1//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements the Declaration portions of the Parser interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Parse/Parser.h"
14#include "clang/Parse/RAIIObjectsForParser.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/PrettyDeclStackTrace.h"
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/Attributes.h"
20#include "clang/Basic/CharInfo.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Parse/ParseDiagnostic.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Sema/Scope.h"
26#include "llvm/ADT/Optional.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringSwitch.h"
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// C99 6.7: Declarations.
35//===----------------------------------------------------------------------===//
36
37/// ParseTypeName
38///       type-name: [C99 6.7.6]
39///         specifier-qualifier-list abstract-declarator[opt]
40///
41/// Called type-id in C++.
42TypeResult Parser::ParseTypeName(SourceRange *Range,
43                                 DeclaratorContext Context,
44                                 AccessSpecifier AS,
45                                 Decl **OwnedType,
46                                 ParsedAttributes *Attrs) {
47  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
48  if (DSC == DeclSpecContext::DSC_normal)
49    DSC = DeclSpecContext::DSC_type_specifier;
50
51  // Parse the common declaration-specifiers piece.
52  DeclSpec DS(AttrFactory);
53  if (Attrs)
54    DS.addAttributes(*Attrs);
55  ParseSpecifierQualifierList(DS, AS, DSC);
56  if (OwnedType)
57    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
58
59  // Parse the abstract-declarator, if present.
60  Declarator DeclaratorInfo(DS, Context);
61  ParseDeclarator(DeclaratorInfo);
62  if (Range)
63    *Range = DeclaratorInfo.getSourceRange();
64
65  if (DeclaratorInfo.isInvalidType())
66    return true;
67
68  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
69}
70
71/// Normalizes an attribute name by dropping prefixed and suffixed __.
72static StringRef normalizeAttrName(StringRef Name) {
73  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
74    return Name.drop_front(2).drop_back(2);
75  return Name;
76}
77
78/// isAttributeLateParsed - Return true if the attribute has arguments that
79/// require late parsing.
80static bool isAttributeLateParsed(const IdentifierInfo &II) {
81#define CLANG_ATTR_LATE_PARSED_LIST
82    return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
83#include "clang/Parse/AttrParserStringSwitches.inc"
84        .Default(false);
85#undef CLANG_ATTR_LATE_PARSED_LIST
86}
87
88/// Check if the a start and end source location expand to the same macro.
89static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
90                                     SourceLocation EndLoc) {
91  if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
92    return false;
93
94  SourceManager &SM = PP.getSourceManager();
95  if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
96    return false;
97
98  bool AttrStartIsInMacro =
99      Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
100  bool AttrEndIsInMacro =
101      Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
102  return AttrStartIsInMacro && AttrEndIsInMacro;
103}
104
105/// ParseGNUAttributes - Parse a non-empty attributes list.
106///
107/// [GNU] attributes:
108///         attribute
109///         attributes attribute
110///
111/// [GNU]  attribute:
112///          '__attribute__' '(' '(' attribute-list ')' ')'
113///
114/// [GNU]  attribute-list:
115///          attrib
116///          attribute_list ',' attrib
117///
118/// [GNU]  attrib:
119///          empty
120///          attrib-name
121///          attrib-name '(' identifier ')'
122///          attrib-name '(' identifier ',' nonempty-expr-list ')'
123///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
124///
125/// [GNU]  attrib-name:
126///          identifier
127///          typespec
128///          typequal
129///          storageclass
130///
131/// Whether an attribute takes an 'identifier' is determined by the
132/// attrib-name. GCC's behavior here is not worth imitating:
133///
134///  * In C mode, if the attribute argument list starts with an identifier
135///    followed by a ',' or an ')', and the identifier doesn't resolve to
136///    a type, it is parsed as an identifier. If the attribute actually
137///    wanted an expression, it's out of luck (but it turns out that no
138///    attributes work that way, because C constant expressions are very
139///    limited).
140///  * In C++ mode, if the attribute argument list starts with an identifier,
141///    and the attribute *wants* an identifier, it is parsed as an identifier.
142///    At block scope, any additional tokens between the identifier and the
143///    ',' or ')' are ignored, otherwise they produce a parse error.
144///
145/// We follow the C++ model, but don't allow junk after the identifier.
146void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
147                                SourceLocation *endLoc,
148                                LateParsedAttrList *LateAttrs,
149                                Declarator *D) {
150  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
151
152  while (Tok.is(tok::kw___attribute)) {
153    SourceLocation AttrTokLoc = ConsumeToken();
154    unsigned OldNumAttrs = attrs.size();
155    unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
156
157    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
158                         "attribute")) {
159      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
160      return;
161    }
162    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
163      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
164      return;
165    }
166    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
167    do {
168      // Eat preceeding commas to allow __attribute__((,,,foo))
169      while (TryConsumeToken(tok::comma))
170        ;
171
172      // Expect an identifier or declaration specifier (const, int, etc.)
173      if (Tok.isAnnotation())
174        break;
175      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
176      if (!AttrName)
177        break;
178
179      SourceLocation AttrNameLoc = ConsumeToken();
180
181      if (Tok.isNot(tok::l_paren)) {
182        attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
183                     ParsedAttr::AS_GNU);
184        continue;
185      }
186
187      // Handle "parameterized" attributes
188      if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
189        ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
190                              SourceLocation(), ParsedAttr::AS_GNU, D);
191        continue;
192      }
193
194      // Handle attributes with arguments that require late parsing.
195      LateParsedAttribute *LA =
196          new LateParsedAttribute(this, *AttrName, AttrNameLoc);
197      LateAttrs->push_back(LA);
198
199      // Attributes in a class are parsed at the end of the class, along
200      // with other late-parsed declarations.
201      if (!ClassStack.empty() && !LateAttrs->parseSoon())
202        getCurrentClass().LateParsedDeclarations.push_back(LA);
203
204      // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
205      // recursively consumes balanced parens.
206      LA->Toks.push_back(Tok);
207      ConsumeParen();
208      // Consume everything up to and including the matching right parens.
209      ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
210
211      Token Eof;
212      Eof.startToken();
213      Eof.setLocation(Tok.getLocation());
214      LA->Toks.push_back(Eof);
215    } while (Tok.is(tok::comma));
216
217    if (ExpectAndConsume(tok::r_paren))
218      SkipUntil(tok::r_paren, StopAtSemi);
219    SourceLocation Loc = Tok.getLocation();
220    if (ExpectAndConsume(tok::r_paren))
221      SkipUntil(tok::r_paren, StopAtSemi);
222    if (endLoc)
223      *endLoc = Loc;
224
225    // If this was declared in a macro, attach the macro IdentifierInfo to the
226    // parsed attribute.
227    auto &SM = PP.getSourceManager();
228    if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
229        FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
230      CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
231      StringRef FoundName =
232          Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
233      IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
234
235      for (unsigned i = OldNumAttrs; i < attrs.size(); ++i)
236        attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
237
238      if (LateAttrs) {
239        for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
240          (*LateAttrs)[i]->MacroII = MacroII;
241      }
242    }
243  }
244}
245
246/// Determine whether the given attribute has an identifier argument.
247static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
248#define CLANG_ATTR_IDENTIFIER_ARG_LIST
249  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
250#include "clang/Parse/AttrParserStringSwitches.inc"
251           .Default(false);
252#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
253}
254
255/// Determine whether the given attribute has a variadic identifier argument.
256static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
257#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
258  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
259#include "clang/Parse/AttrParserStringSwitches.inc"
260           .Default(false);
261#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
262}
263
264/// Determine whether the given attribute treats kw_this as an identifier.
265static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
266#define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
267  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
268#include "clang/Parse/AttrParserStringSwitches.inc"
269           .Default(false);
270#undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
271}
272
273/// Determine whether the given attribute parses a type argument.
274static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
275#define CLANG_ATTR_TYPE_ARG_LIST
276  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
277#include "clang/Parse/AttrParserStringSwitches.inc"
278           .Default(false);
279#undef CLANG_ATTR_TYPE_ARG_LIST
280}
281
282/// Determine whether the given attribute requires parsing its arguments
283/// in an unevaluated context or not.
284static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
285#define CLANG_ATTR_ARG_CONTEXT_LIST
286  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287#include "clang/Parse/AttrParserStringSwitches.inc"
288           .Default(false);
289#undef CLANG_ATTR_ARG_CONTEXT_LIST
290}
291
292IdentifierLoc *Parser::ParseIdentifierLoc() {
293  assert(Tok.is(tok::identifier) && "expected an identifier");
294  IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
295                                            Tok.getLocation(),
296                                            Tok.getIdentifierInfo());
297  ConsumeToken();
298  return IL;
299}
300
301void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
302                                       SourceLocation AttrNameLoc,
303                                       ParsedAttributes &Attrs,
304                                       SourceLocation *EndLoc,
305                                       IdentifierInfo *ScopeName,
306                                       SourceLocation ScopeLoc,
307                                       ParsedAttr::Syntax Syntax) {
308  BalancedDelimiterTracker Parens(*this, tok::l_paren);
309  Parens.consumeOpen();
310
311  TypeResult T;
312  if (Tok.isNot(tok::r_paren))
313    T = ParseTypeName();
314
315  if (Parens.consumeClose())
316    return;
317
318  if (T.isInvalid())
319    return;
320
321  if (T.isUsable())
322    Attrs.addNewTypeAttr(&AttrName,
323                         SourceRange(AttrNameLoc, Parens.getCloseLocation()),
324                         ScopeName, ScopeLoc, T.get(), Syntax);
325  else
326    Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
327                 ScopeName, ScopeLoc, nullptr, 0, Syntax);
328}
329
330unsigned Parser::ParseAttributeArgsCommon(
331    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
332    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
333    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
334  // Ignore the left paren location for now.
335  ConsumeParen();
336
337  bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
338  bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
339
340  // Interpret "kw_this" as an identifier if the attributed requests it.
341  if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
342    Tok.setKind(tok::identifier);
343
344  ArgsVector ArgExprs;
345  if (Tok.is(tok::identifier)) {
346    // If this attribute wants an 'identifier' argument, make it so.
347    bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
348                           attributeHasVariadicIdentifierArg(*AttrName);
349    ParsedAttr::Kind AttrKind =
350        ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
351
352    // If we don't know how to parse this attribute, but this is the only
353    // token in this argument, assume it's meant to be an identifier.
354    if (AttrKind == ParsedAttr::UnknownAttribute ||
355        AttrKind == ParsedAttr::IgnoredAttribute) {
356      const Token &Next = NextToken();
357      IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
358    }
359
360    if (IsIdentifierArg)
361      ArgExprs.push_back(ParseIdentifierLoc());
362  }
363
364  ParsedType TheParsedType;
365  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
366    // Eat the comma.
367    if (!ArgExprs.empty())
368      ConsumeToken();
369
370    // Parse the non-empty comma-separated list of expressions.
371    do {
372      // Interpret "kw_this" as an identifier if the attributed requests it.
373      if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
374        Tok.setKind(tok::identifier);
375
376      ExprResult ArgExpr;
377      if (AttributeIsTypeArgAttr) {
378        TypeResult T = ParseTypeName();
379        if (T.isInvalid()) {
380          SkipUntil(tok::r_paren, StopAtSemi);
381          return 0;
382        }
383        if (T.isUsable())
384          TheParsedType = T.get();
385        break; // FIXME: Multiple type arguments are not implemented.
386      } else if (Tok.is(tok::identifier) &&
387                 attributeHasVariadicIdentifierArg(*AttrName)) {
388        ArgExprs.push_back(ParseIdentifierLoc());
389      } else {
390        bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
391        EnterExpressionEvaluationContext Unevaluated(
392            Actions,
393            Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
394                   : Sema::ExpressionEvaluationContext::ConstantEvaluated);
395
396        ExprResult ArgExpr(
397            Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
398        if (ArgExpr.isInvalid()) {
399          SkipUntil(tok::r_paren, StopAtSemi);
400          return 0;
401        }
402        ArgExprs.push_back(ArgExpr.get());
403      }
404      // Eat the comma, move to the next argument
405    } while (TryConsumeToken(tok::comma));
406  }
407
408  SourceLocation RParen = Tok.getLocation();
409  if (!ExpectAndConsume(tok::r_paren)) {
410    SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
411
412    if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
413      Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
414                           ScopeName, ScopeLoc, TheParsedType, Syntax);
415    } else {
416      Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
417                   ArgExprs.data(), ArgExprs.size(), Syntax);
418    }
419  }
420
421  if (EndLoc)
422    *EndLoc = RParen;
423
424  return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
425}
426
427/// Parse the arguments to a parameterized GNU attribute or
428/// a C++11 attribute in "gnu" namespace.
429void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
430                                   SourceLocation AttrNameLoc,
431                                   ParsedAttributes &Attrs,
432                                   SourceLocation *EndLoc,
433                                   IdentifierInfo *ScopeName,
434                                   SourceLocation ScopeLoc,
435                                   ParsedAttr::Syntax Syntax,
436                                   Declarator *D) {
437
438  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
439
440  ParsedAttr::Kind AttrKind =
441      ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
442
443  if (AttrKind == ParsedAttr::AT_Availability) {
444    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
445                               ScopeLoc, Syntax);
446    return;
447  } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
448    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
449                                       ScopeName, ScopeLoc, Syntax);
450    return;
451  } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
452    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
453                                    ScopeName, ScopeLoc, Syntax);
454    return;
455  } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
456    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
457                                     ScopeName, ScopeLoc, Syntax);
458    return;
459  } else if (attributeIsTypeArgAttr(*AttrName)) {
460    ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
461                              ScopeLoc, Syntax);
462    return;
463  }
464
465  // These may refer to the function arguments, but need to be parsed early to
466  // participate in determining whether it's a redeclaration.
467  llvm::Optional<ParseScope> PrototypeScope;
468  if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
469      D && D->isFunctionDeclarator()) {
470    DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
471    PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
472                                     Scope::FunctionDeclarationScope |
473                                     Scope::DeclScope);
474    for (unsigned i = 0; i != FTI.NumParams; ++i) {
475      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
476      Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
477    }
478  }
479
480  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
481                           ScopeLoc, Syntax);
482}
483
484unsigned Parser::ParseClangAttributeArgs(
485    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
486    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
487    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
488  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
489
490  ParsedAttr::Kind AttrKind =
491      ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
492
493  switch (AttrKind) {
494  default:
495    return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
496                                    ScopeName, ScopeLoc, Syntax);
497  case ParsedAttr::AT_ExternalSourceSymbol:
498    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
499                                       ScopeName, ScopeLoc, Syntax);
500    break;
501  case ParsedAttr::AT_Availability:
502    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
503                               ScopeLoc, Syntax);
504    break;
505  case ParsedAttr::AT_ObjCBridgeRelated:
506    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
507                                    ScopeName, ScopeLoc, Syntax);
508    break;
509  case ParsedAttr::AT_TypeTagForDatatype:
510    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
511                                     ScopeName, ScopeLoc, Syntax);
512    break;
513  }
514  return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
515}
516
517bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
518                                        SourceLocation AttrNameLoc,
519                                        ParsedAttributes &Attrs) {
520  // If the attribute isn't known, we will not attempt to parse any
521  // arguments.
522  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
523                    getTargetInfo(), getLangOpts())) {
524    // Eat the left paren, then skip to the ending right paren.
525    ConsumeParen();
526    SkipUntil(tok::r_paren);
527    return false;
528  }
529
530  SourceLocation OpenParenLoc = Tok.getLocation();
531
532  if (AttrName->getName() == "property") {
533    // The property declspec is more complex in that it can take one or two
534    // assignment expressions as a parameter, but the lhs of the assignment
535    // must be named get or put.
536
537    BalancedDelimiterTracker T(*this, tok::l_paren);
538    T.expectAndConsume(diag::err_expected_lparen_after,
539                       AttrName->getNameStart(), tok::r_paren);
540
541    enum AccessorKind {
542      AK_Invalid = -1,
543      AK_Put = 0,
544      AK_Get = 1 // indices into AccessorNames
545    };
546    IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
547    bool HasInvalidAccessor = false;
548
549    // Parse the accessor specifications.
550    while (true) {
551      // Stop if this doesn't look like an accessor spec.
552      if (!Tok.is(tok::identifier)) {
553        // If the user wrote a completely empty list, use a special diagnostic.
554        if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
555            AccessorNames[AK_Put] == nullptr &&
556            AccessorNames[AK_Get] == nullptr) {
557          Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
558          break;
559        }
560
561        Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
562        break;
563      }
564
565      AccessorKind Kind;
566      SourceLocation KindLoc = Tok.getLocation();
567      StringRef KindStr = Tok.getIdentifierInfo()->getName();
568      if (KindStr == "get") {
569        Kind = AK_Get;
570      } else if (KindStr == "put") {
571        Kind = AK_Put;
572
573        // Recover from the common mistake of using 'set' instead of 'put'.
574      } else if (KindStr == "set") {
575        Diag(KindLoc, diag::err_ms_property_has_set_accessor)
576            << FixItHint::CreateReplacement(KindLoc, "put");
577        Kind = AK_Put;
578
579        // Handle the mistake of forgetting the accessor kind by skipping
580        // this accessor.
581      } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
582        Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
583        ConsumeToken();
584        HasInvalidAccessor = true;
585        goto next_property_accessor;
586
587        // Otherwise, complain about the unknown accessor kind.
588      } else {
589        Diag(KindLoc, diag::err_ms_property_unknown_accessor);
590        HasInvalidAccessor = true;
591        Kind = AK_Invalid;
592
593        // Try to keep parsing unless it doesn't look like an accessor spec.
594        if (!NextToken().is(tok::equal))
595          break;
596      }
597
598      // Consume the identifier.
599      ConsumeToken();
600
601      // Consume the '='.
602      if (!TryConsumeToken(tok::equal)) {
603        Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
604            << KindStr;
605        break;
606      }
607
608      // Expect the method name.
609      if (!Tok.is(tok::identifier)) {
610        Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
611        break;
612      }
613
614      if (Kind == AK_Invalid) {
615        // Just drop invalid accessors.
616      } else if (AccessorNames[Kind] != nullptr) {
617        // Complain about the repeated accessor, ignore it, and keep parsing.
618        Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
619      } else {
620        AccessorNames[Kind] = Tok.getIdentifierInfo();
621      }
622      ConsumeToken();
623
624    next_property_accessor:
625      // Keep processing accessors until we run out.
626      if (TryConsumeToken(tok::comma))
627        continue;
628
629      // If we run into the ')', stop without consuming it.
630      if (Tok.is(tok::r_paren))
631        break;
632
633      Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
634      break;
635    }
636
637    // Only add the property attribute if it was well-formed.
638    if (!HasInvalidAccessor)
639      Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
640                               AccessorNames[AK_Get], AccessorNames[AK_Put],
641                               ParsedAttr::AS_Declspec);
642    T.skipToEnd();
643    return !HasInvalidAccessor;
644  }
645
646  unsigned NumArgs =
647      ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
648                               SourceLocation(), ParsedAttr::AS_Declspec);
649
650  // If this attribute's args were parsed, and it was expected to have
651  // arguments but none were provided, emit a diagnostic.
652  if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
653    Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
654    return false;
655  }
656  return true;
657}
658
659/// [MS] decl-specifier:
660///             __declspec ( extended-decl-modifier-seq )
661///
662/// [MS] extended-decl-modifier-seq:
663///             extended-decl-modifier[opt]
664///             extended-decl-modifier extended-decl-modifier-seq
665void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
666                                     SourceLocation *End) {
667  assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
668  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
669
670  while (Tok.is(tok::kw___declspec)) {
671    ConsumeToken();
672    BalancedDelimiterTracker T(*this, tok::l_paren);
673    if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
674                           tok::r_paren))
675      return;
676
677    // An empty declspec is perfectly legal and should not warn.  Additionally,
678    // you can specify multiple attributes per declspec.
679    while (Tok.isNot(tok::r_paren)) {
680      // Attribute not present.
681      if (TryConsumeToken(tok::comma))
682        continue;
683
684      // We expect either a well-known identifier or a generic string.  Anything
685      // else is a malformed declspec.
686      bool IsString = Tok.getKind() == tok::string_literal;
687      if (!IsString && Tok.getKind() != tok::identifier &&
688          Tok.getKind() != tok::kw_restrict) {
689        Diag(Tok, diag::err_ms_declspec_type);
690        T.skipToEnd();
691        return;
692      }
693
694      IdentifierInfo *AttrName;
695      SourceLocation AttrNameLoc;
696      if (IsString) {
697        SmallString<8> StrBuffer;
698        bool Invalid = false;
699        StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
700        if (Invalid) {
701          T.skipToEnd();
702          return;
703        }
704        AttrName = PP.getIdentifierInfo(Str);
705        AttrNameLoc = ConsumeStringToken();
706      } else {
707        AttrName = Tok.getIdentifierInfo();
708        AttrNameLoc = ConsumeToken();
709      }
710
711      bool AttrHandled = false;
712
713      // Parse attribute arguments.
714      if (Tok.is(tok::l_paren))
715        AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
716      else if (AttrName->getName() == "property")
717        // The property attribute must have an argument list.
718        Diag(Tok.getLocation(), diag::err_expected_lparen_after)
719            << AttrName->getName();
720
721      if (!AttrHandled)
722        Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
723                     ParsedAttr::AS_Declspec);
724    }
725    T.consumeClose();
726    if (End)
727      *End = T.getCloseLocation();
728  }
729}
730
731void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
732  // Treat these like attributes
733  while (true) {
734    switch (Tok.getKind()) {
735    case tok::kw___fastcall:
736    case tok::kw___stdcall:
737    case tok::kw___thiscall:
738    case tok::kw___regcall:
739    case tok::kw___cdecl:
740    case tok::kw___vectorcall:
741    case tok::kw___ptr64:
742    case tok::kw___w64:
743    case tok::kw___ptr32:
744    case tok::kw___sptr:
745    case tok::kw___uptr: {
746      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
747      SourceLocation AttrNameLoc = ConsumeToken();
748      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
749                   ParsedAttr::AS_Keyword);
750      break;
751    }
752    default:
753      return;
754    }
755  }
756}
757
758void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
759  SourceLocation StartLoc = Tok.getLocation();
760  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
761
762  if (EndLoc.isValid()) {
763    SourceRange Range(StartLoc, EndLoc);
764    Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
765  }
766}
767
768SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
769  SourceLocation EndLoc;
770
771  while (true) {
772    switch (Tok.getKind()) {
773    case tok::kw_const:
774    case tok::kw_volatile:
775    case tok::kw___fastcall:
776    case tok::kw___stdcall:
777    case tok::kw___thiscall:
778    case tok::kw___cdecl:
779    case tok::kw___vectorcall:
780    case tok::kw___ptr32:
781    case tok::kw___ptr64:
782    case tok::kw___w64:
783    case tok::kw___unaligned:
784    case tok::kw___sptr:
785    case tok::kw___uptr:
786      EndLoc = ConsumeToken();
787      break;
788    default:
789      return EndLoc;
790    }
791  }
792}
793
794void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
795  // Treat these like attributes
796  while (Tok.is(tok::kw___pascal)) {
797    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
798    SourceLocation AttrNameLoc = ConsumeToken();
799    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
800                 ParsedAttr::AS_Keyword);
801  }
802}
803
804void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
805  // Treat these like attributes
806  while (Tok.is(tok::kw___kernel)) {
807    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
808    SourceLocation AttrNameLoc = ConsumeToken();
809    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
810                 ParsedAttr::AS_Keyword);
811  }
812}
813
814void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
815  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
816  SourceLocation AttrNameLoc = Tok.getLocation();
817  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
818               ParsedAttr::AS_Keyword);
819}
820
821void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
822  // Treat these like attributes, even though they're type specifiers.
823  while (true) {
824    switch (Tok.getKind()) {
825    case tok::kw__Nonnull:
826    case tok::kw__Nullable:
827    case tok::kw__Null_unspecified: {
828      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
829      SourceLocation AttrNameLoc = ConsumeToken();
830      if (!getLangOpts().ObjC)
831        Diag(AttrNameLoc, diag::ext_nullability)
832          << AttrName;
833      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
834                   ParsedAttr::AS_Keyword);
835      break;
836    }
837    default:
838      return;
839    }
840  }
841}
842
843static bool VersionNumberSeparator(const char Separator) {
844  return (Separator == '.' || Separator == '_');
845}
846
847/// Parse a version number.
848///
849/// version:
850///   simple-integer
851///   simple-integer '.' simple-integer
852///   simple-integer '_' simple-integer
853///   simple-integer '.' simple-integer '.' simple-integer
854///   simple-integer '_' simple-integer '_' simple-integer
855VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
856  Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
857
858  if (!Tok.is(tok::numeric_constant)) {
859    Diag(Tok, diag::err_expected_version);
860    SkipUntil(tok::comma, tok::r_paren,
861              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
862    return VersionTuple();
863  }
864
865  // Parse the major (and possibly minor and subminor) versions, which
866  // are stored in the numeric constant. We utilize a quirk of the
867  // lexer, which is that it handles something like 1.2.3 as a single
868  // numeric constant, rather than two separate tokens.
869  SmallString<512> Buffer;
870  Buffer.resize(Tok.getLength()+1);
871  const char *ThisTokBegin = &Buffer[0];
872
873  // Get the spelling of the token, which eliminates trigraphs, etc.
874  bool Invalid = false;
875  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
876  if (Invalid)
877    return VersionTuple();
878
879  // Parse the major version.
880  unsigned AfterMajor = 0;
881  unsigned Major = 0;
882  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
883    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
884    ++AfterMajor;
885  }
886
887  if (AfterMajor == 0) {
888    Diag(Tok, diag::err_expected_version);
889    SkipUntil(tok::comma, tok::r_paren,
890              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
891    return VersionTuple();
892  }
893
894  if (AfterMajor == ActualLength) {
895    ConsumeToken();
896
897    // We only had a single version component.
898    if (Major == 0) {
899      Diag(Tok, diag::err_zero_version);
900      return VersionTuple();
901    }
902
903    return VersionTuple(Major);
904  }
905
906  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
907  if (!VersionNumberSeparator(AfterMajorSeparator)
908      || (AfterMajor + 1 == ActualLength)) {
909    Diag(Tok, diag::err_expected_version);
910    SkipUntil(tok::comma, tok::r_paren,
911              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
912    return VersionTuple();
913  }
914
915  // Parse the minor version.
916  unsigned AfterMinor = AfterMajor + 1;
917  unsigned Minor = 0;
918  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
919    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
920    ++AfterMinor;
921  }
922
923  if (AfterMinor == ActualLength) {
924    ConsumeToken();
925
926    // We had major.minor.
927    if (Major == 0 && Minor == 0) {
928      Diag(Tok, diag::err_zero_version);
929      return VersionTuple();
930    }
931
932    return VersionTuple(Major, Minor);
933  }
934
935  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
936  // If what follows is not a '.' or '_', we have a problem.
937  if (!VersionNumberSeparator(AfterMinorSeparator)) {
938    Diag(Tok, diag::err_expected_version);
939    SkipUntil(tok::comma, tok::r_paren,
940              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
941    return VersionTuple();
942  }
943
944  // Warn if separators, be it '.' or '_', do not match.
945  if (AfterMajorSeparator != AfterMinorSeparator)
946    Diag(Tok, diag::warn_expected_consistent_version_separator);
947
948  // Parse the subminor version.
949  unsigned AfterSubminor = AfterMinor + 1;
950  unsigned Subminor = 0;
951  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
952    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
953    ++AfterSubminor;
954  }
955
956  if (AfterSubminor != ActualLength) {
957    Diag(Tok, diag::err_expected_version);
958    SkipUntil(tok::comma, tok::r_paren,
959              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
960    return VersionTuple();
961  }
962  ConsumeToken();
963  return VersionTuple(Major, Minor, Subminor);
964}
965
966/// Parse the contents of the "availability" attribute.
967///
968/// availability-attribute:
969///   'availability' '(' platform ',' opt-strict version-arg-list,
970///                      opt-replacement, opt-message')'
971///
972/// platform:
973///   identifier
974///
975/// opt-strict:
976///   'strict' ','
977///
978/// version-arg-list:
979///   version-arg
980///   version-arg ',' version-arg-list
981///
982/// version-arg:
983///   'introduced' '=' version
984///   'deprecated' '=' version
985///   'obsoleted' = version
986///   'unavailable'
987/// opt-replacement:
988///   'replacement' '=' <string>
989/// opt-message:
990///   'message' '=' <string>
991void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
992                                        SourceLocation AvailabilityLoc,
993                                        ParsedAttributes &attrs,
994                                        SourceLocation *endLoc,
995                                        IdentifierInfo *ScopeName,
996                                        SourceLocation ScopeLoc,
997                                        ParsedAttr::Syntax Syntax) {
998  enum { Introduced, Deprecated, Obsoleted, Unknown };
999  AvailabilityChange Changes[Unknown];
1000  ExprResult MessageExpr, ReplacementExpr;
1001
1002  // Opening '('.
1003  BalancedDelimiterTracker T(*this, tok::l_paren);
1004  if (T.consumeOpen()) {
1005    Diag(Tok, diag::err_expected) << tok::l_paren;
1006    return;
1007  }
1008
1009  // Parse the platform name.
1010  if (Tok.isNot(tok::identifier)) {
1011    Diag(Tok, diag::err_availability_expected_platform);
1012    SkipUntil(tok::r_paren, StopAtSemi);
1013    return;
1014  }
1015  IdentifierLoc *Platform = ParseIdentifierLoc();
1016  if (const IdentifierInfo *const Ident = Platform->Ident) {
1017    // Canonicalize platform name from "macosx" to "macos".
1018    if (Ident->getName() == "macosx")
1019      Platform->Ident = PP.getIdentifierInfo("macos");
1020    // Canonicalize platform name from "macosx_app_extension" to
1021    // "macos_app_extension".
1022    else if (Ident->getName() == "macosx_app_extension")
1023      Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1024    else
1025      Platform->Ident = PP.getIdentifierInfo(
1026          AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1027  }
1028
1029  // Parse the ',' following the platform name.
1030  if (ExpectAndConsume(tok::comma)) {
1031    SkipUntil(tok::r_paren, StopAtSemi);
1032    return;
1033  }
1034
1035  // If we haven't grabbed the pointers for the identifiers
1036  // "introduced", "deprecated", and "obsoleted", do so now.
1037  if (!Ident_introduced) {
1038    Ident_introduced = PP.getIdentifierInfo("introduced");
1039    Ident_deprecated = PP.getIdentifierInfo("deprecated");
1040    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1041    Ident_unavailable = PP.getIdentifierInfo("unavailable");
1042    Ident_message = PP.getIdentifierInfo("message");
1043    Ident_strict = PP.getIdentifierInfo("strict");
1044    Ident_replacement = PP.getIdentifierInfo("replacement");
1045  }
1046
1047  // Parse the optional "strict", the optional "replacement" and the set of
1048  // introductions/deprecations/removals.
1049  SourceLocation UnavailableLoc, StrictLoc;
1050  do {
1051    if (Tok.isNot(tok::identifier)) {
1052      Diag(Tok, diag::err_availability_expected_change);
1053      SkipUntil(tok::r_paren, StopAtSemi);
1054      return;
1055    }
1056    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1057    SourceLocation KeywordLoc = ConsumeToken();
1058
1059    if (Keyword == Ident_strict) {
1060      if (StrictLoc.isValid()) {
1061        Diag(KeywordLoc, diag::err_availability_redundant)
1062          << Keyword << SourceRange(StrictLoc);
1063      }
1064      StrictLoc = KeywordLoc;
1065      continue;
1066    }
1067
1068    if (Keyword == Ident_unavailable) {
1069      if (UnavailableLoc.isValid()) {
1070        Diag(KeywordLoc, diag::err_availability_redundant)
1071          << Keyword << SourceRange(UnavailableLoc);
1072      }
1073      UnavailableLoc = KeywordLoc;
1074      continue;
1075    }
1076
1077    if (Keyword == Ident_deprecated && Platform->Ident &&
1078        Platform->Ident->isStr("swift")) {
1079      // For swift, we deprecate for all versions.
1080      if (Changes[Deprecated].KeywordLoc.isValid()) {
1081        Diag(KeywordLoc, diag::err_availability_redundant)
1082          << Keyword
1083          << SourceRange(Changes[Deprecated].KeywordLoc);
1084      }
1085
1086      Changes[Deprecated].KeywordLoc = KeywordLoc;
1087      // Use a fake version here.
1088      Changes[Deprecated].Version = VersionTuple(1);
1089      continue;
1090    }
1091
1092    if (Tok.isNot(tok::equal)) {
1093      Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1094      SkipUntil(tok::r_paren, StopAtSemi);
1095      return;
1096    }
1097    ConsumeToken();
1098    if (Keyword == Ident_message || Keyword == Ident_replacement) {
1099      if (Tok.isNot(tok::string_literal)) {
1100        Diag(Tok, diag::err_expected_string_literal)
1101          << /*Source='availability attribute'*/2;
1102        SkipUntil(tok::r_paren, StopAtSemi);
1103        return;
1104      }
1105      if (Keyword == Ident_message)
1106        MessageExpr = ParseStringLiteralExpression();
1107      else
1108        ReplacementExpr = ParseStringLiteralExpression();
1109      // Also reject wide string literals.
1110      if (StringLiteral *MessageStringLiteral =
1111              cast_or_null<StringLiteral>(MessageExpr.get())) {
1112        if (MessageStringLiteral->getCharByteWidth() != 1) {
1113          Diag(MessageStringLiteral->getSourceRange().getBegin(),
1114               diag::err_expected_string_literal)
1115            << /*Source='availability attribute'*/ 2;
1116          SkipUntil(tok::r_paren, StopAtSemi);
1117          return;
1118        }
1119      }
1120      if (Keyword == Ident_message)
1121        break;
1122      else
1123        continue;
1124    }
1125
1126    // Special handling of 'NA' only when applied to introduced or
1127    // deprecated.
1128    if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1129        Tok.is(tok::identifier)) {
1130      IdentifierInfo *NA = Tok.getIdentifierInfo();
1131      if (NA->getName() == "NA") {
1132        ConsumeToken();
1133        if (Keyword == Ident_introduced)
1134          UnavailableLoc = KeywordLoc;
1135        continue;
1136      }
1137    }
1138
1139    SourceRange VersionRange;
1140    VersionTuple Version = ParseVersionTuple(VersionRange);
1141
1142    if (Version.empty()) {
1143      SkipUntil(tok::r_paren, StopAtSemi);
1144      return;
1145    }
1146
1147    unsigned Index;
1148    if (Keyword == Ident_introduced)
1149      Index = Introduced;
1150    else if (Keyword == Ident_deprecated)
1151      Index = Deprecated;
1152    else if (Keyword == Ident_obsoleted)
1153      Index = Obsoleted;
1154    else
1155      Index = Unknown;
1156
1157    if (Index < Unknown) {
1158      if (!Changes[Index].KeywordLoc.isInvalid()) {
1159        Diag(KeywordLoc, diag::err_availability_redundant)
1160          << Keyword
1161          << SourceRange(Changes[Index].KeywordLoc,
1162                         Changes[Index].VersionRange.getEnd());
1163      }
1164
1165      Changes[Index].KeywordLoc = KeywordLoc;
1166      Changes[Index].Version = Version;
1167      Changes[Index].VersionRange = VersionRange;
1168    } else {
1169      Diag(KeywordLoc, diag::err_availability_unknown_change)
1170        << Keyword << VersionRange;
1171    }
1172
1173  } while (TryConsumeToken(tok::comma));
1174
1175  // Closing ')'.
1176  if (T.consumeClose())
1177    return;
1178
1179  if (endLoc)
1180    *endLoc = T.getCloseLocation();
1181
1182  // The 'unavailable' availability cannot be combined with any other
1183  // availability changes. Make sure that hasn't happened.
1184  if (UnavailableLoc.isValid()) {
1185    bool Complained = false;
1186    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1187      if (Changes[Index].KeywordLoc.isValid()) {
1188        if (!Complained) {
1189          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1190            << SourceRange(Changes[Index].KeywordLoc,
1191                           Changes[Index].VersionRange.getEnd());
1192          Complained = true;
1193        }
1194
1195        // Clear out the availability.
1196        Changes[Index] = AvailabilityChange();
1197      }
1198    }
1199  }
1200
1201  // Record this attribute
1202  attrs.addNew(&Availability,
1203               SourceRange(AvailabilityLoc, T.getCloseLocation()),
1204               ScopeName, ScopeLoc,
1205               Platform,
1206               Changes[Introduced],
1207               Changes[Deprecated],
1208               Changes[Obsoleted],
1209               UnavailableLoc, MessageExpr.get(),
1210               Syntax, StrictLoc, ReplacementExpr.get());
1211}
1212
1213/// Parse the contents of the "external_source_symbol" attribute.
1214///
1215/// external-source-symbol-attribute:
1216///   'external_source_symbol' '(' keyword-arg-list ')'
1217///
1218/// keyword-arg-list:
1219///   keyword-arg
1220///   keyword-arg ',' keyword-arg-list
1221///
1222/// keyword-arg:
1223///   'language' '=' <string>
1224///   'defined_in' '=' <string>
1225///   'generated_declaration'
1226void Parser::ParseExternalSourceSymbolAttribute(
1227    IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1228    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1229    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1230  // Opening '('.
1231  BalancedDelimiterTracker T(*this, tok::l_paren);
1232  if (T.expectAndConsume())
1233    return;
1234
1235  // Initialize the pointers for the keyword identifiers when required.
1236  if (!Ident_language) {
1237    Ident_language = PP.getIdentifierInfo("language");
1238    Ident_defined_in = PP.getIdentifierInfo("defined_in");
1239    Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1240  }
1241
1242  ExprResult Language;
1243  bool HasLanguage = false;
1244  ExprResult DefinedInExpr;
1245  bool HasDefinedIn = false;
1246  IdentifierLoc *GeneratedDeclaration = nullptr;
1247
1248  // Parse the language/defined_in/generated_declaration keywords
1249  do {
1250    if (Tok.isNot(tok::identifier)) {
1251      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1252      SkipUntil(tok::r_paren, StopAtSemi);
1253      return;
1254    }
1255
1256    SourceLocation KeywordLoc = Tok.getLocation();
1257    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1258    if (Keyword == Ident_generated_declaration) {
1259      if (GeneratedDeclaration) {
1260        Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1261        SkipUntil(tok::r_paren, StopAtSemi);
1262        return;
1263      }
1264      GeneratedDeclaration = ParseIdentifierLoc();
1265      continue;
1266    }
1267
1268    if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1269      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1270      SkipUntil(tok::r_paren, StopAtSemi);
1271      return;
1272    }
1273
1274    ConsumeToken();
1275    if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1276                         Keyword->getName())) {
1277      SkipUntil(tok::r_paren, StopAtSemi);
1278      return;
1279    }
1280
1281    bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1282    if (Keyword == Ident_language)
1283      HasLanguage = true;
1284    else
1285      HasDefinedIn = true;
1286
1287    if (Tok.isNot(tok::string_literal)) {
1288      Diag(Tok, diag::err_expected_string_literal)
1289          << /*Source='external_source_symbol attribute'*/ 3
1290          << /*language | source container*/ (Keyword != Ident_language);
1291      SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1292      continue;
1293    }
1294    if (Keyword == Ident_language) {
1295      if (HadLanguage) {
1296        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1297            << Keyword;
1298        ParseStringLiteralExpression();
1299        continue;
1300      }
1301      Language = ParseStringLiteralExpression();
1302    } else {
1303      assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1304      if (HadDefinedIn) {
1305        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1306            << Keyword;
1307        ParseStringLiteralExpression();
1308        continue;
1309      }
1310      DefinedInExpr = ParseStringLiteralExpression();
1311    }
1312  } while (TryConsumeToken(tok::comma));
1313
1314  // Closing ')'.
1315  if (T.consumeClose())
1316    return;
1317  if (EndLoc)
1318    *EndLoc = T.getCloseLocation();
1319
1320  ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1321                      GeneratedDeclaration};
1322  Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1323               ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1324}
1325
1326/// Parse the contents of the "objc_bridge_related" attribute.
1327/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1328/// related_class:
1329///     Identifier
1330///
1331/// opt-class_method:
1332///     Identifier: | <empty>
1333///
1334/// opt-instance_method:
1335///     Identifier | <empty>
1336///
1337void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1338                                SourceLocation ObjCBridgeRelatedLoc,
1339                                ParsedAttributes &attrs,
1340                                SourceLocation *endLoc,
1341                                IdentifierInfo *ScopeName,
1342                                SourceLocation ScopeLoc,
1343                                ParsedAttr::Syntax Syntax) {
1344  // Opening '('.
1345  BalancedDelimiterTracker T(*this, tok::l_paren);
1346  if (T.consumeOpen()) {
1347    Diag(Tok, diag::err_expected) << tok::l_paren;
1348    return;
1349  }
1350
1351  // Parse the related class name.
1352  if (Tok.isNot(tok::identifier)) {
1353    Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1354    SkipUntil(tok::r_paren, StopAtSemi);
1355    return;
1356  }
1357  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1358  if (ExpectAndConsume(tok::comma)) {
1359    SkipUntil(tok::r_paren, StopAtSemi);
1360    return;
1361  }
1362
1363  // Parse class method name.  It's non-optional in the sense that a trailing
1364  // comma is required, but it can be the empty string, and then we record a
1365  // nullptr.
1366  IdentifierLoc *ClassMethod = nullptr;
1367  if (Tok.is(tok::identifier)) {
1368    ClassMethod = ParseIdentifierLoc();
1369    if (!TryConsumeToken(tok::colon)) {
1370      Diag(Tok, diag::err_objcbridge_related_selector_name);
1371      SkipUntil(tok::r_paren, StopAtSemi);
1372      return;
1373    }
1374  }
1375  if (!TryConsumeToken(tok::comma)) {
1376    if (Tok.is(tok::colon))
1377      Diag(Tok, diag::err_objcbridge_related_selector_name);
1378    else
1379      Diag(Tok, diag::err_expected) << tok::comma;
1380    SkipUntil(tok::r_paren, StopAtSemi);
1381    return;
1382  }
1383
1384  // Parse instance method name.  Also non-optional but empty string is
1385  // permitted.
1386  IdentifierLoc *InstanceMethod = nullptr;
1387  if (Tok.is(tok::identifier))
1388    InstanceMethod = ParseIdentifierLoc();
1389  else if (Tok.isNot(tok::r_paren)) {
1390    Diag(Tok, diag::err_expected) << tok::r_paren;
1391    SkipUntil(tok::r_paren, StopAtSemi);
1392    return;
1393  }
1394
1395  // Closing ')'.
1396  if (T.consumeClose())
1397    return;
1398
1399  if (endLoc)
1400    *endLoc = T.getCloseLocation();
1401
1402  // Record this attribute
1403  attrs.addNew(&ObjCBridgeRelated,
1404               SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1405               ScopeName, ScopeLoc,
1406               RelatedClass,
1407               ClassMethod,
1408               InstanceMethod,
1409               Syntax);
1410}
1411
1412// Late Parsed Attributes:
1413// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1414
1415void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1416
1417void Parser::LateParsedClass::ParseLexedAttributes() {
1418  Self->ParseLexedAttributes(*Class);
1419}
1420
1421void Parser::LateParsedAttribute::ParseLexedAttributes() {
1422  Self->ParseLexedAttribute(*this, true, false);
1423}
1424
1425/// Wrapper class which calls ParseLexedAttribute, after setting up the
1426/// scope appropriately.
1427void Parser::ParseLexedAttributes(ParsingClass &Class) {
1428  // Deal with templates
1429  // FIXME: Test cases to make sure this does the right thing for templates.
1430  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1431  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1432                                HasTemplateScope);
1433  if (HasTemplateScope)
1434    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1435
1436  // Set or update the scope flags.
1437  bool AlreadyHasClassScope = Class.TopLevelClass;
1438  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1439  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1440  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1441
1442  // Enter the scope of nested classes
1443  if (!AlreadyHasClassScope)
1444    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1445                                                Class.TagOrTemplate);
1446  if (!Class.LateParsedDeclarations.empty()) {
1447    for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1448      Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1449    }
1450  }
1451
1452  if (!AlreadyHasClassScope)
1453    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1454                                                 Class.TagOrTemplate);
1455}
1456
1457/// Parse all attributes in LAs, and attach them to Decl D.
1458void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1459                                     bool EnterScope, bool OnDefinition) {
1460  assert(LAs.parseSoon() &&
1461         "Attribute list should be marked for immediate parsing.");
1462  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1463    if (D)
1464      LAs[i]->addDecl(D);
1465    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1466    delete LAs[i];
1467  }
1468  LAs.clear();
1469}
1470
1471/// Finish parsing an attribute for which parsing was delayed.
1472/// This will be called at the end of parsing a class declaration
1473/// for each LateParsedAttribute. We consume the saved tokens and
1474/// create an attribute with the arguments filled in. We add this
1475/// to the Attribute list for the decl.
1476void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1477                                 bool EnterScope, bool OnDefinition) {
1478  // Create a fake EOF so that attribute parsing won't go off the end of the
1479  // attribute.
1480  Token AttrEnd;
1481  AttrEnd.startToken();
1482  AttrEnd.setKind(tok::eof);
1483  AttrEnd.setLocation(Tok.getLocation());
1484  AttrEnd.setEofData(LA.Toks.data());
1485  LA.Toks.push_back(AttrEnd);
1486
1487  // Append the current token at the end of the new token stream so that it
1488  // doesn't get lost.
1489  LA.Toks.push_back(Tok);
1490  PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true);
1491  // Consume the previously pushed token.
1492  ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1493
1494  ParsedAttributes Attrs(AttrFactory);
1495  SourceLocation endLoc;
1496
1497  if (LA.Decls.size() > 0) {
1498    Decl *D = LA.Decls[0];
1499    NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1500    RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1501
1502    // Allow 'this' within late-parsed attributes.
1503    Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(),
1504                                     ND && ND->isCXXInstanceMember());
1505
1506    if (LA.Decls.size() == 1) {
1507      // If the Decl is templatized, add template parameters to scope.
1508      bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1509      ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1510      if (HasTemplateScope)
1511        Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1512
1513      // If the Decl is on a function, add function parameters to the scope.
1514      bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1515      ParseScope FnScope(
1516          this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope,
1517          HasFunScope);
1518      if (HasFunScope)
1519        Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1520
1521      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1522                            nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1523                            nullptr);
1524
1525      if (HasFunScope) {
1526        Actions.ActOnExitFunctionContext();
1527        FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1528      }
1529      if (HasTemplateScope) {
1530        TempScope.Exit();
1531      }
1532    } else {
1533      // If there are multiple decls, then the decl cannot be within the
1534      // function scope.
1535      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1536                            nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1537                            nullptr);
1538    }
1539  } else {
1540    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1541  }
1542
1543  if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
1544      Attrs.begin()->isKnownToGCC())
1545    Diag(Tok, diag::warn_attribute_on_function_definition)
1546      << &LA.AttrName;
1547
1548  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1549    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1550
1551  // Due to a parsing error, we either went over the cached tokens or
1552  // there are still cached tokens left, so we skip the leftover tokens.
1553  while (Tok.isNot(tok::eof))
1554    ConsumeAnyToken();
1555
1556  if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1557    ConsumeAnyToken();
1558}
1559
1560void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1561                                              SourceLocation AttrNameLoc,
1562                                              ParsedAttributes &Attrs,
1563                                              SourceLocation *EndLoc,
1564                                              IdentifierInfo *ScopeName,
1565                                              SourceLocation ScopeLoc,
1566                                              ParsedAttr::Syntax Syntax) {
1567  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1568
1569  BalancedDelimiterTracker T(*this, tok::l_paren);
1570  T.consumeOpen();
1571
1572  if (Tok.isNot(tok::identifier)) {
1573    Diag(Tok, diag::err_expected) << tok::identifier;
1574    T.skipToEnd();
1575    return;
1576  }
1577  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1578
1579  if (ExpectAndConsume(tok::comma)) {
1580    T.skipToEnd();
1581    return;
1582  }
1583
1584  SourceRange MatchingCTypeRange;
1585  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1586  if (MatchingCType.isInvalid()) {
1587    T.skipToEnd();
1588    return;
1589  }
1590
1591  bool LayoutCompatible = false;
1592  bool MustBeNull = false;
1593  while (TryConsumeToken(tok::comma)) {
1594    if (Tok.isNot(tok::identifier)) {
1595      Diag(Tok, diag::err_expected) << tok::identifier;
1596      T.skipToEnd();
1597      return;
1598    }
1599    IdentifierInfo *Flag = Tok.getIdentifierInfo();
1600    if (Flag->isStr("layout_compatible"))
1601      LayoutCompatible = true;
1602    else if (Flag->isStr("must_be_null"))
1603      MustBeNull = true;
1604    else {
1605      Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1606      T.skipToEnd();
1607      return;
1608    }
1609    ConsumeToken(); // consume flag
1610  }
1611
1612  if (!T.consumeClose()) {
1613    Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1614                                   ArgumentKind, MatchingCType.get(),
1615                                   LayoutCompatible, MustBeNull, Syntax);
1616  }
1617
1618  if (EndLoc)
1619    *EndLoc = T.getCloseLocation();
1620}
1621
1622/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1623/// of a C++11 attribute-specifier in a location where an attribute is not
1624/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1625/// situation.
1626///
1627/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1628/// this doesn't appear to actually be an attribute-specifier, and the caller
1629/// should try to parse it.
1630bool Parser::DiagnoseProhibitedCXX11Attribute() {
1631  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1632
1633  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1634  case CAK_NotAttributeSpecifier:
1635    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1636    return false;
1637
1638  case CAK_InvalidAttributeSpecifier:
1639    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1640    return false;
1641
1642  case CAK_AttributeSpecifier:
1643    // Parse and discard the attributes.
1644    SourceLocation BeginLoc = ConsumeBracket();
1645    ConsumeBracket();
1646    SkipUntil(tok::r_square);
1647    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1648    SourceLocation EndLoc = ConsumeBracket();
1649    Diag(BeginLoc, diag::err_attributes_not_allowed)
1650      << SourceRange(BeginLoc, EndLoc);
1651    return true;
1652  }
1653  llvm_unreachable("All cases handled above.");
1654}
1655
1656/// We have found the opening square brackets of a C++11
1657/// attribute-specifier in a location where an attribute is not permitted, but
1658/// we know where the attributes ought to be written. Parse them anyway, and
1659/// provide a fixit moving them to the right place.
1660void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1661                                             SourceLocation CorrectLocation) {
1662  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1663         Tok.is(tok::kw_alignas));
1664
1665  // Consume the attributes.
1666  SourceLocation Loc = Tok.getLocation();
1667  ParseCXX11Attributes(Attrs);
1668  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1669  // FIXME: use err_attributes_misplaced
1670  Diag(Loc, diag::err_attributes_not_allowed)
1671    << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1672    << FixItHint::CreateRemoval(AttrRange);
1673}
1674
1675void Parser::DiagnoseProhibitedAttributes(
1676    const SourceRange &Range, const SourceLocation CorrectLocation) {
1677  if (CorrectLocation.isValid()) {
1678    CharSourceRange AttrRange(Range, true);
1679    Diag(CorrectLocation, diag::err_attributes_misplaced)
1680        << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1681        << FixItHint::CreateRemoval(AttrRange);
1682  } else
1683    Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1684}
1685
1686void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1687                                     unsigned DiagID) {
1688  for (const ParsedAttr &AL : Attrs) {
1689    if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1690      continue;
1691    if (AL.getKind() == ParsedAttr::UnknownAttribute)
1692      Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
1693    else {
1694      Diag(AL.getLoc(), DiagID) << AL;
1695      AL.setInvalid();
1696    }
1697  }
1698}
1699
1700// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1701// applies to var, not the type Foo.
1702// As an exception to the rule, __declspec(align(...)) before the
1703// class-key affects the type instead of the variable.
1704// Also, Microsoft-style [attributes] seem to affect the type instead of the
1705// variable.
1706// This function moves attributes that should apply to the type off DS to Attrs.
1707void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1708                                            DeclSpec &DS,
1709                                            Sema::TagUseKind TUK) {
1710  if (TUK == Sema::TUK_Reference)
1711    return;
1712
1713  llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1714
1715  for (ParsedAttr &AL : DS.getAttributes()) {
1716    if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1717         AL.isDeclspecAttribute()) ||
1718        AL.isMicrosoftAttribute())
1719      ToBeMoved.push_back(&AL);
1720  }
1721
1722  for (ParsedAttr *AL : ToBeMoved) {
1723    DS.getAttributes().remove(AL);
1724    Attrs.addAtEnd(AL);
1725  }
1726}
1727
1728/// ParseDeclaration - Parse a full 'declaration', which consists of
1729/// declaration-specifiers, some number of declarators, and a semicolon.
1730/// 'Context' should be a DeclaratorContext value.  This returns the
1731/// location of the semicolon in DeclEnd.
1732///
1733///       declaration: [C99 6.7]
1734///         block-declaration ->
1735///           simple-declaration
1736///           others                   [FIXME]
1737/// [C++]   template-declaration
1738/// [C++]   namespace-definition
1739/// [C++]   using-directive
1740/// [C++]   using-declaration
1741/// [C++11/C11] static_assert-declaration
1742///         others... [FIXME]
1743///
1744Parser::DeclGroupPtrTy
1745Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd,
1746                         ParsedAttributesWithRange &attrs,
1747                         SourceLocation *DeclSpecStart) {
1748  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1749  // Must temporarily exit the objective-c container scope for
1750  // parsing c none objective-c decls.
1751  ObjCDeclContextSwitch ObjCDC(*this);
1752
1753  Decl *SingleDecl = nullptr;
1754  switch (Tok.getKind()) {
1755  case tok::kw_template:
1756  case tok::kw_export:
1757    ProhibitAttributes(attrs);
1758    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1759    break;
1760  case tok::kw_inline:
1761    // Could be the start of an inline namespace. Allowed as an ext in C++03.
1762    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1763      ProhibitAttributes(attrs);
1764      SourceLocation InlineLoc = ConsumeToken();
1765      return ParseNamespace(Context, DeclEnd, InlineLoc);
1766    }
1767    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1768                                  DeclSpecStart);
1769  case tok::kw_namespace:
1770    ProhibitAttributes(attrs);
1771    return ParseNamespace(Context, DeclEnd);
1772  case tok::kw_using:
1773    return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1774                                            DeclEnd, attrs);
1775  case tok::kw_static_assert:
1776  case tok::kw__Static_assert:
1777    ProhibitAttributes(attrs);
1778    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1779    break;
1780  default:
1781    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1782                                  DeclSpecStart);
1783  }
1784
1785  // This routine returns a DeclGroup, if the thing we parsed only contains a
1786  // single decl, convert it now.
1787  return Actions.ConvertDeclToDeclGroup(SingleDecl);
1788}
1789
1790///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1791///         declaration-specifiers init-declarator-list[opt] ';'
1792/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1793///             init-declarator-list ';'
1794///[C90/C++]init-declarator-list ';'                             [TODO]
1795/// [OMP]   threadprivate-directive
1796/// [OMP]   allocate-directive                                   [TODO]
1797///
1798///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1799///         attribute-specifier-seq[opt] type-specifier-seq declarator
1800///
1801/// If RequireSemi is false, this does not check for a ';' at the end of the
1802/// declaration.  If it is true, it checks for and eats it.
1803///
1804/// If FRI is non-null, we might be parsing a for-range-declaration instead
1805/// of a simple-declaration. If we find that we are, we also parse the
1806/// for-range-initializer, and place it here.
1807///
1808/// DeclSpecStart is used when decl-specifiers are parsed before parsing
1809/// the Declaration. The SourceLocation for this Decl is set to
1810/// DeclSpecStart if DeclSpecStart is non-null.
1811Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
1812    DeclaratorContext Context, SourceLocation &DeclEnd,
1813    ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI,
1814    SourceLocation *DeclSpecStart) {
1815  // Parse the common declaration-specifiers piece.
1816  ParsingDeclSpec DS(*this);
1817
1818  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1819  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1820
1821  // If we had a free-standing type definition with a missing semicolon, we
1822  // may get this far before the problem becomes obvious.
1823  if (DS.hasTagDefinition() &&
1824      DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1825    return nullptr;
1826
1827  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1828  // declaration-specifiers init-declarator-list[opt] ';'
1829  if (Tok.is(tok::semi)) {
1830    ProhibitAttributes(Attrs);
1831    DeclEnd = Tok.getLocation();
1832    if (RequireSemi) ConsumeToken();
1833    RecordDecl *AnonRecord = nullptr;
1834    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1835                                                       DS, AnonRecord);
1836    DS.complete(TheDecl);
1837    if (AnonRecord) {
1838      Decl* decls[] = {AnonRecord, TheDecl};
1839      return Actions.BuildDeclaratorGroup(decls);
1840    }
1841    return Actions.ConvertDeclToDeclGroup(TheDecl);
1842  }
1843
1844  if (DeclSpecStart)
1845    DS.SetRangeStart(*DeclSpecStart);
1846
1847  DS.takeAttributesFrom(Attrs);
1848  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1849}
1850
1851/// Returns true if this might be the start of a declarator, or a common typo
1852/// for a declarator.
1853bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1854  switch (Tok.getKind()) {
1855  case tok::annot_cxxscope:
1856  case tok::annot_template_id:
1857  case tok::caret:
1858  case tok::code_completion:
1859  case tok::coloncolon:
1860  case tok::ellipsis:
1861  case tok::kw___attribute:
1862  case tok::kw_operator:
1863  case tok::l_paren:
1864  case tok::star:
1865    return true;
1866
1867  case tok::amp:
1868  case tok::ampamp:
1869    return getLangOpts().CPlusPlus;
1870
1871  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1872    return Context == DeclaratorContext::MemberContext &&
1873           getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1874
1875  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1876    return Context == DeclaratorContext::MemberContext ||
1877           getLangOpts().CPlusPlus;
1878
1879  case tok::identifier:
1880    switch (NextToken().getKind()) {
1881    case tok::code_completion:
1882    case tok::coloncolon:
1883    case tok::comma:
1884    case tok::equal:
1885    case tok::equalequal: // Might be a typo for '='.
1886    case tok::kw_alignas:
1887    case tok::kw_asm:
1888    case tok::kw___attribute:
1889    case tok::l_brace:
1890    case tok::l_paren:
1891    case tok::l_square:
1892    case tok::less:
1893    case tok::r_brace:
1894    case tok::r_paren:
1895    case tok::r_square:
1896    case tok::semi:
1897      return true;
1898
1899    case tok::colon:
1900      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1901      // and in block scope it's probably a label. Inside a class definition,
1902      // this is a bit-field.
1903      return Context == DeclaratorContext::MemberContext ||
1904             (getLangOpts().CPlusPlus &&
1905              Context == DeclaratorContext::FileContext);
1906
1907    case tok::identifier: // Possible virt-specifier.
1908      return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1909
1910    default:
1911      return false;
1912    }
1913
1914  default:
1915    return false;
1916  }
1917}
1918
1919/// Skip until we reach something which seems like a sensible place to pick
1920/// up parsing after a malformed declaration. This will sometimes stop sooner
1921/// than SkipUntil(tok::r_brace) would, but will never stop later.
1922void Parser::SkipMalformedDecl() {
1923  while (true) {
1924    switch (Tok.getKind()) {
1925    case tok::l_brace:
1926      // Skip until matching }, then stop. We've probably skipped over
1927      // a malformed class or function definition or similar.
1928      ConsumeBrace();
1929      SkipUntil(tok::r_brace);
1930      if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1931        // This declaration isn't over yet. Keep skipping.
1932        continue;
1933      }
1934      TryConsumeToken(tok::semi);
1935      return;
1936
1937    case tok::l_square:
1938      ConsumeBracket();
1939      SkipUntil(tok::r_square);
1940      continue;
1941
1942    case tok::l_paren:
1943      ConsumeParen();
1944      SkipUntil(tok::r_paren);
1945      continue;
1946
1947    case tok::r_brace:
1948      return;
1949
1950    case tok::semi:
1951      ConsumeToken();
1952      return;
1953
1954    case tok::kw_inline:
1955      // 'inline namespace' at the start of a line is almost certainly
1956      // a good place to pick back up parsing, except in an Objective-C
1957      // @interface context.
1958      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1959          (!ParsingInObjCContainer || CurParsedObjCImpl))
1960        return;
1961      break;
1962
1963    case tok::kw_namespace:
1964      // 'namespace' at the start of a line is almost certainly a good
1965      // place to pick back up parsing, except in an Objective-C
1966      // @interface context.
1967      if (Tok.isAtStartOfLine() &&
1968          (!ParsingInObjCContainer || CurParsedObjCImpl))
1969        return;
1970      break;
1971
1972    case tok::at:
1973      // @end is very much like } in Objective-C contexts.
1974      if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1975          ParsingInObjCContainer)
1976        return;
1977      break;
1978
1979    case tok::minus:
1980    case tok::plus:
1981      // - and + probably start new method declarations in Objective-C contexts.
1982      if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1983        return;
1984      break;
1985
1986    case tok::eof:
1987    case tok::annot_module_begin:
1988    case tok::annot_module_end:
1989    case tok::annot_module_include:
1990      return;
1991
1992    default:
1993      break;
1994    }
1995
1996    ConsumeAnyToken();
1997  }
1998}
1999
2000/// ParseDeclGroup - Having concluded that this is either a function
2001/// definition or a group of object declarations, actually parse the
2002/// result.
2003Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2004                                              DeclaratorContext Context,
2005                                              SourceLocation *DeclEnd,
2006                                              ForRangeInit *FRI) {
2007  // Parse the first declarator.
2008  ParsingDeclarator D(*this, DS, Context);
2009  ParseDeclarator(D);
2010
2011  // Bail out if the first declarator didn't seem well-formed.
2012  if (!D.hasName() && !D.mayOmitIdentifier()) {
2013    SkipMalformedDecl();
2014    return nullptr;
2015  }
2016
2017  if (Tok.is(tok::kw_requires))
2018    ParseTrailingRequiresClause(D);
2019
2020  // Save late-parsed attributes for now; they need to be parsed in the
2021  // appropriate function scope after the function Decl has been constructed.
2022  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2023  LateParsedAttrList LateParsedAttrs(true);
2024  if (D.isFunctionDeclarator()) {
2025    MaybeParseGNUAttributes(D, &LateParsedAttrs);
2026
2027    // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2028    // attribute. If we find the keyword here, tell the user to put it
2029    // at the start instead.
2030    if (Tok.is(tok::kw__Noreturn)) {
2031      SourceLocation Loc = ConsumeToken();
2032      const char *PrevSpec;
2033      unsigned DiagID;
2034
2035      // We can offer a fixit if it's valid to mark this function as _Noreturn
2036      // and we don't have any other declarators in this declaration.
2037      bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2038      MaybeParseGNUAttributes(D, &LateParsedAttrs);
2039      Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2040
2041      Diag(Loc, diag::err_c11_noreturn_misplaced)
2042          << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2043          << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2044                    : FixItHint());
2045    }
2046  }
2047
2048  // Check to see if we have a function *definition* which must have a body.
2049  if (D.isFunctionDeclarator() &&
2050      // Look at the next token to make sure that this isn't a function
2051      // declaration.  We have to check this because __attribute__ might be the
2052      // start of a function definition in GCC-extended K&R C.
2053      !isDeclarationAfterDeclarator()) {
2054
2055    // Function definitions are only allowed at file scope and in C++ classes.
2056    // The C++ inline method definition case is handled elsewhere, so we only
2057    // need to handle the file scope definition case.
2058    if (Context == DeclaratorContext::FileContext) {
2059      if (isStartOfFunctionDefinition(D)) {
2060        if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2061          Diag(Tok, diag::err_function_declared_typedef);
2062
2063          // Recover by treating the 'typedef' as spurious.
2064          DS.ClearStorageClassSpecs();
2065        }
2066
2067        Decl *TheDecl =
2068          ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
2069        return Actions.ConvertDeclToDeclGroup(TheDecl);
2070      }
2071
2072      if (isDeclarationSpecifier()) {
2073        // If there is an invalid declaration specifier right after the
2074        // function prototype, then we must be in a missing semicolon case
2075        // where this isn't actually a body.  Just fall through into the code
2076        // that handles it as a prototype, and let the top-level code handle
2077        // the erroneous declspec where it would otherwise expect a comma or
2078        // semicolon.
2079      } else {
2080        Diag(Tok, diag::err_expected_fn_body);
2081        SkipUntil(tok::semi);
2082        return nullptr;
2083      }
2084    } else {
2085      if (Tok.is(tok::l_brace)) {
2086        Diag(Tok, diag::err_function_definition_not_allowed);
2087        SkipMalformedDecl();
2088        return nullptr;
2089      }
2090    }
2091  }
2092
2093  if (ParseAsmAttributesAfterDeclarator(D))
2094    return nullptr;
2095
2096  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2097  // must parse and analyze the for-range-initializer before the declaration is
2098  // analyzed.
2099  //
2100  // Handle the Objective-C for-in loop variable similarly, although we
2101  // don't need to parse the container in advance.
2102  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2103    bool IsForRangeLoop = false;
2104    if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2105      IsForRangeLoop = true;
2106      if (getLangOpts().OpenMP)
2107        Actions.startOpenMPCXXRangeFor();
2108      if (Tok.is(tok::l_brace))
2109        FRI->RangeExpr = ParseBraceInitializer();
2110      else
2111        FRI->RangeExpr = ParseExpression();
2112    }
2113
2114    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2115    if (IsForRangeLoop) {
2116      Actions.ActOnCXXForRangeDecl(ThisDecl);
2117    } else {
2118      // Obj-C for loop
2119      if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2120        VD->setObjCForDecl(true);
2121    }
2122    Actions.FinalizeDeclaration(ThisDecl);
2123    D.complete(ThisDecl);
2124    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2125  }
2126
2127  SmallVector<Decl *, 8> DeclsInGroup;
2128  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2129      D, ParsedTemplateInfo(), FRI);
2130  if (LateParsedAttrs.size() > 0)
2131    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2132  D.complete(FirstDecl);
2133  if (FirstDecl)
2134    DeclsInGroup.push_back(FirstDecl);
2135
2136  bool ExpectSemi = Context != DeclaratorContext::ForContext;
2137
2138  // If we don't have a comma, it is either the end of the list (a ';') or an
2139  // error, bail out.
2140  SourceLocation CommaLoc;
2141  while (TryConsumeToken(tok::comma, CommaLoc)) {
2142    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2143      // This comma was followed by a line-break and something which can't be
2144      // the start of a declarator. The comma was probably a typo for a
2145      // semicolon.
2146      Diag(CommaLoc, diag::err_expected_semi_declaration)
2147        << FixItHint::CreateReplacement(CommaLoc, ";");
2148      ExpectSemi = false;
2149      break;
2150    }
2151
2152    // Parse the next declarator.
2153    D.clear();
2154    D.setCommaLoc(CommaLoc);
2155
2156    // Accept attributes in an init-declarator.  In the first declarator in a
2157    // declaration, these would be part of the declspec.  In subsequent
2158    // declarators, they become part of the declarator itself, so that they
2159    // don't apply to declarators after *this* one.  Examples:
2160    //    short __attribute__((common)) var;    -> declspec
2161    //    short var __attribute__((common));    -> declarator
2162    //    short x, __attribute__((common)) var;    -> declarator
2163    MaybeParseGNUAttributes(D);
2164
2165    // MSVC parses but ignores qualifiers after the comma as an extension.
2166    if (getLangOpts().MicrosoftExt)
2167      DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2168
2169    ParseDeclarator(D);
2170    if (!D.isInvalidType()) {
2171      // C++2a [dcl.decl]p1
2172      //    init-declarator:
2173      //	      declarator initializer[opt]
2174      //        declarator requires-clause
2175      if (Tok.is(tok::kw_requires))
2176        ParseTrailingRequiresClause(D);
2177      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2178      D.complete(ThisDecl);
2179      if (ThisDecl)
2180        DeclsInGroup.push_back(ThisDecl);
2181    }
2182  }
2183
2184  if (DeclEnd)
2185    *DeclEnd = Tok.getLocation();
2186
2187  if (ExpectSemi &&
2188      ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2189                           ? diag::err_invalid_token_after_toplevel_declarator
2190                           : diag::err_expected_semi_declaration)) {
2191    // Okay, there was no semicolon and one was expected.  If we see a
2192    // declaration specifier, just assume it was missing and continue parsing.
2193    // Otherwise things are very confused and we skip to recover.
2194    if (!isDeclarationSpecifier()) {
2195      SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2196      TryConsumeToken(tok::semi);
2197    }
2198  }
2199
2200  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2201}
2202
2203/// Parse an optional simple-asm-expr and attributes, and attach them to a
2204/// declarator. Returns true on an error.
2205bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2206  // If a simple-asm-expr is present, parse it.
2207  if (Tok.is(tok::kw_asm)) {
2208    SourceLocation Loc;
2209    ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2210    if (AsmLabel.isInvalid()) {
2211      SkipUntil(tok::semi, StopBeforeMatch);
2212      return true;
2213    }
2214
2215    D.setAsmLabel(AsmLabel.get());
2216    D.SetRangeEnd(Loc);
2217  }
2218
2219  MaybeParseGNUAttributes(D);
2220  return false;
2221}
2222
2223/// Parse 'declaration' after parsing 'declaration-specifiers
2224/// declarator'. This method parses the remainder of the declaration
2225/// (including any attributes or initializer, among other things) and
2226/// finalizes the declaration.
2227///
2228///       init-declarator: [C99 6.7]
2229///         declarator
2230///         declarator '=' initializer
2231/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2232/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2233/// [C++]   declarator initializer[opt]
2234///
2235/// [C++] initializer:
2236/// [C++]   '=' initializer-clause
2237/// [C++]   '(' expression-list ')'
2238/// [C++0x] '=' 'default'                                                [TODO]
2239/// [C++0x] '=' 'delete'
2240/// [C++0x] braced-init-list
2241///
2242/// According to the standard grammar, =default and =delete are function
2243/// definitions, but that definitely doesn't fit with the parser here.
2244///
2245Decl *Parser::ParseDeclarationAfterDeclarator(
2246    Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2247  if (ParseAsmAttributesAfterDeclarator(D))
2248    return nullptr;
2249
2250  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2251}
2252
2253Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2254    Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2255  // RAII type used to track whether we're inside an initializer.
2256  struct InitializerScopeRAII {
2257    Parser &P;
2258    Declarator &D;
2259    Decl *ThisDecl;
2260
2261    InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2262        : P(P), D(D), ThisDecl(ThisDecl) {
2263      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2264        Scope *S = nullptr;
2265        if (D.getCXXScopeSpec().isSet()) {
2266          P.EnterScope(0);
2267          S = P.getCurScope();
2268        }
2269        P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2270      }
2271    }
2272    ~InitializerScopeRAII() { pop(); }
2273    void pop() {
2274      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2275        Scope *S = nullptr;
2276        if (D.getCXXScopeSpec().isSet())
2277          S = P.getCurScope();
2278        P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2279        if (S)
2280          P.ExitScope();
2281      }
2282      ThisDecl = nullptr;
2283    }
2284  };
2285
2286  // Inform the current actions module that we just parsed this declarator.
2287  Decl *ThisDecl = nullptr;
2288  switch (TemplateInfo.Kind) {
2289  case ParsedTemplateInfo::NonTemplate:
2290    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2291    break;
2292
2293  case ParsedTemplateInfo::Template:
2294  case ParsedTemplateInfo::ExplicitSpecialization: {
2295    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2296                                               *TemplateInfo.TemplateParams,
2297                                               D);
2298    if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2299      // Re-direct this decl to refer to the templated decl so that we can
2300      // initialize it.
2301      ThisDecl = VT->getTemplatedDecl();
2302    break;
2303  }
2304  case ParsedTemplateInfo::ExplicitInstantiation: {
2305    if (Tok.is(tok::semi)) {
2306      DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2307          getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2308      if (ThisRes.isInvalid()) {
2309        SkipUntil(tok::semi, StopBeforeMatch);
2310        return nullptr;
2311      }
2312      ThisDecl = ThisRes.get();
2313    } else {
2314      // FIXME: This check should be for a variable template instantiation only.
2315
2316      // Check that this is a valid instantiation
2317      if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2318        // If the declarator-id is not a template-id, issue a diagnostic and
2319        // recover by ignoring the 'template' keyword.
2320        Diag(Tok, diag::err_template_defn_explicit_instantiation)
2321            << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2322        ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2323      } else {
2324        SourceLocation LAngleLoc =
2325            PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2326        Diag(D.getIdentifierLoc(),
2327             diag::err_explicit_instantiation_with_definition)
2328            << SourceRange(TemplateInfo.TemplateLoc)
2329            << FixItHint::CreateInsertion(LAngleLoc, "<>");
2330
2331        // Recover as if it were an explicit specialization.
2332        TemplateParameterLists FakedParamLists;
2333        FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2334            0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2335            LAngleLoc, nullptr));
2336
2337        ThisDecl =
2338            Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2339      }
2340    }
2341    break;
2342    }
2343  }
2344
2345  // Parse declarator '=' initializer.
2346  // If a '==' or '+=' is found, suggest a fixit to '='.
2347  if (isTokenEqualOrEqualTypo()) {
2348    SourceLocation EqualLoc = ConsumeToken();
2349
2350    if (Tok.is(tok::kw_delete)) {
2351      if (D.isFunctionDeclarator())
2352        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2353          << 1 /* delete */;
2354      else
2355        Diag(ConsumeToken(), diag::err_deleted_non_function);
2356    } else if (Tok.is(tok::kw_default)) {
2357      if (D.isFunctionDeclarator())
2358        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2359          << 0 /* default */;
2360      else
2361        Diag(ConsumeToken(), diag::err_default_special_members)
2362            << getLangOpts().CPlusPlus2a;
2363    } else {
2364      InitializerScopeRAII InitScope(*this, D, ThisDecl);
2365
2366      if (Tok.is(tok::code_completion)) {
2367        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2368        Actions.FinalizeDeclaration(ThisDecl);
2369        cutOffParsing();
2370        return nullptr;
2371      }
2372
2373      PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2374      ExprResult Init = ParseInitializer();
2375
2376      // If this is the only decl in (possibly) range based for statement,
2377      // our best guess is that the user meant ':' instead of '='.
2378      if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2379        Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2380            << FixItHint::CreateReplacement(EqualLoc, ":");
2381        // We are trying to stop parser from looking for ';' in this for
2382        // statement, therefore preventing spurious errors to be issued.
2383        FRI->ColonLoc = EqualLoc;
2384        Init = ExprError();
2385        FRI->RangeExpr = Init;
2386      }
2387
2388      InitScope.pop();
2389
2390      if (Init.isInvalid()) {
2391        SmallVector<tok::TokenKind, 2> StopTokens;
2392        StopTokens.push_back(tok::comma);
2393        if (D.getContext() == DeclaratorContext::ForContext ||
2394            D.getContext() == DeclaratorContext::InitStmtContext)
2395          StopTokens.push_back(tok::r_paren);
2396        SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2397        Actions.ActOnInitializerError(ThisDecl);
2398      } else
2399        Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2400                                     /*DirectInit=*/false);
2401    }
2402  } else if (Tok.is(tok::l_paren)) {
2403    // Parse C++ direct initializer: '(' expression-list ')'
2404    BalancedDelimiterTracker T(*this, tok::l_paren);
2405    T.consumeOpen();
2406
2407    ExprVector Exprs;
2408    CommaLocsTy CommaLocs;
2409
2410    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2411
2412    auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2413    auto RunSignatureHelp = [&]() {
2414      QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2415          getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2416          ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2417      CalledSignatureHelp = true;
2418      return PreferredType;
2419    };
2420    auto SetPreferredType = [&] {
2421      PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2422    };
2423
2424    llvm::function_ref<void()> ExpressionStarts;
2425    if (ThisVarDecl) {
2426      // ParseExpressionList can sometimes succeed even when ThisDecl is not
2427      // VarDecl. This is an error and it is reported in a call to
2428      // Actions.ActOnInitializerError(). However, we call
2429      // ProduceConstructorSignatureHelp only on VarDecls.
2430      ExpressionStarts = SetPreferredType;
2431    }
2432    if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) {
2433      if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2434        Actions.ProduceConstructorSignatureHelp(
2435            getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2436            ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2437        CalledSignatureHelp = true;
2438      }
2439      Actions.ActOnInitializerError(ThisDecl);
2440      SkipUntil(tok::r_paren, StopAtSemi);
2441    } else {
2442      // Match the ')'.
2443      T.consumeClose();
2444
2445      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2446             "Unexpected number of commas!");
2447
2448      InitScope.pop();
2449
2450      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2451                                                          T.getCloseLocation(),
2452                                                          Exprs);
2453      Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2454                                   /*DirectInit=*/true);
2455    }
2456  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2457             (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2458    // Parse C++0x braced-init-list.
2459    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2460
2461    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2462
2463    ExprResult Init(ParseBraceInitializer());
2464
2465    InitScope.pop();
2466
2467    if (Init.isInvalid()) {
2468      Actions.ActOnInitializerError(ThisDecl);
2469    } else
2470      Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2471
2472  } else {
2473    Actions.ActOnUninitializedDecl(ThisDecl);
2474  }
2475
2476  Actions.FinalizeDeclaration(ThisDecl);
2477
2478  return ThisDecl;
2479}
2480
2481/// ParseSpecifierQualifierList
2482///        specifier-qualifier-list:
2483///          type-specifier specifier-qualifier-list[opt]
2484///          type-qualifier specifier-qualifier-list[opt]
2485/// [GNU]    attributes     specifier-qualifier-list[opt]
2486///
2487void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2488                                         DeclSpecContext DSC) {
2489  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2490  /// parse declaration-specifiers and complain about extra stuff.
2491  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2492  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2493
2494  // Validate declspec for type-name.
2495  unsigned Specs = DS.getParsedSpecifiers();
2496  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2497    Diag(Tok, diag::err_expected_type);
2498    DS.SetTypeSpecError();
2499  } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2500    Diag(Tok, diag::err_typename_requires_specqual);
2501    if (!DS.hasTypeSpecifier())
2502      DS.SetTypeSpecError();
2503  }
2504
2505  // Issue diagnostic and remove storage class if present.
2506  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2507    if (DS.getStorageClassSpecLoc().isValid())
2508      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2509    else
2510      Diag(DS.getThreadStorageClassSpecLoc(),
2511           diag::err_typename_invalid_storageclass);
2512    DS.ClearStorageClassSpecs();
2513  }
2514
2515  // Issue diagnostic and remove function specifier if present.
2516  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2517    if (DS.isInlineSpecified())
2518      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2519    if (DS.isVirtualSpecified())
2520      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2521    if (DS.hasExplicitSpecifier())
2522      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2523    DS.ClearFunctionSpecs();
2524  }
2525
2526  // Issue diagnostic and remove constexpr specifier if present.
2527  if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2528    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2529        << DS.getConstexprSpecifier();
2530    DS.ClearConstexprSpec();
2531  }
2532}
2533
2534/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2535/// specified token is valid after the identifier in a declarator which
2536/// immediately follows the declspec.  For example, these things are valid:
2537///
2538///      int x   [             4];         // direct-declarator
2539///      int x   (             int y);     // direct-declarator
2540///  int(int x   )                         // direct-declarator
2541///      int x   ;                         // simple-declaration
2542///      int x   =             17;         // init-declarator-list
2543///      int x   ,             y;          // init-declarator-list
2544///      int x   __asm__       ("foo");    // init-declarator-list
2545///      int x   :             4;          // struct-declarator
2546///      int x   {             5};         // C++'0x unified initializers
2547///
2548/// This is not, because 'x' does not immediately follow the declspec (though
2549/// ')' happens to be valid anyway).
2550///    int (x)
2551///
2552static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2553  return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2554                   tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2555                   tok::colon);
2556}
2557
2558/// ParseImplicitInt - This method is called when we have an non-typename
2559/// identifier in a declspec (which normally terminates the decl spec) when
2560/// the declspec has no type specifier.  In this case, the declspec is either
2561/// malformed or is "implicit int" (in K&R and C89).
2562///
2563/// This method handles diagnosing this prettily and returns false if the
2564/// declspec is done being processed.  If it recovers and thinks there may be
2565/// other pieces of declspec after it, it returns true.
2566///
2567bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2568                              const ParsedTemplateInfo &TemplateInfo,
2569                              AccessSpecifier AS, DeclSpecContext DSC,
2570                              ParsedAttributesWithRange &Attrs) {
2571  assert(Tok.is(tok::identifier) && "should have identifier");
2572
2573  SourceLocation Loc = Tok.getLocation();
2574  // If we see an identifier that is not a type name, we normally would
2575  // parse it as the identifier being declared.  However, when a typename
2576  // is typo'd or the definition is not included, this will incorrectly
2577  // parse the typename as the identifier name and fall over misparsing
2578  // later parts of the diagnostic.
2579  //
2580  // As such, we try to do some look-ahead in cases where this would
2581  // otherwise be an "implicit-int" case to see if this is invalid.  For
2582  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2583  // an identifier with implicit int, we'd get a parse error because the
2584  // next token is obviously invalid for a type.  Parse these as a case
2585  // with an invalid type specifier.
2586  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2587
2588  // Since we know that this either implicit int (which is rare) or an
2589  // error, do lookahead to try to do better recovery. This never applies
2590  // within a type specifier. Outside of C++, we allow this even if the
2591  // language doesn't "officially" support implicit int -- we support
2592  // implicit int as an extension in C99 and C11.
2593  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2594      isValidAfterIdentifierInDeclarator(NextToken())) {
2595    // If this token is valid for implicit int, e.g. "static x = 4", then
2596    // we just avoid eating the identifier, so it will be parsed as the
2597    // identifier in the declarator.
2598    return false;
2599  }
2600
2601  // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2602  // for incomplete declarations such as `pipe p`.
2603  if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2604    return false;
2605
2606  if (getLangOpts().CPlusPlus &&
2607      DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2608    // Don't require a type specifier if we have the 'auto' storage class
2609    // specifier in C++98 -- we'll promote it to a type specifier.
2610    if (SS)
2611      AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2612    return false;
2613  }
2614
2615  if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2616      getLangOpts().MSVCCompat) {
2617    // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2618    // Give Sema a chance to recover if we are in a template with dependent base
2619    // classes.
2620    if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2621            *Tok.getIdentifierInfo(), Tok.getLocation(),
2622            DSC == DeclSpecContext::DSC_template_type_arg)) {
2623      const char *PrevSpec;
2624      unsigned DiagID;
2625      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2626                         Actions.getASTContext().getPrintingPolicy());
2627      DS.SetRangeEnd(Tok.getLocation());
2628      ConsumeToken();
2629      return false;
2630    }
2631  }
2632
2633  // Otherwise, if we don't consume this token, we are going to emit an
2634  // error anyway.  Try to recover from various common problems.  Check
2635  // to see if this was a reference to a tag name without a tag specified.
2636  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2637  //
2638  // C++ doesn't need this, and isTagName doesn't take SS.
2639  if (SS == nullptr) {
2640    const char *TagName = nullptr, *FixitTagName = nullptr;
2641    tok::TokenKind TagKind = tok::unknown;
2642
2643    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2644      default: break;
2645      case DeclSpec::TST_enum:
2646        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2647      case DeclSpec::TST_union:
2648        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2649      case DeclSpec::TST_struct:
2650        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2651      case DeclSpec::TST_interface:
2652        TagName="__interface"; FixitTagName = "__interface ";
2653        TagKind=tok::kw___interface;break;
2654      case DeclSpec::TST_class:
2655        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2656    }
2657
2658    if (TagName) {
2659      IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2660      LookupResult R(Actions, TokenName, SourceLocation(),
2661                     Sema::LookupOrdinaryName);
2662
2663      Diag(Loc, diag::err_use_of_tag_name_without_tag)
2664        << TokenName << TagName << getLangOpts().CPlusPlus
2665        << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2666
2667      if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2668        for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2669             I != IEnd; ++I)
2670          Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2671            << TokenName << TagName;
2672      }
2673
2674      // Parse this as a tag as if the missing tag were present.
2675      if (TagKind == tok::kw_enum)
2676        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2677                           DeclSpecContext::DSC_normal);
2678      else
2679        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2680                            /*EnteringContext*/ false,
2681                            DeclSpecContext::DSC_normal, Attrs);
2682      return true;
2683    }
2684  }
2685
2686  // Determine whether this identifier could plausibly be the name of something
2687  // being declared (with a missing type).
2688  if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2689                                DSC == DeclSpecContext::DSC_class)) {
2690    // Look ahead to the next token to try to figure out what this declaration
2691    // was supposed to be.
2692    switch (NextToken().getKind()) {
2693    case tok::l_paren: {
2694      // static x(4); // 'x' is not a type
2695      // x(int n);    // 'x' is not a type
2696      // x (*p)[];    // 'x' is a type
2697      //
2698      // Since we're in an error case, we can afford to perform a tentative
2699      // parse to determine which case we're in.
2700      TentativeParsingAction PA(*this);
2701      ConsumeToken();
2702      TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2703      PA.Revert();
2704
2705      if (TPR != TPResult::False) {
2706        // The identifier is followed by a parenthesized declarator.
2707        // It's supposed to be a type.
2708        break;
2709      }
2710
2711      // If we're in a context where we could be declaring a constructor,
2712      // check whether this is a constructor declaration with a bogus name.
2713      if (DSC == DeclSpecContext::DSC_class ||
2714          (DSC == DeclSpecContext::DSC_top_level && SS)) {
2715        IdentifierInfo *II = Tok.getIdentifierInfo();
2716        if (Actions.isCurrentClassNameTypo(II, SS)) {
2717          Diag(Loc, diag::err_constructor_bad_name)
2718            << Tok.getIdentifierInfo() << II
2719            << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2720          Tok.setIdentifierInfo(II);
2721        }
2722      }
2723      // Fall through.
2724      LLVM_FALLTHROUGH;
2725    }
2726    case tok::comma:
2727    case tok::equal:
2728    case tok::kw_asm:
2729    case tok::l_brace:
2730    case tok::l_square:
2731    case tok::semi:
2732      // This looks like a variable or function declaration. The type is
2733      // probably missing. We're done parsing decl-specifiers.
2734      // But only if we are not in a function prototype scope.
2735      if (getCurScope()->isFunctionPrototypeScope())
2736        break;
2737      if (SS)
2738        AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2739      return false;
2740
2741    default:
2742      // This is probably supposed to be a type. This includes cases like:
2743      //   int f(itn);
2744      //   struct S { unsinged : 4; };
2745      break;
2746    }
2747  }
2748
2749  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2750  // and attempt to recover.
2751  ParsedType T;
2752  IdentifierInfo *II = Tok.getIdentifierInfo();
2753  bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2754  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2755                                  IsTemplateName);
2756  if (T) {
2757    // The action has suggested that the type T could be used. Set that as
2758    // the type in the declaration specifiers, consume the would-be type
2759    // name token, and we're done.
2760    const char *PrevSpec;
2761    unsigned DiagID;
2762    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2763                       Actions.getASTContext().getPrintingPolicy());
2764    DS.SetRangeEnd(Tok.getLocation());
2765    ConsumeToken();
2766    // There may be other declaration specifiers after this.
2767    return true;
2768  } else if (II != Tok.getIdentifierInfo()) {
2769    // If no type was suggested, the correction is to a keyword
2770    Tok.setKind(II->getTokenID());
2771    // There may be other declaration specifiers after this.
2772    return true;
2773  }
2774
2775  // Otherwise, the action had no suggestion for us.  Mark this as an error.
2776  DS.SetTypeSpecError();
2777  DS.SetRangeEnd(Tok.getLocation());
2778  ConsumeToken();
2779
2780  // Eat any following template arguments.
2781  if (IsTemplateName) {
2782    SourceLocation LAngle, RAngle;
2783    TemplateArgList Args;
2784    ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2785  }
2786
2787  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2788  // avoid rippling error messages on subsequent uses of the same type,
2789  // could be useful if #include was forgotten.
2790  return true;
2791}
2792
2793/// Determine the declaration specifier context from the declarator
2794/// context.
2795///
2796/// \param Context the declarator context, which is one of the
2797/// DeclaratorContext enumerator values.
2798Parser::DeclSpecContext
2799Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2800  if (Context == DeclaratorContext::MemberContext)
2801    return DeclSpecContext::DSC_class;
2802  if (Context == DeclaratorContext::FileContext)
2803    return DeclSpecContext::DSC_top_level;
2804  if (Context == DeclaratorContext::TemplateParamContext)
2805    return DeclSpecContext::DSC_template_param;
2806  if (Context == DeclaratorContext::TemplateArgContext ||
2807      Context == DeclaratorContext::TemplateTypeArgContext)
2808    return DeclSpecContext::DSC_template_type_arg;
2809  if (Context == DeclaratorContext::TrailingReturnContext ||
2810      Context == DeclaratorContext::TrailingReturnVarContext)
2811    return DeclSpecContext::DSC_trailing;
2812  if (Context == DeclaratorContext::AliasDeclContext ||
2813      Context == DeclaratorContext::AliasTemplateContext)
2814    return DeclSpecContext::DSC_alias_declaration;
2815  return DeclSpecContext::DSC_normal;
2816}
2817
2818/// ParseAlignArgument - Parse the argument to an alignment-specifier.
2819///
2820/// FIXME: Simply returns an alignof() expression if the argument is a
2821/// type. Ideally, the type should be propagated directly into Sema.
2822///
2823/// [C11]   type-id
2824/// [C11]   constant-expression
2825/// [C++0x] type-id ...[opt]
2826/// [C++0x] assignment-expression ...[opt]
2827ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2828                                      SourceLocation &EllipsisLoc) {
2829  ExprResult ER;
2830  if (isTypeIdInParens()) {
2831    SourceLocation TypeLoc = Tok.getLocation();
2832    ParsedType Ty = ParseTypeName().get();
2833    SourceRange TypeRange(Start, Tok.getLocation());
2834    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2835                                               Ty.getAsOpaquePtr(), TypeRange);
2836  } else
2837    ER = ParseConstantExpression();
2838
2839  if (getLangOpts().CPlusPlus11)
2840    TryConsumeToken(tok::ellipsis, EllipsisLoc);
2841
2842  return ER;
2843}
2844
2845/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2846/// attribute to Attrs.
2847///
2848/// alignment-specifier:
2849/// [C11]   '_Alignas' '(' type-id ')'
2850/// [C11]   '_Alignas' '(' constant-expression ')'
2851/// [C++11] 'alignas' '(' type-id ...[opt] ')'
2852/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2853void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2854                                     SourceLocation *EndLoc) {
2855  assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2856         "Not an alignment-specifier!");
2857
2858  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2859  SourceLocation KWLoc = ConsumeToken();
2860
2861  BalancedDelimiterTracker T(*this, tok::l_paren);
2862  if (T.expectAndConsume())
2863    return;
2864
2865  SourceLocation EllipsisLoc;
2866  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2867  if (ArgExpr.isInvalid()) {
2868    T.skipToEnd();
2869    return;
2870  }
2871
2872  T.consumeClose();
2873  if (EndLoc)
2874    *EndLoc = T.getCloseLocation();
2875
2876  ArgsVector ArgExprs;
2877  ArgExprs.push_back(ArgExpr.get());
2878  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2879               ParsedAttr::AS_Keyword, EllipsisLoc);
2880}
2881
2882/// Determine whether we're looking at something that might be a declarator
2883/// in a simple-declaration. If it can't possibly be a declarator, maybe
2884/// diagnose a missing semicolon after a prior tag definition in the decl
2885/// specifier.
2886///
2887/// \return \c true if an error occurred and this can't be any kind of
2888/// declaration.
2889bool
2890Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2891                                              DeclSpecContext DSContext,
2892                                              LateParsedAttrList *LateAttrs) {
2893  assert(DS.hasTagDefinition() && "shouldn't call this");
2894
2895  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2896                          DSContext == DeclSpecContext::DSC_top_level);
2897
2898  if (getLangOpts().CPlusPlus &&
2899      Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2900                  tok::annot_template_id) &&
2901      TryAnnotateCXXScopeToken(EnteringContext)) {
2902    SkipMalformedDecl();
2903    return true;
2904  }
2905
2906  bool HasScope = Tok.is(tok::annot_cxxscope);
2907  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2908  Token AfterScope = HasScope ? NextToken() : Tok;
2909
2910  // Determine whether the following tokens could possibly be a
2911  // declarator.
2912  bool MightBeDeclarator = true;
2913  if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2914    // A declarator-id can't start with 'typename'.
2915    MightBeDeclarator = false;
2916  } else if (AfterScope.is(tok::annot_template_id)) {
2917    // If we have a type expressed as a template-id, this cannot be a
2918    // declarator-id (such a type cannot be redeclared in a simple-declaration).
2919    TemplateIdAnnotation *Annot =
2920        static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2921    if (Annot->Kind == TNK_Type_template)
2922      MightBeDeclarator = false;
2923  } else if (AfterScope.is(tok::identifier)) {
2924    const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2925
2926    // These tokens cannot come after the declarator-id in a
2927    // simple-declaration, and are likely to come after a type-specifier.
2928    if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2929                     tok::annot_cxxscope, tok::coloncolon)) {
2930      // Missing a semicolon.
2931      MightBeDeclarator = false;
2932    } else if (HasScope) {
2933      // If the declarator-id has a scope specifier, it must redeclare a
2934      // previously-declared entity. If that's a type (and this is not a
2935      // typedef), that's an error.
2936      CXXScopeSpec SS;
2937      Actions.RestoreNestedNameSpecifierAnnotation(
2938          Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2939      IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2940      Sema::NameClassification Classification = Actions.ClassifyName(
2941          getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2942          /*CCC=*/nullptr);
2943      switch (Classification.getKind()) {
2944      case Sema::NC_Error:
2945        SkipMalformedDecl();
2946        return true;
2947
2948      case Sema::NC_Keyword:
2949        llvm_unreachable("typo correction is not possible here");
2950
2951      case Sema::NC_Type:
2952      case Sema::NC_TypeTemplate:
2953      case Sema::NC_UndeclaredNonType:
2954      case Sema::NC_UndeclaredTemplate:
2955        // Not a previously-declared non-type entity.
2956        MightBeDeclarator = false;
2957        break;
2958
2959      case Sema::NC_Unknown:
2960      case Sema::NC_NonType:
2961      case Sema::NC_DependentNonType:
2962      case Sema::NC_ContextIndependentExpr:
2963      case Sema::NC_VarTemplate:
2964      case Sema::NC_FunctionTemplate:
2965      case Sema::NC_Concept:
2966        // Might be a redeclaration of a prior entity.
2967        break;
2968      }
2969    }
2970  }
2971
2972  if (MightBeDeclarator)
2973    return false;
2974
2975  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2976  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
2977       diag::err_expected_after)
2978      << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2979
2980  // Try to recover from the typo, by dropping the tag definition and parsing
2981  // the problematic tokens as a type.
2982  //
2983  // FIXME: Split the DeclSpec into pieces for the standalone
2984  // declaration and pieces for the following declaration, instead
2985  // of assuming that all the other pieces attach to new declaration,
2986  // and call ParsedFreeStandingDeclSpec as appropriate.
2987  DS.ClearTypeSpecType();
2988  ParsedTemplateInfo NotATemplate;
2989  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2990  return false;
2991}
2992
2993// Choose the apprpriate diagnostic error for why fixed point types are
2994// disabled, set the previous specifier, and mark as invalid.
2995static void SetupFixedPointError(const LangOptions &LangOpts,
2996                                 const char *&PrevSpec, unsigned &DiagID,
2997                                 bool &isInvalid) {
2998  assert(!LangOpts.FixedPoint);
2999  DiagID = diag::err_fixed_point_not_enabled;
3000  PrevSpec = "";  // Not used by diagnostic
3001  isInvalid = true;
3002}
3003
3004/// ParseDeclarationSpecifiers
3005///       declaration-specifiers: [C99 6.7]
3006///         storage-class-specifier declaration-specifiers[opt]
3007///         type-specifier declaration-specifiers[opt]
3008/// [C99]   function-specifier declaration-specifiers[opt]
3009/// [C11]   alignment-specifier declaration-specifiers[opt]
3010/// [GNU]   attributes declaration-specifiers[opt]
3011/// [Clang] '__module_private__' declaration-specifiers[opt]
3012/// [ObjC1] '__kindof' declaration-specifiers[opt]
3013///
3014///       storage-class-specifier: [C99 6.7.1]
3015///         'typedef'
3016///         'extern'
3017///         'static'
3018///         'auto'
3019///         'register'
3020/// [C++]   'mutable'
3021/// [C++11] 'thread_local'
3022/// [C11]   '_Thread_local'
3023/// [GNU]   '__thread'
3024///       function-specifier: [C99 6.7.4]
3025/// [C99]   'inline'
3026/// [C++]   'virtual'
3027/// [C++]   'explicit'
3028/// [OpenCL] '__kernel'
3029///       'friend': [C++ dcl.friend]
3030///       'constexpr': [C++0x dcl.constexpr]
3031void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
3032                                        const ParsedTemplateInfo &TemplateInfo,
3033                                        AccessSpecifier AS,
3034                                        DeclSpecContext DSContext,
3035                                        LateParsedAttrList *LateAttrs) {
3036  if (DS.getSourceRange().isInvalid()) {
3037    // Start the range at the current token but make the end of the range
3038    // invalid.  This will make the entire range invalid unless we successfully
3039    // consume a token.
3040    DS.SetRangeStart(Tok.getLocation());
3041    DS.SetRangeEnd(SourceLocation());
3042  }
3043
3044  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3045                          DSContext == DeclSpecContext::DSC_top_level);
3046  bool AttrsLastTime = false;
3047  ParsedAttributesWithRange attrs(AttrFactory);
3048  // We use Sema's policy to get bool macros right.
3049  PrintingPolicy Policy = Actions.getPrintingPolicy();
3050  while (1) {
3051    bool isInvalid = false;
3052    bool isStorageClass = false;
3053    const char *PrevSpec = nullptr;
3054    unsigned DiagID = 0;
3055
3056    // This value needs to be set to the location of the last token if the last
3057    // token of the specifier is already consumed.
3058    SourceLocation ConsumedEnd;
3059
3060    // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3061    // implementation for VS2013 uses _Atomic as an identifier for one of the
3062    // classes in <atomic>.
3063    //
3064    // A typedef declaration containing _Atomic<...> is among the places where
3065    // the class is used.  If we are currently parsing such a declaration, treat
3066    // the token as an identifier.
3067    if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3068        DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3069        !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3070      Tok.setKind(tok::identifier);
3071
3072    SourceLocation Loc = Tok.getLocation();
3073
3074    switch (Tok.getKind()) {
3075    default:
3076    DoneWithDeclSpec:
3077      if (!AttrsLastTime)
3078        ProhibitAttributes(attrs);
3079      else {
3080        // Reject C++11 attributes that appertain to decl specifiers as
3081        // we don't support any C++11 attributes that appertain to decl
3082        // specifiers. This also conforms to what g++ 4.8 is doing.
3083        ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
3084
3085        DS.takeAttributesFrom(attrs);
3086      }
3087
3088      // If this is not a declaration specifier token, we're done reading decl
3089      // specifiers.  First verify that DeclSpec's are consistent.
3090      DS.Finish(Actions, Policy);
3091      return;
3092
3093    case tok::l_square:
3094    case tok::kw_alignas:
3095      if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
3096        goto DoneWithDeclSpec;
3097
3098      ProhibitAttributes(attrs);
3099      // FIXME: It would be good to recover by accepting the attributes,
3100      //        but attempting to do that now would cause serious
3101      //        madness in terms of diagnostics.
3102      attrs.clear();
3103      attrs.Range = SourceRange();
3104
3105      ParseCXX11Attributes(attrs);
3106      AttrsLastTime = true;
3107      continue;
3108
3109    case tok::code_completion: {
3110      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
3111      if (DS.hasTypeSpecifier()) {
3112        bool AllowNonIdentifiers
3113          = (getCurScope()->getFlags() & (Scope::ControlScope |
3114                                          Scope::BlockScope |
3115                                          Scope::TemplateParamScope |
3116                                          Scope::FunctionPrototypeScope |
3117                                          Scope::AtCatchScope)) == 0;
3118        bool AllowNestedNameSpecifiers
3119          = DSContext == DeclSpecContext::DSC_top_level ||
3120            (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3121
3122        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3123                                     AllowNonIdentifiers,
3124                                     AllowNestedNameSpecifiers);
3125        return cutOffParsing();
3126      }
3127
3128      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3129        CCC = Sema::PCC_LocalDeclarationSpecifiers;
3130      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3131        CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3132                                                      : Sema::PCC_Template;
3133      else if (DSContext == DeclSpecContext::DSC_class)
3134        CCC = Sema::PCC_Class;
3135      else if (CurParsedObjCImpl)
3136        CCC = Sema::PCC_ObjCImplementation;
3137
3138      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3139      return cutOffParsing();
3140    }
3141
3142    case tok::coloncolon: // ::foo::bar
3143      // C++ scope specifier.  Annotate and loop, or bail out on error.
3144      if (TryAnnotateCXXScopeToken(EnteringContext)) {
3145        if (!DS.hasTypeSpecifier())
3146          DS.SetTypeSpecError();
3147        goto DoneWithDeclSpec;
3148      }
3149      if (Tok.is(tok::coloncolon)) // ::new or ::delete
3150        goto DoneWithDeclSpec;
3151      continue;
3152
3153    case tok::annot_cxxscope: {
3154      if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3155        goto DoneWithDeclSpec;
3156
3157      CXXScopeSpec SS;
3158      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3159                                                   Tok.getAnnotationRange(),
3160                                                   SS);
3161
3162      // We are looking for a qualified typename.
3163      Token Next = NextToken();
3164      if (Next.is(tok::annot_template_id) &&
3165          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3166            ->Kind == TNK_Type_template) {
3167        // We have a qualified template-id, e.g., N::A<int>
3168
3169        // If this would be a valid constructor declaration with template
3170        // arguments, we will reject the attempt to form an invalid type-id
3171        // referring to the injected-class-name when we annotate the token,
3172        // per C++ [class.qual]p2.
3173        //
3174        // To improve diagnostics for this case, parse the declaration as a
3175        // constructor (and reject the extra template arguments later).
3176        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3177        if ((DSContext == DeclSpecContext::DSC_top_level ||
3178             DSContext == DeclSpecContext::DSC_class) &&
3179            TemplateId->Name &&
3180            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3181            isConstructorDeclarator(/*Unqualified=*/false)) {
3182          // The user meant this to be an out-of-line constructor
3183          // definition, but template arguments are not allowed
3184          // there.  Just allow this as a constructor; we'll
3185          // complain about it later.
3186          goto DoneWithDeclSpec;
3187        }
3188
3189        DS.getTypeSpecScope() = SS;
3190        ConsumeAnnotationToken(); // The C++ scope.
3191        assert(Tok.is(tok::annot_template_id) &&
3192               "ParseOptionalCXXScopeSpecifier not working");
3193        AnnotateTemplateIdTokenAsType(SS);
3194        continue;
3195      }
3196
3197      if (Next.is(tok::annot_template_id) &&
3198          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3199            ->Kind == TNK_Concept_template &&
3200          GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype)) {
3201        DS.getTypeSpecScope() = SS;
3202        // This is a qualified placeholder-specifier, e.g., ::C<int> auto ...
3203        // Consume the scope annotation and continue to consume the template-id
3204        // as a placeholder-specifier.
3205        ConsumeAnnotationToken();
3206        continue;
3207      }
3208
3209      if (Next.is(tok::annot_typename)) {
3210        DS.getTypeSpecScope() = SS;
3211        ConsumeAnnotationToken(); // The C++ scope.
3212        if (Tok.getAnnotationValue()) {
3213          ParsedType T = getTypeAnnotation(Tok);
3214          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3215                                         Tok.getAnnotationEndLoc(),
3216                                         PrevSpec, DiagID, T, Policy);
3217          if (isInvalid)
3218            break;
3219        }
3220        else
3221          DS.SetTypeSpecError();
3222        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3223        ConsumeAnnotationToken(); // The typename
3224      }
3225
3226      if (Next.isNot(tok::identifier))
3227        goto DoneWithDeclSpec;
3228
3229      // Check whether this is a constructor declaration. If we're in a
3230      // context where the identifier could be a class name, and it has the
3231      // shape of a constructor declaration, process it as one.
3232      if ((DSContext == DeclSpecContext::DSC_top_level ||
3233           DSContext == DeclSpecContext::DSC_class) &&
3234          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3235                                     &SS) &&
3236          isConstructorDeclarator(/*Unqualified*/ false))
3237        goto DoneWithDeclSpec;
3238
3239      ParsedType TypeRep =
3240          Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3241                              getCurScope(), &SS, false, false, nullptr,
3242                              /*IsCtorOrDtorName=*/false,
3243                              /*WantNontrivialTypeSourceInfo=*/true,
3244                              isClassTemplateDeductionContext(DSContext));
3245
3246      // If the referenced identifier is not a type, then this declspec is
3247      // erroneous: We already checked about that it has no type specifier, and
3248      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3249      // typename.
3250      if (!TypeRep) {
3251        if (TryAnnotateTypeConstraint())
3252          goto DoneWithDeclSpec;
3253        if (isTypeConstraintAnnotation())
3254          continue;
3255        if (NextToken().is(tok::annot_template_id))
3256          // Might have been annotated by TryAnnotateTypeConstraint.
3257          continue;
3258        // Eat the scope spec so the identifier is current.
3259        ConsumeAnnotationToken();
3260        ParsedAttributesWithRange Attrs(AttrFactory);
3261        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3262          if (!Attrs.empty()) {
3263            AttrsLastTime = true;
3264            attrs.takeAllFrom(Attrs);
3265          }
3266          continue;
3267        }
3268        goto DoneWithDeclSpec;
3269      }
3270
3271      DS.getTypeSpecScope() = SS;
3272      ConsumeAnnotationToken(); // The C++ scope.
3273
3274      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3275                                     DiagID, TypeRep, Policy);
3276      if (isInvalid)
3277        break;
3278
3279      DS.SetRangeEnd(Tok.getLocation());
3280      ConsumeToken(); // The typename.
3281
3282      continue;
3283    }
3284
3285    case tok::annot_typename: {
3286      // If we've previously seen a tag definition, we were almost surely
3287      // missing a semicolon after it.
3288      if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3289        goto DoneWithDeclSpec;
3290
3291      if (Tok.getAnnotationValue()) {
3292        ParsedType T = getTypeAnnotation(Tok);
3293        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3294                                       DiagID, T, Policy);
3295      } else
3296        DS.SetTypeSpecError();
3297
3298      if (isInvalid)
3299        break;
3300
3301      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3302      ConsumeAnnotationToken(); // The typename
3303
3304      continue;
3305    }
3306
3307    case tok::kw___is_signed:
3308      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3309      // typically treats it as a trait. If we see __is_signed as it appears
3310      // in libstdc++, e.g.,
3311      //
3312      //   static const bool __is_signed;
3313      //
3314      // then treat __is_signed as an identifier rather than as a keyword.
3315      if (DS.getTypeSpecType() == TST_bool &&
3316          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3317          DS.getStorageClassSpec() == DeclSpec::SCS_static)
3318        TryKeywordIdentFallback(true);
3319
3320      // We're done with the declaration-specifiers.
3321      goto DoneWithDeclSpec;
3322
3323      // typedef-name
3324    case tok::kw___super:
3325    case tok::kw_decltype:
3326    case tok::identifier: {
3327      // This identifier can only be a typedef name if we haven't already seen
3328      // a type-specifier.  Without this check we misparse:
3329      //  typedef int X; struct Y { short X; };  as 'short int'.
3330      if (DS.hasTypeSpecifier())
3331        goto DoneWithDeclSpec;
3332
3333      // If the token is an identifier named "__declspec" and Microsoft
3334      // extensions are not enabled, it is likely that there will be cascading
3335      // parse errors if this really is a __declspec attribute. Attempt to
3336      // recognize that scenario and recover gracefully.
3337      if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3338          Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3339        Diag(Loc, diag::err_ms_attributes_not_enabled);
3340
3341        // The next token should be an open paren. If it is, eat the entire
3342        // attribute declaration and continue.
3343        if (NextToken().is(tok::l_paren)) {
3344          // Consume the __declspec identifier.
3345          ConsumeToken();
3346
3347          // Eat the parens and everything between them.
3348          BalancedDelimiterTracker T(*this, tok::l_paren);
3349          if (T.consumeOpen()) {
3350            assert(false && "Not a left paren?");
3351            return;
3352          }
3353          T.skipToEnd();
3354          continue;
3355        }
3356      }
3357
3358      // In C++, check to see if this is a scope specifier like foo::bar::, if
3359      // so handle it as such.  This is important for ctor parsing.
3360      if (getLangOpts().CPlusPlus) {
3361        if (TryAnnotateCXXScopeToken(EnteringContext)) {
3362          DS.SetTypeSpecError();
3363          goto DoneWithDeclSpec;
3364        }
3365        if (!Tok.is(tok::identifier))
3366          continue;
3367      }
3368
3369      // Check for need to substitute AltiVec keyword tokens.
3370      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3371        break;
3372
3373      // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3374      //                allow the use of a typedef name as a type specifier.
3375      if (DS.isTypeAltiVecVector())
3376        goto DoneWithDeclSpec;
3377
3378      if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3379          isObjCInstancetype()) {
3380        ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3381        assert(TypeRep);
3382        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3383                                       DiagID, TypeRep, Policy);
3384        if (isInvalid)
3385          break;
3386
3387        DS.SetRangeEnd(Loc);
3388        ConsumeToken();
3389        continue;
3390      }
3391
3392      // If we're in a context where the identifier could be a class name,
3393      // check whether this is a constructor declaration.
3394      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3395          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3396          isConstructorDeclarator(/*Unqualified*/true))
3397        goto DoneWithDeclSpec;
3398
3399      ParsedType TypeRep = Actions.getTypeName(
3400          *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3401          false, false, nullptr, false, false,
3402          isClassTemplateDeductionContext(DSContext));
3403
3404      // If this is not a typedef name, don't parse it as part of the declspec,
3405      // it must be an implicit int or an error.
3406      if (!TypeRep) {
3407        if (TryAnnotateTypeConstraint())
3408          goto DoneWithDeclSpec;
3409        if (isTypeConstraintAnnotation())
3410          continue;
3411        if (Tok.is(tok::annot_template_id))
3412          // Might have been annotated by TryAnnotateTypeConstraint.
3413          continue;
3414        ParsedAttributesWithRange Attrs(AttrFactory);
3415        if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3416          if (!Attrs.empty()) {
3417            AttrsLastTime = true;
3418            attrs.takeAllFrom(Attrs);
3419          }
3420          continue;
3421        }
3422        goto DoneWithDeclSpec;
3423      }
3424
3425      // Likewise, if this is a context where the identifier could be a template
3426      // name, check whether this is a deduction guide declaration.
3427      if (getLangOpts().CPlusPlus17 &&
3428          (DSContext == DeclSpecContext::DSC_class ||
3429           DSContext == DeclSpecContext::DSC_top_level) &&
3430          Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3431                                       Tok.getLocation()) &&
3432          isConstructorDeclarator(/*Unqualified*/ true,
3433                                  /*DeductionGuide*/ true))
3434        goto DoneWithDeclSpec;
3435
3436      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3437                                     DiagID, TypeRep, Policy);
3438      if (isInvalid)
3439        break;
3440
3441      DS.SetRangeEnd(Tok.getLocation());
3442      ConsumeToken(); // The identifier
3443
3444      // Objective-C supports type arguments and protocol references
3445      // following an Objective-C object or object pointer
3446      // type. Handle either one of them.
3447      if (Tok.is(tok::less) && getLangOpts().ObjC) {
3448        SourceLocation NewEndLoc;
3449        TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3450                                  Loc, TypeRep, /*consumeLastToken=*/true,
3451                                  NewEndLoc);
3452        if (NewTypeRep.isUsable()) {
3453          DS.UpdateTypeRep(NewTypeRep.get());
3454          DS.SetRangeEnd(NewEndLoc);
3455        }
3456      }
3457
3458      // Need to support trailing type qualifiers (e.g. "id<p> const").
3459      // If a type specifier follows, it will be diagnosed elsewhere.
3460      continue;
3461    }
3462
3463      // type-name or placeholder-specifier
3464    case tok::annot_template_id: {
3465      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3466      if (TemplateId->Kind == TNK_Concept_template) {
3467        if (NextToken().is(tok::identifier)) {
3468          Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
3469              << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
3470          // Attempt to continue as if 'auto' was placed here.
3471          isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3472                                         TemplateId, Policy);
3473          break;
3474        }
3475        if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
3476            goto DoneWithDeclSpec;
3477        ConsumeAnnotationToken();
3478        SourceLocation AutoLoc = Tok.getLocation();
3479        if (TryConsumeToken(tok::kw_decltype)) {
3480          BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3481          if (Tracker.consumeOpen()) {
3482            // Something like `void foo(Iterator decltype i)`
3483            Diag(Tok, diag::err_expected) << tok::l_paren;
3484          } else {
3485            if (!TryConsumeToken(tok::kw_auto)) {
3486              // Something like `void foo(Iterator decltype(int) i)`
3487              Tracker.skipToEnd();
3488              Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
3489                << FixItHint::CreateReplacement(SourceRange(AutoLoc,
3490                                                            Tok.getLocation()),
3491                                                "auto");
3492            } else {
3493              Tracker.consumeClose();
3494            }
3495          }
3496          ConsumedEnd = Tok.getLocation();
3497          // Even if something went wrong above, continue as if we've seen
3498          // `decltype(auto)`.
3499          isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
3500                                         DiagID, TemplateId, Policy);
3501        } else {
3502          isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3503                                         TemplateId, Policy);
3504        }
3505        break;
3506      }
3507
3508      if (TemplateId->Kind != TNK_Type_template &&
3509          TemplateId->Kind != TNK_Undeclared_template) {
3510        // This template-id does not refer to a type name, so we're
3511        // done with the type-specifiers.
3512        goto DoneWithDeclSpec;
3513      }
3514
3515      // If we're in a context where the template-id could be a
3516      // constructor name or specialization, check whether this is a
3517      // constructor declaration.
3518      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3519          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3520          isConstructorDeclarator(/*Unqualified=*/true))
3521        goto DoneWithDeclSpec;
3522
3523      // Turn the template-id annotation token into a type annotation
3524      // token, then try again to parse it as a type-specifier.
3525      CXXScopeSpec SS;
3526      AnnotateTemplateIdTokenAsType(SS);
3527      continue;
3528    }
3529
3530    // GNU attributes support.
3531    case tok::kw___attribute:
3532      ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3533      continue;
3534
3535    // Microsoft declspec support.
3536    case tok::kw___declspec:
3537      ParseMicrosoftDeclSpecs(DS.getAttributes());
3538      continue;
3539
3540    // Microsoft single token adornments.
3541    case tok::kw___forceinline: {
3542      isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3543      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3544      SourceLocation AttrNameLoc = Tok.getLocation();
3545      DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3546                                nullptr, 0, ParsedAttr::AS_Keyword);
3547      break;
3548    }
3549
3550    case tok::kw___unaligned:
3551      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3552                                 getLangOpts());
3553      break;
3554
3555    case tok::kw___sptr:
3556    case tok::kw___uptr:
3557    case tok::kw___ptr64:
3558    case tok::kw___ptr32:
3559    case tok::kw___w64:
3560    case tok::kw___cdecl:
3561    case tok::kw___stdcall:
3562    case tok::kw___fastcall:
3563    case tok::kw___thiscall:
3564    case tok::kw___regcall:
3565    case tok::kw___vectorcall:
3566      ParseMicrosoftTypeAttributes(DS.getAttributes());
3567      continue;
3568
3569    // Borland single token adornments.
3570    case tok::kw___pascal:
3571      ParseBorlandTypeAttributes(DS.getAttributes());
3572      continue;
3573
3574    // OpenCL single token adornments.
3575    case tok::kw___kernel:
3576      ParseOpenCLKernelAttributes(DS.getAttributes());
3577      continue;
3578
3579    // Nullability type specifiers.
3580    case tok::kw__Nonnull:
3581    case tok::kw__Nullable:
3582    case tok::kw__Null_unspecified:
3583      ParseNullabilityTypeSpecifiers(DS.getAttributes());
3584      continue;
3585
3586    // Objective-C 'kindof' types.
3587    case tok::kw___kindof:
3588      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3589                                nullptr, 0, ParsedAttr::AS_Keyword);
3590      (void)ConsumeToken();
3591      continue;
3592
3593    // storage-class-specifier
3594    case tok::kw_typedef:
3595      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3596                                         PrevSpec, DiagID, Policy);
3597      isStorageClass = true;
3598      break;
3599    case tok::kw_extern:
3600      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3601        Diag(Tok, diag::ext_thread_before) << "extern";
3602      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3603                                         PrevSpec, DiagID, Policy);
3604      isStorageClass = true;
3605      break;
3606    case tok::kw___private_extern__:
3607      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3608                                         Loc, PrevSpec, DiagID, Policy);
3609      isStorageClass = true;
3610      break;
3611    case tok::kw_static:
3612      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3613        Diag(Tok, diag::ext_thread_before) << "static";
3614      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3615                                         PrevSpec, DiagID, Policy);
3616      isStorageClass = true;
3617      break;
3618    case tok::kw_auto:
3619      if (getLangOpts().CPlusPlus11) {
3620        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3621          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3622                                             PrevSpec, DiagID, Policy);
3623          if (!isInvalid)
3624            Diag(Tok, diag::ext_auto_storage_class)
3625              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3626        } else
3627          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3628                                         DiagID, Policy);
3629      } else
3630        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3631                                           PrevSpec, DiagID, Policy);
3632      isStorageClass = true;
3633      break;
3634    case tok::kw___auto_type:
3635      Diag(Tok, diag::ext_auto_type);
3636      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3637                                     DiagID, Policy);
3638      break;
3639    case tok::kw_register:
3640      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3641                                         PrevSpec, DiagID, Policy);
3642      isStorageClass = true;
3643      break;
3644    case tok::kw_mutable:
3645      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3646                                         PrevSpec, DiagID, Policy);
3647      isStorageClass = true;
3648      break;
3649    case tok::kw___thread:
3650      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3651                                               PrevSpec, DiagID);
3652      isStorageClass = true;
3653      break;
3654    case tok::kw_thread_local:
3655      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3656                                               PrevSpec, DiagID);
3657      isStorageClass = true;
3658      break;
3659    case tok::kw__Thread_local:
3660      if (!getLangOpts().C11)
3661        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3662      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3663                                               Loc, PrevSpec, DiagID);
3664      isStorageClass = true;
3665      break;
3666
3667    // function-specifier
3668    case tok::kw_inline:
3669      isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3670      break;
3671    case tok::kw_virtual:
3672      // C++ for OpenCL does not allow virtual function qualifier, to avoid
3673      // function pointers restricted in OpenCL v2.0 s6.9.a.
3674      if (getLangOpts().OpenCLCPlusPlus) {
3675        DiagID = diag::err_openclcxx_virtual_function;
3676        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3677        isInvalid = true;
3678      }
3679      else {
3680        isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3681      }
3682      break;
3683    case tok::kw_explicit: {
3684      SourceLocation ExplicitLoc = Loc;
3685      SourceLocation CloseParenLoc;
3686      ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
3687      ConsumedEnd = ExplicitLoc;
3688      ConsumeToken(); // kw_explicit
3689      if (Tok.is(tok::l_paren)) {
3690        if (getLangOpts().CPlusPlus2a || isExplicitBool() == TPResult::True) {
3691          Diag(Tok.getLocation(), getLangOpts().CPlusPlus2a
3692                                      ? diag::warn_cxx17_compat_explicit_bool
3693                                      : diag::ext_explicit_bool);
3694
3695          ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
3696          BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3697          Tracker.consumeOpen();
3698          ExplicitExpr = ParseConstantExpression();
3699          ConsumedEnd = Tok.getLocation();
3700          if (ExplicitExpr.isUsable()) {
3701            CloseParenLoc = Tok.getLocation();
3702            Tracker.consumeClose();
3703            ExplicitSpec =
3704                Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
3705          } else
3706            Tracker.skipToEnd();
3707        } else {
3708          Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool);
3709        }
3710      }
3711      isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
3712                                             ExplicitSpec, CloseParenLoc);
3713      break;
3714    }
3715    case tok::kw__Noreturn:
3716      if (!getLangOpts().C11)
3717        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3718      isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3719      break;
3720
3721    // alignment-specifier
3722    case tok::kw__Alignas:
3723      if (!getLangOpts().C11)
3724        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3725      ParseAlignmentSpecifier(DS.getAttributes());
3726      continue;
3727
3728    // friend
3729    case tok::kw_friend:
3730      if (DSContext == DeclSpecContext::DSC_class)
3731        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3732      else {
3733        PrevSpec = ""; // not actually used by the diagnostic
3734        DiagID = diag::err_friend_invalid_in_context;
3735        isInvalid = true;
3736      }
3737      break;
3738
3739    // Modules
3740    case tok::kw___module_private__:
3741      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3742      break;
3743
3744    // constexpr, consteval, constinit specifiers
3745    case tok::kw_constexpr:
3746      isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID);
3747      break;
3748    case tok::kw_consteval:
3749      isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID);
3750      break;
3751    case tok::kw_constinit:
3752      isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID);
3753      break;
3754
3755    // type-specifier
3756    case tok::kw_short:
3757      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3758                                      DiagID, Policy);
3759      break;
3760    case tok::kw_long:
3761      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3762        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3763                                        DiagID, Policy);
3764      else
3765        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3766                                        DiagID, Policy);
3767      break;
3768    case tok::kw___int64:
3769        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3770                                        DiagID, Policy);
3771      break;
3772    case tok::kw_signed:
3773      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3774                                     DiagID);
3775      break;
3776    case tok::kw_unsigned:
3777      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3778                                     DiagID);
3779      break;
3780    case tok::kw__Complex:
3781      if (!getLangOpts().C99)
3782        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3783      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3784                                        DiagID);
3785      break;
3786    case tok::kw__Imaginary:
3787      if (!getLangOpts().C99)
3788        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3789      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3790                                        DiagID);
3791      break;
3792    case tok::kw_void:
3793      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3794                                     DiagID, Policy);
3795      break;
3796    case tok::kw_char:
3797      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3798                                     DiagID, Policy);
3799      break;
3800    case tok::kw_int:
3801      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3802                                     DiagID, Policy);
3803      break;
3804    case tok::kw___int128:
3805      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3806                                     DiagID, Policy);
3807      break;
3808    case tok::kw_half:
3809      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3810                                     DiagID, Policy);
3811      break;
3812    case tok::kw_float:
3813      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3814                                     DiagID, Policy);
3815      break;
3816    case tok::kw_double:
3817      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3818                                     DiagID, Policy);
3819      break;
3820    case tok::kw__Float16:
3821      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3822                                     DiagID, Policy);
3823      break;
3824    case tok::kw__Accum:
3825      if (!getLangOpts().FixedPoint) {
3826        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3827      } else {
3828        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3829                                       DiagID, Policy);
3830      }
3831      break;
3832    case tok::kw__Fract:
3833      if (!getLangOpts().FixedPoint) {
3834        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3835      } else {
3836        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3837                                       DiagID, Policy);
3838      }
3839      break;
3840    case tok::kw__Sat:
3841      if (!getLangOpts().FixedPoint) {
3842        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3843      } else {
3844        isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3845      }
3846      break;
3847    case tok::kw___float128:
3848      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3849                                     DiagID, Policy);
3850      break;
3851    case tok::kw_wchar_t:
3852      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3853                                     DiagID, Policy);
3854      break;
3855    case tok::kw_char8_t:
3856      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3857                                     DiagID, Policy);
3858      break;
3859    case tok::kw_char16_t:
3860      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3861                                     DiagID, Policy);
3862      break;
3863    case tok::kw_char32_t:
3864      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3865                                     DiagID, Policy);
3866      break;
3867    case tok::kw_bool:
3868    case tok::kw__Bool:
3869      if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
3870        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3871
3872      if (Tok.is(tok::kw_bool) &&
3873          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3874          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3875        PrevSpec = ""; // Not used by the diagnostic.
3876        DiagID = diag::err_bool_redeclaration;
3877        // For better error recovery.
3878        Tok.setKind(tok::identifier);
3879        isInvalid = true;
3880      } else {
3881        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3882                                       DiagID, Policy);
3883      }
3884      break;
3885    case tok::kw__Decimal32:
3886      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3887                                     DiagID, Policy);
3888      break;
3889    case tok::kw__Decimal64:
3890      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3891                                     DiagID, Policy);
3892      break;
3893    case tok::kw__Decimal128:
3894      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3895                                     DiagID, Policy);
3896      break;
3897    case tok::kw___vector:
3898      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3899      break;
3900    case tok::kw___pixel:
3901      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3902      break;
3903    case tok::kw___bool:
3904      isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3905      break;
3906    case tok::kw_pipe:
3907      if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 &&
3908                                    !getLangOpts().OpenCLCPlusPlus)) {
3909        // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3910        // support the "pipe" word as identifier.
3911        Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3912        goto DoneWithDeclSpec;
3913      }
3914      isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3915      break;
3916#define GENERIC_IMAGE_TYPE(ImgType, Id) \
3917  case tok::kw_##ImgType##_t: \
3918    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3919                                   DiagID, Policy); \
3920    break;
3921#include "clang/Basic/OpenCLImageTypes.def"
3922    case tok::kw___unknown_anytype:
3923      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3924                                     PrevSpec, DiagID, Policy);
3925      break;
3926
3927    // class-specifier:
3928    case tok::kw_class:
3929    case tok::kw_struct:
3930    case tok::kw___interface:
3931    case tok::kw_union: {
3932      tok::TokenKind Kind = Tok.getKind();
3933      ConsumeToken();
3934
3935      // These are attributes following class specifiers.
3936      // To produce better diagnostic, we parse them when
3937      // parsing class specifier.
3938      ParsedAttributesWithRange Attributes(AttrFactory);
3939      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3940                          EnteringContext, DSContext, Attributes);
3941
3942      // If there are attributes following class specifier,
3943      // take them over and handle them here.
3944      if (!Attributes.empty()) {
3945        AttrsLastTime = true;
3946        attrs.takeAllFrom(Attributes);
3947      }
3948      continue;
3949    }
3950
3951    // enum-specifier:
3952    case tok::kw_enum:
3953      ConsumeToken();
3954      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3955      continue;
3956
3957    // cv-qualifier:
3958    case tok::kw_const:
3959      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3960                                 getLangOpts());
3961      break;
3962    case tok::kw_volatile:
3963      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3964                                 getLangOpts());
3965      break;
3966    case tok::kw_restrict:
3967      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3968                                 getLangOpts());
3969      break;
3970
3971    // C++ typename-specifier:
3972    case tok::kw_typename:
3973      if (TryAnnotateTypeOrScopeToken()) {
3974        DS.SetTypeSpecError();
3975        goto DoneWithDeclSpec;
3976      }
3977      if (!Tok.is(tok::kw_typename))
3978        continue;
3979      break;
3980
3981    // GNU typeof support.
3982    case tok::kw_typeof:
3983      ParseTypeofSpecifier(DS);
3984      continue;
3985
3986    case tok::annot_decltype:
3987      ParseDecltypeSpecifier(DS);
3988      continue;
3989
3990    case tok::annot_pragma_pack:
3991      HandlePragmaPack();
3992      continue;
3993
3994    case tok::annot_pragma_ms_pragma:
3995      HandlePragmaMSPragma();
3996      continue;
3997
3998    case tok::annot_pragma_ms_vtordisp:
3999      HandlePragmaMSVtorDisp();
4000      continue;
4001
4002    case tok::annot_pragma_ms_pointers_to_members:
4003      HandlePragmaMSPointersToMembers();
4004      continue;
4005
4006    case tok::kw___underlying_type:
4007      ParseUnderlyingTypeSpecifier(DS);
4008      continue;
4009
4010    case tok::kw__Atomic:
4011      // C11 6.7.2.4/4:
4012      //   If the _Atomic keyword is immediately followed by a left parenthesis,
4013      //   it is interpreted as a type specifier (with a type name), not as a
4014      //   type qualifier.
4015      if (!getLangOpts().C11)
4016        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4017
4018      if (NextToken().is(tok::l_paren)) {
4019        ParseAtomicSpecifier(DS);
4020        continue;
4021      }
4022      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4023                                 getLangOpts());
4024      break;
4025
4026    // OpenCL address space qualifiers:
4027    case tok::kw___generic:
4028      // generic address space is introduced only in OpenCL v2.0
4029      // see OpenCL C Spec v2.0 s6.5.5
4030      if (Actions.getLangOpts().OpenCLVersion < 200 &&
4031          !Actions.getLangOpts().OpenCLCPlusPlus) {
4032        DiagID = diag::err_opencl_unknown_type_specifier;
4033        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4034        isInvalid = true;
4035        break;
4036      }
4037      LLVM_FALLTHROUGH;
4038    case tok::kw_private:
4039      // It's fine (but redundant) to check this for __generic on the
4040      // fallthrough path; we only form the __generic token in OpenCL mode.
4041      if (!getLangOpts().OpenCL)
4042        goto DoneWithDeclSpec;
4043      LLVM_FALLTHROUGH;
4044    case tok::kw___private:
4045    case tok::kw___global:
4046    case tok::kw___local:
4047    case tok::kw___constant:
4048    // OpenCL access qualifiers:
4049    case tok::kw___read_only:
4050    case tok::kw___write_only:
4051    case tok::kw___read_write:
4052      ParseOpenCLQualifiers(DS.getAttributes());
4053      break;
4054
4055    case tok::less:
4056      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
4057      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
4058      // but we support it.
4059      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
4060        goto DoneWithDeclSpec;
4061
4062      SourceLocation StartLoc = Tok.getLocation();
4063      SourceLocation EndLoc;
4064      TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
4065      if (Type.isUsable()) {
4066        if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
4067                               PrevSpec, DiagID, Type.get(),
4068                               Actions.getASTContext().getPrintingPolicy()))
4069          Diag(StartLoc, DiagID) << PrevSpec;
4070
4071        DS.SetRangeEnd(EndLoc);
4072      } else {
4073        DS.SetTypeSpecError();
4074      }
4075
4076      // Need to support trailing type qualifiers (e.g. "id<p> const").
4077      // If a type specifier follows, it will be diagnosed elsewhere.
4078      continue;
4079    }
4080
4081    DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
4082
4083    // If the specifier wasn't legal, issue a diagnostic.
4084    if (isInvalid) {
4085      assert(PrevSpec && "Method did not return previous specifier!");
4086      assert(DiagID);
4087
4088      if (DiagID == diag::ext_duplicate_declspec ||
4089          DiagID == diag::ext_warn_duplicate_declspec ||
4090          DiagID == diag::err_duplicate_declspec)
4091        Diag(Loc, DiagID) << PrevSpec
4092                          << FixItHint::CreateRemoval(
4093                                 SourceRange(Loc, DS.getEndLoc()));
4094      else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4095        Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus
4096                          << getLangOpts().getOpenCLVersionTuple().getAsString()
4097                          << PrevSpec << isStorageClass;
4098      } else
4099        Diag(Loc, DiagID) << PrevSpec;
4100    }
4101
4102    if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4103      // After an error the next token can be an annotation token.
4104      ConsumeAnyToken();
4105
4106    AttrsLastTime = false;
4107  }
4108}
4109
4110/// ParseStructDeclaration - Parse a struct declaration without the terminating
4111/// semicolon.
4112///
4113/// Note that a struct declaration refers to a declaration in a struct,
4114/// not to the declaration of a struct.
4115///
4116///       struct-declaration:
4117/// [C2x]   attributes-specifier-seq[opt]
4118///           specifier-qualifier-list struct-declarator-list
4119/// [GNU]   __extension__ struct-declaration
4120/// [GNU]   specifier-qualifier-list
4121///       struct-declarator-list:
4122///         struct-declarator
4123///         struct-declarator-list ',' struct-declarator
4124/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4125///       struct-declarator:
4126///         declarator
4127/// [GNU]   declarator attributes[opt]
4128///         declarator[opt] ':' constant-expression
4129/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4130///
4131void Parser::ParseStructDeclaration(
4132    ParsingDeclSpec &DS,
4133    llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4134
4135  if (Tok.is(tok::kw___extension__)) {
4136    // __extension__ silences extension warnings in the subexpression.
4137    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4138    ConsumeToken();
4139    return ParseStructDeclaration(DS, FieldsCallback);
4140  }
4141
4142  // Parse leading attributes.
4143  ParsedAttributesWithRange Attrs(AttrFactory);
4144  MaybeParseCXX11Attributes(Attrs);
4145  DS.takeAttributesFrom(Attrs);
4146
4147  // Parse the common specifier-qualifiers-list piece.
4148  ParseSpecifierQualifierList(DS);
4149
4150  // If there are no declarators, this is a free-standing declaration
4151  // specifier. Let the actions module cope with it.
4152  if (Tok.is(tok::semi)) {
4153    RecordDecl *AnonRecord = nullptr;
4154    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
4155                                                       DS, AnonRecord);
4156    assert(!AnonRecord && "Did not expect anonymous struct or union here");
4157    DS.complete(TheDecl);
4158    return;
4159  }
4160
4161  // Read struct-declarators until we find the semicolon.
4162  bool FirstDeclarator = true;
4163  SourceLocation CommaLoc;
4164  while (1) {
4165    ParsingFieldDeclarator DeclaratorInfo(*this, DS);
4166    DeclaratorInfo.D.setCommaLoc(CommaLoc);
4167
4168    // Attributes are only allowed here on successive declarators.
4169    if (!FirstDeclarator)
4170      MaybeParseGNUAttributes(DeclaratorInfo.D);
4171
4172    /// struct-declarator: declarator
4173    /// struct-declarator: declarator[opt] ':' constant-expression
4174    if (Tok.isNot(tok::colon)) {
4175      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4176      ColonProtectionRAIIObject X(*this);
4177      ParseDeclarator(DeclaratorInfo.D);
4178    } else
4179      DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4180
4181    if (TryConsumeToken(tok::colon)) {
4182      ExprResult Res(ParseConstantExpression());
4183      if (Res.isInvalid())
4184        SkipUntil(tok::semi, StopBeforeMatch);
4185      else
4186        DeclaratorInfo.BitfieldSize = Res.get();
4187    }
4188
4189    // If attributes exist after the declarator, parse them.
4190    MaybeParseGNUAttributes(DeclaratorInfo.D);
4191
4192    // We're done with this declarator;  invoke the callback.
4193    FieldsCallback(DeclaratorInfo);
4194
4195    // If we don't have a comma, it is either the end of the list (a ';')
4196    // or an error, bail out.
4197    if (!TryConsumeToken(tok::comma, CommaLoc))
4198      return;
4199
4200    FirstDeclarator = false;
4201  }
4202}
4203
4204/// ParseStructUnionBody
4205///       struct-contents:
4206///         struct-declaration-list
4207/// [EXT]   empty
4208/// [GNU]   "struct-declaration-list" without terminatoring ';'
4209///       struct-declaration-list:
4210///         struct-declaration
4211///         struct-declaration-list struct-declaration
4212/// [OBC]   '@' 'defs' '(' class-name ')'
4213///
4214void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4215                                  DeclSpec::TST TagType, Decl *TagDecl) {
4216  PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4217                                      "parsing struct/union body");
4218  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4219
4220  BalancedDelimiterTracker T(*this, tok::l_brace);
4221  if (T.consumeOpen())
4222    return;
4223
4224  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4225  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4226
4227  SmallVector<Decl *, 32> FieldDecls;
4228
4229  // While we still have something to read, read the declarations in the struct.
4230  while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4231         Tok.isNot(tok::eof)) {
4232    // Each iteration of this loop reads one struct-declaration.
4233
4234    // Check for extraneous top-level semicolon.
4235    if (Tok.is(tok::semi)) {
4236      ConsumeExtraSemi(InsideStruct, TagType);
4237      continue;
4238    }
4239
4240    // Parse _Static_assert declaration.
4241    if (Tok.is(tok::kw__Static_assert)) {
4242      SourceLocation DeclEnd;
4243      ParseStaticAssertDeclaration(DeclEnd);
4244      continue;
4245    }
4246
4247    if (Tok.is(tok::annot_pragma_pack)) {
4248      HandlePragmaPack();
4249      continue;
4250    }
4251
4252    if (Tok.is(tok::annot_pragma_align)) {
4253      HandlePragmaAlign();
4254      continue;
4255    }
4256
4257    if (Tok.is(tok::annot_pragma_openmp)) {
4258      // Result can be ignored, because it must be always empty.
4259      AccessSpecifier AS = AS_none;
4260      ParsedAttributesWithRange Attrs(AttrFactory);
4261      (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4262      continue;
4263    }
4264
4265    if (tok::isPragmaAnnotation(Tok.getKind())) {
4266      Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
4267          << DeclSpec::getSpecifierName(
4268                 TagType, Actions.getASTContext().getPrintingPolicy());
4269      ConsumeAnnotationToken();
4270      continue;
4271    }
4272
4273    if (!Tok.is(tok::at)) {
4274      auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4275        // Install the declarator into the current TagDecl.
4276        Decl *Field =
4277            Actions.ActOnField(getCurScope(), TagDecl,
4278                               FD.D.getDeclSpec().getSourceRange().getBegin(),
4279                               FD.D, FD.BitfieldSize);
4280        FieldDecls.push_back(Field);
4281        FD.complete(Field);
4282      };
4283
4284      // Parse all the comma separated declarators.
4285      ParsingDeclSpec DS(*this);
4286      ParseStructDeclaration(DS, CFieldCallback);
4287    } else { // Handle @defs
4288      ConsumeToken();
4289      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4290        Diag(Tok, diag::err_unexpected_at);
4291        SkipUntil(tok::semi);
4292        continue;
4293      }
4294      ConsumeToken();
4295      ExpectAndConsume(tok::l_paren);
4296      if (!Tok.is(tok::identifier)) {
4297        Diag(Tok, diag::err_expected) << tok::identifier;
4298        SkipUntil(tok::semi);
4299        continue;
4300      }
4301      SmallVector<Decl *, 16> Fields;
4302      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4303                        Tok.getIdentifierInfo(), Fields);
4304      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4305      ConsumeToken();
4306      ExpectAndConsume(tok::r_paren);
4307    }
4308
4309    if (TryConsumeToken(tok::semi))
4310      continue;
4311
4312    if (Tok.is(tok::r_brace)) {
4313      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4314      break;
4315    }
4316
4317    ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4318    // Skip to end of block or statement to avoid ext-warning on extra ';'.
4319    SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4320    // If we stopped at a ';', eat it.
4321    TryConsumeToken(tok::semi);
4322  }
4323
4324  T.consumeClose();
4325
4326  ParsedAttributes attrs(AttrFactory);
4327  // If attributes exist after struct contents, parse them.
4328  MaybeParseGNUAttributes(attrs);
4329
4330  Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4331                      T.getOpenLocation(), T.getCloseLocation(), attrs);
4332  StructScope.Exit();
4333  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4334}
4335
4336/// ParseEnumSpecifier
4337///       enum-specifier: [C99 6.7.2.2]
4338///         'enum' identifier[opt] '{' enumerator-list '}'
4339///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4340/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4341///                                                 '}' attributes[opt]
4342/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4343///                                                 '}'
4344///         'enum' identifier
4345/// [GNU]   'enum' attributes[opt] identifier
4346///
4347/// [C++11] enum-head '{' enumerator-list[opt] '}'
4348/// [C++11] enum-head '{' enumerator-list ','  '}'
4349///
4350///       enum-head: [C++11]
4351///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4352///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4353///             identifier enum-base[opt]
4354///
4355///       enum-key: [C++11]
4356///         'enum'
4357///         'enum' 'class'
4358///         'enum' 'struct'
4359///
4360///       enum-base: [C++11]
4361///         ':' type-specifier-seq
4362///
4363/// [C++] elaborated-type-specifier:
4364/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
4365///
4366void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4367                                const ParsedTemplateInfo &TemplateInfo,
4368                                AccessSpecifier AS, DeclSpecContext DSC) {
4369  // Parse the tag portion of this.
4370  if (Tok.is(tok::code_completion)) {
4371    // Code completion for an enum name.
4372    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4373    return cutOffParsing();
4374  }
4375
4376  // If attributes exist after tag, parse them.
4377  ParsedAttributesWithRange attrs(AttrFactory);
4378  MaybeParseGNUAttributes(attrs);
4379  MaybeParseCXX11Attributes(attrs);
4380  MaybeParseMicrosoftDeclSpecs(attrs);
4381
4382  SourceLocation ScopedEnumKWLoc;
4383  bool IsScopedUsingClassTag = false;
4384
4385  // In C++11, recognize 'enum class' and 'enum struct'.
4386  if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4387    Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4388                                        : diag::ext_scoped_enum);
4389    IsScopedUsingClassTag = Tok.is(tok::kw_class);
4390    ScopedEnumKWLoc = ConsumeToken();
4391
4392    // Attributes are not allowed between these keywords.  Diagnose,
4393    // but then just treat them like they appeared in the right place.
4394    ProhibitAttributes(attrs);
4395
4396    // They are allowed afterwards, though.
4397    MaybeParseGNUAttributes(attrs);
4398    MaybeParseCXX11Attributes(attrs);
4399    MaybeParseMicrosoftDeclSpecs(attrs);
4400  }
4401
4402  // C++11 [temp.explicit]p12:
4403  //   The usual access controls do not apply to names used to specify
4404  //   explicit instantiations.
4405  // We extend this to also cover explicit specializations.  Note that
4406  // we don't suppress if this turns out to be an elaborated type
4407  // specifier.
4408  bool shouldDelayDiagsInTag =
4409    (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4410     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4411  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4412
4413  // Enum definitions should not be parsed in a trailing-return-type.
4414  bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4415
4416  CXXScopeSpec &SS = DS.getTypeSpecScope();
4417  if (getLangOpts().CPlusPlus) {
4418    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4419    // if a fixed underlying type is allowed.
4420    ColonProtectionRAIIObject X(*this, AllowDeclaration);
4421
4422    CXXScopeSpec Spec;
4423    if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4424                                       /*EnteringContext=*/true))
4425      return;
4426
4427    if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4428      Diag(Tok, diag::err_expected) << tok::identifier;
4429      if (Tok.isNot(tok::l_brace)) {
4430        // Has no name and is not a definition.
4431        // Skip the rest of this declarator, up until the comma or semicolon.
4432        SkipUntil(tok::comma, StopAtSemi);
4433        return;
4434      }
4435    }
4436
4437    SS = Spec;
4438  }
4439
4440  // Must have either 'enum name' or 'enum {...}'.
4441  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4442      !(AllowDeclaration && Tok.is(tok::colon))) {
4443    Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4444
4445    // Skip the rest of this declarator, up until the comma or semicolon.
4446    SkipUntil(tok::comma, StopAtSemi);
4447    return;
4448  }
4449
4450  // If an identifier is present, consume and remember it.
4451  IdentifierInfo *Name = nullptr;
4452  SourceLocation NameLoc;
4453  if (Tok.is(tok::identifier)) {
4454    Name = Tok.getIdentifierInfo();
4455    NameLoc = ConsumeToken();
4456  }
4457
4458  if (!Name && ScopedEnumKWLoc.isValid()) {
4459    // C++0x 7.2p2: The optional identifier shall not be omitted in the
4460    // declaration of a scoped enumeration.
4461    Diag(Tok, diag::err_scoped_enum_missing_identifier);
4462    ScopedEnumKWLoc = SourceLocation();
4463    IsScopedUsingClassTag = false;
4464  }
4465
4466  // Okay, end the suppression area.  We'll decide whether to emit the
4467  // diagnostics in a second.
4468  if (shouldDelayDiagsInTag)
4469    diagsFromTag.done();
4470
4471  TypeResult BaseType;
4472
4473  // Parse the fixed underlying type.
4474  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4475  if (AllowDeclaration && Tok.is(tok::colon)) {
4476    bool PossibleBitfield = false;
4477    if (CanBeBitfield) {
4478      // If we're in class scope, this can either be an enum declaration with
4479      // an underlying type, or a declaration of a bitfield member. We try to
4480      // use a simple disambiguation scheme first to catch the common cases
4481      // (integer literal, sizeof); if it's still ambiguous, we then consider
4482      // anything that's a simple-type-specifier followed by '(' as an
4483      // expression. This suffices because function types are not valid
4484      // underlying types anyway.
4485      EnterExpressionEvaluationContext Unevaluated(
4486          Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4487      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4488      // If the next token starts an expression, we know we're parsing a
4489      // bit-field. This is the common case.
4490      if (TPR == TPResult::True)
4491        PossibleBitfield = true;
4492      // If the next token starts a type-specifier-seq, it may be either a
4493      // a fixed underlying type or the start of a function-style cast in C++;
4494      // lookahead one more token to see if it's obvious that we have a
4495      // fixed underlying type.
4496      else if (TPR == TPResult::False &&
4497               GetLookAheadToken(2).getKind() == tok::semi) {
4498        // Consume the ':'.
4499        ConsumeToken();
4500      } else {
4501        // We have the start of a type-specifier-seq, so we have to perform
4502        // tentative parsing to determine whether we have an expression or a
4503        // type.
4504        TentativeParsingAction TPA(*this);
4505
4506        // Consume the ':'.
4507        ConsumeToken();
4508
4509        // If we see a type specifier followed by an open-brace, we have an
4510        // ambiguity between an underlying type and a C++11 braced
4511        // function-style cast. Resolve this by always treating it as an
4512        // underlying type.
4513        // FIXME: The standard is not entirely clear on how to disambiguate in
4514        // this case.
4515        if ((getLangOpts().CPlusPlus &&
4516             isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4517            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4518          // We'll parse this as a bitfield later.
4519          PossibleBitfield = true;
4520          TPA.Revert();
4521        } else {
4522          // We have a type-specifier-seq.
4523          TPA.Commit();
4524        }
4525      }
4526    } else {
4527      // Consume the ':'.
4528      ConsumeToken();
4529    }
4530
4531    if (!PossibleBitfield) {
4532      SourceRange Range;
4533      BaseType = ParseTypeName(&Range);
4534
4535      if (!getLangOpts().ObjC) {
4536        if (getLangOpts().CPlusPlus11)
4537          Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4538        else if (getLangOpts().CPlusPlus)
4539          Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type);
4540        else if (getLangOpts().MicrosoftExt)
4541          Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type);
4542        else
4543          Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type);
4544      }
4545    }
4546  }
4547
4548  // There are four options here.  If we have 'friend enum foo;' then this is a
4549  // friend declaration, and cannot have an accompanying definition. If we have
4550  // 'enum foo;', then this is a forward declaration.  If we have
4551  // 'enum foo {...' then this is a definition. Otherwise we have something
4552  // like 'enum foo xyz', a reference.
4553  //
4554  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4555  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
4556  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
4557  //
4558  Sema::TagUseKind TUK;
4559  if (!AllowDeclaration) {
4560    TUK = Sema::TUK_Reference;
4561  } else if (Tok.is(tok::l_brace)) {
4562    if (DS.isFriendSpecified()) {
4563      Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4564        << SourceRange(DS.getFriendSpecLoc());
4565      ConsumeBrace();
4566      SkipUntil(tok::r_brace, StopAtSemi);
4567      TUK = Sema::TUK_Friend;
4568    } else {
4569      TUK = Sema::TUK_Definition;
4570    }
4571  } else if (!isTypeSpecifier(DSC) &&
4572             (Tok.is(tok::semi) ||
4573              (Tok.isAtStartOfLine() &&
4574               !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4575    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4576    if (Tok.isNot(tok::semi)) {
4577      // A semicolon was missing after this declaration. Diagnose and recover.
4578      ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4579      PP.EnterToken(Tok, /*IsReinject=*/true);
4580      Tok.setKind(tok::semi);
4581    }
4582  } else {
4583    TUK = Sema::TUK_Reference;
4584  }
4585
4586  // If this is an elaborated type specifier, and we delayed
4587  // diagnostics before, just merge them into the current pool.
4588  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4589    diagsFromTag.redelay();
4590  }
4591
4592  MultiTemplateParamsArg TParams;
4593  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4594      TUK != Sema::TUK_Reference) {
4595    if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4596      // Skip the rest of this declarator, up until the comma or semicolon.
4597      Diag(Tok, diag::err_enum_template);
4598      SkipUntil(tok::comma, StopAtSemi);
4599      return;
4600    }
4601
4602    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4603      // Enumerations can't be explicitly instantiated.
4604      DS.SetTypeSpecError();
4605      Diag(StartLoc, diag::err_explicit_instantiation_enum);
4606      return;
4607    }
4608
4609    assert(TemplateInfo.TemplateParams && "no template parameters");
4610    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4611                                     TemplateInfo.TemplateParams->size());
4612  }
4613
4614  if (TUK == Sema::TUK_Reference)
4615    ProhibitAttributes(attrs);
4616
4617  if (!Name && TUK != Sema::TUK_Definition) {
4618    Diag(Tok, diag::err_enumerator_unnamed_no_def);
4619
4620    // Skip the rest of this declarator, up until the comma or semicolon.
4621    SkipUntil(tok::comma, StopAtSemi);
4622    return;
4623  }
4624
4625  stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4626
4627  Sema::SkipBodyInfo SkipBody;
4628  if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4629      NextToken().is(tok::identifier))
4630    SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4631                                              NextToken().getIdentifierInfo(),
4632                                              NextToken().getLocation());
4633
4634  bool Owned = false;
4635  bool IsDependent = false;
4636  const char *PrevSpec = nullptr;
4637  unsigned DiagID;
4638  Decl *TagDecl = Actions.ActOnTag(
4639      getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4640      attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4641      ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4642      DSC == DeclSpecContext::DSC_type_specifier,
4643      DSC == DeclSpecContext::DSC_template_param ||
4644          DSC == DeclSpecContext::DSC_template_type_arg,
4645      &SkipBody);
4646
4647  if (SkipBody.ShouldSkip) {
4648    assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4649
4650    BalancedDelimiterTracker T(*this, tok::l_brace);
4651    T.consumeOpen();
4652    T.skipToEnd();
4653
4654    if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4655                           NameLoc.isValid() ? NameLoc : StartLoc,
4656                           PrevSpec, DiagID, TagDecl, Owned,
4657                           Actions.getASTContext().getPrintingPolicy()))
4658      Diag(StartLoc, DiagID) << PrevSpec;
4659    return;
4660  }
4661
4662  if (IsDependent) {
4663    // This enum has a dependent nested-name-specifier. Handle it as a
4664    // dependent tag.
4665    if (!Name) {
4666      DS.SetTypeSpecError();
4667      Diag(Tok, diag::err_expected_type_name_after_typename);
4668      return;
4669    }
4670
4671    TypeResult Type = Actions.ActOnDependentTag(
4672        getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4673    if (Type.isInvalid()) {
4674      DS.SetTypeSpecError();
4675      return;
4676    }
4677
4678    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4679                           NameLoc.isValid() ? NameLoc : StartLoc,
4680                           PrevSpec, DiagID, Type.get(),
4681                           Actions.getASTContext().getPrintingPolicy()))
4682      Diag(StartLoc, DiagID) << PrevSpec;
4683
4684    return;
4685  }
4686
4687  if (!TagDecl) {
4688    // The action failed to produce an enumeration tag. If this is a
4689    // definition, consume the entire definition.
4690    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4691      ConsumeBrace();
4692      SkipUntil(tok::r_brace, StopAtSemi);
4693    }
4694
4695    DS.SetTypeSpecError();
4696    return;
4697  }
4698
4699  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4700    Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4701    ParseEnumBody(StartLoc, D);
4702    if (SkipBody.CheckSameAsPrevious &&
4703        !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4704      DS.SetTypeSpecError();
4705      return;
4706    }
4707  }
4708
4709  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4710                         NameLoc.isValid() ? NameLoc : StartLoc,
4711                         PrevSpec, DiagID, TagDecl, Owned,
4712                         Actions.getASTContext().getPrintingPolicy()))
4713    Diag(StartLoc, DiagID) << PrevSpec;
4714}
4715
4716/// ParseEnumBody - Parse a {} enclosed enumerator-list.
4717///       enumerator-list:
4718///         enumerator
4719///         enumerator-list ',' enumerator
4720///       enumerator:
4721///         enumeration-constant attributes[opt]
4722///         enumeration-constant attributes[opt] '=' constant-expression
4723///       enumeration-constant:
4724///         identifier
4725///
4726void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4727  // Enter the scope of the enum body and start the definition.
4728  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4729  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4730
4731  BalancedDelimiterTracker T(*this, tok::l_brace);
4732  T.consumeOpen();
4733
4734  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4735  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4736    Diag(Tok, diag::err_empty_enum);
4737
4738  SmallVector<Decl *, 32> EnumConstantDecls;
4739  SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4740
4741  Decl *LastEnumConstDecl = nullptr;
4742
4743  // Parse the enumerator-list.
4744  while (Tok.isNot(tok::r_brace)) {
4745    // Parse enumerator. If failed, try skipping till the start of the next
4746    // enumerator definition.
4747    if (Tok.isNot(tok::identifier)) {
4748      Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4749      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4750          TryConsumeToken(tok::comma))
4751        continue;
4752      break;
4753    }
4754    IdentifierInfo *Ident = Tok.getIdentifierInfo();
4755    SourceLocation IdentLoc = ConsumeToken();
4756
4757    // If attributes exist after the enumerator, parse them.
4758    ParsedAttributesWithRange attrs(AttrFactory);
4759    MaybeParseGNUAttributes(attrs);
4760    ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4761    if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4762      if (getLangOpts().CPlusPlus)
4763        Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4764                                    ? diag::warn_cxx14_compat_ns_enum_attribute
4765                                    : diag::ext_ns_enum_attribute)
4766            << 1 /*enumerator*/;
4767      ParseCXX11Attributes(attrs);
4768    }
4769
4770    SourceLocation EqualLoc;
4771    ExprResult AssignedVal;
4772    EnumAvailabilityDiags.emplace_back(*this);
4773
4774    EnterExpressionEvaluationContext ConstantEvaluated(
4775        Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4776    if (TryConsumeToken(tok::equal, EqualLoc)) {
4777      AssignedVal = ParseConstantExpressionInExprEvalContext();
4778      if (AssignedVal.isInvalid())
4779        SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4780    }
4781
4782    // Install the enumerator constant into EnumDecl.
4783    Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4784        getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4785        EqualLoc, AssignedVal.get());
4786    EnumAvailabilityDiags.back().done();
4787
4788    EnumConstantDecls.push_back(EnumConstDecl);
4789    LastEnumConstDecl = EnumConstDecl;
4790
4791    if (Tok.is(tok::identifier)) {
4792      // We're missing a comma between enumerators.
4793      SourceLocation Loc = getEndOfPreviousToken();
4794      Diag(Loc, diag::err_enumerator_list_missing_comma)
4795        << FixItHint::CreateInsertion(Loc, ", ");
4796      continue;
4797    }
4798
4799    // Emumerator definition must be finished, only comma or r_brace are
4800    // allowed here.
4801    SourceLocation CommaLoc;
4802    if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4803      if (EqualLoc.isValid())
4804        Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4805                                                           << tok::comma;
4806      else
4807        Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4808      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4809        if (TryConsumeToken(tok::comma, CommaLoc))
4810          continue;
4811      } else {
4812        break;
4813      }
4814    }
4815
4816    // If comma is followed by r_brace, emit appropriate warning.
4817    if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4818      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4819        Diag(CommaLoc, getLangOpts().CPlusPlus ?
4820               diag::ext_enumerator_list_comma_cxx :
4821               diag::ext_enumerator_list_comma_c)
4822          << FixItHint::CreateRemoval(CommaLoc);
4823      else if (getLangOpts().CPlusPlus11)
4824        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4825          << FixItHint::CreateRemoval(CommaLoc);
4826      break;
4827    }
4828  }
4829
4830  // Eat the }.
4831  T.consumeClose();
4832
4833  // If attributes exist after the identifier list, parse them.
4834  ParsedAttributes attrs(AttrFactory);
4835  MaybeParseGNUAttributes(attrs);
4836
4837  Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4838                        getCurScope(), attrs);
4839
4840  // Now handle enum constant availability diagnostics.
4841  assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4842  for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4843    ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4844    EnumAvailabilityDiags[i].redelay();
4845    PD.complete(EnumConstantDecls[i]);
4846  }
4847
4848  EnumScope.Exit();
4849  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4850
4851  // The next token must be valid after an enum definition. If not, a ';'
4852  // was probably forgotten.
4853  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4854  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4855    ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4856    // Push this token back into the preprocessor and change our current token
4857    // to ';' so that the rest of the code recovers as though there were an
4858    // ';' after the definition.
4859    PP.EnterToken(Tok, /*IsReinject=*/true);
4860    Tok.setKind(tok::semi);
4861  }
4862}
4863
4864/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4865/// is definitely a type-specifier.  Return false if it isn't part of a type
4866/// specifier or if we're not sure.
4867bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4868  switch (Tok.getKind()) {
4869  default: return false;
4870    // type-specifiers
4871  case tok::kw_short:
4872  case tok::kw_long:
4873  case tok::kw___int64:
4874  case tok::kw___int128:
4875  case tok::kw_signed:
4876  case tok::kw_unsigned:
4877  case tok::kw__Complex:
4878  case tok::kw__Imaginary:
4879  case tok::kw_void:
4880  case tok::kw_char:
4881  case tok::kw_wchar_t:
4882  case tok::kw_char8_t:
4883  case tok::kw_char16_t:
4884  case tok::kw_char32_t:
4885  case tok::kw_int:
4886  case tok::kw_half:
4887  case tok::kw_float:
4888  case tok::kw_double:
4889  case tok::kw__Accum:
4890  case tok::kw__Fract:
4891  case tok::kw__Float16:
4892  case tok::kw___float128:
4893  case tok::kw_bool:
4894  case tok::kw__Bool:
4895  case tok::kw__Decimal32:
4896  case tok::kw__Decimal64:
4897  case tok::kw__Decimal128:
4898  case tok::kw___vector:
4899#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4900#include "clang/Basic/OpenCLImageTypes.def"
4901
4902    // struct-or-union-specifier (C99) or class-specifier (C++)
4903  case tok::kw_class:
4904  case tok::kw_struct:
4905  case tok::kw___interface:
4906  case tok::kw_union:
4907    // enum-specifier
4908  case tok::kw_enum:
4909
4910    // typedef-name
4911  case tok::annot_typename:
4912    return true;
4913  }
4914}
4915
4916/// isTypeSpecifierQualifier - Return true if the current token could be the
4917/// start of a specifier-qualifier-list.
4918bool Parser::isTypeSpecifierQualifier() {
4919  switch (Tok.getKind()) {
4920  default: return false;
4921
4922  case tok::identifier:   // foo::bar
4923    if (TryAltiVecVectorToken())
4924      return true;
4925    LLVM_FALLTHROUGH;
4926  case tok::kw_typename:  // typename T::type
4927    // Annotate typenames and C++ scope specifiers.  If we get one, just
4928    // recurse to handle whatever we get.
4929    if (TryAnnotateTypeOrScopeToken())
4930      return true;
4931    if (Tok.is(tok::identifier))
4932      return false;
4933    return isTypeSpecifierQualifier();
4934
4935  case tok::coloncolon:   // ::foo::bar
4936    if (NextToken().is(tok::kw_new) ||    // ::new
4937        NextToken().is(tok::kw_delete))   // ::delete
4938      return false;
4939
4940    if (TryAnnotateTypeOrScopeToken())
4941      return true;
4942    return isTypeSpecifierQualifier();
4943
4944    // GNU attributes support.
4945  case tok::kw___attribute:
4946    // GNU typeof support.
4947  case tok::kw_typeof:
4948
4949    // type-specifiers
4950  case tok::kw_short:
4951  case tok::kw_long:
4952  case tok::kw___int64:
4953  case tok::kw___int128:
4954  case tok::kw_signed:
4955  case tok::kw_unsigned:
4956  case tok::kw__Complex:
4957  case tok::kw__Imaginary:
4958  case tok::kw_void:
4959  case tok::kw_char:
4960  case tok::kw_wchar_t:
4961  case tok::kw_char8_t:
4962  case tok::kw_char16_t:
4963  case tok::kw_char32_t:
4964  case tok::kw_int:
4965  case tok::kw_half:
4966  case tok::kw_float:
4967  case tok::kw_double:
4968  case tok::kw__Accum:
4969  case tok::kw__Fract:
4970  case tok::kw__Float16:
4971  case tok::kw___float128:
4972  case tok::kw_bool:
4973  case tok::kw__Bool:
4974  case tok::kw__Decimal32:
4975  case tok::kw__Decimal64:
4976  case tok::kw__Decimal128:
4977  case tok::kw___vector:
4978#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4979#include "clang/Basic/OpenCLImageTypes.def"
4980
4981    // struct-or-union-specifier (C99) or class-specifier (C++)
4982  case tok::kw_class:
4983  case tok::kw_struct:
4984  case tok::kw___interface:
4985  case tok::kw_union:
4986    // enum-specifier
4987  case tok::kw_enum:
4988
4989    // type-qualifier
4990  case tok::kw_const:
4991  case tok::kw_volatile:
4992  case tok::kw_restrict:
4993  case tok::kw__Sat:
4994
4995    // Debugger support.
4996  case tok::kw___unknown_anytype:
4997
4998    // typedef-name
4999  case tok::annot_typename:
5000    return true;
5001
5002    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5003  case tok::less:
5004    return getLangOpts().ObjC;
5005
5006  case tok::kw___cdecl:
5007  case tok::kw___stdcall:
5008  case tok::kw___fastcall:
5009  case tok::kw___thiscall:
5010  case tok::kw___regcall:
5011  case tok::kw___vectorcall:
5012  case tok::kw___w64:
5013  case tok::kw___ptr64:
5014  case tok::kw___ptr32:
5015  case tok::kw___pascal:
5016  case tok::kw___unaligned:
5017
5018  case tok::kw__Nonnull:
5019  case tok::kw__Nullable:
5020  case tok::kw__Null_unspecified:
5021
5022  case tok::kw___kindof:
5023
5024  case tok::kw___private:
5025  case tok::kw___local:
5026  case tok::kw___global:
5027  case tok::kw___constant:
5028  case tok::kw___generic:
5029  case tok::kw___read_only:
5030  case tok::kw___read_write:
5031  case tok::kw___write_only:
5032    return true;
5033
5034  case tok::kw_private:
5035    return getLangOpts().OpenCL;
5036
5037  // C11 _Atomic
5038  case tok::kw__Atomic:
5039    return true;
5040  }
5041}
5042
5043/// isDeclarationSpecifier() - Return true if the current token is part of a
5044/// declaration specifier.
5045///
5046/// \param DisambiguatingWithExpression True to indicate that the purpose of
5047/// this check is to disambiguate between an expression and a declaration.
5048bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
5049  switch (Tok.getKind()) {
5050  default: return false;
5051
5052  case tok::kw_pipe:
5053    return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) ||
5054           getLangOpts().OpenCLCPlusPlus;
5055
5056  case tok::identifier:   // foo::bar
5057    // Unfortunate hack to support "Class.factoryMethod" notation.
5058    if (getLangOpts().ObjC && NextToken().is(tok::period))
5059      return false;
5060    if (TryAltiVecVectorToken())
5061      return true;
5062    LLVM_FALLTHROUGH;
5063  case tok::kw_decltype: // decltype(T())::type
5064  case tok::kw_typename: // typename T::type
5065    // Annotate typenames and C++ scope specifiers.  If we get one, just
5066    // recurse to handle whatever we get.
5067    if (TryAnnotateTypeOrScopeToken())
5068      return true;
5069    if (TryAnnotateTypeConstraint())
5070      return true;
5071    if (Tok.is(tok::identifier))
5072      return false;
5073
5074    // If we're in Objective-C and we have an Objective-C class type followed
5075    // by an identifier and then either ':' or ']', in a place where an
5076    // expression is permitted, then this is probably a class message send
5077    // missing the initial '['. In this case, we won't consider this to be
5078    // the start of a declaration.
5079    if (DisambiguatingWithExpression &&
5080        isStartOfObjCClassMessageMissingOpenBracket())
5081      return false;
5082
5083    return isDeclarationSpecifier();
5084
5085  case tok::coloncolon:   // ::foo::bar
5086    if (NextToken().is(tok::kw_new) ||    // ::new
5087        NextToken().is(tok::kw_delete))   // ::delete
5088      return false;
5089
5090    // Annotate typenames and C++ scope specifiers.  If we get one, just
5091    // recurse to handle whatever we get.
5092    if (TryAnnotateTypeOrScopeToken())
5093      return true;
5094    return isDeclarationSpecifier();
5095
5096    // storage-class-specifier
5097  case tok::kw_typedef:
5098  case tok::kw_extern:
5099  case tok::kw___private_extern__:
5100  case tok::kw_static:
5101  case tok::kw_auto:
5102  case tok::kw___auto_type:
5103  case tok::kw_register:
5104  case tok::kw___thread:
5105  case tok::kw_thread_local:
5106  case tok::kw__Thread_local:
5107
5108    // Modules
5109  case tok::kw___module_private__:
5110
5111    // Debugger support
5112  case tok::kw___unknown_anytype:
5113
5114    // type-specifiers
5115  case tok::kw_short:
5116  case tok::kw_long:
5117  case tok::kw___int64:
5118  case tok::kw___int128:
5119  case tok::kw_signed:
5120  case tok::kw_unsigned:
5121  case tok::kw__Complex:
5122  case tok::kw__Imaginary:
5123  case tok::kw_void:
5124  case tok::kw_char:
5125  case tok::kw_wchar_t:
5126  case tok::kw_char8_t:
5127  case tok::kw_char16_t:
5128  case tok::kw_char32_t:
5129
5130  case tok::kw_int:
5131  case tok::kw_half:
5132  case tok::kw_float:
5133  case tok::kw_double:
5134  case tok::kw__Accum:
5135  case tok::kw__Fract:
5136  case tok::kw__Float16:
5137  case tok::kw___float128:
5138  case tok::kw_bool:
5139  case tok::kw__Bool:
5140  case tok::kw__Decimal32:
5141  case tok::kw__Decimal64:
5142  case tok::kw__Decimal128:
5143  case tok::kw___vector:
5144
5145    // struct-or-union-specifier (C99) or class-specifier (C++)
5146  case tok::kw_class:
5147  case tok::kw_struct:
5148  case tok::kw_union:
5149  case tok::kw___interface:
5150    // enum-specifier
5151  case tok::kw_enum:
5152
5153    // type-qualifier
5154  case tok::kw_const:
5155  case tok::kw_volatile:
5156  case tok::kw_restrict:
5157  case tok::kw__Sat:
5158
5159    // function-specifier
5160  case tok::kw_inline:
5161  case tok::kw_virtual:
5162  case tok::kw_explicit:
5163  case tok::kw__Noreturn:
5164
5165    // alignment-specifier
5166  case tok::kw__Alignas:
5167
5168    // friend keyword.
5169  case tok::kw_friend:
5170
5171    // static_assert-declaration
5172  case tok::kw__Static_assert:
5173
5174    // GNU typeof support.
5175  case tok::kw_typeof:
5176
5177    // GNU attributes.
5178  case tok::kw___attribute:
5179
5180    // C++11 decltype and constexpr.
5181  case tok::annot_decltype:
5182  case tok::kw_constexpr:
5183
5184    // C++20 consteval and constinit.
5185  case tok::kw_consteval:
5186  case tok::kw_constinit:
5187
5188    // C11 _Atomic
5189  case tok::kw__Atomic:
5190    return true;
5191
5192    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5193  case tok::less:
5194    return getLangOpts().ObjC;
5195
5196    // typedef-name
5197  case tok::annot_typename:
5198    return !DisambiguatingWithExpression ||
5199           !isStartOfObjCClassMessageMissingOpenBracket();
5200
5201    // placeholder-type-specifier
5202  case tok::annot_template_id: {
5203    return isTypeConstraintAnnotation() &&
5204        (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
5205  }
5206  case tok::annot_cxxscope:
5207    if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
5208      return true;
5209    return isTypeConstraintAnnotation() &&
5210        GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
5211  case tok::kw___declspec:
5212  case tok::kw___cdecl:
5213  case tok::kw___stdcall:
5214  case tok::kw___fastcall:
5215  case tok::kw___thiscall:
5216  case tok::kw___regcall:
5217  case tok::kw___vectorcall:
5218  case tok::kw___w64:
5219  case tok::kw___sptr:
5220  case tok::kw___uptr:
5221  case tok::kw___ptr64:
5222  case tok::kw___ptr32:
5223  case tok::kw___forceinline:
5224  case tok::kw___pascal:
5225  case tok::kw___unaligned:
5226
5227  case tok::kw__Nonnull:
5228  case tok::kw__Nullable:
5229  case tok::kw__Null_unspecified:
5230
5231  case tok::kw___kindof:
5232
5233  case tok::kw___private:
5234  case tok::kw___local:
5235  case tok::kw___global:
5236  case tok::kw___constant:
5237  case tok::kw___generic:
5238  case tok::kw___read_only:
5239  case tok::kw___read_write:
5240  case tok::kw___write_only:
5241#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5242#include "clang/Basic/OpenCLImageTypes.def"
5243
5244    return true;
5245
5246  case tok::kw_private:
5247    return getLangOpts().OpenCL;
5248  }
5249}
5250
5251bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
5252  TentativeParsingAction TPA(*this);
5253
5254  // Parse the C++ scope specifier.
5255  CXXScopeSpec SS;
5256  if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
5257                                     /*EnteringContext=*/true)) {
5258    TPA.Revert();
5259    return false;
5260  }
5261
5262  // Parse the constructor name.
5263  if (Tok.is(tok::identifier)) {
5264    // We already know that we have a constructor name; just consume
5265    // the token.
5266    ConsumeToken();
5267  } else if (Tok.is(tok::annot_template_id)) {
5268    ConsumeAnnotationToken();
5269  } else {
5270    TPA.Revert();
5271    return false;
5272  }
5273
5274  // There may be attributes here, appertaining to the constructor name or type
5275  // we just stepped past.
5276  SkipCXX11Attributes();
5277
5278  // Current class name must be followed by a left parenthesis.
5279  if (Tok.isNot(tok::l_paren)) {
5280    TPA.Revert();
5281    return false;
5282  }
5283  ConsumeParen();
5284
5285  // A right parenthesis, or ellipsis followed by a right parenthesis signals
5286  // that we have a constructor.
5287  if (Tok.is(tok::r_paren) ||
5288      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5289    TPA.Revert();
5290    return true;
5291  }
5292
5293  // A C++11 attribute here signals that we have a constructor, and is an
5294  // attribute on the first constructor parameter.
5295  if (getLangOpts().CPlusPlus11 &&
5296      isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5297                                /*OuterMightBeMessageSend*/ true)) {
5298    TPA.Revert();
5299    return true;
5300  }
5301
5302  // If we need to, enter the specified scope.
5303  DeclaratorScopeObj DeclScopeObj(*this, SS);
5304  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5305    DeclScopeObj.EnterDeclaratorScope();
5306
5307  // Optionally skip Microsoft attributes.
5308  ParsedAttributes Attrs(AttrFactory);
5309  MaybeParseMicrosoftAttributes(Attrs);
5310
5311  // Check whether the next token(s) are part of a declaration
5312  // specifier, in which case we have the start of a parameter and,
5313  // therefore, we know that this is a constructor.
5314  bool IsConstructor = false;
5315  if (isDeclarationSpecifier())
5316    IsConstructor = true;
5317  else if (Tok.is(tok::identifier) ||
5318           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5319    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5320    // This might be a parenthesized member name, but is more likely to
5321    // be a constructor declaration with an invalid argument type. Keep
5322    // looking.
5323    if (Tok.is(tok::annot_cxxscope))
5324      ConsumeAnnotationToken();
5325    ConsumeToken();
5326
5327    // If this is not a constructor, we must be parsing a declarator,
5328    // which must have one of the following syntactic forms (see the
5329    // grammar extract at the start of ParseDirectDeclarator):
5330    switch (Tok.getKind()) {
5331    case tok::l_paren:
5332      // C(X   (   int));
5333    case tok::l_square:
5334      // C(X   [   5]);
5335      // C(X   [   [attribute]]);
5336    case tok::coloncolon:
5337      // C(X   ::   Y);
5338      // C(X   ::   *p);
5339      // Assume this isn't a constructor, rather than assuming it's a
5340      // constructor with an unnamed parameter of an ill-formed type.
5341      break;
5342
5343    case tok::r_paren:
5344      // C(X   )
5345
5346      // Skip past the right-paren and any following attributes to get to
5347      // the function body or trailing-return-type.
5348      ConsumeParen();
5349      SkipCXX11Attributes();
5350
5351      if (DeductionGuide) {
5352        // C(X) -> ... is a deduction guide.
5353        IsConstructor = Tok.is(tok::arrow);
5354        break;
5355      }
5356      if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5357        // Assume these were meant to be constructors:
5358        //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5359        //   C(X)   try  (this is otherwise ill-formed).
5360        IsConstructor = true;
5361      }
5362      if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5363        // If we have a constructor name within the class definition,
5364        // assume these were meant to be constructors:
5365        //   C(X)   {
5366        //   C(X)   ;
5367        // ... because otherwise we would be declaring a non-static data
5368        // member that is ill-formed because it's of the same type as its
5369        // surrounding class.
5370        //
5371        // FIXME: We can actually do this whether or not the name is qualified,
5372        // because if it is qualified in this context it must be being used as
5373        // a constructor name.
5374        // currently, so we're somewhat conservative here.
5375        IsConstructor = IsUnqualified;
5376      }
5377      break;
5378
5379    default:
5380      IsConstructor = true;
5381      break;
5382    }
5383  }
5384
5385  TPA.Revert();
5386  return IsConstructor;
5387}
5388
5389/// ParseTypeQualifierListOpt
5390///          type-qualifier-list: [C99 6.7.5]
5391///            type-qualifier
5392/// [vendor]   attributes
5393///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5394///            type-qualifier-list type-qualifier
5395/// [vendor]   type-qualifier-list attributes
5396///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5397/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
5398///              [ only if AttReqs & AR_CXX11AttributesParsed ]
5399/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5400/// AttrRequirements bitmask values.
5401void Parser::ParseTypeQualifierListOpt(
5402    DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5403    bool IdentifierRequired,
5404    Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5405  if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5406      isCXX11AttributeSpecifier()) {
5407    ParsedAttributesWithRange attrs(AttrFactory);
5408    ParseCXX11Attributes(attrs);
5409    DS.takeAttributesFrom(attrs);
5410  }
5411
5412  SourceLocation EndLoc;
5413
5414  while (1) {
5415    bool isInvalid = false;
5416    const char *PrevSpec = nullptr;
5417    unsigned DiagID = 0;
5418    SourceLocation Loc = Tok.getLocation();
5419
5420    switch (Tok.getKind()) {
5421    case tok::code_completion:
5422      if (CodeCompletionHandler)
5423        (*CodeCompletionHandler)();
5424      else
5425        Actions.CodeCompleteTypeQualifiers(DS);
5426      return cutOffParsing();
5427
5428    case tok::kw_const:
5429      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
5430                                 getLangOpts());
5431      break;
5432    case tok::kw_volatile:
5433      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5434                                 getLangOpts());
5435      break;
5436    case tok::kw_restrict:
5437      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5438                                 getLangOpts());
5439      break;
5440    case tok::kw__Atomic:
5441      if (!AtomicAllowed)
5442        goto DoneWithTypeQuals;
5443      if (!getLangOpts().C11)
5444        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
5445      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5446                                 getLangOpts());
5447      break;
5448
5449    // OpenCL qualifiers:
5450    case tok::kw_private:
5451      if (!getLangOpts().OpenCL)
5452        goto DoneWithTypeQuals;
5453      LLVM_FALLTHROUGH;
5454    case tok::kw___private:
5455    case tok::kw___global:
5456    case tok::kw___local:
5457    case tok::kw___constant:
5458    case tok::kw___generic:
5459    case tok::kw___read_only:
5460    case tok::kw___write_only:
5461    case tok::kw___read_write:
5462      ParseOpenCLQualifiers(DS.getAttributes());
5463      break;
5464
5465    case tok::kw___unaligned:
5466      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5467                                 getLangOpts());
5468      break;
5469    case tok::kw___uptr:
5470      // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5471      // with the MS modifier keyword.
5472      if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5473          IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5474        if (TryKeywordIdentFallback(false))
5475          continue;
5476      }
5477      LLVM_FALLTHROUGH;
5478    case tok::kw___sptr:
5479    case tok::kw___w64:
5480    case tok::kw___ptr64:
5481    case tok::kw___ptr32:
5482    case tok::kw___cdecl:
5483    case tok::kw___stdcall:
5484    case tok::kw___fastcall:
5485    case tok::kw___thiscall:
5486    case tok::kw___regcall:
5487    case tok::kw___vectorcall:
5488      if (AttrReqs & AR_DeclspecAttributesParsed) {
5489        ParseMicrosoftTypeAttributes(DS.getAttributes());
5490        continue;
5491      }
5492      goto DoneWithTypeQuals;
5493    case tok::kw___pascal:
5494      if (AttrReqs & AR_VendorAttributesParsed) {
5495        ParseBorlandTypeAttributes(DS.getAttributes());
5496        continue;
5497      }
5498      goto DoneWithTypeQuals;
5499
5500    // Nullability type specifiers.
5501    case tok::kw__Nonnull:
5502    case tok::kw__Nullable:
5503    case tok::kw__Null_unspecified:
5504      ParseNullabilityTypeSpecifiers(DS.getAttributes());
5505      continue;
5506
5507    // Objective-C 'kindof' types.
5508    case tok::kw___kindof:
5509      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5510                                nullptr, 0, ParsedAttr::AS_Keyword);
5511      (void)ConsumeToken();
5512      continue;
5513
5514    case tok::kw___attribute:
5515      if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5516        // When GNU attributes are expressly forbidden, diagnose their usage.
5517        Diag(Tok, diag::err_attributes_not_allowed);
5518
5519      // Parse the attributes even if they are rejected to ensure that error
5520      // recovery is graceful.
5521      if (AttrReqs & AR_GNUAttributesParsed ||
5522          AttrReqs & AR_GNUAttributesParsedAndRejected) {
5523        ParseGNUAttributes(DS.getAttributes());
5524        continue; // do *not* consume the next token!
5525      }
5526      // otherwise, FALL THROUGH!
5527      LLVM_FALLTHROUGH;
5528    default:
5529      DoneWithTypeQuals:
5530      // If this is not a type-qualifier token, we're done reading type
5531      // qualifiers.  First verify that DeclSpec's are consistent.
5532      DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5533      if (EndLoc.isValid())
5534        DS.SetRangeEnd(EndLoc);
5535      return;
5536    }
5537
5538    // If the specifier combination wasn't legal, issue a diagnostic.
5539    if (isInvalid) {
5540      assert(PrevSpec && "Method did not return previous specifier!");
5541      Diag(Tok, DiagID) << PrevSpec;
5542    }
5543    EndLoc = ConsumeToken();
5544  }
5545}
5546
5547/// ParseDeclarator - Parse and verify a newly-initialized declarator.
5548///
5549void Parser::ParseDeclarator(Declarator &D) {
5550  /// This implements the 'declarator' production in the C grammar, then checks
5551  /// for well-formedness and issues diagnostics.
5552  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5553}
5554
5555static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
5556                               DeclaratorContext TheContext) {
5557  if (Kind == tok::star || Kind == tok::caret)
5558    return true;
5559
5560  if (Kind == tok::kw_pipe &&
5561      ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus))
5562    return true;
5563
5564  if (!Lang.CPlusPlus)
5565    return false;
5566
5567  if (Kind == tok::amp)
5568    return true;
5569
5570  // We parse rvalue refs in C++03, because otherwise the errors are scary.
5571  // But we must not parse them in conversion-type-ids and new-type-ids, since
5572  // those can be legitimately followed by a && operator.
5573  // (The same thing can in theory happen after a trailing-return-type, but
5574  // since those are a C++11 feature, there is no rejects-valid issue there.)
5575  if (Kind == tok::ampamp)
5576    return Lang.CPlusPlus11 ||
5577           (TheContext != DeclaratorContext::ConversionIdContext &&
5578            TheContext != DeclaratorContext::CXXNewContext);
5579
5580  return false;
5581}
5582
5583// Indicates whether the given declarator is a pipe declarator.
5584static bool isPipeDeclerator(const Declarator &D) {
5585  const unsigned NumTypes = D.getNumTypeObjects();
5586
5587  for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5588    if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
5589      return true;
5590
5591  return false;
5592}
5593
5594/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5595/// is parsed by the function passed to it. Pass null, and the direct-declarator
5596/// isn't parsed at all, making this function effectively parse the C++
5597/// ptr-operator production.
5598///
5599/// If the grammar of this construct is extended, matching changes must also be
5600/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5601/// isConstructorDeclarator.
5602///
5603///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5604/// [C]     pointer[opt] direct-declarator
5605/// [C++]   direct-declarator
5606/// [C++]   ptr-operator declarator
5607///
5608///       pointer: [C99 6.7.5]
5609///         '*' type-qualifier-list[opt]
5610///         '*' type-qualifier-list[opt] pointer
5611///
5612///       ptr-operator:
5613///         '*' cv-qualifier-seq[opt]
5614///         '&'
5615/// [C++0x] '&&'
5616/// [GNU]   '&' restrict[opt] attributes[opt]
5617/// [GNU?]  '&&' restrict[opt] attributes[opt]
5618///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5619void Parser::ParseDeclaratorInternal(Declarator &D,
5620                                     DirectDeclParseFunction DirectDeclParser) {
5621  if (Diags.hasAllExtensionsSilenced())
5622    D.setExtension();
5623
5624  // C++ member pointers start with a '::' or a nested-name.
5625  // Member pointers get special handling, since there's no place for the
5626  // scope spec in the generic path below.
5627  if (getLangOpts().CPlusPlus &&
5628      (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5629       (Tok.is(tok::identifier) &&
5630        (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5631       Tok.is(tok::annot_cxxscope))) {
5632    bool EnteringContext =
5633        D.getContext() == DeclaratorContext::FileContext ||
5634        D.getContext() == DeclaratorContext::MemberContext;
5635    CXXScopeSpec SS;
5636    ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5637
5638    if (SS.isNotEmpty()) {
5639      if (Tok.isNot(tok::star)) {
5640        // The scope spec really belongs to the direct-declarator.
5641        if (D.mayHaveIdentifier())
5642          D.getCXXScopeSpec() = SS;
5643        else
5644          AnnotateScopeToken(SS, true);
5645
5646        if (DirectDeclParser)
5647          (this->*DirectDeclParser)(D);
5648        return;
5649      }
5650
5651      SourceLocation Loc = ConsumeToken();
5652      D.SetRangeEnd(Loc);
5653      DeclSpec DS(AttrFactory);
5654      ParseTypeQualifierListOpt(DS);
5655      D.ExtendWithDeclSpec(DS);
5656
5657      // Recurse to parse whatever is left.
5658      ParseDeclaratorInternal(D, DirectDeclParser);
5659
5660      // Sema will have to catch (syntactically invalid) pointers into global
5661      // scope. It has to catch pointers into namespace scope anyway.
5662      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
5663                        SS, DS.getTypeQualifiers(), DS.getEndLoc()),
5664                    std::move(DS.getAttributes()),
5665                    /* Don't replace range end. */ SourceLocation());
5666      return;
5667    }
5668  }
5669
5670  tok::TokenKind Kind = Tok.getKind();
5671
5672  if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5673    DeclSpec DS(AttrFactory);
5674    ParseTypeQualifierListOpt(DS);
5675
5676    D.AddTypeInfo(
5677        DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5678        std::move(DS.getAttributes()), SourceLocation());
5679  }
5680
5681  // Not a pointer, C++ reference, or block.
5682  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5683    if (DirectDeclParser)
5684      (this->*DirectDeclParser)(D);
5685    return;
5686  }
5687
5688  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5689  // '&&' -> rvalue reference
5690  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
5691  D.SetRangeEnd(Loc);
5692
5693  if (Kind == tok::star || Kind == tok::caret) {
5694    // Is a pointer.
5695    DeclSpec DS(AttrFactory);
5696
5697    // GNU attributes are not allowed here in a new-type-id, but Declspec and
5698    // C++11 attributes are allowed.
5699    unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5700                    ((D.getContext() != DeclaratorContext::CXXNewContext)
5701                         ? AR_GNUAttributesParsed
5702                         : AR_GNUAttributesParsedAndRejected);
5703    ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5704    D.ExtendWithDeclSpec(DS);
5705
5706    // Recursively parse the declarator.
5707    ParseDeclaratorInternal(D, DirectDeclParser);
5708    if (Kind == tok::star)
5709      // Remember that we parsed a pointer type, and remember the type-quals.
5710      D.AddTypeInfo(DeclaratorChunk::getPointer(
5711                        DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5712                        DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
5713                        DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
5714                    std::move(DS.getAttributes()), SourceLocation());
5715    else
5716      // Remember that we parsed a Block type, and remember the type-quals.
5717      D.AddTypeInfo(
5718          DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
5719          std::move(DS.getAttributes()), SourceLocation());
5720  } else {
5721    // Is a reference
5722    DeclSpec DS(AttrFactory);
5723
5724    // Complain about rvalue references in C++03, but then go on and build
5725    // the declarator.
5726    if (Kind == tok::ampamp)
5727      Diag(Loc, getLangOpts().CPlusPlus11 ?
5728           diag::warn_cxx98_compat_rvalue_reference :
5729           diag::ext_rvalue_reference);
5730
5731    // GNU-style and C++11 attributes are allowed here, as is restrict.
5732    ParseTypeQualifierListOpt(DS);
5733    D.ExtendWithDeclSpec(DS);
5734
5735    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5736    // cv-qualifiers are introduced through the use of a typedef or of a
5737    // template type argument, in which case the cv-qualifiers are ignored.
5738    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5739      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5740        Diag(DS.getConstSpecLoc(),
5741             diag::err_invalid_reference_qualifier_application) << "const";
5742      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5743        Diag(DS.getVolatileSpecLoc(),
5744             diag::err_invalid_reference_qualifier_application) << "volatile";
5745      // 'restrict' is permitted as an extension.
5746      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5747        Diag(DS.getAtomicSpecLoc(),
5748             diag::err_invalid_reference_qualifier_application) << "_Atomic";
5749    }
5750
5751    // Recursively parse the declarator.
5752    ParseDeclaratorInternal(D, DirectDeclParser);
5753
5754    if (D.getNumTypeObjects() > 0) {
5755      // C++ [dcl.ref]p4: There shall be no references to references.
5756      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5757      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5758        if (const IdentifierInfo *II = D.getIdentifier())
5759          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5760           << II;
5761        else
5762          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5763            << "type name";
5764
5765        // Once we've complained about the reference-to-reference, we
5766        // can go ahead and build the (technically ill-formed)
5767        // declarator: reference collapsing will take care of it.
5768      }
5769    }
5770
5771    // Remember that we parsed a reference type.
5772    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5773                                                Kind == tok::amp),
5774                  std::move(DS.getAttributes()), SourceLocation());
5775  }
5776}
5777
5778// When correcting from misplaced brackets before the identifier, the location
5779// is saved inside the declarator so that other diagnostic messages can use
5780// them.  This extracts and returns that location, or returns the provided
5781// location if a stored location does not exist.
5782static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5783                                                SourceLocation Loc) {
5784  if (D.getName().StartLocation.isInvalid() &&
5785      D.getName().EndLocation.isValid())
5786    return D.getName().EndLocation;
5787
5788  return Loc;
5789}
5790
5791/// ParseDirectDeclarator
5792///       direct-declarator: [C99 6.7.5]
5793/// [C99]   identifier
5794///         '(' declarator ')'
5795/// [GNU]   '(' attributes declarator ')'
5796/// [C90]   direct-declarator '[' constant-expression[opt] ']'
5797/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5798/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5799/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5800/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5801/// [C++11] direct-declarator '[' constant-expression[opt] ']'
5802///                    attribute-specifier-seq[opt]
5803///         direct-declarator '(' parameter-type-list ')'
5804///         direct-declarator '(' identifier-list[opt] ')'
5805/// [GNU]   direct-declarator '(' parameter-forward-declarations
5806///                    parameter-type-list[opt] ')'
5807/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
5808///                    cv-qualifier-seq[opt] exception-specification[opt]
5809/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5810///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5811///                    ref-qualifier[opt] exception-specification[opt]
5812/// [C++]   declarator-id
5813/// [C++11] declarator-id attribute-specifier-seq[opt]
5814///
5815///       declarator-id: [C++ 8]
5816///         '...'[opt] id-expression
5817///         '::'[opt] nested-name-specifier[opt] type-name
5818///
5819///       id-expression: [C++ 5.1]
5820///         unqualified-id
5821///         qualified-id
5822///
5823///       unqualified-id: [C++ 5.1]
5824///         identifier
5825///         operator-function-id
5826///         conversion-function-id
5827///          '~' class-name
5828///         template-id
5829///
5830/// C++17 adds the following, which we also handle here:
5831///
5832///       simple-declaration:
5833///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5834///
5835/// Note, any additional constructs added here may need corresponding changes
5836/// in isConstructorDeclarator.
5837void Parser::ParseDirectDeclarator(Declarator &D) {
5838  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5839
5840  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5841    // This might be a C++17 structured binding.
5842    if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5843        D.getCXXScopeSpec().isEmpty())
5844      return ParseDecompositionDeclarator(D);
5845
5846    // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5847    // this context it is a bitfield. Also in range-based for statement colon
5848    // may delimit for-range-declaration.
5849    ColonProtectionRAIIObject X(
5850        *this, D.getContext() == DeclaratorContext::MemberContext ||
5851                   (D.getContext() == DeclaratorContext::ForContext &&
5852                    getLangOpts().CPlusPlus11));
5853
5854    // ParseDeclaratorInternal might already have parsed the scope.
5855    if (D.getCXXScopeSpec().isEmpty()) {
5856      bool EnteringContext =
5857          D.getContext() == DeclaratorContext::FileContext ||
5858          D.getContext() == DeclaratorContext::MemberContext;
5859      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5860                                     EnteringContext);
5861    }
5862
5863    if (D.getCXXScopeSpec().isValid()) {
5864      if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5865                                             D.getCXXScopeSpec()))
5866        // Change the declaration context for name lookup, until this function
5867        // is exited (and the declarator has been parsed).
5868        DeclScopeObj.EnterDeclaratorScope();
5869      else if (getObjCDeclContext()) {
5870        // Ensure that we don't interpret the next token as an identifier when
5871        // dealing with declarations in an Objective-C container.
5872        D.SetIdentifier(nullptr, Tok.getLocation());
5873        D.setInvalidType(true);
5874        ConsumeToken();
5875        goto PastIdentifier;
5876      }
5877    }
5878
5879    // C++0x [dcl.fct]p14:
5880    //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
5881    //   parameter-declaration-clause without a preceding comma. In this case,
5882    //   the ellipsis is parsed as part of the abstract-declarator if the type
5883    //   of the parameter either names a template parameter pack that has not
5884    //   been expanded or contains auto; otherwise, it is parsed as part of the
5885    //   parameter-declaration-clause.
5886    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5887        !((D.getContext() == DeclaratorContext::PrototypeContext ||
5888           D.getContext() == DeclaratorContext::LambdaExprParameterContext ||
5889           D.getContext() == DeclaratorContext::BlockLiteralContext) &&
5890          NextToken().is(tok::r_paren) &&
5891          !D.hasGroupingParens() &&
5892          !Actions.containsUnexpandedParameterPacks(D) &&
5893          D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5894      SourceLocation EllipsisLoc = ConsumeToken();
5895      if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5896        // The ellipsis was put in the wrong place. Recover, and explain to
5897        // the user what they should have done.
5898        ParseDeclarator(D);
5899        if (EllipsisLoc.isValid())
5900          DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5901        return;
5902      } else
5903        D.setEllipsisLoc(EllipsisLoc);
5904
5905      // The ellipsis can't be followed by a parenthesized declarator. We
5906      // check for that in ParseParenDeclarator, after we have disambiguated
5907      // the l_paren token.
5908    }
5909
5910    if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5911                    tok::tilde)) {
5912      // We found something that indicates the start of an unqualified-id.
5913      // Parse that unqualified-id.
5914      bool AllowConstructorName;
5915      bool AllowDeductionGuide;
5916      if (D.getDeclSpec().hasTypeSpecifier()) {
5917        AllowConstructorName = false;
5918        AllowDeductionGuide = false;
5919      } else if (D.getCXXScopeSpec().isSet()) {
5920        AllowConstructorName =
5921          (D.getContext() == DeclaratorContext::FileContext ||
5922           D.getContext() == DeclaratorContext::MemberContext);
5923        AllowDeductionGuide = false;
5924      } else {
5925        AllowConstructorName =
5926            (D.getContext() == DeclaratorContext::MemberContext);
5927        AllowDeductionGuide =
5928          (D.getContext() == DeclaratorContext::FileContext ||
5929           D.getContext() == DeclaratorContext::MemberContext);
5930      }
5931
5932      bool HadScope = D.getCXXScopeSpec().isValid();
5933      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5934                             /*EnteringContext=*/true,
5935                             /*AllowDestructorName=*/true, AllowConstructorName,
5936                             AllowDeductionGuide, nullptr, nullptr,
5937                             D.getName()) ||
5938          // Once we're past the identifier, if the scope was bad, mark the
5939          // whole declarator bad.
5940          D.getCXXScopeSpec().isInvalid()) {
5941        D.SetIdentifier(nullptr, Tok.getLocation());
5942        D.setInvalidType(true);
5943      } else {
5944        // ParseUnqualifiedId might have parsed a scope specifier during error
5945        // recovery. If it did so, enter that scope.
5946        if (!HadScope && D.getCXXScopeSpec().isValid() &&
5947            Actions.ShouldEnterDeclaratorScope(getCurScope(),
5948                                               D.getCXXScopeSpec()))
5949          DeclScopeObj.EnterDeclaratorScope();
5950
5951        // Parsed the unqualified-id; update range information and move along.
5952        if (D.getSourceRange().getBegin().isInvalid())
5953          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5954        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5955      }
5956      goto PastIdentifier;
5957    }
5958
5959    if (D.getCXXScopeSpec().isNotEmpty()) {
5960      // We have a scope specifier but no following unqualified-id.
5961      Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5962           diag::err_expected_unqualified_id)
5963          << /*C++*/1;
5964      D.SetIdentifier(nullptr, Tok.getLocation());
5965      goto PastIdentifier;
5966    }
5967  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5968    assert(!getLangOpts().CPlusPlus &&
5969           "There's a C++-specific check for tok::identifier above");
5970    assert(Tok.getIdentifierInfo() && "Not an identifier?");
5971    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5972    D.SetRangeEnd(Tok.getLocation());
5973    ConsumeToken();
5974    goto PastIdentifier;
5975  } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5976    // We're not allowed an identifier here, but we got one. Try to figure out
5977    // if the user was trying to attach a name to the type, or whether the name
5978    // is some unrelated trailing syntax.
5979    bool DiagnoseIdentifier = false;
5980    if (D.hasGroupingParens())
5981      // An identifier within parens is unlikely to be intended to be anything
5982      // other than a name being "declared".
5983      DiagnoseIdentifier = true;
5984    else if (D.getContext() == DeclaratorContext::TemplateArgContext)
5985      // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5986      DiagnoseIdentifier =
5987          NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5988    else if (D.getContext() == DeclaratorContext::AliasDeclContext ||
5989             D.getContext() == DeclaratorContext::AliasTemplateContext)
5990      // The most likely error is that the ';' was forgotten.
5991      DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5992    else if ((D.getContext() == DeclaratorContext::TrailingReturnContext ||
5993              D.getContext() == DeclaratorContext::TrailingReturnVarContext) &&
5994             !isCXX11VirtSpecifier(Tok))
5995      DiagnoseIdentifier = NextToken().isOneOf(
5996          tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5997    if (DiagnoseIdentifier) {
5998      Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5999        << FixItHint::CreateRemoval(Tok.getLocation());
6000      D.SetIdentifier(nullptr, Tok.getLocation());
6001      ConsumeToken();
6002      goto PastIdentifier;
6003    }
6004  }
6005
6006  if (Tok.is(tok::l_paren)) {
6007    // If this might be an abstract-declarator followed by a direct-initializer,
6008    // check whether this is a valid declarator chunk. If it can't be, assume
6009    // that it's an initializer instead.
6010    if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
6011      RevertingTentativeParsingAction PA(*this);
6012      if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
6013              TPResult::False) {
6014        D.SetIdentifier(nullptr, Tok.getLocation());
6015        goto PastIdentifier;
6016      }
6017    }
6018
6019    // direct-declarator: '(' declarator ')'
6020    // direct-declarator: '(' attributes declarator ')'
6021    // Example: 'char (*X)'   or 'int (*XX)(void)'
6022    ParseParenDeclarator(D);
6023
6024    // If the declarator was parenthesized, we entered the declarator
6025    // scope when parsing the parenthesized declarator, then exited
6026    // the scope already. Re-enter the scope, if we need to.
6027    if (D.getCXXScopeSpec().isSet()) {
6028      // If there was an error parsing parenthesized declarator, declarator
6029      // scope may have been entered before. Don't do it again.
6030      if (!D.isInvalidType() &&
6031          Actions.ShouldEnterDeclaratorScope(getCurScope(),
6032                                             D.getCXXScopeSpec()))
6033        // Change the declaration context for name lookup, until this function
6034        // is exited (and the declarator has been parsed).
6035        DeclScopeObj.EnterDeclaratorScope();
6036    }
6037  } else if (D.mayOmitIdentifier()) {
6038    // This could be something simple like "int" (in which case the declarator
6039    // portion is empty), if an abstract-declarator is allowed.
6040    D.SetIdentifier(nullptr, Tok.getLocation());
6041
6042    // The grammar for abstract-pack-declarator does not allow grouping parens.
6043    // FIXME: Revisit this once core issue 1488 is resolved.
6044    if (D.hasEllipsis() && D.hasGroupingParens())
6045      Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
6046           diag::ext_abstract_pack_declarator_parens);
6047  } else {
6048    if (Tok.getKind() == tok::annot_pragma_parser_crash)
6049      LLVM_BUILTIN_TRAP;
6050    if (Tok.is(tok::l_square))
6051      return ParseMisplacedBracketDeclarator(D);
6052    if (D.getContext() == DeclaratorContext::MemberContext) {
6053      // Objective-C++: Detect C++ keywords and try to prevent further errors by
6054      // treating these keyword as valid member names.
6055      if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
6056          Tok.getIdentifierInfo() &&
6057          Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
6058        Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6059             diag::err_expected_member_name_or_semi_objcxx_keyword)
6060            << Tok.getIdentifierInfo()
6061            << (D.getDeclSpec().isEmpty() ? SourceRange()
6062                                          : D.getDeclSpec().getSourceRange());
6063        D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6064        D.SetRangeEnd(Tok.getLocation());
6065        ConsumeToken();
6066        goto PastIdentifier;
6067      }
6068      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6069           diag::err_expected_member_name_or_semi)
6070          << (D.getDeclSpec().isEmpty() ? SourceRange()
6071                                        : D.getDeclSpec().getSourceRange());
6072    } else if (getLangOpts().CPlusPlus) {
6073      if (Tok.isOneOf(tok::period, tok::arrow))
6074        Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
6075      else {
6076        SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
6077        if (Tok.isAtStartOfLine() && Loc.isValid())
6078          Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
6079              << getLangOpts().CPlusPlus;
6080        else
6081          Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6082               diag::err_expected_unqualified_id)
6083              << getLangOpts().CPlusPlus;
6084      }
6085    } else {
6086      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6087           diag::err_expected_either)
6088          << tok::identifier << tok::l_paren;
6089    }
6090    D.SetIdentifier(nullptr, Tok.getLocation());
6091    D.setInvalidType(true);
6092  }
6093
6094 PastIdentifier:
6095  assert(D.isPastIdentifier() &&
6096         "Haven't past the location of the identifier yet?");
6097
6098  // Don't parse attributes unless we have parsed an unparenthesized name.
6099  if (D.hasName() && !D.getNumTypeObjects())
6100    MaybeParseCXX11Attributes(D);
6101
6102  while (1) {
6103    if (Tok.is(tok::l_paren)) {
6104      bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
6105      // Enter function-declaration scope, limiting any declarators to the
6106      // function prototype scope, including parameter declarators.
6107      ParseScope PrototypeScope(this,
6108                                Scope::FunctionPrototypeScope|Scope::DeclScope|
6109                                (IsFunctionDeclaration
6110                                   ? Scope::FunctionDeclarationScope : 0));
6111
6112      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
6113      // In such a case, check if we actually have a function declarator; if it
6114      // is not, the declarator has been fully parsed.
6115      bool IsAmbiguous = false;
6116      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
6117        // The name of the declarator, if any, is tentatively declared within
6118        // a possible direct initializer.
6119        TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
6120        bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
6121        TentativelyDeclaredIdentifiers.pop_back();
6122        if (!IsFunctionDecl)
6123          break;
6124      }
6125      ParsedAttributes attrs(AttrFactory);
6126      BalancedDelimiterTracker T(*this, tok::l_paren);
6127      T.consumeOpen();
6128      if (IsFunctionDeclaration)
6129        Actions.ActOnStartFunctionDeclarationDeclarator(D,
6130                                                        TemplateParameterDepth);
6131      ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
6132      if (IsFunctionDeclaration)
6133        Actions.ActOnFinishFunctionDeclarationDeclarator(D);
6134      PrototypeScope.Exit();
6135    } else if (Tok.is(tok::l_square)) {
6136      ParseBracketDeclarator(D);
6137    } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
6138      // This declarator is declaring a function, but the requires clause is
6139      // in the wrong place:
6140      //   void (f() requires true);
6141      // instead of
6142      //   void f() requires true;
6143      // or
6144      //   void (f()) requires true;
6145      Diag(Tok, diag::err_requires_clause_inside_parens);
6146      ConsumeToken();
6147      ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
6148         ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6149      if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
6150          !D.hasTrailingRequiresClause())
6151        // We're already ill-formed if we got here but we'll accept it anyway.
6152        D.setTrailingRequiresClause(TrailingRequiresClause.get());
6153    } else {
6154      break;
6155    }
6156  }
6157}
6158
6159void Parser::ParseDecompositionDeclarator(Declarator &D) {
6160  assert(Tok.is(tok::l_square));
6161
6162  // If this doesn't look like a structured binding, maybe it's a misplaced
6163  // array declarator.
6164  // FIXME: Consume the l_square first so we don't need extra lookahead for
6165  // this.
6166  if (!(NextToken().is(tok::identifier) &&
6167        GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
6168      !(NextToken().is(tok::r_square) &&
6169        GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
6170    return ParseMisplacedBracketDeclarator(D);
6171
6172  BalancedDelimiterTracker T(*this, tok::l_square);
6173  T.consumeOpen();
6174
6175  SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
6176  while (Tok.isNot(tok::r_square)) {
6177    if (!Bindings.empty()) {
6178      if (Tok.is(tok::comma))
6179        ConsumeToken();
6180      else {
6181        if (Tok.is(tok::identifier)) {
6182          SourceLocation EndLoc = getEndOfPreviousToken();
6183          Diag(EndLoc, diag::err_expected)
6184              << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6185        } else {
6186          Diag(Tok, diag::err_expected_comma_or_rsquare);
6187        }
6188
6189        SkipUntil(tok::r_square, tok::comma, tok::identifier,
6190                  StopAtSemi | StopBeforeMatch);
6191        if (Tok.is(tok::comma))
6192          ConsumeToken();
6193        else if (Tok.isNot(tok::identifier))
6194          break;
6195      }
6196    }
6197
6198    if (Tok.isNot(tok::identifier)) {
6199      Diag(Tok, diag::err_expected) << tok::identifier;
6200      break;
6201    }
6202
6203    Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6204    ConsumeToken();
6205  }
6206
6207  if (Tok.isNot(tok::r_square))
6208    // We've already diagnosed a problem here.
6209    T.skipToEnd();
6210  else {
6211    // C++17 does not allow the identifier-list in a structured binding
6212    // to be empty.
6213    if (Bindings.empty())
6214      Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6215
6216    T.consumeClose();
6217  }
6218
6219  return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6220                                    T.getCloseLocation());
6221}
6222
6223/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6224/// only called before the identifier, so these are most likely just grouping
6225/// parens for precedence.  If we find that these are actually function
6226/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6227///
6228///       direct-declarator:
6229///         '(' declarator ')'
6230/// [GNU]   '(' attributes declarator ')'
6231///         direct-declarator '(' parameter-type-list ')'
6232///         direct-declarator '(' identifier-list[opt] ')'
6233/// [GNU]   direct-declarator '(' parameter-forward-declarations
6234///                    parameter-type-list[opt] ')'
6235///
6236void Parser::ParseParenDeclarator(Declarator &D) {
6237  BalancedDelimiterTracker T(*this, tok::l_paren);
6238  T.consumeOpen();
6239
6240  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6241
6242  // Eat any attributes before we look at whether this is a grouping or function
6243  // declarator paren.  If this is a grouping paren, the attribute applies to
6244  // the type being built up, for example:
6245  //     int (__attribute__(()) *x)(long y)
6246  // If this ends up not being a grouping paren, the attribute applies to the
6247  // first argument, for example:
6248  //     int (__attribute__(()) int x)
6249  // In either case, we need to eat any attributes to be able to determine what
6250  // sort of paren this is.
6251  //
6252  ParsedAttributes attrs(AttrFactory);
6253  bool RequiresArg = false;
6254  if (Tok.is(tok::kw___attribute)) {
6255    ParseGNUAttributes(attrs);
6256
6257    // We require that the argument list (if this is a non-grouping paren) be
6258    // present even if the attribute list was empty.
6259    RequiresArg = true;
6260  }
6261
6262  // Eat any Microsoft extensions.
6263  ParseMicrosoftTypeAttributes(attrs);
6264
6265  // Eat any Borland extensions.
6266  if  (Tok.is(tok::kw___pascal))
6267    ParseBorlandTypeAttributes(attrs);
6268
6269  // If we haven't past the identifier yet (or where the identifier would be
6270  // stored, if this is an abstract declarator), then this is probably just
6271  // grouping parens. However, if this could be an abstract-declarator, then
6272  // this could also be the start of function arguments (consider 'void()').
6273  bool isGrouping;
6274
6275  if (!D.mayOmitIdentifier()) {
6276    // If this can't be an abstract-declarator, this *must* be a grouping
6277    // paren, because we haven't seen the identifier yet.
6278    isGrouping = true;
6279  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
6280             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6281              NextToken().is(tok::r_paren)) || // C++ int(...)
6282             isDeclarationSpecifier() ||       // 'int(int)' is a function.
6283             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
6284    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6285    // considered to be a type, not a K&R identifier-list.
6286    isGrouping = false;
6287  } else {
6288    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6289    isGrouping = true;
6290  }
6291
6292  // If this is a grouping paren, handle:
6293  // direct-declarator: '(' declarator ')'
6294  // direct-declarator: '(' attributes declarator ')'
6295  if (isGrouping) {
6296    SourceLocation EllipsisLoc = D.getEllipsisLoc();
6297    D.setEllipsisLoc(SourceLocation());
6298
6299    bool hadGroupingParens = D.hasGroupingParens();
6300    D.setGroupingParens(true);
6301    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6302    // Match the ')'.
6303    T.consumeClose();
6304    D.AddTypeInfo(
6305        DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6306        std::move(attrs), T.getCloseLocation());
6307
6308    D.setGroupingParens(hadGroupingParens);
6309
6310    // An ellipsis cannot be placed outside parentheses.
6311    if (EllipsisLoc.isValid())
6312      DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6313
6314    return;
6315  }
6316
6317  // Okay, if this wasn't a grouping paren, it must be the start of a function
6318  // argument list.  Recognize that this declarator will never have an
6319  // identifier (and remember where it would have been), then call into
6320  // ParseFunctionDeclarator to handle of argument list.
6321  D.SetIdentifier(nullptr, Tok.getLocation());
6322
6323  // Enter function-declaration scope, limiting any declarators to the
6324  // function prototype scope, including parameter declarators.
6325  ParseScope PrototypeScope(this,
6326                            Scope::FunctionPrototypeScope | Scope::DeclScope |
6327                            (D.isFunctionDeclaratorAFunctionDeclaration()
6328                               ? Scope::FunctionDeclarationScope : 0));
6329  ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6330  PrototypeScope.Exit();
6331}
6332
6333void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
6334    const Declarator &D, const DeclSpec &DS,
6335    llvm::Optional<Sema::CXXThisScopeRAII> &ThisScope) {
6336  // C++11 [expr.prim.general]p3:
6337  //   If a declaration declares a member function or member function
6338  //   template of a class X, the expression this is a prvalue of type
6339  //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6340  //   and the end of the function-definition, member-declarator, or
6341  //   declarator.
6342  // FIXME: currently, "static" case isn't handled correctly.
6343  bool IsCXX11MemberFunction = getLangOpts().CPlusPlus11 &&
6344        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6345        (D.getContext() == DeclaratorContext::MemberContext
6346         ? !D.getDeclSpec().isFriendSpecified()
6347         : D.getContext() == DeclaratorContext::FileContext &&
6348           D.getCXXScopeSpec().isValid() &&
6349           Actions.CurContext->isRecord());
6350  if (!IsCXX11MemberFunction)
6351    return;
6352
6353  Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
6354  if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
6355    Q.addConst();
6356  // FIXME: Collect C++ address spaces.
6357  // If there are multiple different address spaces, the source is invalid.
6358  // Carry on using the first addr space for the qualifiers of 'this'.
6359  // The diagnostic will be given later while creating the function
6360  // prototype for the method.
6361  if (getLangOpts().OpenCLCPlusPlus) {
6362    for (ParsedAttr &attr : DS.getAttributes()) {
6363      LangAS ASIdx = attr.asOpenCLLangAS();
6364      if (ASIdx != LangAS::Default) {
6365        Q.addAddressSpace(ASIdx);
6366        break;
6367      }
6368    }
6369  }
6370  ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
6371                    IsCXX11MemberFunction);
6372}
6373
6374/// ParseFunctionDeclarator - We are after the identifier and have parsed the
6375/// declarator D up to a paren, which indicates that we are parsing function
6376/// arguments.
6377///
6378/// If FirstArgAttrs is non-null, then the caller parsed those arguments
6379/// immediately after the open paren - they should be considered to be the
6380/// first argument of a parameter.
6381///
6382/// If RequiresArg is true, then the first argument of the function is required
6383/// to be present and required to not be an identifier list.
6384///
6385/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
6386/// (C++11) ref-qualifier[opt], exception-specification[opt],
6387/// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
6388/// (C++2a) the trailing requires-clause.
6389///
6390/// [C++11] exception-specification:
6391///           dynamic-exception-specification
6392///           noexcept-specification
6393///
6394void Parser::ParseFunctionDeclarator(Declarator &D,
6395                                     ParsedAttributes &FirstArgAttrs,
6396                                     BalancedDelimiterTracker &Tracker,
6397                                     bool IsAmbiguous,
6398                                     bool RequiresArg) {
6399  assert(getCurScope()->isFunctionPrototypeScope() &&
6400         "Should call from a Function scope");
6401  // lparen is already consumed!
6402  assert(D.isPastIdentifier() && "Should not call before identifier!");
6403
6404  // This should be true when the function has typed arguments.
6405  // Otherwise, it is treated as a K&R-style function.
6406  bool HasProto = false;
6407  // Build up an array of information about the parsed arguments.
6408  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
6409  // Remember where we see an ellipsis, if any.
6410  SourceLocation EllipsisLoc;
6411
6412  DeclSpec DS(AttrFactory);
6413  bool RefQualifierIsLValueRef = true;
6414  SourceLocation RefQualifierLoc;
6415  ExceptionSpecificationType ESpecType = EST_None;
6416  SourceRange ESpecRange;
6417  SmallVector<ParsedType, 2> DynamicExceptions;
6418  SmallVector<SourceRange, 2> DynamicExceptionRanges;
6419  ExprResult NoexceptExpr;
6420  CachedTokens *ExceptionSpecTokens = nullptr;
6421  ParsedAttributesWithRange FnAttrs(AttrFactory);
6422  TypeResult TrailingReturnType;
6423
6424  /* LocalEndLoc is the end location for the local FunctionTypeLoc.
6425     EndLoc is the end location for the function declarator.
6426     They differ for trailing return types. */
6427  SourceLocation StartLoc, LocalEndLoc, EndLoc;
6428  SourceLocation LParenLoc, RParenLoc;
6429  LParenLoc = Tracker.getOpenLocation();
6430  StartLoc = LParenLoc;
6431
6432  if (isFunctionDeclaratorIdentifierList()) {
6433    if (RequiresArg)
6434      Diag(Tok, diag::err_argument_required_after_attribute);
6435
6436    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
6437
6438    Tracker.consumeClose();
6439    RParenLoc = Tracker.getCloseLocation();
6440    LocalEndLoc = RParenLoc;
6441    EndLoc = RParenLoc;
6442
6443    // If there are attributes following the identifier list, parse them and
6444    // prohibit them.
6445    MaybeParseCXX11Attributes(FnAttrs);
6446    ProhibitAttributes(FnAttrs);
6447  } else {
6448    if (Tok.isNot(tok::r_paren))
6449      ParseParameterDeclarationClause(D.getContext(), FirstArgAttrs, ParamInfo,
6450                                      EllipsisLoc);
6451    else if (RequiresArg)
6452      Diag(Tok, diag::err_argument_required_after_attribute);
6453
6454    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus
6455                                || getLangOpts().OpenCL;
6456
6457    // If we have the closing ')', eat it.
6458    Tracker.consumeClose();
6459    RParenLoc = Tracker.getCloseLocation();
6460    LocalEndLoc = RParenLoc;
6461    EndLoc = RParenLoc;
6462
6463    if (getLangOpts().CPlusPlus) {
6464      // FIXME: Accept these components in any order, and produce fixits to
6465      // correct the order if the user gets it wrong. Ideally we should deal
6466      // with the pure-specifier in the same way.
6467
6468      // Parse cv-qualifier-seq[opt].
6469      ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
6470                                /*AtomicAllowed*/ false,
6471                                /*IdentifierRequired=*/false,
6472                                llvm::function_ref<void()>([&]() {
6473                                  Actions.CodeCompleteFunctionQualifiers(DS, D);
6474                                }));
6475      if (!DS.getSourceRange().getEnd().isInvalid()) {
6476        EndLoc = DS.getSourceRange().getEnd();
6477      }
6478
6479      // Parse ref-qualifier[opt].
6480      if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
6481        EndLoc = RefQualifierLoc;
6482
6483      llvm::Optional<Sema::CXXThisScopeRAII> ThisScope;
6484      InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
6485
6486      // Parse exception-specification[opt].
6487      bool Delayed = D.isFirstDeclarationOfMember() &&
6488                     D.isFunctionDeclaratorAFunctionDeclaration();
6489      if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
6490          GetLookAheadToken(0).is(tok::kw_noexcept) &&
6491          GetLookAheadToken(1).is(tok::l_paren) &&
6492          GetLookAheadToken(2).is(tok::kw_noexcept) &&
6493          GetLookAheadToken(3).is(tok::l_paren) &&
6494          GetLookAheadToken(4).is(tok::identifier) &&
6495          GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
6496        // HACK: We've got an exception-specification
6497        //   noexcept(noexcept(swap(...)))
6498        // or
6499        //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
6500        // on a 'swap' member function. This is a libstdc++ bug; the lookup
6501        // for 'swap' will only find the function we're currently declaring,
6502        // whereas it expects to find a non-member swap through ADL. Turn off
6503        // delayed parsing to give it a chance to find what it expects.
6504        Delayed = false;
6505      }
6506      ESpecType = tryParseExceptionSpecification(Delayed,
6507                                                 ESpecRange,
6508                                                 DynamicExceptions,
6509                                                 DynamicExceptionRanges,
6510                                                 NoexceptExpr,
6511                                                 ExceptionSpecTokens);
6512      if (ESpecType != EST_None)
6513        EndLoc = ESpecRange.getEnd();
6514
6515      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
6516      // after the exception-specification.
6517      MaybeParseCXX11Attributes(FnAttrs);
6518
6519      // Parse trailing-return-type[opt].
6520      LocalEndLoc = EndLoc;
6521      if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
6522        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
6523        if (D.getDeclSpec().getTypeSpecType() == TST_auto)
6524          StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
6525        LocalEndLoc = Tok.getLocation();
6526        SourceRange Range;
6527        TrailingReturnType =
6528            ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
6529        EndLoc = Range.getEnd();
6530      }
6531    } else if (standardAttributesAllowed()) {
6532      MaybeParseCXX11Attributes(FnAttrs);
6533    }
6534  }
6535
6536  // Collect non-parameter declarations from the prototype if this is a function
6537  // declaration. They will be moved into the scope of the function. Only do
6538  // this in C and not C++, where the decls will continue to live in the
6539  // surrounding context.
6540  SmallVector<NamedDecl *, 0> DeclsInPrototype;
6541  if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope &&
6542      !getLangOpts().CPlusPlus) {
6543    for (Decl *D : getCurScope()->decls()) {
6544      NamedDecl *ND = dyn_cast<NamedDecl>(D);
6545      if (!ND || isa<ParmVarDecl>(ND))
6546        continue;
6547      DeclsInPrototype.push_back(ND);
6548    }
6549  }
6550
6551  // Remember that we parsed a function type, and remember the attributes.
6552  D.AddTypeInfo(DeclaratorChunk::getFunction(
6553                    HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
6554                    ParamInfo.size(), EllipsisLoc, RParenLoc,
6555                    RefQualifierIsLValueRef, RefQualifierLoc,
6556                    /*MutableLoc=*/SourceLocation(),
6557                    ESpecType, ESpecRange, DynamicExceptions.data(),
6558                    DynamicExceptionRanges.data(), DynamicExceptions.size(),
6559                    NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
6560                    ExceptionSpecTokens, DeclsInPrototype, StartLoc,
6561                    LocalEndLoc, D, TrailingReturnType, &DS),
6562                std::move(FnAttrs), EndLoc);
6563}
6564
6565/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
6566/// true if a ref-qualifier is found.
6567bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
6568                               SourceLocation &RefQualifierLoc) {
6569  if (Tok.isOneOf(tok::amp, tok::ampamp)) {
6570    Diag(Tok, getLangOpts().CPlusPlus11 ?
6571         diag::warn_cxx98_compat_ref_qualifier :
6572         diag::ext_ref_qualifier);
6573
6574    RefQualifierIsLValueRef = Tok.is(tok::amp);
6575    RefQualifierLoc = ConsumeToken();
6576    return true;
6577  }
6578  return false;
6579}
6580
6581/// isFunctionDeclaratorIdentifierList - This parameter list may have an
6582/// identifier list form for a K&R-style function:  void foo(a,b,c)
6583///
6584/// Note that identifier-lists are only allowed for normal declarators, not for
6585/// abstract-declarators.
6586bool Parser::isFunctionDeclaratorIdentifierList() {
6587  return !getLangOpts().CPlusPlus
6588         && Tok.is(tok::identifier)
6589         && !TryAltiVecVectorToken()
6590         // K&R identifier lists can't have typedefs as identifiers, per C99
6591         // 6.7.5.3p11.
6592         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
6593         // Identifier lists follow a really simple grammar: the identifiers can
6594         // be followed *only* by a ", identifier" or ")".  However, K&R
6595         // identifier lists are really rare in the brave new modern world, and
6596         // it is very common for someone to typo a type in a non-K&R style
6597         // list.  If we are presented with something like: "void foo(intptr x,
6598         // float y)", we don't want to start parsing the function declarator as
6599         // though it is a K&R style declarator just because intptr is an
6600         // invalid type.
6601         //
6602         // To handle this, we check to see if the token after the first
6603         // identifier is a "," or ")".  Only then do we parse it as an
6604         // identifier list.
6605         && (!Tok.is(tok::eof) &&
6606             (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
6607}
6608
6609/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
6610/// we found a K&R-style identifier list instead of a typed parameter list.
6611///
6612/// After returning, ParamInfo will hold the parsed parameters.
6613///
6614///       identifier-list: [C99 6.7.5]
6615///         identifier
6616///         identifier-list ',' identifier
6617///
6618void Parser::ParseFunctionDeclaratorIdentifierList(
6619       Declarator &D,
6620       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
6621  // If there was no identifier specified for the declarator, either we are in
6622  // an abstract-declarator, or we are in a parameter declarator which was found
6623  // to be abstract.  In abstract-declarators, identifier lists are not valid:
6624  // diagnose this.
6625  if (!D.getIdentifier())
6626    Diag(Tok, diag::ext_ident_list_in_param);
6627
6628  // Maintain an efficient lookup of params we have seen so far.
6629  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
6630
6631  do {
6632    // If this isn't an identifier, report the error and skip until ')'.
6633    if (Tok.isNot(tok::identifier)) {
6634      Diag(Tok, diag::err_expected) << tok::identifier;
6635      SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
6636      // Forget we parsed anything.
6637      ParamInfo.clear();
6638      return;
6639    }
6640
6641    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
6642
6643    // Reject 'typedef int y; int test(x, y)', but continue parsing.
6644    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
6645      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
6646
6647    // Verify that the argument identifier has not already been mentioned.
6648    if (!ParamsSoFar.insert(ParmII).second) {
6649      Diag(Tok, diag::err_param_redefinition) << ParmII;
6650    } else {
6651      // Remember this identifier in ParamInfo.
6652      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6653                                                     Tok.getLocation(),
6654                                                     nullptr));
6655    }
6656
6657    // Eat the identifier.
6658    ConsumeToken();
6659    // The list continues if we see a comma.
6660  } while (TryConsumeToken(tok::comma));
6661}
6662
6663/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
6664/// after the opening parenthesis. This function will not parse a K&R-style
6665/// identifier list.
6666///
6667/// DeclContext is the context of the declarator being parsed.  If FirstArgAttrs
6668/// is non-null, then the caller parsed those attributes immediately after the
6669/// open paren - they should be considered to be part of the first parameter.
6670///
6671/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
6672/// be the location of the ellipsis, if any was parsed.
6673///
6674///       parameter-type-list: [C99 6.7.5]
6675///         parameter-list
6676///         parameter-list ',' '...'
6677/// [C++]   parameter-list '...'
6678///
6679///       parameter-list: [C99 6.7.5]
6680///         parameter-declaration
6681///         parameter-list ',' parameter-declaration
6682///
6683///       parameter-declaration: [C99 6.7.5]
6684///         declaration-specifiers declarator
6685/// [C++]   declaration-specifiers declarator '=' assignment-expression
6686/// [C++11]                                       initializer-clause
6687/// [GNU]   declaration-specifiers declarator attributes
6688///         declaration-specifiers abstract-declarator[opt]
6689/// [C++]   declaration-specifiers abstract-declarator[opt]
6690///           '=' assignment-expression
6691/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
6692/// [C++11] attribute-specifier-seq parameter-declaration
6693///
6694void Parser::ParseParameterDeclarationClause(
6695       DeclaratorContext DeclaratorCtx,
6696       ParsedAttributes &FirstArgAttrs,
6697       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
6698       SourceLocation &EllipsisLoc) {
6699
6700  // Avoid exceeding the maximum function scope depth.
6701  // See https://bugs.llvm.org/show_bug.cgi?id=19607
6702  // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
6703  // getFunctionPrototypeDepth() - 1.
6704  if (getCurScope()->getFunctionPrototypeDepth() - 1 >
6705      ParmVarDecl::getMaxFunctionScopeDepth()) {
6706    Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
6707        << ParmVarDecl::getMaxFunctionScopeDepth();
6708    cutOffParsing();
6709    return;
6710  }
6711
6712  do {
6713    // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
6714    // before deciding this was a parameter-declaration-clause.
6715    if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
6716      break;
6717
6718    // Parse the declaration-specifiers.
6719    // Just use the ParsingDeclaration "scope" of the declarator.
6720    DeclSpec DS(AttrFactory);
6721
6722    // Parse any C++11 attributes.
6723    MaybeParseCXX11Attributes(DS.getAttributes());
6724
6725    // Skip any Microsoft attributes before a param.
6726    MaybeParseMicrosoftAttributes(DS.getAttributes());
6727
6728    SourceLocation DSStart = Tok.getLocation();
6729
6730    // If the caller parsed attributes for the first argument, add them now.
6731    // Take them so that we only apply the attributes to the first parameter.
6732    // FIXME: If we can leave the attributes in the token stream somehow, we can
6733    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
6734    // too much hassle.
6735    DS.takeAttributesFrom(FirstArgAttrs);
6736
6737    ParseDeclarationSpecifiers(DS);
6738
6739
6740    // Parse the declarator.  This is "PrototypeContext" or
6741    // "LambdaExprParameterContext", because we must accept either
6742    // 'declarator' or 'abstract-declarator' here.
6743    Declarator ParmDeclarator(
6744        DS, DeclaratorCtx == DeclaratorContext::RequiresExprContext
6745                ? DeclaratorContext::RequiresExprContext
6746                : DeclaratorCtx == DeclaratorContext::LambdaExprContext
6747                      ? DeclaratorContext::LambdaExprParameterContext
6748                      : DeclaratorContext::PrototypeContext);
6749    ParseDeclarator(ParmDeclarator);
6750
6751    // Parse GNU attributes, if present.
6752    MaybeParseGNUAttributes(ParmDeclarator);
6753
6754    if (Tok.is(tok::kw_requires)) {
6755      // User tried to define a requires clause in a parameter declaration,
6756      // which is surely not a function declaration.
6757      // void f(int (*g)(int, int) requires true);
6758      Diag(Tok,
6759           diag::err_requires_clause_on_declarator_not_declaring_a_function);
6760      ConsumeToken();
6761      Actions.CorrectDelayedTyposInExpr(
6762         ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6763    }
6764
6765    // Remember this parsed parameter in ParamInfo.
6766    IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
6767
6768    // DefArgToks is used when the parsing of default arguments needs
6769    // to be delayed.
6770    std::unique_ptr<CachedTokens> DefArgToks;
6771
6772    // If no parameter was specified, verify that *something* was specified,
6773    // otherwise we have a missing type and identifier.
6774    if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
6775        ParmDeclarator.getNumTypeObjects() == 0) {
6776      // Completely missing, emit error.
6777      Diag(DSStart, diag::err_missing_param);
6778    } else {
6779      // Otherwise, we have something.  Add it and let semantic analysis try
6780      // to grok it and add the result to the ParamInfo we are building.
6781
6782      // Last chance to recover from a misplaced ellipsis in an attempted
6783      // parameter pack declaration.
6784      if (Tok.is(tok::ellipsis) &&
6785          (NextToken().isNot(tok::r_paren) ||
6786           (!ParmDeclarator.getEllipsisLoc().isValid() &&
6787            !Actions.isUnexpandedParameterPackPermitted())) &&
6788          Actions.containsUnexpandedParameterPacks(ParmDeclarator))
6789        DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
6790
6791      // Inform the actions module about the parameter declarator, so it gets
6792      // added to the current scope.
6793      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
6794      // Parse the default argument, if any. We parse the default
6795      // arguments in all dialects; the semantic analysis in
6796      // ActOnParamDefaultArgument will reject the default argument in
6797      // C.
6798      if (Tok.is(tok::equal)) {
6799        SourceLocation EqualLoc = Tok.getLocation();
6800
6801        // Parse the default argument
6802        if (DeclaratorCtx == DeclaratorContext::MemberContext) {
6803          // If we're inside a class definition, cache the tokens
6804          // corresponding to the default argument. We'll actually parse
6805          // them when we see the end of the class definition.
6806          DefArgToks.reset(new CachedTokens);
6807
6808          SourceLocation ArgStartLoc = NextToken().getLocation();
6809          if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
6810            DefArgToks.reset();
6811            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6812          } else {
6813            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
6814                                                      ArgStartLoc);
6815          }
6816        } else {
6817          // Consume the '='.
6818          ConsumeToken();
6819
6820          // The argument isn't actually potentially evaluated unless it is
6821          // used.
6822          EnterExpressionEvaluationContext Eval(
6823              Actions,
6824              Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
6825              Param);
6826
6827          ExprResult DefArgResult;
6828          if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
6829            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
6830            DefArgResult = ParseBraceInitializer();
6831          } else
6832            DefArgResult = ParseAssignmentExpression();
6833          DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
6834          if (DefArgResult.isInvalid()) {
6835            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6836            SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
6837          } else {
6838            // Inform the actions module about the default argument
6839            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
6840                                              DefArgResult.get());
6841          }
6842        }
6843      }
6844
6845      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6846                                          ParmDeclarator.getIdentifierLoc(),
6847                                          Param, std::move(DefArgToks)));
6848    }
6849
6850    if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6851      if (!getLangOpts().CPlusPlus) {
6852        // We have ellipsis without a preceding ',', which is ill-formed
6853        // in C. Complain and provide the fix.
6854        Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6855            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6856      } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6857                 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6858        // It looks like this was supposed to be a parameter pack. Warn and
6859        // point out where the ellipsis should have gone.
6860        SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6861        Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6862          << ParmEllipsis.isValid() << ParmEllipsis;
6863        if (ParmEllipsis.isValid()) {
6864          Diag(ParmEllipsis,
6865               diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6866        } else {
6867          Diag(ParmDeclarator.getIdentifierLoc(),
6868               diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6869            << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6870                                          "...")
6871            << !ParmDeclarator.hasName();
6872        }
6873        Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6874          << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6875      }
6876
6877      // We can't have any more parameters after an ellipsis.
6878      break;
6879    }
6880
6881    // If the next token is a comma, consume it and keep reading arguments.
6882  } while (TryConsumeToken(tok::comma));
6883}
6884
6885/// [C90]   direct-declarator '[' constant-expression[opt] ']'
6886/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6887/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6888/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6889/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6890/// [C++11] direct-declarator '[' constant-expression[opt] ']'
6891///                           attribute-specifier-seq[opt]
6892void Parser::ParseBracketDeclarator(Declarator &D) {
6893  if (CheckProhibitedCXX11Attribute())
6894    return;
6895
6896  BalancedDelimiterTracker T(*this, tok::l_square);
6897  T.consumeOpen();
6898
6899  // C array syntax has many features, but by-far the most common is [] and [4].
6900  // This code does a fast path to handle some of the most obvious cases.
6901  if (Tok.getKind() == tok::r_square) {
6902    T.consumeClose();
6903    ParsedAttributes attrs(AttrFactory);
6904    MaybeParseCXX11Attributes(attrs);
6905
6906    // Remember that we parsed the empty array type.
6907    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6908                                            T.getOpenLocation(),
6909                                            T.getCloseLocation()),
6910                  std::move(attrs), T.getCloseLocation());
6911    return;
6912  } else if (Tok.getKind() == tok::numeric_constant &&
6913             GetLookAheadToken(1).is(tok::r_square)) {
6914    // [4] is very common.  Parse the numeric constant expression.
6915    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6916    ConsumeToken();
6917
6918    T.consumeClose();
6919    ParsedAttributes attrs(AttrFactory);
6920    MaybeParseCXX11Attributes(attrs);
6921
6922    // Remember that we parsed a array type, and remember its features.
6923    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
6924                                            T.getOpenLocation(),
6925                                            T.getCloseLocation()),
6926                  std::move(attrs), T.getCloseLocation());
6927    return;
6928  } else if (Tok.getKind() == tok::code_completion) {
6929    Actions.CodeCompleteBracketDeclarator(getCurScope());
6930    return cutOffParsing();
6931  }
6932
6933  // If valid, this location is the position where we read the 'static' keyword.
6934  SourceLocation StaticLoc;
6935  TryConsumeToken(tok::kw_static, StaticLoc);
6936
6937  // If there is a type-qualifier-list, read it now.
6938  // Type qualifiers in an array subscript are a C99 feature.
6939  DeclSpec DS(AttrFactory);
6940  ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6941
6942  // If we haven't already read 'static', check to see if there is one after the
6943  // type-qualifier-list.
6944  if (!StaticLoc.isValid())
6945    TryConsumeToken(tok::kw_static, StaticLoc);
6946
6947  // Handle "direct-declarator [ type-qual-list[opt] * ]".
6948  bool isStar = false;
6949  ExprResult NumElements;
6950
6951  // Handle the case where we have '[*]' as the array size.  However, a leading
6952  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
6953  // the token after the star is a ']'.  Since stars in arrays are
6954  // infrequent, use of lookahead is not costly here.
6955  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6956    ConsumeToken();  // Eat the '*'.
6957
6958    if (StaticLoc.isValid()) {
6959      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6960      StaticLoc = SourceLocation();  // Drop the static.
6961    }
6962    isStar = true;
6963  } else if (Tok.isNot(tok::r_square)) {
6964    // Note, in C89, this production uses the constant-expr production instead
6965    // of assignment-expr.  The only difference is that assignment-expr allows
6966    // things like '=' and '*='.  Sema rejects these in C89 mode because they
6967    // are not i-c-e's, so we don't need to distinguish between the two here.
6968
6969    // Parse the constant-expression or assignment-expression now (depending
6970    // on dialect).
6971    if (getLangOpts().CPlusPlus) {
6972      NumElements = ParseConstantExpression();
6973    } else {
6974      EnterExpressionEvaluationContext Unevaluated(
6975          Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6976      NumElements =
6977          Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6978    }
6979  } else {
6980    if (StaticLoc.isValid()) {
6981      Diag(StaticLoc, diag::err_unspecified_size_with_static);
6982      StaticLoc = SourceLocation();  // Drop the static.
6983    }
6984  }
6985
6986  // If there was an error parsing the assignment-expression, recover.
6987  if (NumElements.isInvalid()) {
6988    D.setInvalidType(true);
6989    // If the expression was invalid, skip it.
6990    SkipUntil(tok::r_square, StopAtSemi);
6991    return;
6992  }
6993
6994  T.consumeClose();
6995
6996  MaybeParseCXX11Attributes(DS.getAttributes());
6997
6998  // Remember that we parsed a array type, and remember its features.
6999  D.AddTypeInfo(
7000      DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
7001                                isStar, NumElements.get(), T.getOpenLocation(),
7002                                T.getCloseLocation()),
7003      std::move(DS.getAttributes()), T.getCloseLocation());
7004}
7005
7006/// Diagnose brackets before an identifier.
7007void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
7008  assert(Tok.is(tok::l_square) && "Missing opening bracket");
7009  assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
7010
7011  SourceLocation StartBracketLoc = Tok.getLocation();
7012  Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
7013
7014  while (Tok.is(tok::l_square)) {
7015    ParseBracketDeclarator(TempDeclarator);
7016  }
7017
7018  // Stuff the location of the start of the brackets into the Declarator.
7019  // The diagnostics from ParseDirectDeclarator will make more sense if
7020  // they use this location instead.
7021  if (Tok.is(tok::semi))
7022    D.getName().EndLocation = StartBracketLoc;
7023
7024  SourceLocation SuggestParenLoc = Tok.getLocation();
7025
7026  // Now that the brackets are removed, try parsing the declarator again.
7027  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
7028
7029  // Something went wrong parsing the brackets, in which case,
7030  // ParseBracketDeclarator has emitted an error, and we don't need to emit
7031  // one here.
7032  if (TempDeclarator.getNumTypeObjects() == 0)
7033    return;
7034
7035  // Determine if parens will need to be suggested in the diagnostic.
7036  bool NeedParens = false;
7037  if (D.getNumTypeObjects() != 0) {
7038    switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
7039    case DeclaratorChunk::Pointer:
7040    case DeclaratorChunk::Reference:
7041    case DeclaratorChunk::BlockPointer:
7042    case DeclaratorChunk::MemberPointer:
7043    case DeclaratorChunk::Pipe:
7044      NeedParens = true;
7045      break;
7046    case DeclaratorChunk::Array:
7047    case DeclaratorChunk::Function:
7048    case DeclaratorChunk::Paren:
7049      break;
7050    }
7051  }
7052
7053  if (NeedParens) {
7054    // Create a DeclaratorChunk for the inserted parens.
7055    SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7056    D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
7057                  SourceLocation());
7058  }
7059
7060  // Adding back the bracket info to the end of the Declarator.
7061  for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
7062    const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
7063    D.AddTypeInfo(Chunk, SourceLocation());
7064  }
7065
7066  // The missing identifier would have been diagnosed in ParseDirectDeclarator.
7067  // If parentheses are required, always suggest them.
7068  if (!D.getIdentifier() && !NeedParens)
7069    return;
7070
7071  SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
7072
7073  // Generate the move bracket error message.
7074  SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
7075  SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7076
7077  if (NeedParens) {
7078    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7079        << getLangOpts().CPlusPlus
7080        << FixItHint::CreateInsertion(SuggestParenLoc, "(")
7081        << FixItHint::CreateInsertion(EndLoc, ")")
7082        << FixItHint::CreateInsertionFromRange(
7083               EndLoc, CharSourceRange(BracketRange, true))
7084        << FixItHint::CreateRemoval(BracketRange);
7085  } else {
7086    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7087        << getLangOpts().CPlusPlus
7088        << FixItHint::CreateInsertionFromRange(
7089               EndLoc, CharSourceRange(BracketRange, true))
7090        << FixItHint::CreateRemoval(BracketRange);
7091  }
7092}
7093
7094/// [GNU]   typeof-specifier:
7095///           typeof ( expressions )
7096///           typeof ( type-name )
7097/// [GNU/C++] typeof unary-expression
7098///
7099void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
7100  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
7101  Token OpTok = Tok;
7102  SourceLocation StartLoc = ConsumeToken();
7103
7104  const bool hasParens = Tok.is(tok::l_paren);
7105
7106  EnterExpressionEvaluationContext Unevaluated(
7107      Actions, Sema::ExpressionEvaluationContext::Unevaluated,
7108      Sema::ReuseLambdaContextDecl);
7109
7110  bool isCastExpr;
7111  ParsedType CastTy;
7112  SourceRange CastRange;
7113  ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
7114      ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
7115  if (hasParens)
7116    DS.setTypeofParensRange(CastRange);
7117
7118  if (CastRange.getEnd().isInvalid())
7119    // FIXME: Not accurate, the range gets one token more than it should.
7120    DS.SetRangeEnd(Tok.getLocation());
7121  else
7122    DS.SetRangeEnd(CastRange.getEnd());
7123
7124  if (isCastExpr) {
7125    if (!CastTy) {
7126      DS.SetTypeSpecError();
7127      return;
7128    }
7129
7130    const char *PrevSpec = nullptr;
7131    unsigned DiagID;
7132    // Check for duplicate type specifiers (e.g. "int typeof(int)").
7133    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
7134                           DiagID, CastTy,
7135                           Actions.getASTContext().getPrintingPolicy()))
7136      Diag(StartLoc, DiagID) << PrevSpec;
7137    return;
7138  }
7139
7140  // If we get here, the operand to the typeof was an expression.
7141  if (Operand.isInvalid()) {
7142    DS.SetTypeSpecError();
7143    return;
7144  }
7145
7146  // We might need to transform the operand if it is potentially evaluated.
7147  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
7148  if (Operand.isInvalid()) {
7149    DS.SetTypeSpecError();
7150    return;
7151  }
7152
7153  const char *PrevSpec = nullptr;
7154  unsigned DiagID;
7155  // Check for duplicate type specifiers (e.g. "int typeof(int)").
7156  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
7157                         DiagID, Operand.get(),
7158                         Actions.getASTContext().getPrintingPolicy()))
7159    Diag(StartLoc, DiagID) << PrevSpec;
7160}
7161
7162/// [C11]   atomic-specifier:
7163///           _Atomic ( type-name )
7164///
7165void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
7166  assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
7167         "Not an atomic specifier");
7168
7169  SourceLocation StartLoc = ConsumeToken();
7170  BalancedDelimiterTracker T(*this, tok::l_paren);
7171  if (T.consumeOpen())
7172    return;
7173
7174  TypeResult Result = ParseTypeName();
7175  if (Result.isInvalid()) {
7176    SkipUntil(tok::r_paren, StopAtSemi);
7177    return;
7178  }
7179
7180  // Match the ')'
7181  T.consumeClose();
7182
7183  if (T.getCloseLocation().isInvalid())
7184    return;
7185
7186  DS.setTypeofParensRange(T.getRange());
7187  DS.SetRangeEnd(T.getCloseLocation());
7188
7189  const char *PrevSpec = nullptr;
7190  unsigned DiagID;
7191  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
7192                         DiagID, Result.get(),
7193                         Actions.getASTContext().getPrintingPolicy()))
7194    Diag(StartLoc, DiagID) << PrevSpec;
7195}
7196
7197/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
7198/// from TryAltiVecVectorToken.
7199bool Parser::TryAltiVecVectorTokenOutOfLine() {
7200  Token Next = NextToken();
7201  switch (Next.getKind()) {
7202  default: return false;
7203  case tok::kw_short:
7204  case tok::kw_long:
7205  case tok::kw_signed:
7206  case tok::kw_unsigned:
7207  case tok::kw_void:
7208  case tok::kw_char:
7209  case tok::kw_int:
7210  case tok::kw_float:
7211  case tok::kw_double:
7212  case tok::kw_bool:
7213  case tok::kw___bool:
7214  case tok::kw___pixel:
7215    Tok.setKind(tok::kw___vector);
7216    return true;
7217  case tok::identifier:
7218    if (Next.getIdentifierInfo() == Ident_pixel) {
7219      Tok.setKind(tok::kw___vector);
7220      return true;
7221    }
7222    if (Next.getIdentifierInfo() == Ident_bool) {
7223      Tok.setKind(tok::kw___vector);
7224      return true;
7225    }
7226    return false;
7227  }
7228}
7229
7230bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7231                                      const char *&PrevSpec, unsigned &DiagID,
7232                                      bool &isInvalid) {
7233  const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7234  if (Tok.getIdentifierInfo() == Ident_vector) {
7235    Token Next = NextToken();
7236    switch (Next.getKind()) {
7237    case tok::kw_short:
7238    case tok::kw_long:
7239    case tok::kw_signed:
7240    case tok::kw_unsigned:
7241    case tok::kw_void:
7242    case tok::kw_char:
7243    case tok::kw_int:
7244    case tok::kw_float:
7245    case tok::kw_double:
7246    case tok::kw_bool:
7247    case tok::kw___bool:
7248    case tok::kw___pixel:
7249      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
7250      return true;
7251    case tok::identifier:
7252      if (Next.getIdentifierInfo() == Ident_pixel) {
7253        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7254        return true;
7255      }
7256      if (Next.getIdentifierInfo() == Ident_bool) {
7257        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7258        return true;
7259      }
7260      break;
7261    default:
7262      break;
7263    }
7264  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
7265             DS.isTypeAltiVecVector()) {
7266    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
7267    return true;
7268  } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
7269             DS.isTypeAltiVecVector()) {
7270    isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
7271    return true;
7272  }
7273  return false;
7274}
7275