;
428  case ParsedAttr::AT_Availability:
429    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
430                               ScopeLoc, Syntax);
431    break;
432  case ParsedAttr::AT_ObjCBridgeRelated:
433    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
434                                    ScopeName, ScopeLoc, Syntax);
435    break;
436  case ParsedAttr::AT_TypeTagForDatatype:
437    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
438                                     ScopeName, ScopeLoc, Syntax);
439    break;
440  }
441  return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
442}
443
444bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
445                                        SourceLocation AttrNameLoc,
446                                        ParsedAttributes &Attrs) {
447  // If the attribute isn't known, we will not attempt to parse any
448  // arguments.
449  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
450                    getTargetInfo(), getLangOpts())) {
451    // Eat the left paren, then skip to the ending right paren.
452    ConsumeParen();
453    SkipUntil(tok::r_paren);
454    return false;
455  }
456
457  SourceLocation OpenParenLoc = Tok.getLocation();
458
459  if (AttrName->getName() == "property") {
460    // The property declspec is more complex in that it can take one or two
461    // assignment expressions as a parameter, but the lhs of the assignment
462    // must be named get or put.
463
464    BalancedDelimiterTracker T(*this, tok::l_paren);
465    T.expectAndConsume(diag::err_expected_lparen_after,
466                       AttrName->getNameStart(), tok::r_paren);
467
468    enum AccessorKind {
469      AK_Invalid = -1,
470      AK_Put = 0,
471      AK_Get = 1 // indices into AccessorNames
472    };
473    IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
474    bool HasInvalidAccessor = false;
475
476    // Parse the accessor specifications.
477    while (true) {
478      // Stop if this doesn't look like an accessor spec.
479      if (!Tok.is(tok::identifier)) {
480        // If the user wrote a completely empty list, use a special diagnostic.
481        if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
482            AccessorNames[AK_Put] == nullptr &&
483            AccessorNames[AK_Get] == nullptr) {
484          Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
485          break;
486        }
487
488        Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
489        break;
490      }
491
492      AccessorKind Kind;
493      SourceLocation KindLoc = Tok.getLocation();
494      StringRef KindStr = Tok.getIdentifierInfo()->getName();
495      if (KindStr == "get") {
496        Kind = AK_Get;
497      } else if (KindStr == "put") {
498        Kind = AK_Put;
499
500        // Recover from the common mistake of using 'set' instead of 'put'.
501      } else if (KindStr == "set") {
502        Diag(KindLoc, diag::err_ms_property_has_set_accessor)
503            << FixItHint::CreateReplacement(KindLoc, "put");
504        Kind = AK_Put;
505
506        // Handle the mistake of forgetting the accessor kind by skipping
507        // this accessor.
508      } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
509        Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
510        ConsumeToken();
511        HasInvalidAccessor = true;
512        goto next_property_accessor;
513
514        // Otherwise, complain about the unknown accessor kind.
515      } else {
516        Diag(KindLoc, diag::err_ms_property_unknown_accessor);
517        HasInvalidAccessor = true;
518        Kind = AK_Invalid;
519
520        // Try to keep parsing unless it doesn't look like an accessor spec.
521        if (!NextToken().is(tok::equal))
522          break;
523      }
524
525      // Consume the identifier.
526      ConsumeToken();
527
528      // Consume the '='.
529      if (!TryConsumeToken(tok::equal)) {
530        Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
531            << KindStr;
532        break;
533      }
534
535      // Expect the method name.
536      if (!Tok.is(tok::identifier)) {
537        Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
538        break;
539      }
540
541      if (Kind == AK_Invalid) {
542        // Just drop invalid accessors.
543      } else if (AccessorNames[Kind] != nullptr) {
544        // Complain about the repeated accessor, ignore it, and keep parsing.
545        Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
546      } else {
547        AccessorNames[Kind] = Tok.getIdentifierInfo();
548      }
549      ConsumeToken();
550
551    next_property_accessor:
552      // Keep processing accessors until we run out.
553      if (TryConsumeToken(tok::comma))
554        continue;
555
556      // If we run into the ')', stop without consuming it.
557      if (Tok.is(tok::r_paren))
558        break;
559
560      Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
561      break;
562    }
563
564    // Only add the property attribute if it was well-formed.
565    if (!HasInvalidAccessor)
566      Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
567                               AccessorNames[AK_Get], AccessorNames[AK_Put],
568                               ParsedAttr::AS_Declspec);
569    T.skipToEnd();
570    return !HasInvalidAccessor;
571  }
572
573  unsigned NumArgs =
574      ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
575                               SourceLocation(), ParsedAttr::AS_Declspec);
576
577  // If this attribute's args were parsed, and it was expected to have
578  // arguments but none were provided, emit a diagnostic.
579  if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
580    Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
581    return false;
582  }
583  return true;
584}
585
586/// [MS] decl-specifier:
587///             __declspec ( extended-decl-modifier-seq )
588///
589/// [MS] extended-decl-modifier-seq:
590///             extended-decl-modifier[opt]
591///             extended-decl-modifier extended-decl-modifier-seq
592void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
593                                     SourceLocation *End) {
594  assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
595  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
596
597  while (Tok.is(tok::kw___declspec)) {
598    ConsumeToken();
599    BalancedDelimiterTracker T(*this, tok::l_paren);
600    if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
601                           tok::r_paren))
602      return;
603
604    // An empty declspec is perfectly legal and should not warn.  Additionally,
605    // you can specify multiple attributes per declspec.
606    while (Tok.isNot(tok::r_paren)) {
607      // Attribute not present.
608      if (TryConsumeToken(tok::comma))
609        continue;
610
611      // We expect either a well-known identifier or a generic string.  Anything
612      // else is a malformed declspec.
613      bool IsString = Tok.getKind() == tok::string_literal;
614      if (!IsString && Tok.getKind() != tok::identifier &&
615          Tok.getKind() != tok::kw_restrict) {
616        Diag(Tok, diag::err_ms_declspec_type);
617        T.skipToEnd();
618        return;
619      }
620
621      IdentifierInfo *AttrName;
622      SourceLocation AttrNameLoc;
623      if (IsString) {
624        SmallString<8> StrBuffer;
625        bool Invalid = false;
626        StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
627        if (Invalid) {
628          T.skipToEnd();
629          return;
630        }
631        AttrName = PP.getIdentifierInfo(Str);
632        AttrNameLoc = ConsumeStringToken();
633      } else {
634        AttrName = Tok.getIdentifierInfo();
635        AttrNameLoc = ConsumeToken();
636      }
637
638      bool AttrHandled = false;
639
640      // Parse attribute arguments.
641      if (Tok.is(tok::l_paren))
642        AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
643      else if (AttrName->getName() == "property")
644        // The property attribute must have an argument list.
645        Diag(Tok.getLocation(), diag::err_expected_lparen_after)
646            << AttrName->getName();
647
648      if (!AttrHandled)
649        Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
650                     ParsedAttr::AS_Declspec);
651    }
652    T.consumeClose();
653    if (End)
654      *End = T.getCloseLocation();
655  }
656}
657
658void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
659  // Treat these like attributes
660  while (true) {
661    switch (Tok.getKind()) {
662    case tok::kw___fastcall:
663    case tok::kw___stdcall:
664    case tok::kw___thiscall:
665    case tok::kw___regcall:
666    case tok::kw___cdecl:
667    case tok::kw___vectorcall:
668    case tok::kw___ptr64:
669    case tok::kw___w64:
670    case tok::kw___ptr32:
671    case tok::kw___sptr:
672    case tok::kw___uptr: {
673      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
674      SourceLocation AttrNameLoc = ConsumeToken();
675      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
676                   ParsedAttr::AS_Keyword);
677      break;
678    }
679    default:
680      return;
681    }
682  }
683}
684
685void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
686  SourceLocation StartLoc = Tok.getLocation();
687  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
688
689  if (EndLoc.isValid()) {
690    SourceRange Range(StartLoc, EndLoc);
691    Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
692  }
693}
694
695SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
696  SourceLocation EndLoc;
697
698  while (true) {
699    switch (Tok.getKind()) {
700    case tok::kw_const:
701    case tok::kw_volatile:
702    case tok::kw___fastcall:
703    case tok::kw___stdcall:
704    case tok::kw___thiscall:
705    case tok::kw___cdecl:
706    case tok::kw___vectorcall:
707    case tok::kw___ptr32:
708    case tok::kw___ptr64:
709    case tok::kw___w64:
710    case tok::kw___unaligned:
711    case tok::kw___sptr:
712    case tok::kw___uptr:
713      EndLoc = ConsumeToken();
714      break;
715    default:
716      return EndLoc;
717    }
718  }
719}
720
721void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
722  // Treat these like attributes
723  while (Tok.is(tok::kw___pascal)) {
724    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
725    SourceLocation AttrNameLoc = ConsumeToken();
726    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
727                 ParsedAttr::AS_Keyword);
728  }
729}
730
731void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
732  // Treat these like attributes
733  while (Tok.is(tok::kw___kernel)) {
734    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
735    SourceLocation AttrNameLoc = ConsumeToken();
736    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
737                 ParsedAttr::AS_Keyword);
738  }
739}
740
741void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
742  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
743  SourceLocation AttrNameLoc = Tok.getLocation();
744  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
745               ParsedAttr::AS_Keyword);
746}
747
748void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
749  // Treat these like attributes, even though they're type specifiers.
750  while (true) {
751    switch (Tok.getKind()) {
752    case tok::kw__Nonnull:
753    case tok::kw__Nullable:
754    case tok::kw__Null_unspecified: {
755      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
756      SourceLocation AttrNameLoc = ConsumeToken();
757      if (!getLangOpts().ObjC1)
758        Diag(AttrNameLoc, diag::ext_nullability)
759          << AttrName;
760      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
761                   ParsedAttr::AS_Keyword);
762      break;
763    }
764    default:
765      return;
766    }
767  }
768}
769
770static bool VersionNumberSeparator(const char Separator) {
771  return (Separator == '.' || Separator == '_');
772}
773
774/// Parse a version number.
775///
776/// version:
777///   simple-integer
778///   simple-integer '.' simple-integer
779///   simple-integer '_' simple-integer
780///   simple-integer '.' simple-integer '.' simple-integer
781///   simple-integer '_' simple-integer '_' simple-integer
782VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
783  Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
784
785  if (!Tok.is(tok::numeric_constant)) {
786    Diag(Tok, diag::err_expected_version);
787    SkipUntil(tok::comma, tok::r_paren,
788              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
789    return VersionTuple();
790  }
791
792  // Parse the major (and possibly minor and subminor) versions, which
793  // are stored in the numeric constant. We utilize a quirk of the
794  // lexer, which is that it handles something like 1.2.3 as a single
795  // numeric constant, rather than two separate tokens.
796  SmallString<512> Buffer;
797  Buffer.resize(Tok.getLength()+1);
798  const char *ThisTokBegin = &Buffer[0];
799
800  // Get the spelling of the token, which eliminates trigraphs, etc.
801  bool Invalid = false;
802  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
803  if (Invalid)
804    return VersionTuple();
805
806  // Parse the major version.
807  unsigned AfterMajor = 0;
808  unsigned Major = 0;
809  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
810    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
811    ++AfterMajor;
812  }
813
814  if (AfterMajor == 0) {
815    Diag(Tok, diag::err_expected_version);
816    SkipUntil(tok::comma, tok::r_paren,
817              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
818    return VersionTuple();
819  }
820
821  if (AfterMajor == ActualLength) {
822    ConsumeToken();
823
824    // We only had a single version component.
825    if (Major == 0) {
826      Diag(Tok, diag::err_zero_version);
827      return VersionTuple();
828    }
829
830    return VersionTuple(Major);
831  }
832
833  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
834  if (!VersionNumberSeparator(AfterMajorSeparator)
835      || (AfterMajor + 1 == ActualLength)) {
836    Diag(Tok, diag::err_expected_version);
837    SkipUntil(tok::comma, tok::r_paren,
838              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
839    return VersionTuple();
840  }
841
842  // Parse the minor version.
843  unsigned AfterMinor = AfterMajor + 1;
844  unsigned Minor = 0;
845  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
846    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
847    ++AfterMinor;
848  }
849
850  if (AfterMinor == ActualLength) {
851    ConsumeToken();
852
853    // We had major.minor.
854    if (Major == 0 && Minor == 0) {
855      Diag(Tok, diag::err_zero_version);
856      return VersionTuple();
857    }
858
859    return VersionTuple(Major, Minor);
860  }
861
862  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
863  // If what follows is not a '.' or '_', we have a problem.
864  if (!VersionNumberSeparator(AfterMinorSeparator)) {
865    Diag(Tok, diag::err_expected_version);
866    SkipUntil(tok::comma, tok::r_paren,
867              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
868    return VersionTuple();
869  }
870
871  // Warn if separators, be it '.' or '_', do not match.
872  if (AfterMajorSeparator != AfterMinorSeparator)
873    Diag(Tok, diag::warn_expected_consistent_version_separator);
874
875  // Parse the subminor version.
876  unsigned AfterSubminor = AfterMinor + 1;
877  unsigned Subminor = 0;
878  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
879    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
880    ++AfterSubminor;
881  }
882
883  if (AfterSubminor != ActualLength) {
884    Diag(Tok, diag::err_expected_version);
885    SkipUntil(tok::comma, tok::r_paren,
886              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
887    return VersionTuple();
888  }
889  ConsumeToken();
890  return VersionTuple(Major, Minor, Subminor);
891}
892
893/// Parse the contents of the "availability" attribute.
894///
895/// availability-attribute:
896///   'availability' '(' platform ',' opt-strict version-arg-list,
897///                      opt-replacement, opt-message')'
898///
899/// platform:
900///   identifier
901///
902/// opt-strict:
903///   'strict' ','
904///
905/// version-arg-list:
906///   version-arg
907///   version-arg ',' version-arg-list
908///
909/// version-arg:
910///   'introduced' '=' version
911///   'deprecated' '=' version
912///   'obsoleted' = version
913///   'unavailable'
914/// opt-replacement:
915///   'replacement' '=' <string>
916/// opt-message:
917///   'message' '=' <string>
918void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
919                                        SourceLocation AvailabilityLoc,
920                                        ParsedAttributes &attrs,
921                                        SourceLocation *endLoc,
922                                        IdentifierInfo *ScopeName,
923                                        SourceLocation ScopeLoc,
924                                        ParsedAttr::Syntax Syntax) {
925  enum { Introduced, Deprecated, Obsoleted, Unknown };
926  AvailabilityChange Changes[Unknown];
927  ExprResult MessageExpr, ReplacementExpr;
928
929  // Opening '('.
930  BalancedDelimiterTracker T(*this, tok::l_paren);
931  if (T.consumeOpen()) {
932    Diag(Tok, diag::err_expected) << tok::l_paren;
933    return;
934  }
935
936  // Parse the platform name.
937  if (Tok.isNot(tok::identifier)) {
938    Diag(Tok, diag::err_availability_expected_platform);
939    SkipUntil(tok::r_paren, StopAtSemi);
940    return;
941  }
942  IdentifierLoc *Platform = ParseIdentifierLoc();
943  if (const IdentifierInfo *const Ident = Platform->Ident) {
944    // Canonicalize platform name from "macosx" to "macos".
945    if (Ident->getName() == "macosx")
946      Platform->Ident = PP.getIdentifierInfo("macos");
947    // Canonicalize platform name from "macosx_app_extension" to
948    // "macos_app_extension".
949    else if (Ident->getName() == "macosx_app_extension")
950      Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
951    else
952      Platform->Ident = PP.getIdentifierInfo(
953          AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
954  }
955
956  // Parse the ',' following the platform name.
957  if (ExpectAndConsume(tok::comma)) {
958    SkipUntil(tok::r_paren, StopAtSemi);
959    return;
960  }
961
962  // If we haven't grabbed the pointers for the identifiers
963  // "introduced", "deprecated", and "obsoleted", do so now.
964  if (!Ident_introduced) {
965    Ident_introduced = PP.getIdentifierInfo("introduced");
966    Ident_deprecated = PP.getIdentifierInfo("deprecated");
967    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
968    Ident_unavailable = PP.getIdentifierInfo("unavailable");
969    Ident_message = PP.getIdentifierInfo("message");
970    Ident_strict = PP.getIdentifierInfo("strict");
971    Ident_replacement = PP.getIdentifierInfo("replacement");
972  }
973
974  // Parse the optional "strict", the optional "replacement" and the set of
975  // introductions/deprecations/removals.
976  SourceLocation UnavailableLoc, StrictLoc;
977  do {
978    if (Tok.isNot(tok::identifier)) {
979      Diag(Tok, diag::err_availability_expected_change);
980      SkipUntil(tok::r_paren, StopAtSemi);
981      return;
982    }
983    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
984    SourceLocation KeywordLoc = ConsumeToken();
985
986    if (Keyword == Ident_strict) {
987      if (StrictLoc.isValid()) {
988        Diag(KeywordLoc, diag::err_availability_redundant)
989          << Keyword << SourceRange(StrictLoc);
990      }
991      StrictLoc = KeywordLoc;
992      continue;
993    }
994
995    if (Keyword == Ident_unavailable) {
996      if (UnavailableLoc.isValid()) {
997        Diag(KeywordLoc, diag::err_availability_redundant)
998          << Keyword << SourceRange(UnavailableLoc);
999      }
1000      UnavailableLoc = KeywordLoc;
1001      continue;
1002    }
1003
1004    if (Tok.isNot(tok::equal)) {
1005      Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1006      SkipUntil(tok::r_paren, StopAtSemi);
1007      return;
1008    }
1009    ConsumeToken();
1010    if (Keyword == Ident_message || Keyword == Ident_replacement) {
1011      if (Tok.isNot(tok::string_literal)) {
1012        Diag(Tok, diag::err_expected_string_literal)
1013          << /*Source='availability attribute'*/2;
1014        SkipUntil(tok::r_paren, StopAtSemi);
1015        return;
1016      }
1017      if (Keyword == Ident_message)
1018        MessageExpr = ParseStringLiteralExpression();
1019      else
1020        ReplacementExpr = ParseStringLiteralExpression();
1021      // Also reject wide string literals.
1022      if (StringLiteral *MessageStringLiteral =
1023              cast_or_null<StringLiteral>(MessageExpr.get())) {
1024        if (MessageStringLiteral->getCharByteWidth() != 1) {
1025          Diag(MessageStringLiteral->getSourceRange().getBegin(),
1026               diag::err_expected_string_literal)
1027            << /*Source='availability attribute'*/ 2;
1028          SkipUntil(tok::r_paren, StopAtSemi);
1029          return;
1030        }
1031      }
1032      if (Keyword == Ident_message)
1033        break;
1034      else
1035        continue;
1036    }
1037
1038    // Special handling of 'NA' only when applied to introduced or
1039    // deprecated.
1040    if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1041        Tok.is(tok::identifier)) {
1042      IdentifierInfo *NA = Tok.getIdentifierInfo();
1043      if (NA->getName() == "NA") {
1044        ConsumeToken();
1045        if (Keyword == Ident_introduced)
1046          UnavailableLoc = KeywordLoc;
1047        continue;
1048      }
1049    }
1050
1051    SourceRange VersionRange;
1052    VersionTuple Version = ParseVersionTuple(VersionRange);
1053
1054    if (Version.empty()) {
1055      SkipUntil(tok::r_paren, StopAtSemi);
1056      return;
1057    }
1058
1059    unsigned Index;
1060    if (Keyword == Ident_introduced)
1061      Index = Introduced;
1062    else if (Keyword == Ident_deprecated)
1063      Index = Deprecated;
1064    else if (Keyword == Ident_obsoleted)
1065      Index = Obsoleted;
1066    else
1067      Index = Unknown;
1068
1069    if (Index < Unknown) {
1070      if (!Changes[Index].KeywordLoc.isInvalid()) {
1071        Diag(KeywordLoc, diag::err_availability_redundant)
1072          << Keyword
1073          << SourceRange(Changes[Index].KeywordLoc,
1074                         Changes[Index].VersionRange.getEnd());
1075      }
1076
1077      Changes[Index].KeywordLoc = KeywordLoc;
1078      Changes[Index].Version = Version;
1079      Changes[Index].VersionRange = VersionRange;
1080    } else {
1081      Diag(KeywordLoc, diag::err_availability_unknown_change)
1082        << Keyword << VersionRange;
1083    }
1084
1085  } while (TryConsumeToken(tok::comma));
1086
1087  // Closing ')'.
1088  if (T.consumeClose())
1089    return;
1090
1091  if (endLoc)
1092    *endLoc = T.getCloseLocation();
1093
1094  // The 'unavailable' availability cannot be combined with any other
1095  // availability changes. Make sure that hasn't happened.
1096  if (UnavailableLoc.isValid()) {
1097    bool Complained = false;
1098    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1099      if (Changes[Index].KeywordLoc.isValid()) {
1100        if (!Complained) {
1101          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1102            << SourceRange(Changes[Index].KeywordLoc,
1103                           Changes[Index].VersionRange.getEnd());
1104          Complained = true;
1105        }
1106
1107        // Clear out the availability.
1108        Changes[Index] = AvailabilityChange();
1109      }
1110    }
1111  }
1112
1113  // Record this attribute
1114  attrs.addNew(&Availability,
1115               SourceRange(AvailabilityLoc, T.getCloseLocation()),
1116               ScopeName, ScopeLoc,
1117               Platform,
1118               Changes[Introduced],
1119               Changes[Deprecated],
1120               Changes[Obsoleted],
1121               UnavailableLoc, MessageExpr.get(),
1122               Syntax, StrictLoc, ReplacementExpr.get());
1123}
1124
1125/// Parse the contents of the "external_source_symbol" attribute.
1126///
1127/// external-source-symbol-attribute:
1128///   'external_source_symbol' '(' keyword-arg-list ')'
1129///
1130/// keyword-arg-list:
1131///   keyword-arg
1132///   keyword-arg ',' keyword-arg-list
1133///
1134/// keyword-arg:
1135///   'language' '=' <string>
1136///   'defined_in' '=' <string>
1137///   'generated_declaration'
1138void Parser::ParseExternalSourceSymbolAttribute(
1139    IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1140    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1141    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1142  // Opening '('.
1143  BalancedDelimiterTracker T(*this, tok::l_paren);
1144  if (T.expectAndConsume())
1145    return;
1146
1147  // Initialize the pointers for the keyword identifiers when required.
1148  if (!Ident_language) {
1149    Ident_language = PP.getIdentifierInfo("language");
1150    Ident_defined_in = PP.getIdentifierInfo("defined_in");
1151    Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1152  }
1153
1154  ExprResult Language;
1155  bool HasLanguage = false;
1156  ExprResult DefinedInExpr;
1157  bool HasDefinedIn = false;
1158  IdentifierLoc *GeneratedDeclaration = nullptr;
1159
1160  // Parse the language/defined_in/generated_declaration keywords
1161  do {
1162    if (Tok.isNot(tok::identifier)) {
1163      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1164      SkipUntil(tok::r_paren, StopAtSemi);
1165      return;
1166    }
1167
1168    SourceLocation KeywordLoc = Tok.getLocation();
1169    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1170    if (Keyword == Ident_generated_declaration) {
1171      if (GeneratedDeclaration) {
1172        Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1173        SkipUntil(tok::r_paren, StopAtSemi);
1174        return;
1175      }
1176      GeneratedDeclaration = ParseIdentifierLoc();
1177      continue;
1178    }
1179
1180    if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1181      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1182      SkipUntil(tok::r_paren, StopAtSemi);
1183      return;
1184    }
1185
1186    ConsumeToken();
1187    if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1188                         Keyword->getName())) {
1189      SkipUntil(tok::r_paren, StopAtSemi);
1190      return;
1191    }
1192
1193    bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1194    if (Keyword == Ident_language)
1195      HasLanguage = true;
1196    else
1197      HasDefinedIn = true;
1198
1199    if (Tok.isNot(tok::string_literal)) {
1200      Diag(Tok, diag::err_expected_string_literal)
1201          << /*Source='external_source_symbol attribute'*/ 3
1202          << /*language | source container*/ (Keyword != Ident_language);
1203      SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1204      continue;
1205    }
1206    if (Keyword == Ident_language) {
1207      if (HadLanguage) {
1208        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1209            << Keyword;
1210        ParseStringLiteralExpression();
1211        continue;
1212      }
1213      Language = ParseStringLiteralExpression();
1214    } else {
1215      assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1216      if (HadDefinedIn) {
1217        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1218            << Keyword;
1219        ParseStringLiteralExpression();
1220        continue;
1221      }
1222      DefinedInExpr = ParseStringLiteralExpression();
1223    }
1224  } while (TryConsumeToken(tok::comma));
1225
1226  // Closing ')'.
1227  if (T.consumeClose())
1228    return;
1229  if (EndLoc)
1230    *EndLoc = T.getCloseLocation();
1231
1232  ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1233                      GeneratedDeclaration};
1234  Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1235               ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1236}
1237
1238/// Parse the contents of the "objc_bridge_related" attribute.
1239/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1240/// related_class:
1241///     Identifier
1242///
1243/// opt-class_method:
1244///     Identifier: | <empty>
1245///
1246/// opt-instance_method:
1247///     Identifier | <empty>
1248///
1249void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1250                                SourceLocation ObjCBridgeRelatedLoc,
1251                                ParsedAttributes &attrs,
1252                                SourceLocation *endLoc,
1253                                IdentifierInfo *ScopeName,
1254                                SourceLocation ScopeLoc,
1255                                ParsedAttr::Syntax Syntax) {
1256  // Opening '('.
1257  BalancedDelimiterTracker T(*this, tok::l_paren);
1258  if (T.consumeOpen()) {
1259    Diag(Tok, diag::err_expected) << tok::l_paren;
1260    return;
1261  }
1262
1263  // Parse the related class name.
1264  if (Tok.isNot(tok::identifier)) {
1265    Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1266    SkipUntil(tok::r_paren, StopAtSemi);
1267    return;
1268  }
1269  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1270  if (ExpectAndConsume(tok::comma)) {
1271    SkipUntil(tok::r_paren, StopAtSemi);
1272    return;
1273  }
1274
1275  // Parse class method name.  It's non-optional in the sense that a trailing
1276  // comma is required, but it can be the empty string, and then we record a
1277  // nullptr.
1278  IdentifierLoc *ClassMethod = nullptr;
1279  if (Tok.is(tok::identifier)) {
1280    ClassMethod = ParseIdentifierLoc();
1281    if (!TryConsumeToken(tok::colon)) {
1282      Diag(Tok, diag::err_objcbridge_related_selector_name);
1283      SkipUntil(tok::r_paren, StopAtSemi);
1284      return;
1285    }
1286  }
1287  if (!TryConsumeToken(tok::comma)) {
1288    if (Tok.is(tok::colon))
1289      Diag(Tok, diag::err_objcbridge_related_selector_name);
1290    else
1291      Diag(Tok, diag::err_expected) << tok::comma;
1292    SkipUntil(tok::r_paren, StopAtSemi);
1293    return;
1294  }
1295
1296  // Parse instance method name.  Also non-optional but empty string is
1297  // permitted.
1298  IdentifierLoc *InstanceMethod = nullptr;
1299  if (Tok.is(tok::identifier))
1300    InstanceMethod = ParseIdentifierLoc();
1301  else if (Tok.isNot(tok::r_paren)) {
1302    Diag(Tok, diag::err_expected) << tok::r_paren;
1303    SkipUntil(tok::r_paren, StopAtSemi);
1304    return;
1305  }
1306
1307  // Closing ')'.
1308  if (T.consumeClose())
1309    return;
1310
1311  if (endLoc)
1312    *endLoc = T.getCloseLocation();
1313
1314  // Record this attribute
1315  attrs.addNew(&ObjCBridgeRelated,
1316               SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1317               ScopeName, ScopeLoc,
1318               RelatedClass,
1319               ClassMethod,
1320               InstanceMethod,
1321               Syntax);
1322}
1323
1324// Late Parsed Attributes:
1325// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1326
1327void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1328
1329void Parser::LateParsedClass::ParseLexedAttributes() {
1330  Self->ParseLexedAttributes(*Class);
1331}
1332
1333void Parser::LateParsedAttribute::ParseLexedAttributes() {
1334  Self->ParseLexedAttribute(*this, true, false);
1335}
1336
1337/// Wrapper class which calls ParseLexedAttribute, after setting up the
1338/// scope appropriately.
1339void Parser::ParseLexedAttributes(ParsingClass &Class) {
1340  // Deal with templates
1341  // FIXME: Test cases to make sure this does the right thing for templates.
1342  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1343  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1344                                HasTemplateScope);
1345  if (HasTemplateScope)
1346    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1347
1348  // Set or update the scope flags.
1349  bool AlreadyHasClassScope = Class.TopLevelClass;
1350  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1351  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1352  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1353
1354  // Enter the scope of nested classes
1355  if (!AlreadyHasClassScope)
1356    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1357                                                Class.TagOrTemplate);
1358  if (!Class.LateParsedDeclarations.empty()) {
1359    for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1360      Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1361    }
1362  }
1363
1364  if (!AlreadyHasClassScope)
1365    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1366                                                 Class.TagOrTemplate);
1367}
1368
1369/// Parse all attributes in LAs, and attach them to Decl D.
1370void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1371                                     bool EnterScope, bool OnDefinition) {
1372  assert(LAs.parseSoon() &&
1373         "Attribute list should be marked for immediate parsing.");
1374  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1375    if (D)
1376      LAs[i]->addDecl(D);
1377    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1378    delete LAs[i];
1379  }
1380  LAs.clear();
1381}
1382
1383/// Finish parsing an attribute for which parsing was delayed.
1384/// This will be called at the end of parsing a class declaration
1385/// for each LateParsedAttribute. We consume the saved tokens and
1386/// create an attribute with the arguments filled in. We add this
1387/// to the Attribute list for the decl.
1388void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1389                                 bool EnterScope, bool OnDefinition) {
1390  // Create a fake EOF so that attribute parsing won't go off the end of the
1391  // attribute.
1392  Token AttrEnd;
1393  AttrEnd.startToken();
1394  AttrEnd.setKind(tok::eof);
1395  AttrEnd.setLocation(Tok.getLocation());
1396  AttrEnd.setEofData(LA.Toks.data());
1397  LA.Toks.push_back(AttrEnd);
1398
1399  // Append the current token at the end of the new token stream so that it
1400  // doesn't get lost.
1401  LA.Toks.push_back(Tok);
1402  PP.EnterTokenStream(LA.Toks, true);
1403  // Consume the previously pushed token.
1404  ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1405
1406  ParsedAttributes Attrs(AttrFactory);
1407  SourceLocation endLoc;
1408
1409  if (LA.Decls.size() > 0) {
1410    Decl *D = LA.Decls[0];
1411    NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1412    RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1413
1414    // Allow 'this' within late-parsed attributes.
1415    Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1416                                     ND && ND->isCXXInstanceMember());
1417
1418    if (LA.Decls.size() == 1) {
1419      // If the Decl is templatized, add template parameters to scope.
1420      bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1421      ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1422      if (HasTemplateScope)
1423        Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1424
1425      // If the Decl is on a function, add function parameters to the scope.
1426      bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1427      ParseScope FnScope(
1428          this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope,
1429          HasFunScope);
1430      if (HasFunScope)
1431        Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1432
1433      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1434                            nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1435                            nullptr);
1436
1437      if (HasFunScope) {
1438        Actions.ActOnExitFunctionContext();
1439        FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1440      }
1441      if (HasTemplateScope) {
1442        TempScope.Exit();
1443      }
1444    } else {
1445      // If there are multiple decls, then the decl cannot be within the
1446      // function scope.
1447      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1448                            nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1449                            nullptr);
1450    }
1451  } else {
1452    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1453  }
1454
1455  if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
1456      Attrs.begin()->isKnownToGCC())
1457    Diag(Tok, diag::warn_attribute_on_function_definition)
1458      << &LA.AttrName;
1459
1460  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1461    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1462
1463  // Due to a parsing error, we either went over the cached tokens or
1464  // there are still cached tokens left, so we skip the leftover tokens.
1465  while (Tok.isNot(tok::eof))
1466    ConsumeAnyToken();
1467
1468  if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1469    ConsumeAnyToken();
1470}
1471
1472void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1473                                              SourceLocation AttrNameLoc,
1474                                              ParsedAttributes &Attrs,
1475                                              SourceLocation *EndLoc,
1476                                              IdentifierInfo *ScopeName,
1477                                              SourceLocation ScopeLoc,
1478                                              ParsedAttr::Syntax Syntax) {
1479  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1480
1481  BalancedDelimiterTracker T(*this, tok::l_paren);
1482  T.consumeOpen();
1483
1484  if (Tok.isNot(tok::identifier)) {
1485    Diag(Tok, diag::err_expected) << tok::identifier;
1486    T.skipToEnd();
1487    return;
1488  }
1489  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1490
1491  if (ExpectAndConsume(tok::comma)) {
1492    T.skipToEnd();
1493    return;
1494  }
1495
1496  SourceRange MatchingCTypeRange;
1497  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1498  if (MatchingCType.isInvalid()) {
1499    T.skipToEnd();
1500    return;
1501  }
1502
1503  bool LayoutCompatible = false;
1504  bool MustBeNull = false;
1505  while (TryConsumeToken(tok::comma)) {
1506    if (Tok.isNot(tok::identifier)) {
1507      Diag(Tok, diag::err_expected) << tok::identifier;
1508      T.skipToEnd();
1509      return;
1510    }
1511    IdentifierInfo *Flag = Tok.getIdentifierInfo();
1512    if (Flag->isStr("layout_compatible"))
1513      LayoutCompatible = true;
1514    else if (Flag->isStr("must_be_null"))
1515      MustBeNull = true;
1516    else {
1517      Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1518      T.skipToEnd();
1519      return;
1520    }
1521    ConsumeToken(); // consume flag
1522  }
1523
1524  if (!T.consumeClose()) {
1525    Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1526                                   ArgumentKind, MatchingCType.get(),
1527                                   LayoutCompatible, MustBeNull, Syntax);
1528  }
1529
1530  if (EndLoc)
1531    *EndLoc = T.getCloseLocation();
1532}
1533
1534/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1535/// of a C++11 attribute-specifier in a location where an attribute is not
1536/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1537/// situation.
1538///
1539/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1540/// this doesn't appear to actually be an attribute-specifier, and the caller
1541/// should try to parse it.
1542bool Parser::DiagnoseProhibitedCXX11Attribute() {
1543  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1544
1545  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1546  case CAK_NotAttributeSpecifier:
1547    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1548    return false;
1549
1550  case CAK_InvalidAttributeSpecifier:
1551    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1552    return false;
1553
1554  case CAK_AttributeSpecifier:
1555    // Parse and discard the attributes.
1556    SourceLocation BeginLoc = ConsumeBracket();
1557    ConsumeBracket();
1558    SkipUntil(tok::r_square);
1559    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1560    SourceLocation EndLoc = ConsumeBracket();
1561    Diag(BeginLoc, diag::err_attributes_not_allowed)
1562      << SourceRange(BeginLoc, EndLoc);
1563    return true;
1564  }
1565  llvm_unreachable("All cases handled above.");
1566}
1567
1568/// We have found the opening square brackets of a C++11
1569/// attribute-specifier in a location where an attribute is not permitted, but
1570/// we know where the attributes ought to be written. Parse them anyway, and
1571/// provide a fixit moving them to the right place.
1572void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1573                                             SourceLocation CorrectLocation) {
1574  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1575         Tok.is(tok::kw_alignas));
1576
1577  // Consume the attributes.
1578  SourceLocation Loc = Tok.getLocation();
1579  ParseCXX11Attributes(Attrs);
1580  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1581  // FIXME: use err_attributes_misplaced
1582  Diag(Loc, diag::err_attributes_not_allowed)
1583    << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1584    << FixItHint::CreateRemoval(AttrRange);
1585}
1586
1587void Parser::DiagnoseProhibitedAttributes(
1588    const SourceRange &Range, const SourceLocation CorrectLocation) {
1589  if (CorrectLocation.isValid()) {
1590    CharSourceRange AttrRange(Range, true);
1591    Diag(CorrectLocation, diag::err_attributes_misplaced)
1592        << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1593        << FixItHint::CreateRemoval(AttrRange);
1594  } else
1595    Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1596}
1597
1598void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1599                                     unsigned DiagID) {
1600  for (const ParsedAttr &AL : Attrs) {
1601    if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1602      continue;
1603    if (AL.getKind() == ParsedAttr::UnknownAttribute)
1604      Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL.getName();
1605    else {
1606      Diag(AL.getLoc(), DiagID) << AL.getName();
1607      AL.setInvalid();
1608    }
1609  }
1610}
1611
1612// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1613// applies to var, not the type Foo.
1614// As an exception to the rule, __declspec(align(...)) before the
1615// class-key affects the type instead of the variable.
1616// Also, Microsoft-style [attributes] seem to affect the type instead of the
1617// variable.
1618// This function moves attributes that should apply to the type off DS to Attrs.
1619void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1620                                            DeclSpec &DS,
1621                                            Sema::TagUseKind TUK) {
1622  if (TUK == Sema::TUK_Reference)
1623    return;
1624
1625  llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1626
1627  for (ParsedAttr &AL : DS.getAttributes()) {
1628    if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1629         AL.isDeclspecAttribute()) ||
1630        AL.isMicrosoftAttribute())
1631      ToBeMoved.push_back(&AL);
1632  }
1633
1634  for (ParsedAttr *AL : ToBeMoved) {
1635    DS.getAttributes().remove(AL);
1636    Attrs.addAtEnd(AL);
1637  }
1638}
1639
1640/// ParseDeclaration - Parse a full 'declaration', which consists of
1641/// declaration-specifiers, some number of declarators, and a semicolon.
1642/// 'Context' should be a DeclaratorContext value.  This returns the
1643/// location of the semicolon in DeclEnd.
1644///
1645///       declaration: [C99 6.7]
1646///         block-declaration ->
1647///           simple-declaration
1648///           others                   [FIXME]
1649/// [C++]   template-declaration
1650/// [C++]   namespace-definition
1651/// [C++]   using-directive
1652/// [C++]   using-declaration
1653/// [C++11/C11] static_assert-declaration
1654///         others... [FIXME]
1655///
1656Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1657                                                SourceLocation &DeclEnd,
1658                                          ParsedAttributesWithRange &attrs) {
1659  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1660  // Must temporarily exit the objective-c container scope for
1661  // parsing c none objective-c decls.
1662  ObjCDeclContextSwitch ObjCDC(*this);
1663
1664  Decl *SingleDecl = nullptr;
1665  switch (Tok.getKind()) {
1666  case tok::kw_template:
1667  case tok::kw_export:
1668    ProhibitAttributes(attrs);
1669    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1670    break;
1671  case tok::kw_inline:
1672    // Could be the start of an inline namespace. Allowed as an ext in C++03.
1673    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1674      ProhibitAttributes(attrs);
1675      SourceLocation InlineLoc = ConsumeToken();
1676      return ParseNamespace(Context, DeclEnd, InlineLoc);
1677    }
1678    return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1679                                  true);
1680  case tok::kw_namespace:
1681    ProhibitAttributes(attrs);
1682    return ParseNamespace(Context, DeclEnd);
1683  case tok::kw_using:
1684    return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1685                                            DeclEnd, attrs);
1686  case tok::kw_static_assert:
1687  case tok::kw__Static_assert:
1688    ProhibitAttributes(attrs);
1689    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1690    break;
1691  default:
1692    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1693  }
1694
1695  // This routine returns a DeclGroup, if the thing we parsed only contains a
1696  // single decl, convert it now.
1697  return Actions.ConvertDeclToDeclGroup(SingleDecl);
1698}
1699
1700///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1701///         declaration-specifiers init-declarator-list[opt] ';'
1702/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1703///             init-declarator-list ';'
1704///[C90/C++]init-declarator-list ';'                             [TODO]
1705/// [OMP]   threadprivate-directive                              [TODO]
1706///
1707///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1708///         attribute-specifier-seq[opt] type-specifier-seq declarator
1709///
1710/// If RequireSemi is false, this does not check for a ';' at the end of the
1711/// declaration.  If it is true, it checks for and eats it.
1712///
1713/// If FRI is non-null, we might be parsing a for-range-declaration instead
1714/// of a simple-declaration. If we find that we are, we also parse the
1715/// for-range-initializer, and place it here.
1716Parser::DeclGroupPtrTy
1717Parser::ParseSimpleDeclaration(DeclaratorContext Context,
1718                               SourceLocation &DeclEnd,
1719                               ParsedAttributesWithRange &Attrs,
1720                               bool RequireSemi, ForRangeInit *FRI) {
1721  // Parse the common declaration-specifiers piece.
1722  ParsingDeclSpec DS(*this);
1723
1724  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1725  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1726
1727  // If we had a free-standing type definition with a missing semicolon, we
1728  // may get this far before the problem becomes obvious.
1729  if (DS.hasTagDefinition() &&
1730      DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1731    return nullptr;
1732
1733  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1734  // declaration-specifiers init-declarator-list[opt] ';'
1735  if (Tok.is(tok::semi)) {
1736    ProhibitAttributes(Attrs);
1737    DeclEnd = Tok.getLocation();
1738    if (RequireSemi) ConsumeToken();
1739    RecordDecl *AnonRecord = nullptr;
1740    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1741                                                       DS, AnonRecord);
1742    DS.complete(TheDecl);
1743    if (AnonRecord) {
1744      Decl* decls[] = {AnonRecord, TheDecl};
1745      return Actions.BuildDeclaratorGroup(decls);
1746    }
1747    return Actions.ConvertDeclToDeclGroup(TheDecl);
1748  }
1749
1750  DS.takeAttributesFrom(Attrs);
1751  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1752}
1753
1754/// Returns true if this might be the start of a declarator, or a common typo
1755/// for a declarator.
1756bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1757  switch (Tok.getKind()) {
1758  case tok::annot_cxxscope:
1759  case tok::annot_template_id:
1760  case tok::caret:
1761  case tok::code_completion:
1762  case tok::coloncolon:
1763  case tok::ellipsis:
1764  case tok::kw___attribute:
1765  case tok::kw_operator:
1766  case tok::l_paren:
1767  case tok::star:
1768    return true;
1769
1770  case tok::amp:
1771  case tok::ampamp:
1772    return getLangOpts().CPlusPlus;
1773
1774  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1775    return Context == DeclaratorContext::MemberContext &&
1776           getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1777
1778  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1779    return Context == DeclaratorContext::MemberContext ||
1780           getLangOpts().CPlusPlus;
1781
1782  case tok::identifier:
1783    switch (NextToken().getKind()) {
1784    case tok::code_completion:
1785    case tok::coloncolon:
1786    case tok::comma:
1787    case tok::equal:
1788    case tok::equalequal: // Might be a typo for '='.
1789    case tok::kw_alignas:
1790    case tok::kw_asm:
1791    case tok::kw___attribute:
1792    case tok::l_brace:
1793    case tok::l_paren:
1794    case tok::l_square:
1795    case tok::less:
1796    case tok::r_brace:
1797    case tok::r_paren:
1798    case tok::r_square:
1799    case tok::semi:
1800      return true;
1801
1802    case tok::colon:
1803      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1804      // and in block scope it's probably a label. Inside a class definition,
1805      // this is a bit-field.
1806      return Context == DeclaratorContext::MemberContext ||
1807             (getLangOpts().CPlusPlus &&
1808              Context == DeclaratorContext::FileContext);
1809
1810    case tok::identifier: // Possible virt-specifier.
1811      return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1812
1813    default:
1814      return false;
1815    }
1816
1817  default:
1818    return false;
1819  }
1820}
1821
1822/// Skip until we reach something which seems like a sensible place to pick
1823/// up parsing after a malformed declaration. This will sometimes stop sooner
1824/// than SkipUntil(tok::r_brace) would, but will never stop later.
1825void Parser::SkipMalformedDecl() {
1826  while (true) {
1827    switch (Tok.getKind()) {
1828    case tok::l_brace:
1829      // Skip until matching }, then stop. We've probably skipped over
1830      // a malformed class or function definition or similar.
1831      ConsumeBrace();
1832      SkipUntil(tok::r_brace);
1833      if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1834        // This declaration isn't over yet. Keep skipping.
1835        continue;
1836      }
1837      TryConsumeToken(tok::semi);
1838      return;
1839
1840    case tok::l_square:
1841      ConsumeBracket();
1842      SkipUntil(tok::r_square);
1843      continue;
1844
1845    case tok::l_paren:
1846      ConsumeParen();
1847      SkipUntil(tok::r_paren);
1848      continue;
1849
1850    case tok::r_brace:
1851      return;
1852
1853    case tok::semi:
1854      ConsumeToken();
1855      return;
1856
1857    case tok::kw_inline:
1858      // 'inline namespace' at the start of a line is almost certainly
1859      // a good place to pick back up parsing, except in an Objective-C
1860      // @interface context.
1861      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1862          (!ParsingInObjCContainer || CurParsedObjCImpl))
1863        return;
1864      break;
1865
1866    case tok::kw_namespace:
1867      // 'namespace' at the start of a line is almost certainly a good
1868      // place to pick back up parsing, except in an Objective-C
1869      // @interface context.
1870      if (Tok.isAtStartOfLine() &&
1871          (!ParsingInObjCContainer || CurParsedObjCImpl))
1872        return;
1873      break;
1874
1875    case tok::at:
1876      // @end is very much like } in Objective-C contexts.
1877      if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1878          ParsingInObjCContainer)
1879        return;
1880      break;
1881
1882    case tok::minus:
1883    case tok::plus:
1884      // - and + probably start new method declarations in Objective-C contexts.
1885      if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1886        return;
1887      break;
1888
1889    case tok::eof:
1890    case tok::annot_module_begin:
1891    case tok::annot_module_end:
1892    case tok::annot_module_include:
1893      return;
1894
1895    default:
1896      break;
1897    }
1898
1899    ConsumeAnyToken();
1900  }
1901}
1902
1903/// ParseDeclGroup - Having concluded that this is either a function
1904/// definition or a group of object declarations, actually parse the
1905/// result.
1906Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1907                                              DeclaratorContext Context,
1908                                              SourceLocation *DeclEnd,
1909                                              ForRangeInit *FRI) {
1910  // Parse the first declarator.
1911  ParsingDeclarator D(*this, DS, Context);
1912  ParseDeclarator(D);
1913
1914  // Bail out if the first declarator didn't seem well-formed.
1915  if (!D.hasName() && !D.mayOmitIdentifier()) {
1916    SkipMalformedDecl();
1917    return nullptr;
1918  }
1919
1920  // Save late-parsed attributes for now; they need to be parsed in the
1921  // appropriate function scope after the function Decl has been constructed.
1922  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1923  LateParsedAttrList LateParsedAttrs(true);
1924  if (D.isFunctionDeclarator()) {
1925    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1926
1927    // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1928    // attribute. If we find the keyword here, tell the user to put it
1929    // at the start instead.
1930    if (Tok.is(tok::kw__Noreturn)) {
1931      SourceLocation Loc = ConsumeToken();
1932      const char *PrevSpec;
1933      unsigned DiagID;
1934
1935      // We can offer a fixit if it's valid to mark this function as _Noreturn
1936      // and we don't have any other declarators in this declaration.
1937      bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1938      MaybeParseGNUAttributes(D, &LateParsedAttrs);
1939      Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1940
1941      Diag(Loc, diag::err_c11_noreturn_misplaced)
1942          << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1943          << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1944                    : FixItHint());
1945    }
1946  }
1947
1948  // Check to see if we have a function *definition* which must have a body.
1949  if (D.isFunctionDeclarator() &&
1950      // Look at the next token to make sure that this isn't a function
1951      // declaration.  We have to check this because __attribute__ might be the
1952      // start of a function definition in GCC-extended K&R C.
1953      !isDeclarationAfterDeclarator()) {
1954
1955    // Function definitions are only allowed at file scope and in C++ classes.
1956    // The C++ inline method definition case is handled elsewhere, so we only
1957    // need to handle the file scope definition case.
1958    if (Context == DeclaratorContext::FileContext) {
1959      if (isStartOfFunctionDefinition(D)) {
1960        if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1961          Diag(Tok, diag::err_function_declared_typedef);
1962
1963          // Recover by treating the 'typedef' as spurious.
1964          DS.ClearStorageClassSpecs();
1965        }
1966
1967        Decl *TheDecl =
1968          ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1969        return Actions.ConvertDeclToDeclGroup(TheDecl);
1970      }
1971
1972      if (isDeclarationSpecifier()) {
1973        // If there is an invalid declaration specifier right after the
1974        // function prototype, then we must be in a missing semicolon case
1975        // where this isn't actually a body.  Just fall through into the code
1976        // that handles it as a prototype, and let the top-level code handle
1977        // the erroneous declspec where it would otherwise expect a comma or
1978        // semicolon.
1979      } else {
1980        Diag(Tok, diag::err_expected_fn_body);
1981        SkipUntil(tok::semi);
1982        return nullptr;
1983      }
1984    } else {
1985      if (Tok.is(tok::l_brace)) {
1986        Diag(Tok, diag::err_function_definition_not_allowed);
1987        SkipMalformedDecl();
1988        return nullptr;
1989      }
1990    }
1991  }
1992
1993  if (ParseAsmAttributesAfterDeclarator(D))
1994    return nullptr;
1995
1996  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1997  // must parse and analyze the for-range-initializer before the declaration is
1998  // analyzed.
1999  //
2000  // Handle the Objective-C for-in loop variable similarly, although we
2001  // don't need to parse the container in advance.
2002  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2003    bool IsForRangeLoop = false;
2004    if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2005      IsForRangeLoop = true;
2006      if (Tok.is(tok::l_brace))
2007        FRI->RangeExpr = ParseBraceInitializer();
2008      else
2009        FRI->RangeExpr = ParseExpression();
2010    }
2011
2012    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2013    if (IsForRangeLoop) {
2014      Actions.ActOnCXXForRangeDecl(ThisDecl);
2015    } else {
2016      // Obj-C for loop
2017      if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2018        VD->setObjCForDecl(true);
2019    }
2020    Actions.FinalizeDeclaration(ThisDecl);
2021    D.complete(ThisDecl);
2022    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2023  }
2024
2025  SmallVector<Decl *, 8> DeclsInGroup;
2026  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2027      D, ParsedTemplateInfo(), FRI);
2028  if (LateParsedAttrs.size() > 0)
2029    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2030  D.complete(FirstDecl);
2031  if (FirstDecl)
2032    DeclsInGroup.push_back(FirstDecl);
2033
2034  bool ExpectSemi = Context != DeclaratorContext::ForContext;
2035
2036  // If we don't have a comma, it is either the end of the list (a ';') or an
2037  // error, bail out.
2038  SourceLocation CommaLoc;
2039  while (TryConsumeToken(tok::comma, CommaLoc)) {
2040    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2041      // This comma was followed by a line-break and something which can't be
2042      // the start of a declarator. The comma was probably a typo for a
2043      // semicolon.
2044      Diag(CommaLoc, diag::err_expected_semi_declaration)
2045        << FixItHint::CreateReplacement(CommaLoc, ";");
2046      ExpectSemi = false;
2047      break;
2048    }
2049
2050    // Parse the next declarator.
2051    D.clear();
2052    D.setCommaLoc(CommaLoc);
2053
2054    // Accept attributes in an init-declarator.  In the first declarator in a
2055    // declaration, these would be part of the declspec.  In subsequent
2056    // declarators, they become part of the declarator itself, so that they
2057    // don't apply to declarators after *this* one.  Examples:
2058    //    short __attribute__((common)) var;    -> declspec
2059    //    short var __attribute__((common));    -> declarator
2060    //    short x, __attribute__((common)) var;    -> declarator
2061    MaybeParseGNUAttributes(D);
2062
2063    // MSVC parses but ignores qualifiers after the comma as an extension.
2064    if (getLangOpts().MicrosoftExt)
2065      DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2066
2067    ParseDeclarator(D);
2068    if (!D.isInvalidType()) {
2069      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2070      D.complete(ThisDecl);
2071      if (ThisDecl)
2072        DeclsInGroup.push_back(ThisDecl);
2073    }
2074  }
2075
2076  if (DeclEnd)
2077    *DeclEnd = Tok.getLocation();
2078
2079  if (ExpectSemi &&
2080      ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2081                           ? diag::err_invalid_token_after_toplevel_declarator
2082                           : diag::err_expected_semi_declaration)) {
2083    // Okay, there was no semicolon and one was expected.  If we see a
2084    // declaration specifier, just assume it was missing and continue parsing.
2085    // Otherwise things are very confused and we skip to recover.
2086    if (!isDeclarationSpecifier()) {
2087      SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2088      TryConsumeToken(tok::semi);
2089    }
2090  }
2091
2092  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2093}
2094
2095/// Parse an optional simple-asm-expr and attributes, and attach them to a
2096/// declarator. Returns true on an error.
2097bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2098  // If a simple-asm-expr is present, parse it.
2099  if (Tok.is(tok::kw_asm)) {
2100    SourceLocation Loc;
2101    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
2102    if (AsmLabel.isInvalid()) {
2103      SkipUntil(tok::semi, StopBeforeMatch);
2104      return true;
2105    }
2106
2107    D.setAsmLabel(AsmLabel.get());
2108    D.SetRangeEnd(Loc);
2109  }
2110
2111  MaybeParseGNUAttributes(D);
2112  return false;
2113}
2114
2115/// Parse 'declaration' after parsing 'declaration-specifiers
2116/// declarator'. This method parses the remainder of the declaration
2117/// (including any attributes or initializer, among other things) and
2118/// finalizes the declaration.
2119///
2120///       init-declarator: [C99 6.7]
2121///         declarator
2122///         declarator '=' initializer
2123/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2124/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2125/// [C++]   declarator initializer[opt]
2126///
2127/// [C++] initializer:
2128/// [C++]   '=' initializer-clause
2129/// [C++]   '(' expression-list ')'
2130/// [C++0x] '=' 'default'                                                [TODO]
2131/// [C++0x] '=' 'delete'
2132/// [C++0x] braced-init-list
2133///
2134/// According to the standard grammar, =default and =delete are function
2135/// definitions, but that definitely doesn't fit with the parser here.
2136///
2137Decl *Parser::ParseDeclarationAfterDeclarator(
2138    Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2139  if (ParseAsmAttributesAfterDeclarator(D))
2140    return nullptr;
2141
2142  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2143}
2144
2145Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2146    Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2147  // RAII type used to track whether we're inside an initializer.
2148  struct InitializerScopeRAII {
2149    Parser &P;
2150    Declarator &D;
2151    Decl *ThisDecl;
2152
2153    InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2154        : P(P), D(D), ThisDecl(ThisDecl) {
2155      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2156        Scope *S = nullptr;
2157        if (D.getCXXScopeSpec().isSet()) {
2158          P.EnterScope(0);
2159          S = P.getCurScope();
2160        }
2161        P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2162      }
2163    }
2164    ~InitializerScopeRAII() { pop(); }
2165    void pop() {
2166      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2167        Scope *S = nullptr;
2168        if (D.getCXXScopeSpec().isSet())
2169          S = P.getCurScope();
2170        P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2171        if (S)
2172          P.ExitScope();
2173      }
2174      ThisDecl = nullptr;
2175    }
2176  };
2177
2178  // Inform the current actions module that we just parsed this declarator.
2179  Decl *ThisDecl = nullptr;
2180  switch (TemplateInfo.Kind) {
2181  case ParsedTemplateInfo::NonTemplate:
2182    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2183    break;
2184
2185  case ParsedTemplateInfo::Template:
2186  case ParsedTemplateInfo::ExplicitSpecialization: {
2187    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2188                                               *TemplateInfo.TemplateParams,
2189                                               D);
2190    if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2191      // Re-direct this decl to refer to the templated decl so that we can
2192      // initialize it.
2193      ThisDecl = VT->getTemplatedDecl();
2194    break;
2195  }
2196  case ParsedTemplateInfo::ExplicitInstantiation: {
2197    if (Tok.is(tok::semi)) {
2198      DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2199          getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2200      if (ThisRes.isInvalid()) {
2201        SkipUntil(tok::semi, StopBeforeMatch);
2202        return nullptr;
2203      }
2204      ThisDecl = ThisRes.get();
2205    } else {
2206      // FIXME: This check should be for a variable template instantiation only.
2207
2208      // Check that this is a valid instantiation
2209      if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2210        // If the declarator-id is not a template-id, issue a diagnostic and
2211        // recover by ignoring the 'template' keyword.
2212        Diag(Tok, diag::err_template_defn_explicit_instantiation)
2213            << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2214        ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2215      } else {
2216        SourceLocation LAngleLoc =
2217            PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2218        Diag(D.getIdentifierLoc(),
2219             diag::err_explicit_instantiation_with_definition)
2220            << SourceRange(TemplateInfo.TemplateLoc)
2221            << FixItHint::CreateInsertion(LAngleLoc, "<>");
2222
2223        // Recover as if it were an explicit specialization.
2224        TemplateParameterLists FakedParamLists;
2225        FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2226            0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2227            LAngleLoc, nullptr));
2228
2229        ThisDecl =
2230            Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2231      }
2232    }
2233    break;
2234    }
2235  }
2236
2237  // Parse declarator '=' initializer.
2238  // If a '==' or '+=' is found, suggest a fixit to '='.
2239  if (isTokenEqualOrEqualTypo()) {
2240    SourceLocation EqualLoc = ConsumeToken();
2241
2242    if (Tok.is(tok::kw_delete)) {
2243      if (D.isFunctionDeclarator())
2244        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2245          << 1 /* delete */;
2246      else
2247        Diag(ConsumeToken(), diag::err_deleted_non_function);
2248    } else if (Tok.is(tok::kw_default)) {
2249      if (D.isFunctionDeclarator())
2250        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2251          << 0 /* default */;
2252      else
2253        Diag(ConsumeToken(), diag::err_default_special_members);
2254    } else {
2255      InitializerScopeRAII InitScope(*this, D, ThisDecl);
2256
2257      if (Tok.is(tok::code_completion)) {
2258        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2259        Actions.FinalizeDeclaration(ThisDecl);
2260        cutOffParsing();
2261        return nullptr;
2262      }
2263
2264      ExprResult Init(ParseInitializer());
2265
2266      // If this is the only decl in (possibly) range based for statement,
2267      // our best guess is that the user meant ':' instead of '='.
2268      if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2269        Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2270            << FixItHint::CreateReplacement(EqualLoc, ":");
2271        // We are trying to stop parser from looking for ';' in this for
2272        // statement, therefore preventing spurious errors to be issued.
2273        FRI->ColonLoc = EqualLoc;
2274        Init = ExprError();
2275        FRI->RangeExpr = Init;
2276      }
2277
2278      InitScope.pop();
2279
2280      if (Init.isInvalid()) {
2281        SmallVector<tok::TokenKind, 2> StopTokens;
2282        StopTokens.push_back(tok::comma);
2283        if (D.getContext() == DeclaratorContext::ForContext ||
2284            D.getContext() == DeclaratorContext::InitStmtContext)
2285          StopTokens.push_back(tok::r_paren);
2286        SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2287        Actions.ActOnInitializerError(ThisDecl);
2288      } else
2289        Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2290                                     /*DirectInit=*/false);
2291    }
2292  } else if (Tok.is(tok::l_paren)) {
2293    // Parse C++ direct initializer: '(' expression-list ')'
2294    BalancedDelimiterTracker T(*this, tok::l_paren);
2295    T.consumeOpen();
2296
2297    ExprVector Exprs;
2298    CommaLocsTy CommaLocs;
2299
2300    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2301
2302    llvm::function_ref<void()> ExprListCompleter;
2303    auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2304    auto ConstructorCompleter = [&, ThisVarDecl] {
2305      Actions.CodeCompleteConstructor(
2306          getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2307          ThisDecl->getLocation(), Exprs);
2308    };
2309    if (ThisVarDecl) {
2310      // ParseExpressionList can sometimes succeed even when ThisDecl is not
2311      // VarDecl. This is an error and it is reported in a call to
2312      // Actions.ActOnInitializerError(). However, we call
2313      // CodeCompleteConstructor only on VarDecls, falling back to default
2314      // completer in other cases.
2315      ExprListCompleter = ConstructorCompleter;
2316    }
2317
2318    if (ParseExpressionList(Exprs, CommaLocs, ExprListCompleter)) {
2319      Actions.ActOnInitializerError(ThisDecl);
2320      SkipUntil(tok::r_paren, StopAtSemi);
2321    } else {
2322      // Match the ')'.
2323      T.consumeClose();
2324
2325      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2326             "Unexpected number of commas!");
2327
2328      InitScope.pop();
2329
2330      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2331                                                          T.getCloseLocation(),
2332                                                          Exprs);
2333      Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2334                                   /*DirectInit=*/true);
2335    }
2336  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2337             (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2338    // Parse C++0x braced-init-list.
2339    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2340
2341    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2342
2343    ExprResult Init(ParseBraceInitializer());
2344
2345    InitScope.pop();
2346
2347    if (Init.isInvalid()) {
2348      Actions.ActOnInitializerError(ThisDecl);
2349    } else
2350      Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2351
2352  } else {
2353    Actions.ActOnUninitializedDecl(ThisDecl);
2354  }
2355
2356  Actions.FinalizeDeclaration(ThisDecl);
2357
2358  return ThisDecl;
2359}
2360
2361/// ParseSpecifierQualifierList
2362///        specifier-qualifier-list:
2363///          type-specifier specifier-qualifier-list[opt]
2364///          type-qualifier specifier-qualifier-list[opt]
2365/// [GNU]    attributes     specifier-qualifier-list[opt]
2366///
2367void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2368                                         DeclSpecContext DSC) {
2369  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2370  /// parse declaration-specifiers and complain about extra stuff.
2371  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2372  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2373
2374  // Validate declspec for type-name.
2375  unsigned Specs = DS.getParsedSpecifiers();
2376  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2377    Diag(Tok, diag::err_expected_type);
2378    DS.SetTypeSpecError();
2379  } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2380    Diag(Tok, diag::err_typename_requires_specqual);
2381    if (!DS.hasTypeSpecifier())
2382      DS.SetTypeSpecError();
2383  }
2384
2385  // Issue diagnostic and remove storage class if present.
2386  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2387    if (DS.getStorageClassSpecLoc().isValid())
2388      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2389    else
2390      Diag(DS.getThreadStorageClassSpecLoc(),
2391           diag::err_typename_invalid_storageclass);
2392    DS.ClearStorageClassSpecs();
2393  }
2394
2395  // Issue diagnostic and remove function specifier if present.
2396  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2397    if (DS.isInlineSpecified())
2398      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2399    if (DS.isVirtualSpecified())
2400      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2401    if (DS.isExplicitSpecified())
2402      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2403    DS.ClearFunctionSpecs();
2404  }
2405
2406  // Issue diagnostic and remove constexpr specfier if present.
2407  if (DS.isConstexprSpecified() && DSC != DeclSpecContext::DSC_condition) {
2408    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2409    DS.ClearConstexprSpec();
2410  }
2411}
2412
2413/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2414/// specified token is valid after the identifier in a declarator which
2415/// immediately follows the declspec.  For example, these things are valid:
2416///
2417///      int x   [             4];         // direct-declarator
2418///      int x   (             int y);     // direct-declarator
2419///  int(int x   )                         // direct-declarator
2420///      int x   ;                         // simple-declaration
2421///      int x   =             17;         // init-declarator-list
2422///      int x   ,             y;          // init-declarator-list
2423///      int x   __asm__       ("foo");    // init-declarator-list
2424///      int x   :             4;          // struct-declarator
2425///      int x   {             5};         // C++'0x unified initializers
2426///
2427/// This is not, because 'x' does not immediately follow the declspec (though
2428/// ')' happens to be valid anyway).
2429///    int (x)
2430///
2431static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2432  return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2433                   tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2434                   tok::colon);
2435}
2436
2437/// ParseImplicitInt - This method is called when we have an non-typename
2438/// identifier in a declspec (which normally terminates the decl spec) when
2439/// the declspec has no type specifier.  In this case, the declspec is either
2440/// malformed or is "implicit int" (in K&R and C89).
2441///
2442/// This method handles diagnosing this prettily and returns false if the
2443/// declspec is done being processed.  If it recovers and thinks there may be
2444/// other pieces of declspec after it, it returns true.
2445///
2446bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2447                              const ParsedTemplateInfo &TemplateInfo,
2448                              AccessSpecifier AS, DeclSpecContext DSC,
2449                              ParsedAttributesWithRange &Attrs) {
2450  assert(Tok.is(tok::identifier) && "should have identifier");
2451
2452  SourceLocation Loc = Tok.getLocation();
2453  // If we see an identifier that is not a type name, we normally would
2454  // parse it as the identifier being declared.  However, when a typename
2455  // is typo'd or the definition is not included, this will incorrectly
2456  // parse the typename as the identifier name and fall over misparsing
2457  // later parts of the diagnostic.
2458  //
2459  // As such, we try to do some look-ahead in cases where this would
2460  // otherwise be an "implicit-int" case to see if this is invalid.  For
2461  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2462  // an identifier with implicit int, we'd get a parse error because the
2463  // next token is obviously invalid for a type.  Parse these as a case
2464  // with an invalid type specifier.
2465  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2466
2467  // Since we know that this either implicit int (which is rare) or an
2468  // error, do lookahead to try to do better recovery. This never applies
2469  // within a type specifier. Outside of C++, we allow this even if the
2470  // language doesn't "officially" support implicit int -- we support
2471  // implicit int as an extension in C99 and C11.
2472  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2473      isValidAfterIdentifierInDeclarator(NextToken())) {
2474    // If this token is valid for implicit int, e.g. "static x = 4", then
2475    // we just avoid eating the identifier, so it will be parsed as the
2476    // identifier in the declarator.
2477    return false;
2478  }
2479
2480  if (getLangOpts().CPlusPlus &&
2481      DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2482    // Don't require a type specifier if we have the 'auto' storage class
2483    // specifier in C++98 -- we'll promote it to a type specifier.
2484    if (SS)
2485      AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2486    return false;
2487  }
2488
2489  if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2490      getLangOpts().MSVCCompat) {
2491    // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2492    // Give Sema a chance to recover if we are in a template with dependent base
2493    // classes.
2494    if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2495            *Tok.getIdentifierInfo(), Tok.getLocation(),
2496            DSC == DeclSpecContext::DSC_template_type_arg)) {
2497      const char *PrevSpec;
2498      unsigned DiagID;
2499      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2500                         Actions.getASTContext().getPrintingPolicy());
2501      DS.SetRangeEnd(Tok.getLocation());
2502      ConsumeToken();
2503      return false;
2504    }
2505  }
2506
2507  // Otherwise, if we don't consume this token, we are going to emit an
2508  // error anyway.  Try to recover from various common problems.  Check
2509  // to see if this was a reference to a tag name without a tag specified.
2510  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2511  //
2512  // C++ doesn't need this, and isTagName doesn't take SS.
2513  if (SS == nullptr) {
2514    const char *TagName = nullptr, *FixitTagName = nullptr;
2515    tok::TokenKind TagKind = tok::unknown;
2516
2517    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2518      default: break;
2519      case DeclSpec::TST_enum:
2520        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2521      case DeclSpec::TST_union:
2522        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2523      case DeclSpec::TST_struct:
2524        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2525      case DeclSpec::TST_interface:
2526        TagName="__interface"; FixitTagName = "__interface ";
2527        TagKind=tok::kw___interface;break;
2528      case DeclSpec::TST_class:
2529        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2530    }
2531
2532    if (TagName) {
2533      IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2534      LookupResult R(Actions, TokenName, SourceLocation(),
2535                     Sema::LookupOrdinaryName);
2536
2537      Diag(Loc, diag::err_use_of_tag_name_without_tag)
2538        << TokenName << TagName << getLangOpts().CPlusPlus
2539        << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2540
2541      if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2542        for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2543             I != IEnd; ++I)
2544          Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2545            << TokenName << TagName;
2546      }
2547
2548      // Parse this as a tag as if the missing tag were present.
2549      if (TagKind == tok::kw_enum)
2550        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2551                           DeclSpecContext::DSC_normal);
2552      else
2553        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2554                            /*EnteringContext*/ false,
2555                            DeclSpecContext::DSC_normal, Attrs);
2556      return true;
2557    }
2558  }
2559
2560  // Determine whether this identifier could plausibly be the name of something
2561  // being declared (with a missing type).
2562  if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2563                                DSC == DeclSpecContext::DSC_class)) {
2564    // Look ahead to the next token to try to figure out what this declaration
2565    // was supposed to be.
2566    switch (NextToken().getKind()) {
2567    case tok::l_paren: {
2568      // static x(4); // 'x' is not a type
2569      // x(int n);    // 'x' is not a type
2570      // x (*p)[];    // 'x' is a type
2571      //
2572      // Since we're in an error case, we can afford to perform a tentative
2573      // parse to determine which case we're in.
2574      TentativeParsingAction PA(*this);
2575      ConsumeToken();
2576      TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2577      PA.Revert();
2578
2579      if (TPR != TPResult::False) {
2580        // The identifier is followed by a parenthesized declarator.
2581        // It's supposed to be a type.
2582        break;
2583      }
2584
2585      // If we're in a context where we could be declaring a constructor,
2586      // check whether this is a constructor declaration with a bogus name.
2587      if (DSC == DeclSpecContext::DSC_class ||
2588          (DSC == DeclSpecContext::DSC_top_level && SS)) {
2589        IdentifierInfo *II = Tok.getIdentifierInfo();
2590        if (Actions.isCurrentClassNameTypo(II, SS)) {
2591          Diag(Loc, diag::err_constructor_bad_name)
2592            << Tok.getIdentifierInfo() << II
2593            << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2594          Tok.setIdentifierInfo(II);
2595        }
2596      }
2597      // Fall through.
2598      LLVM_FALLTHROUGH;
2599    }
2600    case tok::comma:
2601    case tok::equal:
2602    case tok::kw_asm:
2603    case tok::l_brace:
2604    case tok::l_square:
2605    case tok::semi:
2606      // This looks like a variable or function declaration. The type is
2607      // probably missing. We're done parsing decl-specifiers.
2608      if (SS)
2609        AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2610      return false;
2611
2612    default:
2613      // This is probably supposed to be a type. This includes cases like:
2614      //   int f(itn);
2615      //   struct S { unsinged : 4; };
2616      break;
2617    }
2618  }
2619
2620  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2621  // and attempt to recover.
2622  ParsedType T;
2623  IdentifierInfo *II = Tok.getIdentifierInfo();
2624  bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2625  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2626                                  IsTemplateName);
2627  if (T) {
2628    // The action has suggested that the type T could be used. Set that as
2629    // the type in the declaration specifiers, consume the would-be type
2630    // name token, and we're done.
2631    const char *PrevSpec;
2632    unsigned DiagID;
2633    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2634                       Actions.getASTContext().getPrintingPolicy());
2635    DS.SetRangeEnd(Tok.getLocation());
2636    ConsumeToken();
2637    // There may be other declaration specifiers after this.
2638    return true;
2639  } else if (II != Tok.getIdentifierInfo()) {
2640    // If no type was suggested, the correction is to a keyword
2641    Tok.setKind(II->getTokenID());
2642    // There may be other declaration specifiers after this.
2643    return true;
2644  }
2645
2646  // Otherwise, the action had no suggestion for us.  Mark this as an error.
2647  DS.SetTypeSpecError();
2648  DS.SetRangeEnd(Tok.getLocation());
2649  ConsumeToken();
2650
2651  // Eat any following template arguments.
2652  if (IsTemplateName) {
2653    SourceLocation LAngle, RAngle;
2654    TemplateArgList Args;
2655    ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2656  }
2657
2658  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2659  // avoid rippling error messages on subsequent uses of the same type,
2660  // could be useful if #include was forgotten.
2661  return false;
2662}
2663
2664/// Determine the declaration specifier context from the declarator
2665/// context.
2666///
2667/// \param Context the declarator context, which is one of the
2668/// DeclaratorContext enumerator values.
2669Parser::DeclSpecContext
2670Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2671  if (Context == DeclaratorContext::MemberContext)
2672    return DeclSpecContext::DSC_class;
2673  if (Context == DeclaratorContext::FileContext)
2674    return DeclSpecContext::DSC_top_level;
2675  if (Context == DeclaratorContext::TemplateParamContext)
2676    return DeclSpecContext::DSC_template_param;
2677  if (Context == DeclaratorContext::TemplateArgContext ||
2678      Context == DeclaratorContext::TemplateTypeArgContext)
2679    return DeclSpecContext::DSC_template_type_arg;
2680  if (Context == DeclaratorContext::TrailingReturnContext ||
2681      Context == DeclaratorContext::TrailingReturnVarContext)
2682    return DeclSpecContext::DSC_trailing;
2683  if (Context == DeclaratorContext::AliasDeclContext ||
2684      Context == DeclaratorContext::AliasTemplateContext)
2685    return DeclSpecContext::DSC_alias_declaration;
2686  return DeclSpecContext::DSC_normal;
2687}
2688
2689/// ParseAlignArgument - Parse the argument to an alignment-specifier.
2690///
2691/// FIXME: Simply returns an alignof() expression if the argument is a
2692/// type. Ideally, the type should be propagated directly into Sema.
2693///
2694/// [C11]   type-id
2695/// [C11]   constant-expression
2696/// [C++0x] type-id ...[opt]
2697/// [C++0x] assignment-expression ...[opt]
2698ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2699                                      SourceLocation &EllipsisLoc) {
2700  ExprResult ER;
2701  if (isTypeIdInParens()) {
2702    SourceLocation TypeLoc = Tok.getLocation();
2703    ParsedType Ty = ParseTypeName().get();
2704    SourceRange TypeRange(Start, Tok.getLocation());
2705    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2706                                               Ty.getAsOpaquePtr(), TypeRange);
2707  } else
2708    ER = ParseConstantExpression();
2709
2710  if (getLangOpts().CPlusPlus11)
2711    TryConsumeToken(tok::ellipsis, EllipsisLoc);
2712
2713  return ER;
2714}
2715
2716/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2717/// attribute to Attrs.
2718///
2719/// alignment-specifier:
2720/// [C11]   '_Alignas' '(' type-id ')'
2721/// [C11]   '_Alignas' '(' constant-expression ')'
2722/// [C++11] 'alignas' '(' type-id ...[opt] ')'
2723/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2724void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2725                                     SourceLocation *EndLoc) {
2726  assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2727         "Not an alignment-specifier!");
2728
2729  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2730  SourceLocation KWLoc = ConsumeToken();
2731
2732  BalancedDelimiterTracker T(*this, tok::l_paren);
2733  if (T.expectAndConsume())
2734    return;
2735
2736  SourceLocation EllipsisLoc;
2737  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2738  if (ArgExpr.isInvalid()) {
2739    T.skipToEnd();
2740    return;
2741  }
2742
2743  T.consumeClose();
2744  if (EndLoc)
2745    *EndLoc = T.getCloseLocation();
2746
2747  ArgsVector ArgExprs;
2748  ArgExprs.push_back(ArgExpr.get());
2749  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2750               ParsedAttr::AS_Keyword, EllipsisLoc);
2751}
2752
2753/// Determine whether we're looking at something that might be a declarator
2754/// in a simple-declaration. If it can't possibly be a declarator, maybe
2755/// diagnose a missing semicolon after a prior tag definition in the decl
2756/// specifier.
2757///
2758/// \return \c true if an error occurred and this can't be any kind of
2759/// declaration.
2760bool
2761Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2762                                              DeclSpecContext DSContext,
2763                                              LateParsedAttrList *LateAttrs) {
2764  assert(DS.hasTagDefinition() && "shouldn't call this");
2765
2766  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2767                          DSContext == DeclSpecContext::DSC_top_level);
2768
2769  if (getLangOpts().CPlusPlus &&
2770      Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2771                  tok::annot_template_id) &&
2772      TryAnnotateCXXScopeToken(EnteringContext)) {
2773    SkipMalformedDecl();
2774    return true;
2775  }
2776
2777  bool HasScope = Tok.is(tok::annot_cxxscope);
2778  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2779  Token AfterScope = HasScope ? NextToken() : Tok;
2780
2781  // Determine whether the following tokens could possibly be a
2782  // declarator.
2783  bool MightBeDeclarator = true;
2784  if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2785    // A declarator-id can't start with 'typename'.
2786    MightBeDeclarator = false;
2787  } else if (AfterScope.is(tok::annot_template_id)) {
2788    // If we have a type expressed as a template-id, this cannot be a
2789    // declarator-id (such a type cannot be redeclared in a simple-declaration).
2790    TemplateIdAnnotation *Annot =
2791        static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2792    if (Annot->Kind == TNK_Type_template)
2793      MightBeDeclarator = false;
2794  } else if (AfterScope.is(tok::identifier)) {
2795    const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2796
2797    // These tokens cannot come after the declarator-id in a
2798    // simple-declaration, and are likely to come after a type-specifier.
2799    if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2800                     tok::annot_cxxscope, tok::coloncolon)) {
2801      // Missing a semicolon.
2802      MightBeDeclarator = false;
2803    } else if (HasScope) {
2804      // If the declarator-id has a scope specifier, it must redeclare a
2805      // previously-declared entity. If that's a type (and this is not a
2806      // typedef), that's an error.
2807      CXXScopeSpec SS;
2808      Actions.RestoreNestedNameSpecifierAnnotation(
2809          Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2810      IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2811      Sema::NameClassification Classification = Actions.ClassifyName(
2812          getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2813          /*IsAddressOfOperand*/false);
2814      switch (Classification.getKind()) {
2815      case Sema::NC_Error:
2816        SkipMalformedDecl();
2817        return true;
2818
2819      case Sema::NC_Keyword:
2820      case Sema::NC_NestedNameSpecifier:
2821        llvm_unreachable("typo correction and nested name specifiers not "
2822                         "possible here");
2823
2824      case Sema::NC_Type:
2825      case Sema::NC_TypeTemplate:
2826        // Not a previously-declared non-type entity.
2827        MightBeDeclarator = false;
2828        break;
2829
2830      case Sema::NC_Unknown:
2831      case Sema::NC_Expression:
2832      case Sema::NC_VarTemplate:
2833      case Sema::NC_FunctionTemplate:
2834        // Might be a redeclaration of a prior entity.
2835        break;
2836      }
2837    }
2838  }
2839
2840  if (MightBeDeclarator)
2841    return false;
2842
2843  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2844  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2845       diag::err_expected_after)
2846      << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2847
2848  // Try to recover from the typo, by dropping the tag definition and parsing
2849  // the problematic tokens as a type.
2850  //
2851  // FIXME: Split the DeclSpec into pieces for the standalone
2852  // declaration and pieces for the following declaration, instead
2853  // of assuming that all the other pieces attach to new declaration,
2854  // and call ParsedFreeStandingDeclSpec as appropriate.
2855  DS.ClearTypeSpecType();
2856  ParsedTemplateInfo NotATemplate;
2857  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2858  return false;
2859}
2860
2861// Choose the apprpriate diagnostic error for why fixed point types are
2862// disabled, set the previous specifier, and mark as invalid.
2863static void SetupFixedPointError(const LangOptions &LangOpts,
2864                                 const char *&PrevSpec, unsigned &DiagID,
2865                                 bool &isInvalid) {
2866  assert(!LangOpts.FixedPoint);
2867  DiagID = diag::err_fixed_point_not_enabled;
2868  PrevSpec = "";  // Not used by diagnostic
2869  isInvalid = true;
2870}
2871
2872/// ParseDeclarationSpecifiers
2873///       declaration-specifiers: [C99 6.7]
2874///         storage-class-specifier declaration-specifiers[opt]
2875///         type-specifier declaration-specifiers[opt]
2876/// [C99]   function-specifier declaration-specifiers[opt]
2877/// [C11]   alignment-specifier declaration-specifiers[opt]
2878/// [GNU]   attributes declaration-specifiers[opt]
2879/// [Clang] '__module_private__' declaration-specifiers[opt]
2880/// [ObjC1] '__kindof' declaration-specifiers[opt]
2881///
2882///       storage-class-specifier: [C99 6.7.1]
2883///         'typedef'
2884///         'extern'
2885///         'static'
2886///         'auto'
2887///         'register'
2888/// [C++]   'mutable'
2889/// [C++11] 'thread_local'
2890/// [C11]   '_Thread_local'
2891/// [GNU]   '__thread'
2892///       function-specifier: [C99 6.7.4]
2893/// [C99]   'inline'
2894/// [C++]   'virtual'
2895/// [C++]   'explicit'
2896/// [OpenCL] '__kernel'
2897///       'friend': [C++ dcl.friend]
2898///       'constexpr': [C++0x dcl.constexpr]
2899void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2900                                        const ParsedTemplateInfo &TemplateInfo,
2901                                        AccessSpecifier AS,
2902                                        DeclSpecContext DSContext,
2903                                        LateParsedAttrList *LateAttrs) {
2904  if (DS.getSourceRange().isInvalid()) {
2905    // Start the range at the current token but make the end of the range
2906    // invalid.  This will make the entire range invalid unless we successfully
2907    // consume a token.
2908    DS.SetRangeStart(Tok.getLocation());
2909    DS.SetRangeEnd(SourceLocation());
2910  }
2911
2912  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2913                          DSContext == DeclSpecContext::DSC_top_level);
2914  bool AttrsLastTime = false;
2915  ParsedAttributesWithRange attrs(AttrFactory);
2916  // We use Sema's policy to get bool macros right.
2917  PrintingPolicy Policy = Actions.getPrintingPolicy();
2918  while (1) {
2919    bool isInvalid = false;
2920    bool isStorageClass = false;
2921    const char *PrevSpec = nullptr;
2922    unsigned DiagID = 0;
2923
2924    // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2925    // implementation for VS2013 uses _Atomic as an identifier for one of the
2926    // classes in <atomic>.
2927    //
2928    // A typedef declaration containing _Atomic<...> is among the places where
2929    // the class is used.  If we are currently parsing such a declaration, treat
2930    // the token as an identifier.
2931    if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2932        DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
2933        !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2934      Tok.setKind(tok::identifier);
2935
2936    SourceLocation Loc = Tok.getLocation();
2937
2938    switch (Tok.getKind()) {
2939    default:
2940    DoneWithDeclSpec:
2941      if (!AttrsLastTime)
2942        ProhibitAttributes(attrs);
2943      else {
2944        // Reject C++11 attributes that appertain to decl specifiers as
2945        // we don't support any C++11 attributes that appertain to decl
2946        // specifiers. This also conforms to what g++ 4.8 is doing.
2947        ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
2948
2949        DS.takeAttributesFrom(attrs);
2950      }
2951
2952      // If this is not a declaration specifier token, we're done reading decl
2953      // specifiers.  First verify that DeclSpec's are consistent.
2954      DS.Finish(Actions, Policy);
2955      return;
2956
2957    case tok::l_square:
2958    case tok::kw_alignas:
2959      if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
2960        goto DoneWithDeclSpec;
2961
2962      ProhibitAttributes(attrs);
2963      // FIXME: It would be good to recover by accepting the attributes,
2964      //        but attempting to do that now would cause serious
2965      //        madness in terms of diagnostics.
2966      attrs.clear();
2967      attrs.Range = SourceRange();
2968
2969      ParseCXX11Attributes(attrs);
2970      AttrsLastTime = true;
2971      continue;
2972
2973    case tok::code_completion: {
2974      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2975      if (DS.hasTypeSpecifier()) {
2976        bool AllowNonIdentifiers
2977          = (getCurScope()->getFlags() & (Scope::ControlScope |
2978                                          Scope::BlockScope |
2979                                          Scope::TemplateParamScope |
2980                                          Scope::FunctionPrototypeScope |
2981                                          Scope::AtCatchScope)) == 0;
2982        bool AllowNestedNameSpecifiers
2983          = DSContext == DeclSpecContext::DSC_top_level ||
2984            (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
2985
2986        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2987                                     AllowNonIdentifiers,
2988                                     AllowNestedNameSpecifiers);
2989        return cutOffParsing();
2990      }
2991
2992      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2993        CCC = Sema::PCC_LocalDeclarationSpecifiers;
2994      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2995        CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
2996                                                      : Sema::PCC_Template;
2997      else if (DSContext == DeclSpecContext::DSC_class)
2998        CCC = Sema::PCC_Class;
2999      else if (CurParsedObjCImpl)
3000        CCC = Sema::PCC_ObjCImplementation;
3001
3002      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3003      return cutOffParsing();
3004    }
3005
3006    case tok::coloncolon: // ::foo::bar
3007      // C++ scope specifier.  Annotate and loop, or bail out on error.
3008      if (TryAnnotateCXXScopeToken(EnteringContext)) {
3009        if (!DS.hasTypeSpecifier())
3010          DS.SetTypeSpecError();
3011        goto DoneWithDeclSpec;
3012      }
3013      if (Tok.is(tok::coloncolon)) // ::new or ::delete
3014        goto DoneWithDeclSpec;
3015      continue;
3016
3017    case tok::annot_cxxscope: {
3018      if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3019        goto DoneWithDeclSpec;
3020
3021      CXXScopeSpec SS;
3022      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3023                                                   Tok.getAnnotationRange(),
3024                                                   SS);
3025
3026      // We are looking for a qualified typename.
3027      Token Next = NextToken();
3028      if (Next.is(tok::annot_template_id) &&
3029          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3030            ->Kind == TNK_Type_template) {
3031        // We have a qualified template-id, e.g., N::A<int>
3032
3033        // If this would be a valid constructor declaration with template
3034        // arguments, we will reject the attempt to form an invalid type-id
3035        // referring to the injected-class-name when we annotate the token,
3036        // per C++ [class.qual]p2.
3037        //
3038        // To improve diagnostics for this case, parse the declaration as a
3039        // constructor (and reject the extra template arguments later).
3040        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3041        if ((DSContext == DeclSpecContext::DSC_top_level ||
3042             DSContext == DeclSpecContext::DSC_class) &&
3043            TemplateId->Name &&
3044            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3045            isConstructorDeclarator(/*Unqualified*/ false)) {
3046          // The user meant this to be an out-of-line constructor
3047          // definition, but template arguments are not allowed
3048          // there.  Just allow this as a constructor; we'll
3049          // complain about it later.
3050          goto DoneWithDeclSpec;
3051        }
3052
3053        DS.getTypeSpecScope() = SS;
3054        ConsumeAnnotationToken(); // The C++ scope.
3055        assert(Tok.is(tok::annot_template_id) &&
3056               "ParseOptionalCXXScopeSpecifier not working");
3057        AnnotateTemplateIdTokenAsType();
3058        continue;
3059      }
3060
3061      if (Next.is(tok::annot_typename)) {
3062        DS.getTypeSpecScope() = SS;
3063        ConsumeAnnotationToken(); // The C++ scope.
3064        if (Tok.getAnnotationValue()) {
3065          ParsedType T = getTypeAnnotation(Tok);
3066          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3067                                         Tok.getAnnotationEndLoc(),
3068                                         PrevSpec, DiagID, T, Policy);
3069          if (isInvalid)
3070            break;
3071        }
3072        else
3073          DS.SetTypeSpecError();
3074        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3075        ConsumeAnnotationToken(); // The typename
3076      }
3077
3078      if (Next.isNot(tok::identifier))
3079        goto DoneWithDeclSpec;
3080
3081      // Check whether this is a constructor declaration. If we're in a
3082      // context where the identifier could be a class name, and it has the
3083      // shape of a constructor declaration, process it as one.
3084      if ((DSContext == DeclSpecContext::DSC_top_level ||
3085           DSContext == DeclSpecContext::DSC_class) &&
3086          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3087                                     &SS) &&
3088          isConstructorDeclarator(/*Unqualified*/ false))
3089        goto DoneWithDeclSpec;
3090
3091      ParsedType TypeRep =
3092          Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3093                              getCurScope(), &SS, false, false, nullptr,
3094                              /*IsCtorOrDtorName=*/false,
3095                              /*WantNonTrivialSourceInfo=*/true,
3096                              isClassTemplateDeductionContext(DSContext));
3097
3098      // If the referenced identifier is not a type, then this declspec is
3099      // erroneous: We already checked about that it has no type specifier, and
3100      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3101      // typename.
3102      if (!TypeRep) {
3103        // Eat the scope spec so the identifier is current.
3104        ConsumeAnnotationToken();
3105        ParsedAttributesWithRange Attrs(AttrFactory);
3106        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3107          if (!Attrs.empty()) {
3108            AttrsLastTime = true;
3109            attrs.takeAllFrom(Attrs);
3110          }
3111          continue;
3112        }
3113        goto DoneWithDeclSpec;
3114      }
3115
3116      DS.getTypeSpecScope() = SS;
3117      ConsumeAnnotationToken(); // The C++ scope.
3118
3119      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3120                                     DiagID, TypeRep, Policy);
3121      if (isInvalid)
3122        break;
3123
3124      DS.SetRangeEnd(Tok.getLocation());
3125      ConsumeToken(); // The typename.
3126
3127      continue;
3128    }
3129
3130    case tok::annot_typename: {
3131      // If we've previously seen a tag definition, we were almost surely
3132      // missing a semicolon after it.
3133      if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3134        goto DoneWithDeclSpec;
3135
3136      if (Tok.getAnnotationValue()) {
3137        ParsedType T = getTypeAnnotation(Tok);
3138        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3139                                       DiagID, T, Policy);
3140      } else
3141        DS.SetTypeSpecError();
3142
3143      if (isInvalid)
3144        break;
3145
3146      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3147      ConsumeAnnotationToken(); // The typename
3148
3149      continue;
3150    }
3151
3152    case tok::kw___is_signed:
3153      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3154      // typically treats it as a trait. If we see __is_signed as it appears
3155      // in libstdc++, e.g.,
3156      //
3157      //   static const bool __is_signed;
3158      //
3159      // then treat __is_signed as an identifier rather than as a keyword.
3160      if (DS.getTypeSpecType() == TST_bool &&
3161          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3162          DS.getStorageClassSpec() == DeclSpec::SCS_static)
3163        TryKeywordIdentFallback(true);
3164
3165      // We're done with the declaration-specifiers.
3166      goto DoneWithDeclSpec;
3167
3168      // typedef-name
3169    case tok::kw___super:
3170    case tok::kw_decltype:
3171    case tok::identifier: {
3172      // This identifier can only be a typedef name if we haven't already seen
3173      // a type-specifier.  Without this check we misparse:
3174      //  typedef int X; struct Y { short X; };  as 'short int'.
3175      if (DS.hasTypeSpecifier())
3176        goto DoneWithDeclSpec;
3177
3178      // If the token is an identifier named "__declspec" and Microsoft
3179      // extensions are not enabled, it is likely that there will be cascading
3180      // parse errors if this really is a __declspec attribute. Attempt to
3181      // recognize that scenario and recover gracefully.
3182      if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3183          Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3184        Diag(Loc, diag::err_ms_attributes_not_enabled);
3185
3186        // The next token should be an open paren. If it is, eat the entire
3187        // attribute declaration and continue.
3188        if (NextToken().is(tok::l_paren)) {
3189          // Consume the __declspec identifier.
3190          ConsumeToken();
3191
3192          // Eat the parens and everything between them.
3193          BalancedDelimiterTracker T(*this, tok::l_paren);
3194          if (T.consumeOpen()) {
3195            assert(false && "Not a left paren?");
3196            return;
3197          }
3198          T.skipToEnd();
3199          continue;
3200        }
3201      }
3202
3203      // In C++, check to see if this is a scope specifier like foo::bar::, if
3204      // so handle it as such.  This is important for ctor parsing.
3205      if (getLangOpts().CPlusPlus) {
3206        if (TryAnnotateCXXScopeToken(EnteringContext)) {
3207          DS.SetTypeSpecError();
3208          goto DoneWithDeclSpec;
3209        }
3210        if (!Tok.is(tok::identifier))
3211          continue;
3212      }
3213
3214      // Check for need to substitute AltiVec keyword tokens.
3215      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3216        break;
3217
3218      // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3219      //                allow the use of a typedef name as a type specifier.
3220      if (DS.isTypeAltiVecVector())
3221        goto DoneWithDeclSpec;
3222
3223      if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3224          isObjCInstancetype()) {
3225        ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3226        assert(TypeRep);
3227        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3228                                       DiagID, TypeRep, Policy);
3229        if (isInvalid)
3230          break;
3231
3232        DS.SetRangeEnd(Loc);
3233        ConsumeToken();
3234        continue;
3235      }
3236
3237      // If we're in a context where the identifier could be a class name,
3238      // check whether this is a constructor declaration.
3239      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3240          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3241          isConstructorDeclarator(/*Unqualified*/true))
3242        goto DoneWithDeclSpec;
3243
3244      ParsedType TypeRep = Actions.getTypeName(
3245          *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3246          false, false, nullptr, false, false,
3247          isClassTemplateDeductionContext(DSContext));
3248
3249      // If this is not a typedef name, don't parse it as part of the declspec,
3250      // it must be an implicit int or an error.
3251      if (!TypeRep) {
3252        ParsedAttributesWithRange Attrs(AttrFactory);
3253        if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3254          if (!Attrs.empty()) {
3255            AttrsLastTime = true;
3256            attrs.takeAllFrom(Attrs);
3257          }
3258          continue;
3259        }
3260        goto DoneWithDeclSpec;
3261      }
3262
3263      // Likewise, if this is a context where the identifier could be a template
3264      // name, check whether this is a deduction guide declaration.
3265      if (getLangOpts().CPlusPlus17 &&
3266          (DSContext == DeclSpecContext::DSC_class ||
3267           DSContext == DeclSpecContext::DSC_top_level) &&
3268          Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3269                                       Tok.getLocation()) &&
3270          isConstructorDeclarator(/*Unqualified*/ true,
3271                                  /*DeductionGuide*/ true))
3272        goto DoneWithDeclSpec;
3273
3274      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3275                                     DiagID, TypeRep, Policy);
3276      if (isInvalid)
3277        break;
3278
3279      DS.SetRangeEnd(Tok.getLocation());
3280      ConsumeToken(); // The identifier
3281
3282      // Objective-C supports type arguments and protocol references
3283      // following an Objective-C object or object pointer
3284      // type. Handle either one of them.
3285      if (Tok.is(tok::less) && getLangOpts().ObjC1) {
3286        SourceLocation NewEndLoc;
3287        TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3288                                  Loc, TypeRep, /*consumeLastToken=*/true,
3289                                  NewEndLoc);
3290        if (NewTypeRep.isUsable()) {
3291          DS.UpdateTypeRep(NewTypeRep.get());
3292          DS.SetRangeEnd(NewEndLoc);
3293        }
3294      }
3295
3296      // Need to support trailing type qualifiers (e.g. "id<p> const").
3297      // If a type specifier follows, it will be diagnosed elsewhere.
3298      continue;
3299    }
3300
3301      // type-name
3302    case tok::annot_template_id: {
3303      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3304      if (TemplateId->Kind != TNK_Type_template) {
3305        // This template-id does not refer to a type name, so we're
3306        // done with the type-specifiers.
3307        goto DoneWithDeclSpec;
3308      }
3309
3310      // If we're in a context where the template-id could be a
3311      // constructor name or specialization, check whether this is a
3312      // constructor declaration.
3313      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3314          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3315          isConstructorDeclarator(TemplateId->SS.isEmpty()))
3316        goto DoneWithDeclSpec;
3317
3318      // Turn the template-id annotation token into a type annotation
3319      // token, then try again to parse it as a type-specifier.
3320      AnnotateTemplateIdTokenAsType();
3321      continue;
3322    }
3323
3324    // GNU attributes support.
3325    case tok::kw___attribute:
3326      ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3327      continue;
3328
3329    // Microsoft declspec support.
3330    case tok::kw___declspec:
3331      ParseMicrosoftDeclSpecs(DS.getAttributes());
3332      continue;
3333
3334    // Microsoft single token adornments.
3335    case tok::kw___forceinline: {
3336      isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3337      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3338      SourceLocation AttrNameLoc = Tok.getLocation();
3339      DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3340                                nullptr, 0, ParsedAttr::AS_Keyword);
3341      break;
3342    }
3343
3344    case tok::kw___unaligned:
3345      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3346                                 getLangOpts());
3347      break;
3348
3349    case tok::kw___sptr:
3350    case tok::kw___uptr:
3351    case tok::kw___ptr64:
3352    case tok::kw___ptr32:
3353    case tok::kw___w64:
3354    case tok::kw___cdecl:
3355    case tok::kw___stdcall:
3356    case tok::kw___fastcall:
3357    case tok::kw___thiscall:
3358    case tok::kw___regcall:
3359    case tok::kw___vectorcall:
3360      ParseMicrosoftTypeAttributes(DS.getAttributes());
3361      continue;
3362
3363    // Borland single token adornments.
3364    case tok::kw___pascal:
3365      ParseBorlandTypeAttributes(DS.getAttributes());
3366      continue;
3367
3368    // OpenCL single token adornments.
3369    case tok::kw___kernel:
3370      ParseOpenCLKernelAttributes(DS.getAttributes());
3371      continue;
3372
3373    // Nullability type specifiers.
3374    case tok::kw__Nonnull:
3375    case tok::kw__Nullable:
3376    case tok::kw__Null_unspecified:
3377      ParseNullabilityTypeSpecifiers(DS.getAttributes());
3378      continue;
3379
3380    // Objective-C 'kindof' types.
3381    case tok::kw___kindof:
3382      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3383                                nullptr, 0, ParsedAttr::AS_Keyword);
3384      (void)ConsumeToken();
3385      continue;
3386
3387    // storage-class-specifier
3388    case tok::kw_typedef:
3389      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3390                                         PrevSpec, DiagID, Policy);
3391      isStorageClass = true;
3392      break;
3393    case tok::kw_extern:
3394      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3395        Diag(Tok, diag::ext_thread_before) << "extern";
3396      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3397                                         PrevSpec, DiagID, Policy);
3398      isStorageClass = true;
3399      break;
3400    case tok::kw___private_extern__:
3401      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3402                                         Loc, PrevSpec, DiagID, Policy);
3403      isStorageClass = true;
3404      break;
3405    case tok::kw_static:
3406      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3407        Diag(Tok, diag::ext_thread_before) << "static";
3408      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3409                                         PrevSpec, DiagID, Policy);
3410      isStorageClass = true;
3411      break;
3412    case tok::kw_auto:
3413      if (getLangOpts().CPlusPlus11) {
3414        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3415          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3416                                             PrevSpec, DiagID, Policy);
3417          if (!isInvalid)
3418            Diag(Tok, diag::ext_auto_storage_class)
3419              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3420        } else
3421          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3422                                         DiagID, Policy);
3423      } else
3424        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3425                                           PrevSpec, DiagID, Policy);
3426      isStorageClass = true;
3427      break;
3428    case tok::kw___auto_type:
3429      Diag(Tok, diag::ext_auto_type);
3430      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3431                                     DiagID, Policy);
3432      break;
3433    case tok::kw_register:
3434      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3435                                         PrevSpec, DiagID, Policy);
3436      isStorageClass = true;
3437      break;
3438    case tok::kw_mutable:
3439      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3440                                         PrevSpec, DiagID, Policy);
3441      isStorageClass = true;
3442      break;
3443    case tok::kw___thread:
3444      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3445                                               PrevSpec, DiagID);
3446      isStorageClass = true;
3447      break;
3448    case tok::kw_thread_local:
3449      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3450                                               PrevSpec, DiagID);
3451      isStorageClass = true;
3452      break;
3453    case tok::kw__Thread_local:
3454      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3455                                               Loc, PrevSpec, DiagID);
3456      isStorageClass = true;
3457      break;
3458
3459    // function-specifier
3460    case tok::kw_inline:
3461      isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3462      break;
3463    case tok::kw_virtual:
3464      // OpenCL C++ v1.0 s2.9: the virtual function qualifier is not supported.
3465      if (getLangOpts().OpenCLCPlusPlus) {
3466        DiagID = diag::err_openclcxx_virtual_function;
3467        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3468        isInvalid = true;
3469      }
3470      else {
3471        isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3472      }
3473      break;
3474    case tok::kw_explicit:
3475      isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3476      break;
3477    case tok::kw__Noreturn:
3478      if (!getLangOpts().C11)
3479        Diag(Loc, diag::ext_c11_noreturn);
3480      isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3481      break;
3482
3483    // alignment-specifier
3484    case tok::kw__Alignas:
3485      if (!getLangOpts().C11)
3486        Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3487      ParseAlignmentSpecifier(DS.getAttributes());
3488      continue;
3489
3490    // friend
3491    case tok::kw_friend:
3492      if (DSContext == DeclSpecContext::DSC_class)
3493        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3494      else {
3495        PrevSpec = ""; // not actually used by the diagnostic
3496        DiagID = diag::err_friend_invalid_in_context;
3497        isInvalid = true;
3498      }
3499      break;
3500
3501    // Modules
3502    case tok::kw___module_private__:
3503      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3504      break;
3505
3506    // constexpr
3507    case tok::kw_constexpr:
3508      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3509      break;
3510
3511    // type-specifier
3512    case tok::kw_short:
3513      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3514                                      DiagID, Policy);
3515      break;
3516    case tok::kw_long:
3517      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3518        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3519                                        DiagID, Policy);
3520      else
3521        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3522                                        DiagID, Policy);
3523      break;
3524    case tok::kw___int64:
3525        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3526                                        DiagID, Policy);
3527      break;
3528    case tok::kw_signed:
3529      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3530                                     DiagID);
3531      break;
3532    case tok::kw_unsigned:
3533      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3534                                     DiagID);
3535      break;
3536    case tok::kw__Complex:
3537      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3538                                        DiagID);
3539      break;
3540    case tok::kw__Imaginary:
3541      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3542                                        DiagID);
3543      break;
3544    case tok::kw_void:
3545      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3546                                     DiagID, Policy);
3547      break;
3548    case tok::kw_char:
3549      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3550                                     DiagID, Policy);
3551      break;
3552    case tok::kw_int:
3553      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3554                                     DiagID, Policy);
3555      break;
3556    case tok::kw___int128:
3557      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3558                                     DiagID, Policy);
3559      break;
3560    case tok::kw_half:
3561      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3562                                     DiagID, Policy);
3563      break;
3564    case tok::kw_float:
3565      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3566                                     DiagID, Policy);
3567      break;
3568    case tok::kw_double:
3569      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3570                                     DiagID, Policy);
3571      break;
3572    case tok::kw__Float16:
3573      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3574                                     DiagID, Policy);
3575      break;
3576    case tok::kw__Accum:
3577      if (!getLangOpts().FixedPoint) {
3578        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3579      } else {
3580        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3581                                       DiagID, Policy);
3582      }
3583      break;
3584    case tok::kw__Fract:
3585      if (!getLangOpts().FixedPoint) {
3586        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3587      } else {
3588        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3589                                       DiagID, Policy);
3590      }
3591      break;
3592    case tok::kw__Sat:
3593      if (!getLangOpts().FixedPoint) {
3594        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3595      } else {
3596        isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3597      }
3598      break;
3599    case tok::kw___float128:
3600      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3601                                     DiagID, Policy);
3602      break;
3603    case tok::kw_wchar_t:
3604      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3605                                     DiagID, Policy);
3606      break;
3607    case tok::kw_char8_t:
3608      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3609                                     DiagID, Policy);
3610      break;
3611    case tok::kw_char16_t:
3612      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3613                                     DiagID, Policy);
3614      break;
3615    case tok::kw_char32_t:
3616      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3617                                     DiagID, Policy);
3618      break;
3619    case tok::kw_bool:
3620    case tok::kw__Bool:
3621      if (Tok.is(tok::kw_bool) &&
3622          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3623          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3624        PrevSpec = ""; // Not used by the diagnostic.
3625        DiagID = diag::err_bool_redeclaration;
3626        // For better error recovery.
3627        Tok.setKind(tok::identifier);
3628        isInvalid = true;
3629      } else {
3630        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3631                                       DiagID, Policy);
3632      }
3633      break;
3634    case tok::kw__Decimal32:
3635      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3636                                     DiagID, Policy);
3637      break;
3638    case tok::kw__Decimal64:
3639      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3640                                     DiagID, Policy);
3641      break;
3642    case tok::kw__Decimal128:
3643      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3644                                     DiagID, Policy);
3645      break;
3646    case tok::kw___vector:
3647      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3648      break;
3649    case tok::kw___pixel:
3650      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3651      break;
3652    case tok::kw___bool:
3653      isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3654      break;
3655    case tok::kw_pipe:
3656      if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) {
3657        // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3658        // support the "pipe" word as identifier.
3659        Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3660        goto DoneWithDeclSpec;
3661      }
3662      isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3663      break;
3664#define GENERIC_IMAGE_TYPE(ImgType, Id) \
3665  case tok::kw_##ImgType##_t: \
3666    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3667                                   DiagID, Policy); \
3668    break;
3669#include "clang/Basic/OpenCLImageTypes.def"
3670    case tok::kw___unknown_anytype:
3671      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3672                                     PrevSpec, DiagID, Policy);
3673      break;
3674
3675    // class-specifier:
3676    case tok::kw_class:
3677    case tok::kw_struct:
3678    case tok::kw___interface:
3679    case tok::kw_union: {
3680      tok::TokenKind Kind = Tok.getKind();
3681      ConsumeToken();
3682
3683      // These are attributes following class specifiers.
3684      // To produce better diagnostic, we parse them when
3685      // parsing class specifier.
3686      ParsedAttributesWithRange Attributes(AttrFactory);
3687      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3688                          EnteringContext, DSContext, Attributes);
3689
3690      // If there are attributes following class specifier,
3691      // take them over and handle them here.
3692      if (!Attributes.empty()) {
3693        AttrsLastTime = true;
3694        attrs.takeAllFrom(Attributes);
3695      }
3696      continue;
3697    }
3698
3699    // enum-specifier:
3700    case tok::kw_enum:
3701      ConsumeToken();
3702      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3703      continue;
3704
3705    // cv-qualifier:
3706    case tok::kw_const:
3707      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3708                                 getLangOpts());
3709      break;
3710    case tok::kw_volatile:
3711      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3712                                 getLangOpts());
3713      break;
3714    case tok::kw_restrict:
3715      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3716                                 getLangOpts());
3717      break;
3718
3719    // C++ typename-specifier:
3720    case tok::kw_typename:
3721      if (TryAnnotateTypeOrScopeToken()) {
3722        DS.SetTypeSpecError();
3723        goto DoneWithDeclSpec;
3724      }
3725      if (!Tok.is(tok::kw_typename))
3726        continue;
3727      break;
3728
3729    // GNU typeof support.
3730    case tok::kw_typeof:
3731      ParseTypeofSpecifier(DS);
3732      continue;
3733
3734    case tok::annot_decltype:
3735      ParseDecltypeSpecifier(DS);
3736      continue;
3737
3738    case tok::annot_pragma_pack:
3739      HandlePragmaPack();
3740      continue;
3741
3742    case tok::annot_pragma_ms_pragma:
3743      HandlePragmaMSPragma();
3744      continue;
3745
3746    case tok::annot_pragma_ms_vtordisp:
3747      HandlePragmaMSVtorDisp();
3748      continue;
3749
3750    case tok::annot_pragma_ms_pointers_to_members:
3751      HandlePragmaMSPointersToMembers();
3752      continue;
3753
3754    case tok::kw___underlying_type:
3755      ParseUnderlyingTypeSpecifier(DS);
3756      continue;
3757
3758    case tok::kw__Atomic:
3759      // C11 6.7.2.4/4:
3760      //   If the _Atomic keyword is immediately followed by a left parenthesis,
3761      //   it is interpreted as a type specifier (with a type name), not as a
3762      //   type qualifier.
3763      if (NextToken().is(tok::l_paren)) {
3764        ParseAtomicSpecifier(DS);
3765        continue;
3766      }
3767      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3768                                 getLangOpts());
3769      break;
3770
3771    // OpenCL access qualifiers:
3772    case tok::kw___read_only:
3773    case tok::kw___write_only:
3774    case tok::kw___read_write:
3775      // OpenCL C++ 1.0 s2.2: access qualifiers are reserved keywords.
3776      if (Actions.getLangOpts().OpenCLCPlusPlus) {
3777        DiagID = diag::err_openclcxx_reserved;
3778        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3779        isInvalid = true;
3780      }
3781      ParseOpenCLQualifiers(DS.getAttributes());
3782      break;
3783
3784    // OpenCL address space qualifiers:
3785    case tok::kw___generic:
3786      // generic address space is introduced only in OpenCL v2.0
3787      // see OpenCL C Spec v2.0 s6.5.5
3788      if (Actions.getLangOpts().OpenCLVersion < 200 &&
3789          !Actions.getLangOpts().OpenCLCPlusPlus) {
3790        DiagID = diag::err_opencl_unknown_type_specifier;
3791        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3792        isInvalid = true;
3793        break;
3794      };
3795      LLVM_FALLTHROUGH;
3796    case tok::kw___private:
3797    case tok::kw___global:
3798    case tok::kw___local:
3799    case tok::kw___constant:
3800      ParseOpenCLQualifiers(DS.getAttributes());
3801      break;
3802
3803    case tok::less:
3804      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3805      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3806      // but we support it.
3807      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3808        goto DoneWithDeclSpec;
3809
3810      SourceLocation StartLoc = Tok.getLocation();
3811      SourceLocation EndLoc;
3812      TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3813      if (Type.isUsable()) {
3814        if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3815                               PrevSpec, DiagID, Type.get(),
3816                               Actions.getASTContext().getPrintingPolicy()))
3817          Diag(StartLoc, DiagID) << PrevSpec;
3818
3819        DS.SetRangeEnd(EndLoc);
3820      } else {
3821        DS.SetTypeSpecError();
3822      }
3823
3824      // Need to support trailing type qualifiers (e.g. "id<p> const").
3825      // If a type specifier follows, it will be diagnosed elsewhere.
3826      continue;
3827    }
3828    // If the specifier wasn't legal, issue a diagnostic.
3829    if (isInvalid) {
3830      assert(PrevSpec && "Method did not return previous specifier!");
3831      assert(DiagID);
3832
3833      if (DiagID == diag::ext_duplicate_declspec)
3834        Diag(Tok, DiagID)
3835          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3836      else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3837        Diag(Tok, DiagID) << getLangOpts().OpenCLCPlusPlus
3838            << getLangOpts().getOpenCLVersionTuple().getAsString()
3839            << PrevSpec << isStorageClass;
3840      } else
3841        Diag(Tok, DiagID) << PrevSpec;
3842    }
3843
3844    DS.SetRangeEnd(Tok.getLocation());
3845    if (DiagID != diag::err_bool_redeclaration)
3846      // After an error the next token can be an annotation token.
3847      ConsumeAnyToken();
3848
3849    AttrsLastTime = false;
3850  }
3851}
3852
3853/// ParseStructDeclaration - Parse a struct declaration without the terminating
3854/// semicolon.
3855///
3856///       struct-declaration:
3857/// [C2x]   attributes-specifier-seq[opt]
3858///           specifier-qualifier-list struct-declarator-list
3859/// [GNU]   __extension__ struct-declaration
3860/// [GNU]   specifier-qualifier-list
3861///       struct-declarator-list:
3862///         struct-declarator
3863///         struct-declarator-list ',' struct-declarator
3864/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3865///       struct-declarator:
3866///         declarator
3867/// [GNU]   declarator attributes[opt]
3868///         declarator[opt] ':' constant-expression
3869/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3870///
3871void Parser::ParseStructDeclaration(
3872    ParsingDeclSpec &DS,
3873    llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3874
3875  if (Tok.is(tok::kw___extension__)) {
3876    // __extension__ silences extension warnings in the subexpression.
3877    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
3878    ConsumeToken();
3879    return ParseStructDeclaration(DS, FieldsCallback);
3880  }
3881
3882  // Parse leading attributes.
3883  ParsedAttributesWithRange Attrs(AttrFactory);
3884  MaybeParseCXX11Attributes(Attrs);
3885  DS.takeAttributesFrom(Attrs);
3886
3887  // Parse the common specifier-qualifiers-list piece.
3888  ParseSpecifierQualifierList(DS);
3889
3890  // If there are no declarators, this is a free-standing declaration
3891  // specifier. Let the actions module cope with it.
3892  if (Tok.is(tok::semi)) {
3893    RecordDecl *AnonRecord = nullptr;
3894    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3895                                                       DS, AnonRecord);
3896    assert(!AnonRecord && "Did not expect anonymous struct or union here");
3897    DS.complete(TheDecl);
3898    return;
3899  }
3900
3901  // Read struct-declarators until we find the semicolon.
3902  bool FirstDeclarator = true;
3903  SourceLocation CommaLoc;
3904  while (1) {
3905    ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3906    DeclaratorInfo.D.setCommaLoc(CommaLoc);
3907
3908    // Attributes are only allowed here on successive declarators.
3909    if (!FirstDeclarator)
3910      MaybeParseGNUAttributes(DeclaratorInfo.D);
3911
3912    /// struct-declarator: declarator
3913    /// struct-declarator: declarator[opt] ':' constant-expression
3914    if (Tok.isNot(tok::colon)) {
3915      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3916      ColonProtectionRAIIObject X(*this);
3917      ParseDeclarator(DeclaratorInfo.D);
3918    } else
3919      DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3920
3921    if (TryConsumeToken(tok::colon)) {
3922      ExprResult Res(ParseConstantExpression());
3923      if (Res.isInvalid())
3924        SkipUntil(tok::semi, StopBeforeMatch);
3925      else
3926        DeclaratorInfo.BitfieldSize = Res.get();
3927    }
3928
3929    // If attributes exist after the declarator, parse them.
3930    MaybeParseGNUAttributes(DeclaratorInfo.D);
3931
3932    // We're done with this declarator;  invoke the callback.
3933    FieldsCallback(DeclaratorInfo);
3934
3935    // If we don't have a comma, it is either the end of the list (a ';')
3936    // or an error, bail out.
3937    if (!TryConsumeToken(tok::comma, CommaLoc))
3938      return;
3939
3940    FirstDeclarator = false;
3941  }
3942}
3943
3944/// ParseStructUnionBody
3945///       struct-contents:
3946///         struct-declaration-list
3947/// [EXT]   empty
3948/// [GNU]   "struct-declaration-list" without terminatoring ';'
3949///       struct-declaration-list:
3950///         struct-declaration
3951///         struct-declaration-list struct-declaration
3952/// [OBC]   '@' 'defs' '(' class-name ')'
3953///
3954void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3955                                  unsigned TagType, Decl *TagDecl) {
3956  PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
3957                                      "parsing struct/union body");
3958  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3959
3960  BalancedDelimiterTracker T(*this, tok::l_brace);
3961  if (T.consumeOpen())
3962    return;
3963
3964  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3965  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3966
3967  SmallVector<Decl *, 32> FieldDecls;
3968
3969  // While we still have something to read, read the declarations in the struct.
3970  while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
3971         Tok.isNot(tok::eof)) {
3972    // Each iteration of this loop reads one struct-declaration.
3973
3974    // Check for extraneous top-level semicolon.
3975    if (Tok.is(tok::semi)) {
3976      ConsumeExtraSemi(InsideStruct, TagType);
3977      continue;
3978    }
3979
3980    // Parse _Static_assert declaration.
3981    if (Tok.is(tok::kw__Static_assert)) {
3982      SourceLocation DeclEnd;
3983      ParseStaticAssertDeclaration(DeclEnd);
3984      continue;
3985    }
3986
3987    if (Tok.is(tok::annot_pragma_pack)) {
3988      HandlePragmaPack();
3989      continue;
3990    }
3991
3992    if (Tok.is(tok::annot_pragma_align)) {
3993      HandlePragmaAlign();
3994      continue;
3995    }
3996
3997    if (Tok.is(tok::annot_pragma_openmp)) {
3998      // Result can be ignored, because it must be always empty.
3999      AccessSpecifier AS = AS_none;
4000      ParsedAttributesWithRange Attrs(AttrFactory);
4001      (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4002      continue;
4003    }
4004
4005    if (!Tok.is(tok::at)) {
4006      auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4007        // Install the declarator into the current TagDecl.
4008        Decl *Field =
4009            Actions.ActOnField(getCurScope(), TagDecl,
4010                               FD.D.getDeclSpec().getSourceRange().getBegin(),
4011                               FD.D, FD.BitfieldSize);
4012        FieldDecls.push_back(Field);
4013        FD.complete(Field);
4014      };
4015
4016      // Parse all the comma separated declarators.
4017      ParsingDeclSpec DS(*this);
4018      ParseStructDeclaration(DS, CFieldCallback);
4019    } else { // Handle @defs
4020      ConsumeToken();
4021      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4022        Diag(Tok, diag::err_unexpected_at);
4023        SkipUntil(tok::semi);
4024        continue;
4025      }
4026      ConsumeToken();
4027      ExpectAndConsume(tok::l_paren);
4028      if (!Tok.is(tok::identifier)) {
4029        Diag(Tok, diag::err_expected) << tok::identifier;
4030        SkipUntil(tok::semi);
4031        continue;
4032      }
4033      SmallVector<Decl *, 16> Fields;
4034      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4035                        Tok.getIdentifierInfo(), Fields);
4036      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4037      ConsumeToken();
4038      ExpectAndConsume(tok::r_paren);
4039    }
4040
4041    if (TryConsumeToken(tok::semi))
4042      continue;
4043
4044    if (Tok.is(tok::r_brace)) {
4045      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4046      break;
4047    }
4048
4049    ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4050    // Skip to end of block or statement to avoid ext-warning on extra ';'.
4051    SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4052    // If we stopped at a ';', eat it.
4053    TryConsumeToken(tok::semi);
4054  }
4055
4056  T.consumeClose();
4057
4058  ParsedAttributes attrs(AttrFactory);
4059  // If attributes exist after struct contents, parse them.
4060  MaybeParseGNUAttributes(attrs);
4061
4062  Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4063                      T.getOpenLocation(), T.getCloseLocation(), attrs);
4064  StructScope.Exit();
4065  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4066}
4067
4068/// ParseEnumSpecifier
4069///       enum-specifier: [C99 6.7.2.2]
4070///         'enum' identifier[opt] '{' enumerator-list '}'
4071///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4072/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4073///                                                 '}' attributes[opt]
4074/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4075///                                                 '}'
4076///         'enum' identifier
4077/// [GNU]   'enum' attributes[opt] identifier
4078///
4079/// [C++11] enum-head '{' enumerator-list[opt] '}'
4080/// [C++11] enum-head '{' enumerator-list ','  '}'
4081///
4082///       enum-head: [C++11]
4083///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4084///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4085///             identifier enum-base[opt]
4086///
4087///       enum-key: [C++11]
4088///         'enum'
4089///         'enum' 'class'
4090///         'enum' 'struct'
4091///
4092///       enum-base: [C++11]
4093///         ':' type-specifier-seq
4094///
4095/// [C++] elaborated-type-specifier:
4096/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
4097///
4098void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4099                                const ParsedTemplateInfo &TemplateInfo,
4100                                AccessSpecifier AS, DeclSpecContext DSC) {
4101  // Parse the tag portion of this.
4102  if (Tok.is(tok::code_completion)) {
4103    // Code completion for an enum name.
4104    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4105    return cutOffParsing();
4106  }
4107
4108  // If attributes exist after tag, parse them.
4109  ParsedAttributesWithRange attrs(AttrFactory);
4110  MaybeParseGNUAttributes(attrs);
4111  MaybeParseCXX11Attributes(attrs);
4112  MaybeParseMicrosoftDeclSpecs(attrs);
4113
4114  SourceLocation ScopedEnumKWLoc;
4115  bool IsScopedUsingClassTag = false;
4116
4117  // In C++11, recognize 'enum class' and 'enum struct'.
4118  if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4119    Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4120                                        : diag::ext_scoped_enum);
4121    IsScopedUsingClassTag = Tok.is(tok::kw_class);
4122    ScopedEnumKWLoc = ConsumeToken();
4123
4124    // Attributes are not allowed between these keywords.  Diagnose,
4125    // but then just treat them like they appeared in the right place.
4126    ProhibitAttributes(attrs);
4127
4128    // They are allowed afterwards, though.
4129    MaybeParseGNUAttributes(attrs);
4130    MaybeParseCXX11Attributes(attrs);
4131    MaybeParseMicrosoftDeclSpecs(attrs);
4132  }
4133
4134  // C++11 [temp.explicit]p12:
4135  //   The usual access controls do not apply to names used to specify
4136  //   explicit instantiations.
4137  // We extend this to also cover explicit specializations.  Note that
4138  // we don't suppress if this turns out to be an elaborated type
4139  // specifier.
4140  bool shouldDelayDiagsInTag =
4141    (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4142     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4143  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4144
4145  // Enum definitions should not be parsed in a trailing-return-type.
4146  bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4147
4148  bool AllowFixedUnderlyingType = AllowDeclaration &&
4149    (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
4150     getLangOpts().ObjC2);
4151
4152  CXXScopeSpec &SS = DS.getTypeSpecScope();
4153  if (getLangOpts().CPlusPlus) {
4154    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4155    // if a fixed underlying type is allowed.
4156    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
4157
4158    CXXScopeSpec Spec;
4159    if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4160                                       /*EnteringContext=*/true))
4161      return;
4162
4163    if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4164      Diag(Tok, diag::err_expected) << tok::identifier;
4165      if (Tok.isNot(tok::l_brace)) {
4166        // Has no name and is not a definition.
4167        // Skip the rest of this declarator, up until the comma or semicolon.
4168        SkipUntil(tok::comma, StopAtSemi);
4169        return;
4170      }
4171    }
4172
4173    SS = Spec;
4174  }
4175
4176  // Must have either 'enum name' or 'enum {...}'.
4177  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4178      !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
4179    Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4180
4181    // Skip the rest of this declarator, up until the comma or semicolon.
4182    SkipUntil(tok::comma, StopAtSemi);
4183    return;
4184  }
4185
4186  // If an identifier is present, consume and remember it.
4187  IdentifierInfo *Name = nullptr;
4188  SourceLocation NameLoc;
4189  if (Tok.is(tok::identifier)) {
4190    Name = Tok.getIdentifierInfo();
4191    NameLoc = ConsumeToken();
4192  }
4193
4194  if (!Name && ScopedEnumKWLoc.isValid()) {
4195    // C++0x 7.2p2: The optional identifier shall not be omitted in the
4196    // declaration of a scoped enumeration.
4197    Diag(Tok, diag::err_scoped_enum_missing_identifier);
4198    ScopedEnumKWLoc = SourceLocation();
4199    IsScopedUsingClassTag = false;
4200  }
4201
4202  // Okay, end the suppression area.  We'll decide whether to emit the
4203  // diagnostics in a second.
4204  if (shouldDelayDiagsInTag)
4205    diagsFromTag.done();
4206
4207  TypeResult BaseType;
4208
4209  // Parse the fixed underlying type.
4210  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4211  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
4212    bool PossibleBitfield = false;
4213    if (CanBeBitfield) {
4214      // If we're in class scope, this can either be an enum declaration with
4215      // an underlying type, or a declaration of a bitfield member. We try to
4216      // use a simple disambiguation scheme first to catch the common cases
4217      // (integer literal, sizeof); if it's still ambiguous, we then consider
4218      // anything that's a simple-type-specifier followed by '(' as an
4219      // expression. This suffices because function types are not valid
4220      // underlying types anyway.
4221      EnterExpressionEvaluationContext Unevaluated(
4222          Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4223      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4224      // If the next token starts an expression, we know we're parsing a
4225      // bit-field. This is the common case.
4226      if (TPR == TPResult::True)
4227        PossibleBitfield = true;
4228      // If the next token starts a type-specifier-seq, it may be either a
4229      // a fixed underlying type or the start of a function-style cast in C++;
4230      // lookahead one more token to see if it's obvious that we have a
4231      // fixed underlying type.
4232      else if (TPR == TPResult::False &&
4233               GetLookAheadToken(2).getKind() == tok::semi) {
4234        // Consume the ':'.
4235        ConsumeToken();
4236      } else {
4237        // We have the start of a type-specifier-seq, so we have to perform
4238        // tentative parsing to determine whether we have an expression or a
4239        // type.
4240        TentativeParsingAction TPA(*this);
4241
4242        // Consume the ':'.
4243        ConsumeToken();
4244
4245        // If we see a type specifier followed by an open-brace, we have an
4246        // ambiguity between an underlying type and a C++11 braced
4247        // function-style cast. Resolve this by always treating it as an
4248        // underlying type.
4249        // FIXME: The standard is not entirely clear on how to disambiguate in
4250        // this case.
4251        if ((getLangOpts().CPlusPlus &&
4252             isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4253            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4254          // We'll parse this as a bitfield later.
4255          PossibleBitfield = true;
4256          TPA.Revert();
4257        } else {
4258          // We have a type-specifier-seq.
4259          TPA.Commit();
4260        }
4261      }
4262    } else {
4263      // Consume the ':'.
4264      ConsumeToken();
4265    }
4266
4267    if (!PossibleBitfield) {
4268      SourceRange Range;
4269      BaseType = ParseTypeName(&Range);
4270
4271      if (getLangOpts().CPlusPlus11) {
4272        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4273      } else if (!getLangOpts().ObjC2) {
4274        if (getLangOpts().CPlusPlus)
4275          Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
4276        else
4277          Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
4278      }
4279    }
4280  }
4281
4282  // There are four options here.  If we have 'friend enum foo;' then this is a
4283  // friend declaration, and cannot have an accompanying definition. If we have
4284  // 'enum foo;', then this is a forward declaration.  If we have
4285  // 'enum foo {...' then this is a definition. Otherwise we have something
4286  // like 'enum foo xyz', a reference.
4287  //
4288  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4289  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
4290  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
4291  //
4292  Sema::TagUseKind TUK;
4293  if (!AllowDeclaration) {
4294    TUK = Sema::TUK_Reference;
4295  } else if (Tok.is(tok::l_brace)) {
4296    if (DS.isFriendSpecified()) {
4297      Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4298        << SourceRange(DS.getFriendSpecLoc());
4299      ConsumeBrace();
4300      SkipUntil(tok::r_brace, StopAtSemi);
4301      TUK = Sema::TUK_Friend;
4302    } else {
4303      TUK = Sema::TUK_Definition;
4304    }
4305  } else if (!isTypeSpecifier(DSC) &&
4306             (Tok.is(tok::semi) ||
4307              (Tok.isAtStartOfLine() &&
4308               !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4309    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4310    if (Tok.isNot(tok::semi)) {
4311      // A semicolon was missing after this declaration. Diagnose and recover.
4312      ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4313      PP.EnterToken(Tok);
4314      Tok.setKind(tok::semi);
4315    }
4316  } else {
4317    TUK = Sema::TUK_Reference;
4318  }
4319
4320  // If this is an elaborated type specifier, and we delayed
4321  // diagnostics before, just merge them into the current pool.
4322  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4323    diagsFromTag.redelay();
4324  }
4325
4326  MultiTemplateParamsArg TParams;
4327  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4328      TUK != Sema::TUK_Reference) {
4329    if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4330      // Skip the rest of this declarator, up until the comma or semicolon.
4331      Diag(Tok, diag::err_enum_template);
4332      SkipUntil(tok::comma, StopAtSemi);
4333      return;
4334    }
4335
4336    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4337      // Enumerations can't be explicitly instantiated.
4338      DS.SetTypeSpecError();
4339      Diag(StartLoc, diag::err_explicit_instantiation_enum);
4340      return;
4341    }
4342
4343    assert(TemplateInfo.TemplateParams && "no template parameters");
4344    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4345                                     TemplateInfo.TemplateParams->size());
4346  }
4347
4348  if (TUK == Sema::TUK_Reference)
4349    ProhibitAttributes(attrs);
4350
4351  if (!Name && TUK != Sema::TUK_Definition) {
4352    Diag(Tok, diag::err_enumerator_unnamed_no_def);
4353
4354    // Skip the rest of this declarator, up until the comma or semicolon.
4355    SkipUntil(tok::comma, StopAtSemi);
4356    return;
4357  }
4358
4359  stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4360
4361  Sema::SkipBodyInfo SkipBody;
4362  if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4363      NextToken().is(tok::identifier))
4364    SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4365                                              NextToken().getIdentifierInfo(),
4366                                              NextToken().getLocation());
4367
4368  bool Owned = false;
4369  bool IsDependent = false;
4370  const char *PrevSpec = nullptr;
4371  unsigned DiagID;
4372  Decl *TagDecl = Actions.ActOnTag(
4373      getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4374      attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4375      ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4376      DSC == DeclSpecContext::DSC_type_specifier,
4377      DSC == DeclSpecContext::DSC_template_param ||
4378          DSC == DeclSpecContext::DSC_template_type_arg,
4379      &SkipBody);
4380
4381  if (SkipBody.ShouldSkip) {
4382    assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4383
4384    BalancedDelimiterTracker T(*this, tok::l_brace);
4385    T.consumeOpen();
4386    T.skipToEnd();
4387
4388    if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4389                           NameLoc.isValid() ? NameLoc : StartLoc,
4390                           PrevSpec, DiagID, TagDecl, Owned,
4391                           Actions.getASTContext().getPrintingPolicy()))
4392      Diag(StartLoc, DiagID) << PrevSpec;
4393    return;
4394  }
4395
4396  if (IsDependent) {
4397    // This enum has a dependent nested-name-specifier. Handle it as a
4398    // dependent tag.
4399    if (!Name) {
4400      DS.SetTypeSpecError();
4401      Diag(Tok, diag::err_expected_type_name_after_typename);
4402      return;
4403    }
4404
4405    TypeResult Type = Actions.ActOnDependentTag(
4406        getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4407    if (Type.isInvalid()) {
4408      DS.SetTypeSpecError();
4409      return;
4410    }
4411
4412    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4413                           NameLoc.isValid() ? NameLoc : StartLoc,
4414                           PrevSpec, DiagID, Type.get(),
4415                           Actions.getASTContext().getPrintingPolicy()))
4416      Diag(StartLoc, DiagID) << PrevSpec;
4417
4418    return;
4419  }
4420
4421  if (!TagDecl) {
4422    // The action failed to produce an enumeration tag. If this is a
4423    // definition, consume the entire definition.
4424    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4425      ConsumeBrace();
4426      SkipUntil(tok::r_brace, StopAtSemi);
4427    }
4428
4429    DS.SetTypeSpecError();
4430    return;
4431  }
4432
4433  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4434    Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4435    ParseEnumBody(StartLoc, D);
4436    if (SkipBody.CheckSameAsPrevious &&
4437        !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4438      DS.SetTypeSpecError();
4439      return;
4440    }
4441  }
4442
4443  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4444                         NameLoc.isValid() ? NameLoc : StartLoc,
4445                         PrevSpec, DiagID, TagDecl, Owned,
4446                         Actions.getASTContext().getPrintingPolicy()))
4447    Diag(StartLoc, DiagID) << PrevSpec;
4448}
4449
4450/// ParseEnumBody - Parse a {} enclosed enumerator-list.
4451///       enumerator-list:
4452///         enumerator
4453///         enumerator-list ',' enumerator
4454///       enumerator:
4455///         enumeration-constant attributes[opt]
4456///         enumeration-constant attributes[opt] '=' constant-expression
4457///       enumeration-constant:
4458///         identifier
4459///
4460void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4461  // Enter the scope of the enum body and start the definition.
4462  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4463  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4464
4465  BalancedDelimiterTracker T(*this, tok::l_brace);
4466  T.consumeOpen();
4467
4468  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4469  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4470    Diag(Tok, diag::err_empty_enum);
4471
4472  SmallVector<Decl *, 32> EnumConstantDecls;
4473  SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4474
4475  Decl *LastEnumConstDecl = nullptr;
4476
4477  // Parse the enumerator-list.
4478  while (Tok.isNot(tok::r_brace)) {
4479    // Parse enumerator. If failed, try skipping till the start of the next
4480    // enumerator definition.
4481    if (Tok.isNot(tok::identifier)) {
4482      Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4483      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4484          TryConsumeToken(tok::comma))
4485        continue;
4486      break;
4487    }
4488    IdentifierInfo *Ident = Tok.getIdentifierInfo();
4489    SourceLocation IdentLoc = ConsumeToken();
4490
4491    // If attributes exist after the enumerator, parse them.
4492    ParsedAttributesWithRange attrs(AttrFactory);
4493    MaybeParseGNUAttributes(attrs);
4494    ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4495    if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4496      if (getLangOpts().CPlusPlus)
4497        Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4498                                    ? diag::warn_cxx14_compat_ns_enum_attribute
4499                                    : diag::ext_ns_enum_attribute)
4500            << 1 /*enumerator*/;
4501      ParseCXX11Attributes(attrs);
4502    }
4503
4504    SourceLocation EqualLoc;
4505    ExprResult AssignedVal;
4506    EnumAvailabilityDiags.emplace_back(*this);
4507
4508    if (TryConsumeToken(tok::equal, EqualLoc)) {
4509      AssignedVal = ParseConstantExpression();
4510      if (AssignedVal.isInvalid())
4511        SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4512    }
4513
4514    // Install the enumerator constant into EnumDecl.
4515    Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4516        getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4517        EqualLoc, AssignedVal.get());
4518    EnumAvailabilityDiags.back().done();
4519
4520    EnumConstantDecls.push_back(EnumConstDecl);
4521    LastEnumConstDecl = EnumConstDecl;
4522
4523    if (Tok.is(tok::identifier)) {
4524      // We're missing a comma between enumerators.
4525      SourceLocation Loc = getEndOfPreviousToken();
4526      Diag(Loc, diag::err_enumerator_list_missing_comma)
4527        << FixItHint::CreateInsertion(Loc, ", ");
4528      continue;
4529    }
4530
4531    // Emumerator definition must be finished, only comma or r_brace are
4532    // allowed here.
4533    SourceLocation CommaLoc;
4534    if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4535      if (EqualLoc.isValid())
4536        Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4537                                                           << tok::comma;
4538      else
4539        Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4540      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4541        if (TryConsumeToken(tok::comma, CommaLoc))
4542          continue;
4543      } else {
4544        break;
4545      }
4546    }
4547
4548    // If comma is followed by r_brace, emit appropriate warning.
4549    if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4550      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4551        Diag(CommaLoc, getLangOpts().CPlusPlus ?
4552               diag::ext_enumerator_list_comma_cxx :
4553               diag::ext_enumerator_list_comma_c)
4554          << FixItHint::CreateRemoval(CommaLoc);
4555      else if (getLangOpts().CPlusPlus11)
4556        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4557          << FixItHint::CreateRemoval(CommaLoc);
4558      break;
4559    }
4560  }
4561
4562  // Eat the }.
4563  T.consumeClose();
4564
4565  // If attributes exist after the identifier list, parse them.
4566  ParsedAttributes attrs(AttrFactory);
4567  MaybeParseGNUAttributes(attrs);
4568
4569  Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4570                        getCurScope(), attrs);
4571
4572  // Now handle enum constant availability diagnostics.
4573  assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4574  for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4575    ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4576    EnumAvailabilityDiags[i].redelay();
4577    PD.complete(EnumConstantDecls[i]);
4578  }
4579
4580  EnumScope.Exit();
4581  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4582
4583  // The next token must be valid after an enum definition. If not, a ';'
4584  // was probably forgotten.
4585  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4586  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4587    ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4588    // Push this token back into the preprocessor and change our current token
4589    // to ';' so that the rest of the code recovers as though there were an
4590    // ';' after the definition.
4591    PP.EnterToken(Tok);
4592    Tok.setKind(tok::semi);
4593  }
4594}
4595
4596/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4597/// is definitely a type-specifier.  Return false if it isn't part of a type
4598/// specifier or if we're not sure.
4599bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4600  switch (Tok.getKind()) {
4601  default: return false;
4602    // type-specifiers
4603  case tok::kw_short:
4604  case tok::kw_long:
4605  case tok::kw___int64:
4606  case tok::kw___int128:
4607  case tok::kw_signed:
4608  case tok::kw_unsigned:
4609  case tok::kw__Complex:
4610  case tok::kw__Imaginary:
4611  case tok::kw_void:
4612  case tok::kw_char:
4613  case tok::kw_wchar_t:
4614  case tok::kw_char8_t:
4615  case tok::kw_char16_t:
4616  case tok::kw_char32_t:
4617  case tok::kw_int:
4618  case tok::kw_half:
4619  case tok::kw_float:
4620  case tok::kw_double:
4621  case tok::kw__Accum:
4622  case tok::kw__Fract:
4623  case tok::kw__Float16:
4624  case tok::kw___float128:
4625  case tok::kw_bool:
4626  case tok::kw__Bool:
4627  case tok::kw__Decimal32:
4628  case tok::kw__Decimal64:
4629  case tok::kw__Decimal128:
4630  case tok::kw___vector:
4631#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4632#include "clang/Basic/OpenCLImageTypes.def"
4633
4634    // struct-or-union-specifier (C99) or class-specifier (C++)
4635  case tok::kw_class:
4636  case tok::kw_struct:
4637  case tok::kw___interface:
4638  case tok::kw_union:
4639    // enum-specifier
4640  case tok::kw_enum:
4641
4642    // typedef-name
4643  case tok::annot_typename:
4644    return true;
4645  }
4646}
4647
4648/// isTypeSpecifierQualifier - Return true if the current token could be the
4649/// start of a specifier-qualifier-list.
4650bool Parser::isTypeSpecifierQualifier() {
4651  switch (Tok.getKind()) {
4652  default: return false;
4653
4654  case tok::identifier:   // foo::bar
4655    if (TryAltiVecVectorToken())
4656      return true;
4657    // Fall through.
4658  case tok::kw_typename:  // typename T::type
4659    // Annotate typenames and C++ scope specifiers.  If we get one, just
4660    // recurse to handle whatever we get.
4661    if (TryAnnotateTypeOrScopeToken())
4662      return true;
4663    if (Tok.is(tok::identifier))
4664      return false;
4665    return isTypeSpecifierQualifier();
4666
4667  case tok::coloncolon:   // ::foo::bar
4668    if (NextToken().is(tok::kw_new) ||    // ::new
4669        NextToken().is(tok::kw_delete))   // ::delete
4670      return false;
4671
4672    if (TryAnnotateTypeOrScopeToken())
4673      return true;
4674    return isTypeSpecifierQualifier();
4675
4676    // GNU attributes support.
4677  case tok::kw___attribute:
4678    // GNU typeof support.
4679  case tok::kw_typeof:
4680
4681    // type-specifiers
4682  case tok::kw_short:
4683  case tok::kw_long:
4684  case tok::kw___int64:
4685  case tok::kw___int128:
4686  case tok::kw_signed:
4687  case tok::kw_unsigned:
4688  case tok::kw__Complex:
4689  case tok::kw__Imaginary:
4690  case tok::kw_void:
4691  case tok::kw_char:
4692  case tok::kw_wchar_t:
4693  case tok::kw_char8_t:
4694  case tok::kw_char16_t:
4695  case tok::kw_char32_t:
4696  case tok::kw_int:
4697  case tok::kw_half:
4698  case tok::kw_float:
4699  case tok::kw_double:
4700  case tok::kw__Accum:
4701  case tok::kw__Fract:
4702  case tok::kw__Float16:
4703  case tok::kw___float128:
4704  case tok::kw_bool:
4705  case tok::kw__Bool:
4706  case tok::kw__Decimal32:
4707  case tok::kw__Decimal64:
4708  case tok::kw__Decimal128:
4709  case tok::kw___vector:
4710#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4711#include "clang/Basic/OpenCLImageTypes.def"
4712
4713    // struct-or-union-specifier (C99) or class-specifier (C++)
4714  case tok::kw_class:
4715  case tok::kw_struct:
4716  case tok::kw___interface:
4717  case tok::kw_union:
4718    // enum-specifier
4719  case tok::kw_enum:
4720
4721    // type-qualifier
4722  case tok::kw_const:
4723  case tok::kw_volatile:
4724  case tok::kw_restrict:
4725  case tok::kw__Sat:
4726
4727    // Debugger support.
4728  case tok::kw___unknown_anytype:
4729
4730    // typedef-name
4731  case tok::annot_typename:
4732    return true;
4733
4734    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4735  case tok::less:
4736    return getLangOpts().ObjC1;
4737
4738  case tok::kw___cdecl:
4739  case tok::kw___stdcall:
4740  case tok::kw___fastcall:
4741  case tok::kw___thiscall:
4742  case tok::kw___regcall:
4743  case tok::kw___vectorcall:
4744  case tok::kw___w64:
4745  case tok::kw___ptr64:
4746  case tok::kw___ptr32:
4747  case tok::kw___pascal:
4748  case tok::kw___unaligned:
4749
4750  case tok::kw__Nonnull:
4751  case tok::kw__Nullable:
4752  case tok::kw__Null_unspecified:
4753
4754  case tok::kw___kindof:
4755
4756  case tok::kw___private:
4757  case tok::kw___local:
4758  case tok::kw___global:
4759  case tok::kw___constant:
4760  case tok::kw___generic:
4761  case tok::kw___read_only:
4762  case tok::kw___read_write:
4763  case tok::kw___write_only:
4764
4765    return true;
4766
4767  // C11 _Atomic
4768  case tok::kw__Atomic:
4769    return true;
4770  }
4771}
4772
4773/// isDeclarationSpecifier() - Return true if the current token is part of a
4774/// declaration specifier.
4775///
4776/// \param DisambiguatingWithExpression True to indicate that the purpose of
4777/// this check is to disambiguate between an expression and a declaration.
4778bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4779  switch (Tok.getKind()) {
4780  default: return false;
4781
4782  case tok::kw_pipe:
4783    return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200);
4784
4785  case tok::identifier:   // foo::bar
4786    // Unfortunate hack to support "Class.factoryMethod" notation.
4787    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4788      return false;
4789    if (TryAltiVecVectorToken())
4790      return true;
4791    // Fall through.
4792  case tok::kw_decltype: // decltype(T())::type
4793  case tok::kw_typename: // typename T::type
4794    // Annotate typenames and C++ scope specifiers.  If we get one, just
4795    // recurse to handle whatever we get.
4796    if (TryAnnotateTypeOrScopeToken())
4797      return true;
4798    if (Tok.is(tok::identifier))
4799      return false;
4800
4801    // If we're in Objective-C and we have an Objective-C class type followed
4802    // by an identifier and then either ':' or ']', in a place where an
4803    // expression is permitted, then this is probably a class message send
4804    // missing the initial '['. In this case, we won't consider this to be
4805    // the start of a declaration.
4806    if (DisambiguatingWithExpression &&
4807        isStartOfObjCClassMessageMissingOpenBracket())
4808      return false;
4809
4810    return isDeclarationSpecifier();
4811
4812  case tok::coloncolon:   // ::foo::bar
4813    if (NextToken().is(tok::kw_new) ||    // ::new
4814        NextToken().is(tok::kw_delete))   // ::delete
4815      return false;
4816
4817    // Annotate typenames and C++ scope specifiers.  If we get one, just
4818    // recurse to handle whatever we get.
4819    if (TryAnnotateTypeOrScopeToken())
4820      return true;
4821    return isDeclarationSpecifier();
4822
4823    // storage-class-specifier
4824  case tok::kw_typedef:
4825  case tok::kw_extern:
4826  case tok::kw___private_extern__:
4827  case tok::kw_static:
4828  case tok::kw_auto:
4829  case tok::kw___auto_type:
4830  case tok::kw_register:
4831  case tok::kw___thread:
4832  case tok::kw_thread_local:
4833  case tok::kw__Thread_local:
4834
4835    // Modules
4836  case tok::kw___module_private__:
4837
4838    // Debugger support
4839  case tok::kw___unknown_anytype:
4840
4841    // type-specifiers
4842  case tok::kw_short:
4843  case tok::kw_long:
4844  case tok::kw___int64:
4845  case tok::kw___int128:
4846  case tok::kw_signed:
4847  case tok::kw_unsigned:
4848  case tok::kw__Complex:
4849  case tok::kw__Imaginary:
4850  case tok::kw_void:
4851  case tok::kw_char:
4852  case tok::kw_wchar_t:
4853  case tok::kw_char8_t:
4854  case tok::kw_char16_t:
4855  case tok::kw_char32_t:
4856
4857  case tok::kw_int:
4858  case tok::kw_half:
4859  case tok::kw_float:
4860  case tok::kw_double:
4861  case tok::kw__Accum:
4862  case tok::kw__Fract:
4863  case tok::kw__Float16:
4864  case tok::kw___float128:
4865  case tok::kw_bool:
4866  case tok::kw__Bool:
4867  case tok::kw__Decimal32:
4868  case tok::kw__Decimal64:
4869  case tok::kw__Decimal128:
4870  case tok::kw___vector:
4871
4872    // struct-or-union-specifier (C99) or class-specifier (C++)
4873  case tok::kw_class:
4874  case tok::kw_struct:
4875  case tok::kw_union:
4876  case tok::kw___interface:
4877    // enum-specifier
4878  case tok::kw_enum:
4879
4880    // type-qualifier
4881  case tok::kw_const:
4882  case tok::kw_volatile:
4883  case tok::kw_restrict:
4884  case tok::kw__Sat:
4885
4886    // function-specifier
4887  case tok::kw_inline:
4888  case tok::kw_virtual:
4889  case tok::kw_explicit:
4890  case tok::kw__Noreturn:
4891
4892    // alignment-specifier
4893  case tok::kw__Alignas:
4894
4895    // friend keyword.
4896  case tok::kw_friend:
4897
4898    // static_assert-declaration
4899  case tok::kw__Static_assert:
4900
4901    // GNU typeof support.
4902  case tok::kw_typeof:
4903
4904    // GNU attributes.
4905  case tok::kw___attribute:
4906
4907    // C++11 decltype and constexpr.
4908  case tok::annot_decltype:
4909  case tok::kw_constexpr:
4910
4911    // C11 _Atomic
4912  case tok::kw__Atomic:
4913    return true;
4914
4915    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4916  case tok::less:
4917    return getLangOpts().ObjC1;
4918
4919    // typedef-name
4920  case tok::annot_typename:
4921    return !DisambiguatingWithExpression ||
4922           !isStartOfObjCClassMessageMissingOpenBracket();
4923
4924  case tok::kw___declspec:
4925  case tok::kw___cdecl:
4926  case tok::kw___stdcall:
4927  case tok::kw___fastcall:
4928  case tok::kw___thiscall:
4929  case tok::kw___regcall:
4930  case tok::kw___vectorcall:
4931  case tok::kw___w64:
4932  case tok::kw___sptr:
4933  case tok::kw___uptr:
4934  case tok::kw___ptr64:
4935  case tok::kw___ptr32:
4936  case tok::kw___forceinline:
4937  case tok::kw___pascal:
4938  case tok::kw___unaligned:
4939
4940  case tok::kw__Nonnull:
4941  case tok::kw__Nullable:
4942  case tok::kw__Null_unspecified:
4943
4944  case tok::kw___kindof:
4945
4946  case tok::kw___private:
4947  case tok::kw___local:
4948  case tok::kw___global:
4949  case tok::kw___constant:
4950  case tok::kw___generic:
4951  case tok::kw___read_only:
4952  case tok::kw___read_write:
4953  case tok::kw___write_only:
4954#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4955#include "clang/Basic/OpenCLImageTypes.def"
4956
4957    return true;
4958  }
4959}
4960
4961bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
4962  TentativeParsingAction TPA(*this);
4963
4964  // Parse the C++ scope specifier.
4965  CXXScopeSpec SS;
4966  if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
4967                                     /*EnteringContext=*/true)) {
4968    TPA.Revert();
4969    return false;
4970  }
4971
4972  // Parse the constructor name.
4973  if (Tok.is(tok::identifier)) {
4974    // We already know that we have a constructor name; just consume
4975    // the token.
4976    ConsumeToken();
4977  } else if (Tok.is(tok::annot_template_id)) {
4978    ConsumeAnnotationToken();
4979  } else {
4980    TPA.Revert();
4981    return false;
4982  }
4983
4984  // There may be attributes here, appertaining to the constructor name or type
4985  // we just stepped past.
4986  SkipCXX11Attributes();
4987
4988  // Current class name must be followed by a left parenthesis.
4989  if (Tok.isNot(tok::l_paren)) {
4990    TPA.Revert();
4991    return false;
4992  }
4993  ConsumeParen();
4994
4995  // A right parenthesis, or ellipsis followed by a right parenthesis signals
4996  // that we have a constructor.
4997  if (Tok.is(tok::r_paren) ||
4998      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4999    TPA.Revert();
5000    return true;
5001  }
5002
5003  // A C++11 attribute here signals that we have a constructor, and is an
5004  // attribute on the first constructor parameter.
5005  if (getLangOpts().CPlusPlus11 &&
5006      isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5007                                /*OuterMightBeMessageSend*/ true)) {
5008    TPA.Revert();
5009    return true;
5010  }
5011
5012  // If we need to, enter the specified scope.
5013  DeclaratorScopeObj DeclScopeObj(*this, SS);
5014  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5015    DeclScopeObj.EnterDeclaratorScope();
5016
5017  // Optionally skip Microsoft attributes.
5018  ParsedAttributes Attrs(AttrFactory);
5019  MaybeParseMicrosoftAttributes(Attrs);
5020
5021  // Check whether the next token(s) are part of a declaration
5022  // specifier, in which case we have the start of a parameter and,
5023  // therefore, we know that this is a constructor.
5024  bool IsConstructor = false;
5025  if (isDeclarationSpecifier())
5026    IsConstructor = true;
5027  else if (Tok.is(tok::identifier) ||
5028           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5029    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5030    // This might be a parenthesized member name, but is more likely to
5031    // be a constructor declaration with an invalid argument type. Keep
5032    // looking.
5033    if (Tok.is(tok::annot_cxxscope))
5034      ConsumeAnnotationToken();
5035    ConsumeToken();
5036
5037    // If this is not a constructor, we must be parsing a declarator,
5038    // which must have one of the following syntactic forms (see the
5039    // grammar extract at the start of ParseDirectDeclarator):
5040    switch (Tok.getKind()) {
5041    case tok::l_paren:
5042      // C(X   (   int));
5043    case tok::l_square:
5044      // C(X   [   5]);
5045      // C(X   [   [attribute]]);
5046    case tok::coloncolon:
5047      // C(X   ::   Y);
5048      // C(X   ::   *p);
5049      // Assume this isn't a constructor, rather than assuming it's a
5050      // constructor with an unnamed parameter of an ill-formed type.
5051      break;
5052
5053    case tok::r_paren:
5054      // C(X   )
5055
5056      // Skip past the right-paren and any following attributes to get to
5057      // the function body or trailing-return-type.
5058      ConsumeParen();
5059      SkipCXX11Attributes();
5060
5061      if (DeductionGuide) {
5062        // C(X) -> ... is a deduction guide.
5063        IsConstructor = Tok.is(tok::arrow);
5064        break;
5065      }
5066      if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5067        // Assume these were meant to be constructors:
5068        //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5069        //   C(X)   try  (this is otherwise ill-formed).
5070        IsConstructor = true;
5071      }
5072      if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5073        // If we have a constructor name within the class definition,
5074        // assume these were meant to be constructors:
5075        //   C(X)   {
5076        //   C(X)   ;
5077        // ... because otherwise we would be declaring a non-static data
5078        // member that is ill-formed because it's of the same type as its
5079        // surrounding class.
5080        //
5081        // FIXME: We can actually do this whether or not the name is qualified,
5082        // because if it is qualified in this context it must be being used as
5083        // a constructor name.
5084        // currently, so we're somewhat conservative here.
5085        IsConstructor = IsUnqualified;
5086      }
5087      break;
5088
5089    default:
5090      IsConstructor = true;
5091      break;
5092    }
5093  }
5094
5095  TPA.Revert();
5096  return IsConstructor;
5097}
5098
5099/// ParseTypeQualifierListOpt
5100///          type-qualifier-list: [C99 6.7.5]
5101///            type-qualifier
5102/// [vendor]   attributes
5103///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5104///            type-qualifier-list type-qualifier
5105/// [vendor]   type-qualifier-list attributes
5106///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5107/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
5108///              [ only if AttReqs & AR_CXX11AttributesParsed ]
5109/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5110/// AttrRequirements bitmask values.
5111void Parser::ParseTypeQualifierListOpt(
5112    DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5113    bool IdentifierRequired,
5114    Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5115  if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5116      isCXX11AttributeSpecifier()) {
5117    ParsedAttributesWithRange attrs(AttrFactory);
5118    ParseCXX11Attributes(attrs);
5119    DS.takeAttributesFrom(attrs);
5120  }
5121
5122  SourceLocation EndLoc;
5123
5124  while (1) {
5125    bool isInvalid = false;
5126    const char *PrevSpec = nullptr;
5127    unsigned DiagID = 0;
5128    SourceLocation Loc = Tok.getLocation();
5129
5130    switch (Tok.getKind()) {
5131    case tok::code_completion:
5132      if (CodeCompletionHandler)
5133        (*CodeCompletionHandler)();
5134      else
5135        Actions.CodeCompleteTypeQualifiers(DS);
5136      return cutOffParsing();
5137
5138    case tok::kw_const:
5139      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
5140                                 getLangOpts());
5141      break;
5142    case tok::kw_volatile:
5143      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5144                                 getLangOpts());
5145      break;
5146    case tok::kw_restrict:
5147      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5148                                 getLangOpts());
5149      break;
5150    case tok::kw__Atomic:
5151      if (!AtomicAllowed)
5152        goto DoneWithTypeQuals;
5153      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5154                                 getLangOpts());
5155      break;
5156
5157    // OpenCL qualifiers:
5158    case tok::kw___private:
5159    case tok::kw___global:
5160    case tok::kw___local:
5161    case tok::kw___constant:
5162    case tok::kw___generic:
5163    case tok::kw___read_only:
5164    case tok::kw___write_only:
5165    case tok::kw___read_write:
5166      ParseOpenCLQualifiers(DS.getAttributes());
5167      break;
5168
5169    case tok::kw___unaligned:
5170      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5171                                 getLangOpts());
5172      break;
5173    case tok::kw___uptr:
5174      // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5175      // with the MS modifier keyword.
5176      if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5177          IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5178        if (TryKeywordIdentFallback(false))
5179          continue;
5180      }
5181      LLVM_FALLTHROUGH;
5182    case tok::kw___sptr:
5183    case tok::kw___w64:
5184    case tok::kw___ptr64:
5185    case tok::kw___ptr32:
5186    case tok::kw___cdecl:
5187    case tok::kw___stdcall:
5188    case tok::kw___fastcall:
5189    case tok::kw___thiscall:
5190    case tok::kw___regcall:
5191    case tok::kw___vectorcall:
5192      if (AttrReqs & AR_DeclspecAttributesParsed) {
5193        ParseMicrosoftTypeAttributes(DS.getAttributes());
5194        continue;
5195      }
5196      goto DoneWithTypeQuals;
5197    case tok::kw___pascal:
5198      if (AttrReqs & AR_VendorAttributesParsed) {
5199        ParseBorlandTypeAttributes(DS.getAttributes());
5200        continue;
5201      }
5202      goto DoneWithTypeQuals;
5203
5204    // Nullability type specifiers.
5205    case tok::kw__Nonnull:
5206    case tok::kw__Nullable:
5207    case tok::kw__Null_unspecified:
5208      ParseNullabilityTypeSpecifiers(DS.getAttributes());
5209      continue;
5210
5211    // Objective-C 'kindof' types.
5212    case tok::kw___kindof:
5213      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5214                                nullptr, 0, ParsedAttr::AS_Keyword);
5215      (void)ConsumeToken();
5216      continue;
5217
5218    case tok::kw___attribute:
5219      if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5220        // When GNU attributes are expressly forbidden, diagnose their usage.
5221        Diag(Tok, diag::err_attributes_not_allowed);
5222
5223      // Parse the attributes even if they are rejected to ensure that error
5224      // recovery is graceful.
5225      if (AttrReqs & AR_GNUAttributesParsed ||
5226          AttrReqs & AR_GNUAttributesParsedAndRejected) {
5227        ParseGNUAttributes(DS.getAttributes());
5228        continue; // do *not* consume the next token!
5229      }
5230      // otherwise, FALL THROUGH!
5231      LLVM_FALLTHROUGH;
5232    default:
5233      DoneWithTypeQuals:
5234      // If this is not a type-qualifier token, we're done reading type
5235      // qualifiers.  First verify that DeclSpec's are consistent.
5236      DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5237      if (EndLoc.isValid())
5238        DS.SetRangeEnd(EndLoc);
5239      return;
5240    }
5241
5242    // If the specifier combination wasn't legal, issue a diagnostic.
5243    if (isInvalid) {
5244      assert(PrevSpec && "Method did not return previous specifier!");
5245      Diag(Tok, DiagID) << PrevSpec;
5246    }
5247    EndLoc = ConsumeToken();
5248  }
5249}
5250
5251/// ParseDeclarator - Parse and verify a newly-initialized declarator.
5252///
5253void Parser::ParseDeclarator(Declarator &D) {
5254  /// This implements the 'declarator' production in the C grammar, then checks
5255  /// for well-formedness and issues diagnostics.
5256  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5257}
5258
5259static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
5260                               DeclaratorContext TheContext) {
5261  if (Kind == tok::star || Kind == tok::caret)
5262    return true;
5263
5264  if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200))
5265    return true;
5266
5267  if (!Lang.CPlusPlus)
5268    return false;
5269
5270  if (Kind == tok::amp)
5271    return true;
5272
5273  // We parse rvalue refs in C++03, because otherwise the errors are scary.
5274  // But we must not parse them in conversion-type-ids and new-type-ids, since
5275  // those can be legitimately followed by a && operator.
5276  // (The same thing can in theory happen after a trailing-return-type, but
5277  // since those are a C++11 feature, there is no rejects-valid issue there.)
5278  if (Kind == tok::ampamp)
5279    return Lang.CPlusPlus11 ||
5280           (TheContext != DeclaratorContext::ConversionIdContext &&
5281            TheContext != DeclaratorContext::CXXNewContext);
5282
5283  return false;
5284}
5285
5286// Indicates whether the given declarator is a pipe declarator.
5287static bool isPipeDeclerator(const Declarator &D) {
5288  const unsigned NumTypes = D.getNumTypeObjects();
5289
5290  for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5291    if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
5292      return true;
5293
5294  return false;
5295}
5296
5297/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5298/// is parsed by the function passed to it. Pass null, and the direct-declarator
5299/// isn't parsed at all, making this function effectively parse the C++
5300/// ptr-operator production.
5301///
5302/// If the grammar of this construct is extended, matching changes must also be
5303/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5304/// isConstructorDeclarator.
5305///
5306///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5307/// [C]     pointer[opt] direct-declarator
5308/// [C++]   direct-declarator
5309/// [C++]   ptr-operator declarator
5310///
5311///       pointer: [C99 6.7.5]
5312///         '*' type-qualifier-list[opt]
5313///         '*' type-qualifier-list[opt] pointer
5314///
5315///       ptr-operator:
5316///         '*' cv-qualifier-seq[opt]
5317///         '&'
5318/// [C++0x] '&&'
5319/// [GNU]   '&' restrict[opt] attributes[opt]
5320/// [GNU?]  '&&' restrict[opt] attributes[opt]
5321///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5322void Parser::ParseDeclaratorInternal(Declarator &D,
5323                                     DirectDeclParseFunction DirectDeclParser) {
5324  if (Diags.hasAllExtensionsSilenced())
5325    D.setExtension();
5326
5327  // C++ member pointers start with a '::' or a nested-name.
5328  // Member pointers get special handling, since there's no place for the
5329  // scope spec in the generic path below.
5330  if (getLangOpts().CPlusPlus &&
5331      (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5332       (Tok.is(tok::identifier) &&
5333        (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5334       Tok.is(tok::annot_cxxscope))) {
5335    bool EnteringContext =
5336        D.getContext() == DeclaratorContext::FileContext ||
5337        D.getContext() == DeclaratorContext::MemberContext;
5338    CXXScopeSpec SS;
5339    ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5340
5341    if (SS.isNotEmpty()) {
5342      if (Tok.isNot(tok::star)) {
5343        // The scope spec really belongs to the direct-declarator.
5344        if (D.mayHaveIdentifier())
5345          D.getCXXScopeSpec() = SS;
5346        else
5347          AnnotateScopeToken(SS, true);
5348
5349        if (DirectDeclParser)
5350          (this->*DirectDeclParser)(D);
5351        return;
5352      }
5353
5354      SourceLocation Loc = ConsumeToken();
5355      D.SetRangeEnd(Loc);
5356      DeclSpec DS(AttrFactory);
5357      ParseTypeQualifierListOpt(DS);
5358      D.ExtendWithDeclSpec(DS);
5359
5360      // Recurse to parse whatever is left.
5361      ParseDeclaratorInternal(D, DirectDeclParser);
5362
5363      // Sema will have to catch (syntactically invalid) pointers into global
5364      // scope. It has to catch pointers into namespace scope anyway.
5365      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
5366                        SS, DS.getTypeQualifiers(), DS.getLocEnd()),
5367                    std::move(DS.getAttributes()),
5368                    /* Don't replace range end. */ SourceLocation());
5369      return;
5370    }
5371  }
5372
5373  tok::TokenKind Kind = Tok.getKind();
5374
5375  if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5376    DeclSpec DS(AttrFactory);
5377    ParseTypeQualifierListOpt(DS);
5378
5379    D.AddTypeInfo(
5380        DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5381        std::move(DS.getAttributes()), SourceLocation());
5382  }
5383
5384  // Not a pointer, C++ reference, or block.
5385  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5386    if (DirectDeclParser)
5387      (this->*DirectDeclParser)(D);
5388    return;
5389  }
5390
5391  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5392  // '&&' -> rvalue reference
5393  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
5394  D.SetRangeEnd(Loc);
5395
5396  if (Kind == tok::star || Kind == tok::caret) {
5397    // Is a pointer.
5398    DeclSpec DS(AttrFactory);
5399
5400    // GNU attributes are not allowed here in a new-type-id, but Declspec and
5401    // C++11 attributes are allowed.
5402    unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5403                    ((D.getContext() != DeclaratorContext::CXXNewContext)
5404                         ? AR_GNUAttributesParsed
5405                         : AR_GNUAttributesParsedAndRejected);
5406    ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5407    D.ExtendWithDeclSpec(DS);
5408
5409    // Recursively parse the declarator.
5410    ParseDeclaratorInternal(D, DirectDeclParser);
5411    if (Kind == tok::star)
5412      // Remember that we parsed a pointer type, and remember the type-quals.
5413      D.AddTypeInfo(DeclaratorChunk::getPointer(
5414                        DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5415                        DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
5416                        DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
5417                    std::move(DS.getAttributes()), SourceLocation());
5418    else
5419      // Remember that we parsed a Block type, and remember the type-quals.
5420      D.AddTypeInfo(
5421          DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
5422          std::move(DS.getAttributes()), SourceLocation());
5423  } else {
5424    // Is a reference
5425    DeclSpec DS(AttrFactory);
5426
5427    // Complain about rvalue references in C++03, but then go on and build
5428    // the declarator.
5429    if (Kind == tok::ampamp)
5430      Diag(Loc, getLangOpts().CPlusPlus11 ?
5431           diag::warn_cxx98_compat_rvalue_reference :
5432           diag::ext_rvalue_reference);
5433
5434    // GNU-style and C++11 attributes are allowed here, as is restrict.
5435    ParseTypeQualifierListOpt(DS);
5436    D.ExtendWithDeclSpec(DS);
5437
5438    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5439    // cv-qualifiers are introduced through the use of a typedef or of a
5440    // template type argument, in which case the cv-qualifiers are ignored.
5441    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5442      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5443        Diag(DS.getConstSpecLoc(),
5444             diag::err_invalid_reference_qualifier_application) << "const";
5445      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5446        Diag(DS.getVolatileSpecLoc(),
5447             diag::err_invalid_reference_qualifier_application) << "volatile";
5448      // 'restrict' is permitted as an extension.
5449      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5450        Diag(DS.getAtomicSpecLoc(),
5451             diag::err_invalid_reference_qualifier_application) << "_Atomic";
5452    }
5453
5454    // Recursively parse the declarator.
5455    ParseDeclaratorInternal(D, DirectDeclParser);
5456
5457    if (D.getNumTypeObjects() > 0) {
5458      // C++ [dcl.ref]p4: There shall be no references to references.
5459      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5460      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5461        if (const IdentifierInfo *II = D.getIdentifier())
5462          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5463           << II;
5464        else
5465          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5466            << "type name";
5467
5468        // Once we've complained about the reference-to-reference, we
5469        // can go ahead and build the (technically ill-formed)
5470        // declarator: reference collapsing will take care of it.
5471      }
5472    }
5473
5474    // Remember that we parsed a reference type.
5475    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5476                                                Kind == tok::amp),
5477                  std::move(DS.getAttributes()), SourceLocation());
5478  }
5479}
5480
5481// When correcting from misplaced brackets before the identifier, the location
5482// is saved inside the declarator so that other diagnostic messages can use
5483// them.  This extracts and returns that location, or returns the provided
5484// location if a stored location does not exist.
5485static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5486                                                SourceLocation Loc) {
5487  if (D.getName().StartLocation.isInvalid() &&
5488      D.getName().EndLocation.isValid())
5489    return D.getName().EndLocation;
5490
5491  return Loc;
5492}
5493
5494/// ParseDirectDeclarator
5495///       direct-declarator: [C99 6.7.5]
5496/// [C99]   identifier
5497///         '(' declarator ')'
5498/// [GNU]   '(' attributes declarator ')'
5499/// [C90]   direct-declarator '[' constant-expression[opt] ']'
5500/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5501/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5502/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5503/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5504/// [C++11] direct-declarator '[' constant-expression[opt] ']'
5505///                    attribute-specifier-seq[opt]
5506///         direct-declarator '(' parameter-type-list ')'
5507///         direct-declarator '(' identifier-list[opt] ')'
5508/// [GNU]   direct-declarator '(' parameter-forward-declarations
5509///                    parameter-type-list[opt] ')'
5510/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
5511///                    cv-qualifier-seq[opt] exception-specification[opt]
5512/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5513///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5514///                    ref-qualifier[opt] exception-specification[opt]
5515/// [C++]   declarator-id
5516/// [C++11] declarator-id attribute-specifier-seq[opt]
5517///
5518///       declarator-id: [C++ 8]
5519///         '...'[opt] id-expression
5520///         '::'[opt] nested-name-specifier[opt] type-name
5521///
5522///       id-expression: [C++ 5.1]
5523///         unqualified-id
5524///         qualified-id
5525///
5526///       unqualified-id: [C++ 5.1]
5527///         identifier
5528///         operator-function-id
5529///         conversion-function-id
5530///          '~' class-name
5531///         template-id
5532///
5533/// C++17 adds the following, which we also handle here:
5534///
5535///       simple-declaration:
5536///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5537///
5538/// Note, any additional constructs added here may need corresponding changes
5539/// in isConstructorDeclarator.
5540void Parser::ParseDirectDeclarator(Declarator &D) {
5541  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5542
5543  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5544    // This might be a C++17 structured binding.
5545    if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5546        D.getCXXScopeSpec().isEmpty())
5547      return ParseDecompositionDeclarator(D);
5548
5549    // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5550    // this context it is a bitfield. Also in range-based for statement colon
5551    // may delimit for-range-declaration.
5552    ColonProtectionRAIIObject X(
5553        *this, D.getContext() == DeclaratorContext::MemberContext ||
5554                   (D.getContext() == DeclaratorContext::ForContext &&
5555                    getLangOpts().CPlusPlus11));
5556
5557    // ParseDeclaratorInternal might already have parsed the scope.
5558    if (D.getCXXScopeSpec().isEmpty()) {
5559      bool EnteringContext =
5560          D.getContext() == DeclaratorContext::FileContext ||
5561          D.getContext() == DeclaratorContext::MemberContext;
5562      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5563                                     EnteringContext);
5564    }
5565
5566    if (D.getCXXScopeSpec().isValid()) {
5567      if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5568                                             D.getCXXScopeSpec()))
5569        // Change the declaration context for name lookup, until this function
5570        // is exited (and the declarator has been parsed).
5571        DeclScopeObj.EnterDeclaratorScope();
5572      else if (getObjCDeclContext()) {
5573        // Ensure that we don't interpret the next token as an identifier when
5574        // dealing with declarations in an Objective-C container.
5575        D.SetIdentifier(nullptr, Tok.getLocation());
5576        D.setInvalidType(true);
5577        ConsumeToken();
5578        goto PastIdentifier;
5579      }
5580    }
5581
5582    // C++0x [dcl.fct]p14:
5583    //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
5584    //   parameter-declaration-clause without a preceding comma. In this case,
5585    //   the ellipsis is parsed as part of the abstract-declarator if the type
5586    //   of the parameter either names a template parameter pack that has not
5587    //   been expanded or contains auto; otherwise, it is parsed as part of the
5588    //   parameter-declaration-clause.
5589    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5590        !((D.getContext() == DeclaratorContext::PrototypeContext ||
5591           D.getContext() == DeclaratorContext::LambdaExprParameterContext ||
5592           D.getContext() == DeclaratorContext::BlockLiteralContext) &&
5593          NextToken().is(tok::r_paren) &&
5594          !D.hasGroupingParens() &&
5595          !Actions.containsUnexpandedParameterPacks(D) &&
5596          D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5597      SourceLocation EllipsisLoc = ConsumeToken();
5598      if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5599        // The ellipsis was put in the wrong place. Recover, and explain to
5600        // the user what they should have done.
5601        ParseDeclarator(D);
5602        if (EllipsisLoc.isValid())
5603          DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5604        return;
5605      } else
5606        D.setEllipsisLoc(EllipsisLoc);
5607
5608      // The ellipsis can't be followed by a parenthesized declarator. We
5609      // check for that in ParseParenDeclarator, after we have disambiguated
5610      // the l_paren token.
5611    }
5612
5613    if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5614                    tok::tilde)) {
5615      // We found something that indicates the start of an unqualified-id.
5616      // Parse that unqualified-id.
5617      bool AllowConstructorName;
5618      bool AllowDeductionGuide;
5619      if (D.getDeclSpec().hasTypeSpecifier()) {
5620        AllowConstructorName = false;
5621        AllowDeductionGuide = false;
5622      } else if (D.getCXXScopeSpec().isSet()) {
5623        AllowConstructorName =
5624          (D.getContext() == DeclaratorContext::FileContext ||
5625           D.getContext() == DeclaratorContext::MemberContext);
5626        AllowDeductionGuide = false;
5627      } else {
5628        AllowConstructorName =
5629            (D.getContext() == DeclaratorContext::MemberContext);
5630        AllowDeductionGuide =
5631          (D.getContext() == DeclaratorContext::FileContext ||
5632           D.getContext() == DeclaratorContext::MemberContext);
5633      }
5634
5635      bool HadScope = D.getCXXScopeSpec().isValid();
5636      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5637                             /*EnteringContext=*/true,
5638                             /*AllowDestructorName=*/true, AllowConstructorName,
5639                             AllowDeductionGuide, nullptr, nullptr,
5640                             D.getName()) ||
5641          // Once we're past the identifier, if the scope was bad, mark the
5642          // whole declarator bad.
5643          D.getCXXScopeSpec().isInvalid()) {
5644        D.SetIdentifier(nullptr, Tok.getLocation());
5645        D.setInvalidType(true);
5646      } else {
5647        // ParseUnqualifiedId might have parsed a scope specifier during error
5648        // recovery. If it did so, enter that scope.
5649        if (!HadScope && D.getCXXScopeSpec().isValid() &&
5650            Actions.ShouldEnterDeclaratorScope(getCurScope(),
5651                                               D.getCXXScopeSpec()))
5652          DeclScopeObj.EnterDeclaratorScope();
5653
5654        // Parsed the unqualified-id; update range information and move along.
5655        if (D.getSourceRange().getBegin().isInvalid())
5656          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5657        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5658      }
5659      goto PastIdentifier;
5660    }
5661
5662    if (D.getCXXScopeSpec().isNotEmpty()) {
5663      // We have a scope specifier but no following unqualified-id.
5664      Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5665           diag::err_expected_unqualified_id)
5666          << /*C++*/1;
5667      D.SetIdentifier(nullptr, Tok.getLocation());
5668      goto PastIdentifier;
5669    }
5670  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5671    assert(!getLangOpts().CPlusPlus &&
5672           "There's a C++-specific check for tok::identifier above");
5673    assert(Tok.getIdentifierInfo() && "Not an identifier?");
5674    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5675    D.SetRangeEnd(Tok.getLocation());
5676    ConsumeToken();
5677    goto PastIdentifier;
5678  } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5679    // We're not allowed an identifier here, but we got one. Try to figure out
5680    // if the user was trying to attach a name to the type, or whether the name
5681    // is some unrelated trailing syntax.
5682    bool DiagnoseIdentifier = false;
5683    if (D.hasGroupingParens())
5684      // An identifier within parens is unlikely to be intended to be anything
5685      // other than a name being "declared".
5686      DiagnoseIdentifier = true;
5687    else if (D.getContext() == DeclaratorContext::TemplateArgContext)
5688      // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5689      DiagnoseIdentifier =
5690          NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5691    else if (D.getContext() == DeclaratorContext::AliasDeclContext ||
5692             D.getContext() == DeclaratorContext::AliasTemplateContext)
5693      // The most likely error is that the ';' was forgotten.
5694      DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5695    else if ((D.getContext() == DeclaratorContext::TrailingReturnContext ||
5696              D.getContext() == DeclaratorContext::TrailingReturnVarContext) &&
5697             !isCXX11VirtSpecifier(Tok))
5698      DiagnoseIdentifier = NextToken().isOneOf(
5699          tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5700    if (DiagnoseIdentifier) {
5701      Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5702        << FixItHint::CreateRemoval(Tok.getLocation());
5703      D.SetIdentifier(nullptr, Tok.getLocation());
5704      ConsumeToken();
5705      goto PastIdentifier;
5706    }
5707  }
5708
5709  if (Tok.is(tok::l_paren)) {
5710    // If this might be an abstract-declarator followed by a direct-initializer,
5711    // check whether this is a valid declarator chunk. If it can't be, assume
5712    // that it's an initializer instead.
5713    if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
5714      RevertingTentativeParsingAction PA(*this);
5715      if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5716              TPResult::False) {
5717        D.SetIdentifier(nullptr, Tok.getLocation());
5718        goto PastIdentifier;
5719      }
5720    }
5721
5722    // direct-declarator: '(' declarator ')'
5723    // direct-declarator: '(' attributes declarator ')'
5724    // Example: 'char (*X)'   or 'int (*XX)(void)'
5725    ParseParenDeclarator(D);
5726
5727    // If the declarator was parenthesized, we entered the declarator
5728    // scope when parsing the parenthesized declarator, then exited
5729    // the scope already. Re-enter the scope, if we need to.
5730    if (D.getCXXScopeSpec().isSet()) {
5731      // If there was an error parsing parenthesized declarator, declarator
5732      // scope may have been entered before. Don't do it again.
5733      if (!D.isInvalidType() &&
5734          Actions.ShouldEnterDeclaratorScope(getCurScope(),
5735                                             D.getCXXScopeSpec()))
5736        // Change the declaration context for name lookup, until this function
5737        // is exited (and the declarator has been parsed).
5738        DeclScopeObj.EnterDeclaratorScope();
5739    }
5740  } else if (D.mayOmitIdentifier()) {
5741    // This could be something simple like "int" (in which case the declarator
5742    // portion is empty), if an abstract-declarator is allowed.
5743    D.SetIdentifier(nullptr, Tok.getLocation());
5744
5745    // The grammar for abstract-pack-declarator does not allow grouping parens.
5746    // FIXME: Revisit this once core issue 1488 is resolved.
5747    if (D.hasEllipsis() && D.hasGroupingParens())
5748      Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5749           diag::ext_abstract_pack_declarator_parens);
5750  } else {
5751    if (Tok.getKind() == tok::annot_pragma_parser_crash)
5752      LLVM_BUILTIN_TRAP;
5753    if (Tok.is(tok::l_square))
5754      return ParseMisplacedBracketDeclarator(D);
5755    if (D.getContext() == DeclaratorContext::MemberContext) {
5756      // Objective-C++: Detect C++ keywords and try to prevent further errors by
5757      // treating these keyword as valid member names.
5758      if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus &&
5759          Tok.getIdentifierInfo() &&
5760          Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
5761        Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5762             diag::err_expected_member_name_or_semi_objcxx_keyword)
5763            << Tok.getIdentifierInfo()
5764            << (D.getDeclSpec().isEmpty() ? SourceRange()
5765                                          : D.getDeclSpec().getSourceRange());
5766        D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5767        D.SetRangeEnd(Tok.getLocation());
5768        ConsumeToken();
5769        goto PastIdentifier;
5770      }
5771      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5772           diag::err_expected_member_name_or_semi)
5773          << (D.getDeclSpec().isEmpty() ? SourceRange()
5774                                        : D.getDeclSpec().getSourceRange());
5775    } else if (getLangOpts().CPlusPlus) {
5776      if (Tok.isOneOf(tok::period, tok::arrow))
5777        Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5778      else {
5779        SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5780        if (Tok.isAtStartOfLine() && Loc.isValid())
5781          Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5782              << getLangOpts().CPlusPlus;
5783        else
5784          Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5785               diag::err_expected_unqualified_id)
5786              << getLangOpts().CPlusPlus;
5787      }
5788    } else {
5789      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5790           diag::err_expected_either)
5791          << tok::identifier << tok::l_paren;
5792    }
5793    D.SetIdentifier(nullptr, Tok.getLocation());
5794    D.setInvalidType(true);
5795  }
5796
5797 PastIdentifier:
5798  assert(D.isPastIdentifier() &&
5799         "Haven't past the location of the identifier yet?");
5800
5801  // Don't parse attributes unless we have parsed an unparenthesized name.
5802  if (D.hasName() && !D.getNumTypeObjects())
5803    MaybeParseCXX11Attributes(D);
5804
5805  while (1) {
5806    if (Tok.is(tok::l_paren)) {
5807      // Enter function-declaration scope, limiting any declarators to the
5808      // function prototype scope, including parameter declarators.
5809      ParseScope PrototypeScope(this,
5810                                Scope::FunctionPrototypeScope|Scope::DeclScope|
5811                                (D.isFunctionDeclaratorAFunctionDeclaration()
5812                                   ? Scope::FunctionDeclarationScope : 0));
5813
5814      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5815      // In such a case, check if we actually have a function declarator; if it
5816      // is not, the declarator has been fully parsed.
5817      bool IsAmbiguous = false;
5818      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5819        // The name of the declarator, if any, is tentatively declared within
5820        // a possible direct initializer.
5821        TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5822        bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5823        TentativelyDeclaredIdentifiers.pop_back();
5824        if (!IsFunctionDecl)
5825          break;
5826      }
5827      ParsedAttributes attrs(AttrFactory);
5828      BalancedDelimiterTracker T(*this, tok::l_paren);
5829      T.consumeOpen();
5830      ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5831      PrototypeScope.Exit();
5832    } else if (Tok.is(tok::l_square)) {
5833      ParseBracketDeclarator(D);
5834    } else {
5835      break;
5836    }
5837  }
5838}
5839
5840void Parser::ParseDecompositionDeclarator(Declarator &D) {
5841  assert(Tok.is(tok::l_square));
5842
5843  // If this doesn't look like a structured binding, maybe it's a misplaced
5844  // array declarator.
5845  // FIXME: Consume the l_square first so we don't need extra lookahead for
5846  // this.
5847  if (!(NextToken().is(tok::identifier) &&
5848        GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
5849      !(NextToken().is(tok::r_square) &&
5850        GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
5851    return ParseMisplacedBracketDeclarator(D);
5852
5853  BalancedDelimiterTracker T(*this, tok::l_square);
5854  T.consumeOpen();
5855
5856  SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
5857  while (Tok.isNot(tok::r_square)) {
5858    if (!Bindings.empty()) {
5859      if (Tok.is(tok::comma))
5860        ConsumeToken();
5861      else {
5862        if (Tok.is(tok::identifier)) {
5863          SourceLocation EndLoc = getEndOfPreviousToken();
5864          Diag(EndLoc, diag::err_expected)
5865              << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
5866        } else {
5867          Diag(Tok, diag::err_expected_comma_or_rsquare);
5868        }
5869
5870        SkipUntil(tok::r_square, tok::comma, tok::identifier,
5871                  StopAtSemi | StopBeforeMatch);
5872        if (Tok.is(tok::comma))
5873          ConsumeToken();
5874        else if (Tok.isNot(tok::identifier))
5875          break;
5876      }
5877    }
5878
5879    if (Tok.isNot(tok::identifier)) {
5880      Diag(Tok, diag::err_expected) << tok::identifier;
5881      break;
5882    }
5883
5884    Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
5885    ConsumeToken();
5886  }
5887
5888  if (Tok.isNot(tok::r_square))
5889    // We've already diagnosed a problem here.
5890    T.skipToEnd();
5891  else {
5892    // C++17 does not allow the identifier-list in a structured binding
5893    // to be empty.
5894    if (Bindings.empty())
5895      Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
5896
5897    T.consumeClose();
5898  }
5899
5900  return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
5901                                    T.getCloseLocation());
5902}
5903
5904/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
5905/// only called before the identifier, so these are most likely just grouping
5906/// parens for precedence.  If we find that these are actually function
5907/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5908///
5909///       direct-declarator:
5910///         '(' declarator ')'
5911/// [GNU]   '(' attributes declarator ')'
5912///         direct-declarator '(' parameter-type-list ')'
5913///         direct-declarator '(' identifier-list[opt] ')'
5914/// [GNU]   direct-declarator '(' parameter-forward-declarations
5915///                    parameter-type-list[opt] ')'
5916///
5917void Parser::ParseParenDeclarator(Declarator &D) {
5918  BalancedDelimiterTracker T(*this, tok::l_paren);
5919  T.consumeOpen();
5920
5921  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5922
5923  // Eat any attributes before we look at whether this is a grouping or function
5924  // declarator paren.  If this is a grouping paren, the attribute applies to
5925  // the type being built up, for example:
5926  //     int (__attribute__(()) *x)(long y)
5927  // If this ends up not being a grouping paren, the attribute applies to the
5928  // first argument, for example:
5929  //     int (__attribute__(()) int x)
5930  // In either case, we need to eat any attributes to be able to determine what
5931  // sort of paren this is.
5932  //
5933  ParsedAttributes attrs(AttrFactory);
5934  bool RequiresArg = false;
5935  if (Tok.is(tok::kw___attribute)) {
5936    ParseGNUAttributes(attrs);
5937
5938    // We require that the argument list (if this is a non-grouping paren) be
5939    // present even if the attribute list was empty.
5940    RequiresArg = true;
5941  }
5942
5943  // Eat any Microsoft extensions.
5944  ParseMicrosoftTypeAttributes(attrs);
5945
5946  // Eat any Borland extensions.
5947  if  (Tok.is(tok::kw___pascal))
5948    ParseBorlandTypeAttributes(attrs);
5949
5950  // If we haven't past the identifier yet (or where the identifier would be
5951  // stored, if this is an abstract declarator), then this is probably just
5952  // grouping parens. However, if this could be an abstract-declarator, then
5953  // this could also be the start of function arguments (consider 'void()').
5954  bool isGrouping;
5955
5956  if (!D.mayOmitIdentifier()) {
5957    // If this can't be an abstract-declarator, this *must* be a grouping
5958    // paren, because we haven't seen the identifier yet.
5959    isGrouping = true;
5960  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
5961             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5962              NextToken().is(tok::r_paren)) || // C++ int(...)
5963             isDeclarationSpecifier() ||       // 'int(int)' is a function.
5964             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
5965    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5966    // considered to be a type, not a K&R identifier-list.
5967    isGrouping = false;
5968  } else {
5969    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5970    isGrouping = true;
5971  }
5972
5973  // If this is a grouping paren, handle:
5974  // direct-declarator: '(' declarator ')'
5975  // direct-declarator: '(' attributes declarator ')'
5976  if (isGrouping) {
5977    SourceLocation EllipsisLoc = D.getEllipsisLoc();
5978    D.setEllipsisLoc(SourceLocation());
5979
5980    bool hadGroupingParens = D.hasGroupingParens();
5981    D.setGroupingParens(true);
5982    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5983    // Match the ')'.
5984    T.consumeClose();
5985    D.AddTypeInfo(
5986        DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
5987        std::move(attrs), T.getCloseLocation());
5988
5989    D.setGroupingParens(hadGroupingParens);
5990
5991    // An ellipsis cannot be placed outside parentheses.
5992    if (EllipsisLoc.isValid())
5993      DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5994
5995    return;
5996  }
5997
5998  // Okay, if this wasn't a grouping paren, it must be the start of a function
5999  // argument list.  Recognize that this declarator will never have an
6000  // identifier (and remember where it would have been), then call into
6001  // ParseFunctionDeclarator to handle of argument list.
6002  D.SetIdentifier(nullptr, Tok.getLocation());
6003
6004  // Enter function-declaration scope, limiting any declarators to the
6005  // function prototype scope, including parameter declarators.
6006  ParseScope PrototypeScope(this,
6007                            Scope::FunctionPrototypeScope | Scope::DeclScope |
6008                            (D.isFunctionDeclaratorAFunctionDeclaration()
6009                               ? Scope::FunctionDeclarationScope : 0));
6010  ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6011  PrototypeScope.Exit();
6012}
6013
6014/// ParseFunctionDeclarator - We are after the identifier and have parsed the
6015/// declarator D up to a paren, which indicates that we are parsing function
6016/// arguments.
6017///
6018/// If FirstArgAttrs is non-null, then the caller parsed those arguments
6019/// immediately after the open paren - they should be considered to be the
6020/// first argument of a parameter.
6021///
6022/// If RequiresArg is true, then the first argument of the function is required
6023/// to be present and required to not be an identifier list.
6024///
6025/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
6026/// (C++11) ref-qualifier[opt], exception-specification[opt],
6027/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
6028///
6029/// [C++11] exception-specification:
6030///           dynamic-exception-specification
6031///           noexcept-specification
6032///
6033void Parser::ParseFunctionDeclarator(Declarator &D,
6034                                     ParsedAttributes &FirstArgAttrs,
6035                                     BalancedDelimiterTracker &Tracker,
6036                                     bool IsAmbiguous,
6037                                     bool RequiresArg) {
6038  assert(getCurScope()->isFunctionPrototypeScope() &&
6039         "Should call from a Function scope");
6040  // lparen is already consumed!
6041  assert(D.isPastIdentifier() && "Should not call before identifier!");
6042
6043  // This should be true when the function has typed arguments.
6044  // Otherwise, it is treated as a K&R-style function.
6045  bool HasProto = false;
6046  // Build up an array of information about the parsed arguments.
6047  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
6048  // Remember where we see an ellipsis, if any.
6049  SourceLocation EllipsisLoc;
6050
6051  DeclSpec DS(AttrFactory);
6052  bool RefQualifierIsLValueRef = true;
6053  SourceLocation RefQualifierLoc;
6054  SourceLocation ConstQualifierLoc;
6055  SourceLocation VolatileQualifierLoc;
6056  SourceLocation RestrictQualifierLoc;
6057  ExceptionSpecificationType ESpecType = EST_None;
6058  SourceRange ESpecRange;
6059  SmallVector<ParsedType, 2> DynamicExceptions;
6060  SmallVector<SourceRange, 2> DynamicExceptionRanges;
6061  ExprResult NoexceptExpr;
6062  CachedTokens *ExceptionSpecTokens = nullptr;
6063  ParsedAttributesWithRange FnAttrs(AttrFactory);
6064  TypeResult TrailingReturnType;
6065
6066  /* LocalEndLoc is the end location for the local FunctionTypeLoc.
6067     EndLoc is the end location for the function declarator.
6068     They differ for trailing return types. */
6069  SourceLocation StartLoc, LocalEndLoc, EndLoc;
6070  SourceLocation LParenLoc, RParenLoc;
6071  LParenLoc = Tracker.getOpenLocation();
6072  StartLoc = LParenLoc;
6073
6074  if (isFunctionDeclaratorIdentifierList()) {
6075    if (RequiresArg)
6076      Diag(Tok, diag::err_argument_required_after_attribute);
6077
6078    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
6079
6080    Tracker.consumeClose();
6081    RParenLoc = Tracker.getCloseLocation();
6082    LocalEndLoc = RParenLoc;
6083    EndLoc = RParenLoc;
6084
6085    // If there are attributes following the identifier list, parse them and
6086    // prohibit them.
6087    MaybeParseCXX11Attributes(FnAttrs);
6088    ProhibitAttributes(FnAttrs);
6089  } else {
6090    if (Tok.isNot(tok::r_paren))
6091      ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
6092                                      EllipsisLoc);
6093    else if (RequiresArg)
6094      Diag(Tok, diag::err_argument_required_after_attribute);
6095
6096    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus
6097                                || getLangOpts().OpenCL;
6098
6099    // If we have the closing ')', eat it.
6100    Tracker.consumeClose();
6101    RParenLoc = Tracker.getCloseLocation();
6102    LocalEndLoc = RParenLoc;
6103    EndLoc = RParenLoc;
6104
6105    if (getLangOpts().CPlusPlus) {
6106      // FIXME: Accept these components in any order, and produce fixits to
6107      // correct the order if the user gets it wrong. Ideally we should deal
6108      // with the pure-specifier in the same way.
6109
6110      // Parse cv-qualifier-seq[opt].
6111      ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
6112                                /*AtomicAllowed*/ false,
6113                                /*IdentifierRequired=*/false,
6114                                llvm::function_ref<void()>([&]() {
6115                                  Actions.CodeCompleteFunctionQualifiers(DS, D);
6116                                }));
6117      if (!DS.getSourceRange().getEnd().isInvalid()) {
6118        EndLoc = DS.getSourceRange().getEnd();
6119        ConstQualifierLoc = DS.getConstSpecLoc();
6120        VolatileQualifierLoc = DS.getVolatileSpecLoc();
6121        RestrictQualifierLoc = DS.getRestrictSpecLoc();
6122      }
6123
6124      // Parse ref-qualifier[opt].
6125      if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
6126        EndLoc = RefQualifierLoc;
6127
6128      // C++11 [expr.prim.general]p3:
6129      //   If a declaration declares a member function or member function
6130      //   template of a class X, the expression this is a prvalue of type
6131      //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6132      //   and the end of the function-definition, member-declarator, or
6133      //   declarator.
6134      // FIXME: currently, "static" case isn't handled correctly.
6135      bool IsCXX11MemberFunction =
6136        getLangOpts().CPlusPlus11 &&
6137        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6138        (D.getContext() == DeclaratorContext::MemberContext
6139         ? !D.getDeclSpec().isFriendSpecified()
6140         : D.getContext() == DeclaratorContext::FileContext &&
6141           D.getCXXScopeSpec().isValid() &&
6142           Actions.CurContext->isRecord());
6143      Sema::CXXThisScopeRAII ThisScope(Actions,
6144                               dyn_cast<CXXRecordDecl>(Actions.CurContext),
6145                               DS.getTypeQualifiers() |
6146                               (D.getDeclSpec().isConstexprSpecified() &&
6147                                !getLangOpts().CPlusPlus14
6148                                  ? Qualifiers::Const : 0),
6149                               IsCXX11MemberFunction);
6150
6151      // Parse exception-specification[opt].
6152      bool Delayed = D.isFirstDeclarationOfMember() &&
6153                     D.isFunctionDeclaratorAFunctionDeclaration();
6154      if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
6155          GetLookAheadToken(0).is(tok::kw_noexcept) &&
6156          GetLookAheadToken(1).is(tok::l_paren) &&
6157          GetLookAheadToken(2).is(tok::kw_noexcept) &&
6158          GetLookAheadToken(3).is(tok::l_paren) &&
6159          GetLookAheadToken(4).is(tok::identifier) &&
6160          GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
6161        // HACK: We've got an exception-specification
6162        //   noexcept(noexcept(swap(...)))
6163        // or
6164        //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
6165        // on a 'swap' member function. This is a libstdc++ bug; the lookup
6166        // for 'swap' will only find the function we're currently declaring,
6167        // whereas it expects to find a non-member swap through ADL. Turn off
6168        // delayed parsing to give it a chance to find what it expects.
6169        Delayed = false;
6170      }
6171      ESpecType = tryParseExceptionSpecification(Delayed,
6172                                                 ESpecRange,
6173                                                 DynamicExceptions,
6174                                                 DynamicExceptionRanges,
6175                                                 NoexceptExpr,
6176                                                 ExceptionSpecTokens);
6177      if (ESpecType != EST_None)
6178        EndLoc = ESpecRange.getEnd();
6179
6180      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
6181      // after the exception-specification.
6182      MaybeParseCXX11Attributes(FnAttrs);
6183
6184      // Parse trailing-return-type[opt].
6185      LocalEndLoc = EndLoc;
6186      if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
6187        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
6188        if (D.getDeclSpec().getTypeSpecType() == TST_auto)
6189          StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
6190        LocalEndLoc = Tok.getLocation();
6191        SourceRange Range;
6192        TrailingReturnType =
6193            ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
6194        EndLoc = Range.getEnd();
6195      }
6196    } else if (standardAttributesAllowed()) {
6197      MaybeParseCXX11Attributes(FnAttrs);
6198    }
6199  }
6200
6201  // Collect non-parameter declarations from the prototype if this is a function
6202  // declaration. They will be moved into the scope of the function. Only do
6203  // this in C and not C++, where the decls will continue to live in the
6204  // surrounding context.
6205  SmallVector<NamedDecl *, 0> DeclsInPrototype;
6206  if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope &&
6207      !getLangOpts().CPlusPlus) {
6208    for (Decl *D : getCurScope()->decls()) {
6209      NamedDecl *ND = dyn_cast<NamedDecl>(D);
6210      if (!ND || isa<ParmVarDecl>(ND))
6211        continue;
6212      DeclsInPrototype.push_back(ND);
6213    }
6214  }
6215
6216  // Remember that we parsed a function type, and remember the attributes.
6217  D.AddTypeInfo(DeclaratorChunk::getFunction(
6218                    HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
6219                    ParamInfo.size(), EllipsisLoc, RParenLoc,
6220                    DS.getTypeQualifiers(), RefQualifierIsLValueRef,
6221                    RefQualifierLoc, ConstQualifierLoc, VolatileQualifierLoc,
6222                    RestrictQualifierLoc,
6223                    /*MutableLoc=*/SourceLocation(), ESpecType, ESpecRange,
6224                    DynamicExceptions.data(), DynamicExceptionRanges.data(),
6225                    DynamicExceptions.size(),
6226                    NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
6227                    ExceptionSpecTokens, DeclsInPrototype, StartLoc,
6228                    LocalEndLoc, D, TrailingReturnType),
6229                std::move(FnAttrs), EndLoc);
6230}
6231
6232/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
6233/// true if a ref-qualifier is found.
6234bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
6235                               SourceLocation &RefQualifierLoc) {
6236  if (Tok.isOneOf(tok::amp, tok::ampamp)) {
6237    Diag(Tok, getLangOpts().CPlusPlus11 ?
6238         diag::warn_cxx98_compat_ref_qualifier :
6239         diag::ext_ref_qualifier);
6240
6241    RefQualifierIsLValueRef = Tok.is(tok::amp);
6242    RefQualifierLoc = ConsumeToken();
6243    return true;
6244  }
6245  return false;
6246}
6247
6248/// isFunctionDeclaratorIdentifierList - This parameter list may have an
6249/// identifier list form for a K&R-style function:  void foo(a,b,c)
6250///
6251/// Note that identifier-lists are only allowed for normal declarators, not for
6252/// abstract-declarators.
6253bool Parser::isFunctionDeclaratorIdentifierList() {
6254  return !getLangOpts().CPlusPlus
6255         && Tok.is(tok::identifier)
6256         && !TryAltiVecVectorToken()
6257         // K&R identifier lists can't have typedefs as identifiers, per C99
6258         // 6.7.5.3p11.
6259         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
6260         // Identifier lists follow a really simple grammar: the identifiers can
6261         // be followed *only* by a ", identifier" or ")".  However, K&R
6262         // identifier lists are really rare in the brave new modern world, and
6263         // it is very common for someone to typo a type in a non-K&R style
6264         // list.  If we are presented with something like: "void foo(intptr x,
6265         // float y)", we don't want to start parsing the function declarator as
6266         // though it is a K&R style declarator just because intptr is an
6267         // invalid type.
6268         //
6269         // To handle this, we check to see if the token after the first
6270         // identifier is a "," or ")".  Only then do we parse it as an
6271         // identifier list.
6272         && (!Tok.is(tok::eof) &&
6273             (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
6274}
6275
6276/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
6277/// we found a K&R-style identifier list instead of a typed parameter list.
6278///
6279/// After returning, ParamInfo will hold the parsed parameters.
6280///
6281///       identifier-list: [C99 6.7.5]
6282///         identifier
6283///         identifier-list ',' identifier
6284///
6285void Parser::ParseFunctionDeclaratorIdentifierList(
6286       Declarator &D,
6287       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
6288  // If there was no identifier specified for the declarator, either we are in
6289  // an abstract-declarator, or we are in a parameter declarator which was found
6290  // to be abstract.  In abstract-declarators, identifier lists are not valid:
6291  // diagnose this.
6292  if (!D.getIdentifier())
6293    Diag(Tok, diag::ext_ident_list_in_param);
6294
6295  // Maintain an efficient lookup of params we have seen so far.
6296  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
6297
6298  do {
6299    // If this isn't an identifier, report the error and skip until ')'.
6300    if (Tok.isNot(tok::identifier)) {
6301      Diag(Tok, diag::err_expected) << tok::identifier;
6302      SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
6303      // Forget we parsed anything.
6304      ParamInfo.clear();
6305      return;
6306    }
6307
6308    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
6309
6310    // Reject 'typedef int y; int test(x, y)', but continue parsing.
6311    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
6312      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
6313
6314    // Verify that the argument identifier has not already been mentioned.
6315    if (!ParamsSoFar.insert(ParmII).second) {
6316      Diag(Tok, diag::err_param_redefinition) << ParmII;
6317    } else {
6318      // Remember this identifier in ParamInfo.
6319      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6320                                                     Tok.getLocation(),
6321                                                     nullptr));
6322    }
6323
6324    // Eat the identifier.
6325    ConsumeToken();
6326    // The list continues if we see a comma.
6327  } while (TryConsumeToken(tok::comma));
6328}
6329
6330/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
6331/// after the opening parenthesis. This function will not parse a K&R-style
6332/// identifier list.
6333///
6334/// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
6335/// caller parsed those arguments immediately after the open paren - they should
6336/// be considered to be part of the first parameter.
6337///
6338/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
6339/// be the location of the ellipsis, if any was parsed.
6340///
6341///       parameter-type-list: [C99 6.7.5]
6342///         parameter-list
6343///         parameter-list ',' '...'
6344/// [C++]   parameter-list '...'
6345///
6346///       parameter-list: [C99 6.7.5]
6347///         parameter-declaration
6348///         parameter-list ',' parameter-declaration
6349///
6350///       parameter-declaration: [C99 6.7.5]
6351///         declaration-specifiers declarator
6352/// [C++]   declaration-specifiers declarator '=' assignment-expression
6353/// [C++11]                                       initializer-clause
6354/// [GNU]   declaration-specifiers declarator attributes
6355///         declaration-specifiers abstract-declarator[opt]
6356/// [C++]   declaration-specifiers abstract-declarator[opt]
6357///           '=' assignment-expression
6358/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
6359/// [C++11] attribute-specifier-seq parameter-declaration
6360///
6361void Parser::ParseParameterDeclarationClause(
6362       Declarator &D,
6363       ParsedAttributes &FirstArgAttrs,
6364       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
6365       SourceLocation &EllipsisLoc) {
6366  do {
6367    // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
6368    // before deciding this was a parameter-declaration-clause.
6369    if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
6370      break;
6371
6372    // Parse the declaration-specifiers.
6373    // Just use the ParsingDeclaration "scope" of the declarator.
6374    DeclSpec DS(AttrFactory);
6375
6376    // Parse any C++11 attributes.
6377    MaybeParseCXX11Attributes(DS.getAttributes());
6378
6379    // Skip any Microsoft attributes before a param.
6380    MaybeParseMicrosoftAttributes(DS.getAttributes());
6381
6382    SourceLocation DSStart = Tok.getLocation();
6383
6384    // If the caller parsed attributes for the first argument, add them now.
6385    // Take them so that we only apply the attributes to the first parameter.
6386    // FIXME: If we can leave the attributes in the token stream somehow, we can
6387    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
6388    // too much hassle.
6389    DS.takeAttributesFrom(FirstArgAttrs);
6390
6391    ParseDeclarationSpecifiers(DS);
6392
6393
6394    // Parse the declarator.  This is "PrototypeContext" or
6395    // "LambdaExprParameterContext", because we must accept either
6396    // 'declarator' or 'abstract-declarator' here.
6397    Declarator ParmDeclarator(
6398        DS, D.getContext() == DeclaratorContext::LambdaExprContext
6399                ? DeclaratorContext::LambdaExprParameterContext
6400                : DeclaratorContext::PrototypeContext);
6401    ParseDeclarator(ParmDeclarator);
6402
6403    // Parse GNU attributes, if present.
6404    MaybeParseGNUAttributes(ParmDeclarator);
6405
6406    // Remember this parsed parameter in ParamInfo.
6407    IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
6408
6409    // DefArgToks is used when the parsing of default arguments needs
6410    // to be delayed.
6411    std::unique_ptr<CachedTokens> DefArgToks;
6412
6413    // If no parameter was specified, verify that *something* was specified,
6414    // otherwise we have a missing type and identifier.
6415    if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
6416        ParmDeclarator.getNumTypeObjects() == 0) {
6417      // Completely missing, emit error.
6418      Diag(DSStart, diag::err_missing_param);
6419    } else {
6420      // Otherwise, we have something.  Add it and let semantic analysis try
6421      // to grok it and add the result to the ParamInfo we are building.
6422
6423      // Last chance to recover from a misplaced ellipsis in an attempted
6424      // parameter pack declaration.
6425      if (Tok.is(tok::ellipsis) &&
6426          (NextToken().isNot(tok::r_paren) ||
6427           (!ParmDeclarator.getEllipsisLoc().isValid() &&
6428            !Actions.isUnexpandedParameterPackPermitted())) &&
6429          Actions.containsUnexpandedParameterPacks(ParmDeclarator))
6430        DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
6431
6432      // Inform the actions module about the parameter declarator, so it gets
6433      // added to the current scope.
6434      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
6435      // Parse the default argument, if any. We parse the default
6436      // arguments in all dialects; the semantic analysis in
6437      // ActOnParamDefaultArgument will reject the default argument in
6438      // C.
6439      if (Tok.is(tok::equal)) {
6440        SourceLocation EqualLoc = Tok.getLocation();
6441
6442        // Parse the default argument
6443        if (D.getContext() == DeclaratorContext::MemberContext) {
6444          // If we're inside a class definition, cache the tokens
6445          // corresponding to the default argument. We'll actually parse
6446          // them when we see the end of the class definition.
6447          DefArgToks.reset(new CachedTokens);
6448
6449          SourceLocation ArgStartLoc = NextToken().getLocation();
6450          if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
6451            DefArgToks.reset();
6452            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6453          } else {
6454            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
6455                                                      ArgStartLoc);
6456          }
6457        } else {
6458          // Consume the '='.
6459          ConsumeToken();
6460
6461          // The argument isn't actually potentially evaluated unless it is
6462          // used.
6463          EnterExpressionEvaluationContext Eval(
6464              Actions,
6465              Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
6466              Param);
6467
6468          ExprResult DefArgResult;
6469          if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
6470            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
6471            DefArgResult = ParseBraceInitializer();
6472          } else
6473            DefArgResult = ParseAssignmentExpression();
6474          DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
6475          if (DefArgResult.isInvalid()) {
6476            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6477            SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
6478          } else {
6479            // Inform the actions module about the default argument
6480            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
6481                                              DefArgResult.get());
6482          }
6483        }
6484      }
6485
6486      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6487                                          ParmDeclarator.getIdentifierLoc(),
6488                                          Param, std::move(DefArgToks)));
6489    }
6490
6491    if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6492      if (!getLangOpts().CPlusPlus) {
6493        // We have ellipsis without a preceding ',', which is ill-formed
6494        // in C. Complain and provide the fix.
6495        Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6496            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6497      } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6498                 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6499        // It looks like this was supposed to be a parameter pack. Warn and
6500        // point out where the ellipsis should have gone.
6501        SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6502        Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6503          << ParmEllipsis.isValid() << ParmEllipsis;
6504        if (ParmEllipsis.isValid()) {
6505          Diag(ParmEllipsis,
6506               diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6507        } else {
6508          Diag(ParmDeclarator.getIdentifierLoc(),
6509               diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6510            << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6511                                          "...")
6512            << !ParmDeclarator.hasName();
6513        }
6514        Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6515          << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6516      }
6517
6518      // We can't have any more parameters after an ellipsis.
6519      break;
6520    }
6521
6522    // If the next token is a comma, consume it and keep reading arguments.
6523  } while (TryConsumeToken(tok::comma));
6524}
6525
6526/// [C90]   direct-declarator '[' constant-expression[opt] ']'
6527/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6528/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6529/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6530/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6531/// [C++11] direct-declarator '[' constant-expression[opt] ']'
6532///                           attribute-specifier-seq[opt]
6533void Parser::ParseBracketDeclarator(Declarator &D) {
6534  if (CheckProhibitedCXX11Attribute())
6535    return;
6536
6537  BalancedDelimiterTracker T(*this, tok::l_square);
6538  T.consumeOpen();
6539
6540  // C array syntax has many features, but by-far the most common is [] and [4].
6541  // This code does a fast path to handle some of the most obvious cases.
6542  if (Tok.getKind() == tok::r_square) {
6543    T.consumeClose();
6544    ParsedAttributes attrs(AttrFactory);
6545    MaybeParseCXX11Attributes(attrs);
6546
6547    // Remember that we parsed the empty array type.
6548    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6549                                            T.getOpenLocation(),
6550                                            T.getCloseLocation()),
6551                  std::move(attrs), T.getCloseLocation());
6552    return;
6553  } else if (Tok.getKind() == tok::numeric_constant &&
6554             GetLookAheadToken(1).is(tok::r_square)) {
6555    // [4] is very common.  Parse the numeric constant expression.
6556    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6557    ConsumeToken();
6558
6559    T.consumeClose();
6560    ParsedAttributes attrs(AttrFactory);
6561    MaybeParseCXX11Attributes(attrs);
6562
6563    // Remember that we parsed a array type, and remember its features.
6564    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
6565                                            T.getOpenLocation(),
6566                                            T.getCloseLocation()),
6567                  std::move(attrs), T.getCloseLocation());
6568    return;
6569  } else if (Tok.getKind() == tok::code_completion) {
6570    Actions.CodeCompleteBracketDeclarator(getCurScope());
6571    return cutOffParsing();
6572  }
6573
6574  // If valid, this location is the position where we read the 'static' keyword.
6575  SourceLocation StaticLoc;
6576  TryConsumeToken(tok::kw_static, StaticLoc);
6577
6578  // If there is a type-qualifier-list, read it now.
6579  // Type qualifiers in an array subscript are a C99 feature.
6580  DeclSpec DS(AttrFactory);
6581  ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6582
6583  // If we haven't already read 'static', check to see if there is one after the
6584  // type-qualifier-list.
6585  if (!StaticLoc.isValid())
6586    TryConsumeToken(tok::kw_static, StaticLoc);
6587
6588  // Handle "direct-declarator [ type-qual-list[opt] * ]".
6589  bool isStar = false;
6590  ExprResult NumElements;
6591
6592  // Handle the case where we have '[*]' as the array size.  However, a leading
6593  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
6594  // the token after the star is a ']'.  Since stars in arrays are
6595  // infrequent, use of lookahead is not costly here.
6596  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6597    ConsumeToken();  // Eat the '*'.
6598
6599    if (StaticLoc.isValid()) {
6600      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6601      StaticLoc = SourceLocation();  // Drop the static.
6602    }
6603    isStar = true;
6604  } else if (Tok.isNot(tok::r_square)) {
6605    // Note, in C89, this production uses the constant-expr production instead
6606    // of assignment-expr.  The only difference is that assignment-expr allows
6607    // things like '=' and '*='.  Sema rejects these in C89 mode because they
6608    // are not i-c-e's, so we don't need to distinguish between the two here.
6609
6610    // Parse the constant-expression or assignment-expression now (depending
6611    // on dialect).
6612    if (getLangOpts().CPlusPlus) {
6613      NumElements = ParseConstantExpression();
6614    } else {
6615      EnterExpressionEvaluationContext Unevaluated(
6616          Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6617      NumElements =
6618          Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6619    }
6620  } else {
6621    if (StaticLoc.isValid()) {
6622      Diag(StaticLoc, diag::err_unspecified_size_with_static);
6623      StaticLoc = SourceLocation();  // Drop the static.
6624    }
6625  }
6626
6627  // If there was an error parsing the assignment-expression, recover.
6628  if (NumElements.isInvalid()) {
6629    D.setInvalidType(true);
6630    // If the expression was invalid, skip it.
6631    SkipUntil(tok::r_square, StopAtSemi);
6632    return;
6633  }
6634
6635  T.consumeClose();
6636
6637  MaybeParseCXX11Attributes(DS.getAttributes());
6638
6639  // Remember that we parsed a array type, and remember its features.
6640  D.AddTypeInfo(
6641      DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
6642                                isStar, NumElements.get(), T.getOpenLocation(),
6643                                T.getCloseLocation()),
6644      std::move(DS.getAttributes()), T.getCloseLocation());
6645}
6646
6647/// Diagnose brackets before an identifier.
6648void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6649  assert(Tok.is(tok::l_square) && "Missing opening bracket");
6650  assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6651
6652  SourceLocation StartBracketLoc = Tok.getLocation();
6653  Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6654
6655  while (Tok.is(tok::l_square)) {
6656    ParseBracketDeclarator(TempDeclarator);
6657  }
6658
6659  // Stuff the location of the start of the brackets into the Declarator.
6660  // The diagnostics from ParseDirectDeclarator will make more sense if
6661  // they use this location instead.
6662  if (Tok.is(tok::semi))
6663    D.getName().EndLocation = StartBracketLoc;
6664
6665  SourceLocation SuggestParenLoc = Tok.getLocation();
6666
6667  // Now that the brackets are removed, try parsing the declarator again.
6668  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6669
6670  // Something went wrong parsing the brackets, in which case,
6671  // ParseBracketDeclarator has emitted an error, and we don't need to emit
6672  // one here.
6673  if (TempDeclarator.getNumTypeObjects() == 0)
6674    return;
6675
6676  // Determine if parens will need to be suggested in the diagnostic.
6677  bool NeedParens = false;
6678  if (D.getNumTypeObjects() != 0) {
6679    switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
6680    case DeclaratorChunk::Pointer:
6681    case DeclaratorChunk::Reference:
6682    case DeclaratorChunk::BlockPointer:
6683    case DeclaratorChunk::MemberPointer:
6684    case DeclaratorChunk::Pipe:
6685      NeedParens = true;
6686      break;
6687    case DeclaratorChunk::Array:
6688    case DeclaratorChunk::Function:
6689    case DeclaratorChunk::Paren:
6690      break;
6691    }
6692  }
6693
6694  if (NeedParens) {
6695    // Create a DeclaratorChunk for the inserted parens.
6696    SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6697    D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
6698                  SourceLocation());
6699  }
6700
6701  // Adding back the bracket info to the end of the Declarator.
6702  for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
6703    const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
6704    D.AddTypeInfo(Chunk, SourceLocation());
6705  }
6706
6707  // The missing identifier would have been diagnosed in ParseDirectDeclarator.
6708  // If parentheses are required, always suggest them.
6709  if (!D.getIdentifier() && !NeedParens)
6710    return;
6711
6712  SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
6713
6714  // Generate the move bracket error message.
6715  SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
6716  SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6717
6718  if (NeedParens) {
6719    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6720        << getLangOpts().CPlusPlus
6721        << FixItHint::CreateInsertion(SuggestParenLoc, "(")
6722        << FixItHint::CreateInsertion(EndLoc, ")")
6723        << FixItHint::CreateInsertionFromRange(
6724               EndLoc, CharSourceRange(BracketRange, true))
6725        << FixItHint::CreateRemoval(BracketRange);
6726  } else {
6727    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6728        << getLangOpts().CPlusPlus
6729        << FixItHint::CreateInsertionFromRange(
6730               EndLoc, CharSourceRange(BracketRange, true))
6731        << FixItHint::CreateRemoval(BracketRange);
6732  }
6733}
6734
6735/// [GNU]   typeof-specifier:
6736///           typeof ( expressions )
6737///           typeof ( type-name )
6738/// [GNU/C++] typeof unary-expression
6739///
6740void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
6741  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
6742  Token OpTok = Tok;
6743  SourceLocation StartLoc = ConsumeToken();
6744
6745  const bool hasParens = Tok.is(tok::l_paren);
6746
6747  EnterExpressionEvaluationContext Unevaluated(
6748      Actions, Sema::ExpressionEvaluationContext::Unevaluated,
6749      Sema::ReuseLambdaContextDecl);
6750
6751  bool isCastExpr;
6752  ParsedType CastTy;
6753  SourceRange CastRange;
6754  ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
6755      ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
6756  if (hasParens)
6757    DS.setTypeofParensRange(CastRange);
6758
6759  if (CastRange.getEnd().isInvalid())
6760    // FIXME: Not accurate, the range gets one token more than it should.
6761    DS.SetRangeEnd(Tok.getLocation());
6762  else
6763    DS.SetRangeEnd(CastRange.getEnd());
6764
6765  if (isCastExpr) {
6766    if (!CastTy) {
6767      DS.SetTypeSpecError();
6768      return;
6769    }
6770
6771    const char *PrevSpec = nullptr;
6772    unsigned DiagID;
6773    // Check for duplicate type specifiers (e.g. "int typeof(int)").
6774    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
6775                           DiagID, CastTy,
6776                           Actions.getASTContext().getPrintingPolicy()))
6777      Diag(StartLoc, DiagID) << PrevSpec;
6778    return;
6779  }
6780
6781  // If we get here, the operand to the typeof was an expression.
6782  if (Operand.isInvalid()) {
6783    DS.SetTypeSpecError();
6784    return;
6785  }
6786
6787  // We might need to transform the operand if it is potentially evaluated.
6788  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6789  if (Operand.isInvalid()) {
6790    DS.SetTypeSpecError();
6791    return;
6792  }
6793
6794  const char *PrevSpec = nullptr;
6795  unsigned DiagID;
6796  // Check for duplicate type specifiers (e.g. "int typeof(int)").
6797  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6798                         DiagID, Operand.get(),
6799                         Actions.getASTContext().getPrintingPolicy()))
6800    Diag(StartLoc, DiagID) << PrevSpec;
6801}
6802
6803/// [C11]   atomic-specifier:
6804///           _Atomic ( type-name )
6805///
6806void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6807  assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6808         "Not an atomic specifier");
6809
6810  SourceLocation StartLoc = ConsumeToken();
6811  BalancedDelimiterTracker T(*this, tok::l_paren);
6812  if (T.consumeOpen())
6813    return;
6814
6815  TypeResult Result = ParseTypeName();
6816  if (Result.isInvalid()) {
6817    SkipUntil(tok::r_paren, StopAtSemi);
6818    return;
6819  }
6820
6821  // Match the ')'
6822  T.consumeClose();
6823
6824  if (T.getCloseLocation().isInvalid())
6825    return;
6826
6827  DS.setTypeofParensRange(T.getRange());
6828  DS.SetRangeEnd(T.getCloseLocation());
6829
6830  const char *PrevSpec = nullptr;
6831  unsigned DiagID;
6832  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6833                         DiagID, Result.get(),
6834                         Actions.getASTContext().getPrintingPolicy()))
6835    Diag(StartLoc, DiagID) << PrevSpec;
6836}
6837
6838/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6839/// from TryAltiVecVectorToken.
6840bool Parser::TryAltiVecVectorTokenOutOfLine() {
6841  Token Next = NextToken();
6842  switch (Next.getKind()) {
6843  default: return false;
6844  case tok::kw_short:
6845  case tok::kw_long:
6846  case tok::kw_signed:
6847  case tok::kw_unsigned:
6848  case tok::kw_void:
6849  case tok::kw_char:
6850  case tok::kw_int:
6851  case tok::kw_float:
6852  case tok::kw_double:
6853  case tok::kw_bool:
6854  case tok::kw___bool:
6855  case tok::kw___pixel:
6856    Tok.setKind(tok::kw___vector);
6857    return true;
6858  case tok::identifier:
6859    if (Next.getIdentifierInfo() == Ident_pixel) {
6860      Tok.setKind(tok::kw___vector);
6861      return true;
6862    }
6863    if (Next.getIdentifierInfo() == Ident_bool) {
6864      Tok.setKind(tok::kw___vector);
6865      return true;
6866    }
6867    return false;
6868  }
6869}
6870
6871bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6872                                      const char *&PrevSpec, unsigned &DiagID,
6873                                      bool &isInvalid) {
6874  const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6875  if (Tok.getIdentifierInfo() == Ident_vector) {
6876    Token Next = NextToken();
6877    switch (Next.getKind()) {
6878    case tok::kw_short:
6879    case tok::kw_long:
6880    case tok::kw_signed:
6881    case tok::kw_unsigned:
6882    case tok::kw_void:
6883    case tok::kw_char:
6884    case tok::kw_int:
6885    case tok::kw_float:
6886    case tok::kw_double:
6887    case tok::kw_bool:
6888    case tok::kw___bool:
6889    case tok::kw___pixel:
6890      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6891      return true;
6892    case tok::identifier:
6893      if (Next.getIdentifierInfo() == Ident_pixel) {
6894        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6895        return true;
6896      }
6897      if (Next.getIdentifierInfo() == Ident_bool) {
6898        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6899        return true;
6900      }
6901      break;
6902    default:
6903      break;
6904    }
6905  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6906             DS.isTypeAltiVecVector()) {
6907    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6908    return true;
6909  } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6910             DS.isTypeAltiVecVector()) {
6911    isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6912    return true;
6913  }
6914  return false;
6915}
6916