ParseDecl.cpp revision 193725
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38  if (Range)
39    *Range = DeclaratorInfo.getSourceRange();
40
41  if (DeclaratorInfo.isInvalidType())
42    return true;
43
44  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
45}
46
47/// ParseAttributes - Parse a non-empty attributes list.
48///
49/// [GNU] attributes:
50///         attribute
51///         attributes attribute
52///
53/// [GNU]  attribute:
54///          '__attribute__' '(' '(' attribute-list ')' ')'
55///
56/// [GNU]  attribute-list:
57///          attrib
58///          attribute_list ',' attrib
59///
60/// [GNU]  attrib:
61///          empty
62///          attrib-name
63///          attrib-name '(' identifier ')'
64///          attrib-name '(' identifier ',' nonempty-expr-list ')'
65///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
66///
67/// [GNU]  attrib-name:
68///          identifier
69///          typespec
70///          typequal
71///          storageclass
72///
73/// FIXME: The GCC grammar/code for this construct implies we need two
74/// token lookahead. Comment from gcc: "If they start with an identifier
75/// which is followed by a comma or close parenthesis, then the arguments
76/// start with that identifier; otherwise they are an expression list."
77///
78/// At the moment, I am not doing 2 token lookahead. I am also unaware of
79/// any attributes that don't work (based on my limited testing). Most
80/// attributes are very simple in practice. Until we find a bug, I don't see
81/// a pressing need to implement the 2 token lookahead.
82
83AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
84  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
85
86  AttributeList *CurrAttr = 0;
87
88  while (Tok.is(tok::kw___attribute)) {
89    ConsumeToken();
90    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
91                         "attribute")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
96      SkipUntil(tok::r_paren, true); // skip until ) or ;
97      return CurrAttr;
98    }
99    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
100    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
101           Tok.is(tok::comma)) {
102
103      if (Tok.is(tok::comma)) {
104        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
105        ConsumeToken();
106        continue;
107      }
108      // we have an identifier or declaration specifier (const, int, etc.)
109      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
110      SourceLocation AttrNameLoc = ConsumeToken();
111
112      // check if we have a "paramterized" attribute
113      if (Tok.is(tok::l_paren)) {
114        ConsumeParen(); // ignore the left paren loc for now
115
116        if (Tok.is(tok::identifier)) {
117          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
118          SourceLocation ParmLoc = ConsumeToken();
119
120          if (Tok.is(tok::r_paren)) {
121            // __attribute__(( mode(byte) ))
122            ConsumeParen(); // ignore the right paren loc for now
123            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
124                                         ParmName, ParmLoc, 0, 0, CurrAttr);
125          } else if (Tok.is(tok::comma)) {
126            ConsumeToken();
127            // __attribute__(( format(printf, 1, 2) ))
128            ExprVector ArgExprs(Actions);
129            bool ArgExprsOk = true;
130
131            // now parse the non-empty comma separated list of expressions
132            while (1) {
133              OwningExprResult ArgExpr(ParseAssignmentExpression());
134              if (ArgExpr.isInvalid()) {
135                ArgExprsOk = false;
136                SkipUntil(tok::r_paren);
137                break;
138              } else {
139                ArgExprs.push_back(ArgExpr.release());
140              }
141              if (Tok.isNot(tok::comma))
142                break;
143              ConsumeToken(); // Eat the comma, move to the next argument
144            }
145            if (ArgExprsOk && Tok.is(tok::r_paren)) {
146              ConsumeParen(); // ignore the right paren loc for now
147              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
148                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
149            }
150          }
151        } else { // not an identifier
152          // parse a possibly empty comma separated list of expressions
153          if (Tok.is(tok::r_paren)) {
154            // __attribute__(( nonnull() ))
155            ConsumeParen(); // ignore the right paren loc for now
156            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
157                                         0, SourceLocation(), 0, 0, CurrAttr);
158          } else {
159            // __attribute__(( aligned(16) ))
160            ExprVector ArgExprs(Actions);
161            bool ArgExprsOk = true;
162
163            // now parse the list of expressions
164            while (1) {
165              OwningExprResult ArgExpr(ParseAssignmentExpression());
166              if (ArgExpr.isInvalid()) {
167                ArgExprsOk = false;
168                SkipUntil(tok::r_paren);
169                break;
170              } else {
171                ArgExprs.push_back(ArgExpr.release());
172              }
173              if (Tok.isNot(tok::comma))
174                break;
175              ConsumeToken(); // Eat the comma, move to the next argument
176            }
177            // Match the ')'.
178            if (ArgExprsOk && Tok.is(tok::r_paren)) {
179              ConsumeParen(); // ignore the right paren loc for now
180              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
181                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
182                           CurrAttr);
183            }
184          }
185        }
186      } else {
187        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
188                                     0, SourceLocation(), 0, 0, CurrAttr);
189      }
190    }
191    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
192      SkipUntil(tok::r_paren, false);
193    SourceLocation Loc = Tok.getLocation();;
194    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
195      SkipUntil(tok::r_paren, false);
196    }
197    if (EndLoc)
198      *EndLoc = Loc;
199  }
200  return CurrAttr;
201}
202
203/// ParseMicrosoftDeclSpec - Parse an __declspec construct
204///
205/// [MS] decl-specifier:
206///             __declspec ( extended-decl-modifier-seq )
207///
208/// [MS] extended-decl-modifier-seq:
209///             extended-decl-modifier[opt]
210///             extended-decl-modifier extended-decl-modifier-seq
211
212AttributeList* Parser::ParseMicrosoftDeclSpec() {
213  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
214
215  AttributeList *CurrAttr = 0;
216  ConsumeToken();
217  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
218                       "declspec")) {
219    SkipUntil(tok::r_paren, true); // skip until ) or ;
220    return CurrAttr;
221  }
222  while (Tok.is(tok::identifier) || Tok.is(tok::kw_restrict)) {
223    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
224    SourceLocation AttrNameLoc = ConsumeToken();
225    if (Tok.is(tok::l_paren)) {
226      ConsumeParen();
227      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
228      // correctly.
229      OwningExprResult ArgExpr(ParseAssignmentExpression());
230      if (!ArgExpr.isInvalid()) {
231        ExprTy* ExprList = ArgExpr.take();
232        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
233                                     SourceLocation(), &ExprList, 1,
234                                     CurrAttr, true);
235      }
236      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
237        SkipUntil(tok::r_paren, false);
238    } else {
239      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(),
240                                   0, 0, CurrAttr, true);
241    }
242  }
243  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
244    SkipUntil(tok::r_paren, false);
245  // FIXME: Return the attributes once we have some Sema support!
246  return 0;
247}
248
249/// ParseDeclaration - Parse a full 'declaration', which consists of
250/// declaration-specifiers, some number of declarators, and a semicolon.
251/// 'Context' should be a Declarator::TheContext value.  This returns the
252/// location of the semicolon in DeclEnd.
253///
254///       declaration: [C99 6.7]
255///         block-declaration ->
256///           simple-declaration
257///           others                   [FIXME]
258/// [C++]   template-declaration
259/// [C++]   namespace-definition
260/// [C++]   using-directive
261/// [C++]   using-declaration [TODO]
262/// [C++0x] static_assert-declaration
263///         others... [FIXME]
264///
265Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
266                                                SourceLocation &DeclEnd) {
267  DeclPtrTy SingleDecl;
268  switch (Tok.getKind()) {
269  case tok::kw_template:
270  case tok::kw_export:
271    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
272    break;
273  case tok::kw_namespace:
274    SingleDecl = ParseNamespace(Context, DeclEnd);
275    break;
276  case tok::kw_using:
277    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
278    break;
279  case tok::kw_static_assert:
280    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
281    break;
282  default:
283    return ParseSimpleDeclaration(Context, DeclEnd);
284  }
285
286  // This routine returns a DeclGroup, if the thing we parsed only contains a
287  // single decl, convert it now.
288  return Actions.ConvertDeclToDeclGroup(SingleDecl);
289}
290
291///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
292///         declaration-specifiers init-declarator-list[opt] ';'
293///[C90/C++]init-declarator-list ';'                             [TODO]
294/// [OMP]   threadprivate-directive                              [TODO]
295///
296/// If RequireSemi is false, this does not check for a ';' at the end of the
297/// declaration.
298Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
299                                                      SourceLocation &DeclEnd,
300                                                      bool RequireSemi) {
301  // Parse the common declaration-specifiers piece.
302  DeclSpec DS;
303  ParseDeclarationSpecifiers(DS);
304
305  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
306  // declaration-specifiers init-declarator-list[opt] ';'
307  if (Tok.is(tok::semi)) {
308    ConsumeToken();
309    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
310    return Actions.ConvertDeclToDeclGroup(TheDecl);
311  }
312
313  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
314  ParseDeclarator(DeclaratorInfo);
315
316  DeclGroupPtrTy DG =
317    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
318
319  DeclEnd = Tok.getLocation();
320
321  // If the client wants to check what comes after the declaration, just return
322  // immediately without checking anything!
323  if (!RequireSemi) return DG;
324
325  if (Tok.is(tok::semi)) {
326    ConsumeToken();
327    return DG;
328  }
329
330  Diag(Tok, diag::err_expected_semi_declation);
331  // Skip to end of block or statement
332  SkipUntil(tok::r_brace, true, true);
333  if (Tok.is(tok::semi))
334    ConsumeToken();
335  return DG;
336}
337
338/// \brief Parse 'declaration' after parsing 'declaration-specifiers
339/// declarator'. This method parses the remainder of the declaration
340/// (including any attributes or initializer, among other things) and
341/// finalizes the declaration.
342///
343///       init-declarator: [C99 6.7]
344///         declarator
345///         declarator '=' initializer
346/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
347/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
348/// [C++]   declarator initializer[opt]
349///
350/// [C++] initializer:
351/// [C++]   '=' initializer-clause
352/// [C++]   '(' expression-list ')'
353/// [C++0x] '=' 'default'                                                [TODO]
354/// [C++0x] '=' 'delete'
355///
356/// According to the standard grammar, =default and =delete are function
357/// definitions, but that definitely doesn't fit with the parser here.
358///
359Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D) {
360  // If a simple-asm-expr is present, parse it.
361  if (Tok.is(tok::kw_asm)) {
362    SourceLocation Loc;
363    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
364    if (AsmLabel.isInvalid()) {
365      SkipUntil(tok::semi, true, true);
366      return DeclPtrTy();
367    }
368
369    D.setAsmLabel(AsmLabel.release());
370    D.SetRangeEnd(Loc);
371  }
372
373  // If attributes are present, parse them.
374  if (Tok.is(tok::kw___attribute)) {
375    SourceLocation Loc;
376    AttributeList *AttrList = ParseAttributes(&Loc);
377    D.AddAttributes(AttrList, Loc);
378  }
379
380  // Inform the current actions module that we just parsed this declarator.
381  DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
382
383  // Parse declarator '=' initializer.
384  if (Tok.is(tok::equal)) {
385    ConsumeToken();
386    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
387      SourceLocation DelLoc = ConsumeToken();
388      Actions.SetDeclDeleted(ThisDecl, DelLoc);
389    } else {
390      OwningExprResult Init(ParseInitializer());
391      if (Init.isInvalid()) {
392        SkipUntil(tok::semi, true, true);
393        return DeclPtrTy();
394      }
395      Actions.AddInitializerToDecl(ThisDecl, Actions.FullExpr(Init));
396    }
397  } else if (Tok.is(tok::l_paren)) {
398    // Parse C++ direct initializer: '(' expression-list ')'
399    SourceLocation LParenLoc = ConsumeParen();
400    ExprVector Exprs(Actions);
401    CommaLocsTy CommaLocs;
402
403    if (ParseExpressionList(Exprs, CommaLocs)) {
404      SkipUntil(tok::r_paren);
405    } else {
406      // Match the ')'.
407      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
408
409      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
410             "Unexpected number of commas!");
411      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
412                                            move_arg(Exprs),
413                                            CommaLocs.data(), RParenLoc);
414    }
415  } else {
416    Actions.ActOnUninitializedDecl(ThisDecl);
417  }
418
419  return ThisDecl;
420}
421
422/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
423/// parsing 'declaration-specifiers declarator'.  This method is split out this
424/// way to handle the ambiguity between top-level function-definitions and
425/// declarations.
426///
427///       init-declarator-list: [C99 6.7]
428///         init-declarator
429///         init-declarator-list ',' init-declarator
430///
431/// According to the standard grammar, =default and =delete are function
432/// definitions, but that definitely doesn't fit with the parser here.
433///
434Parser::DeclGroupPtrTy Parser::
435ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
436  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
437  // that we parse together here.
438  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
439
440  // At this point, we know that it is not a function definition.  Parse the
441  // rest of the init-declarator-list.
442  while (1) {
443    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
444    if (ThisDecl.get())
445      DeclsInGroup.push_back(ThisDecl);
446
447    // If we don't have a comma, it is either the end of the list (a ';') or an
448    // error, bail out.
449    if (Tok.isNot(tok::comma))
450      break;
451
452    // Consume the comma.
453    ConsumeToken();
454
455    // Parse the next declarator.
456    D.clear();
457
458    // Accept attributes in an init-declarator.  In the first declarator in a
459    // declaration, these would be part of the declspec.  In subsequent
460    // declarators, they become part of the declarator itself, so that they
461    // don't apply to declarators after *this* one.  Examples:
462    //    short __attribute__((common)) var;    -> declspec
463    //    short var __attribute__((common));    -> declarator
464    //    short x, __attribute__((common)) var;    -> declarator
465    if (Tok.is(tok::kw___attribute)) {
466      SourceLocation Loc;
467      AttributeList *AttrList = ParseAttributes(&Loc);
468      D.AddAttributes(AttrList, Loc);
469    }
470
471    ParseDeclarator(D);
472  }
473
474  return Actions.FinalizeDeclaratorGroup(CurScope, D.getDeclSpec(),
475                                         DeclsInGroup.data(),
476                                         DeclsInGroup.size());
477}
478
479/// ParseSpecifierQualifierList
480///        specifier-qualifier-list:
481///          type-specifier specifier-qualifier-list[opt]
482///          type-qualifier specifier-qualifier-list[opt]
483/// [GNU]    attributes     specifier-qualifier-list[opt]
484///
485void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
486  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
487  /// parse declaration-specifiers and complain about extra stuff.
488  ParseDeclarationSpecifiers(DS);
489
490  // Validate declspec for type-name.
491  unsigned Specs = DS.getParsedSpecifiers();
492  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
493      !DS.getAttributes())
494    Diag(Tok, diag::err_typename_requires_specqual);
495
496  // Issue diagnostic and remove storage class if present.
497  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
498    if (DS.getStorageClassSpecLoc().isValid())
499      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
500    else
501      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
502    DS.ClearStorageClassSpecs();
503  }
504
505  // Issue diagnostic and remove function specfier if present.
506  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
507    if (DS.isInlineSpecified())
508      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
509    if (DS.isVirtualSpecified())
510      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
511    if (DS.isExplicitSpecified())
512      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
513    DS.ClearFunctionSpecs();
514  }
515}
516
517/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
518/// specified token is valid after the identifier in a declarator which
519/// immediately follows the declspec.  For example, these things are valid:
520///
521///      int x   [             4];         // direct-declarator
522///      int x   (             int y);     // direct-declarator
523///  int(int x   )                         // direct-declarator
524///      int x   ;                         // simple-declaration
525///      int x   =             17;         // init-declarator-list
526///      int x   ,             y;          // init-declarator-list
527///      int x   __asm__       ("foo");    // init-declarator-list
528///      int x   :             4;          // struct-declarator
529///      int x   {             5};         // C++'0x unified initializers
530///
531/// This is not, because 'x' does not immediately follow the declspec (though
532/// ')' happens to be valid anyway).
533///    int (x)
534///
535static bool isValidAfterIdentifierInDeclarator(const Token &T) {
536  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
537         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
538         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
539}
540
541
542/// ParseImplicitInt - This method is called when we have an non-typename
543/// identifier in a declspec (which normally terminates the decl spec) when
544/// the declspec has no type specifier.  In this case, the declspec is either
545/// malformed or is "implicit int" (in K&R and C89).
546///
547/// This method handles diagnosing this prettily and returns false if the
548/// declspec is done being processed.  If it recovers and thinks there may be
549/// other pieces of declspec after it, it returns true.
550///
551bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
552                              const ParsedTemplateInfo &TemplateInfo,
553                              AccessSpecifier AS) {
554  assert(Tok.is(tok::identifier) && "should have identifier");
555
556  SourceLocation Loc = Tok.getLocation();
557  // If we see an identifier that is not a type name, we normally would
558  // parse it as the identifer being declared.  However, when a typename
559  // is typo'd or the definition is not included, this will incorrectly
560  // parse the typename as the identifier name and fall over misparsing
561  // later parts of the diagnostic.
562  //
563  // As such, we try to do some look-ahead in cases where this would
564  // otherwise be an "implicit-int" case to see if this is invalid.  For
565  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
566  // an identifier with implicit int, we'd get a parse error because the
567  // next token is obviously invalid for a type.  Parse these as a case
568  // with an invalid type specifier.
569  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
570
571  // Since we know that this either implicit int (which is rare) or an
572  // error, we'd do lookahead to try to do better recovery.
573  if (isValidAfterIdentifierInDeclarator(NextToken())) {
574    // If this token is valid for implicit int, e.g. "static x = 4", then
575    // we just avoid eating the identifier, so it will be parsed as the
576    // identifier in the declarator.
577    return false;
578  }
579
580  // Otherwise, if we don't consume this token, we are going to emit an
581  // error anyway.  Try to recover from various common problems.  Check
582  // to see if this was a reference to a tag name without a tag specified.
583  // This is a common problem in C (saying 'foo' instead of 'struct foo').
584  //
585  // C++ doesn't need this, and isTagName doesn't take SS.
586  if (SS == 0) {
587    const char *TagName = 0;
588    tok::TokenKind TagKind = tok::unknown;
589
590    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
591      default: break;
592      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
593      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
594      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
595      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
596    }
597
598    if (TagName) {
599      Diag(Loc, diag::err_use_of_tag_name_without_tag)
600        << Tok.getIdentifierInfo() << TagName
601        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
602
603      // Parse this as a tag as if the missing tag were present.
604      if (TagKind == tok::kw_enum)
605        ParseEnumSpecifier(Loc, DS, AS);
606      else
607        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
608      return true;
609    }
610  }
611
612  // Since this is almost certainly an invalid type name, emit a
613  // diagnostic that says it, eat the token, and mark the declspec as
614  // invalid.
615  SourceRange R;
616  if (SS) R = SS->getRange();
617
618  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
619  const char *PrevSpec;
620  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
621  DS.SetRangeEnd(Tok.getLocation());
622  ConsumeToken();
623
624  // TODO: Could inject an invalid typedef decl in an enclosing scope to
625  // avoid rippling error messages on subsequent uses of the same type,
626  // could be useful if #include was forgotten.
627  return false;
628}
629
630/// ParseDeclarationSpecifiers
631///       declaration-specifiers: [C99 6.7]
632///         storage-class-specifier declaration-specifiers[opt]
633///         type-specifier declaration-specifiers[opt]
634/// [C99]   function-specifier declaration-specifiers[opt]
635/// [GNU]   attributes declaration-specifiers[opt]
636///
637///       storage-class-specifier: [C99 6.7.1]
638///         'typedef'
639///         'extern'
640///         'static'
641///         'auto'
642///         'register'
643/// [C++]   'mutable'
644/// [GNU]   '__thread'
645///       function-specifier: [C99 6.7.4]
646/// [C99]   'inline'
647/// [C++]   'virtual'
648/// [C++]   'explicit'
649///       'friend': [C++ dcl.friend]
650
651///
652void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
653                                        const ParsedTemplateInfo &TemplateInfo,
654                                        AccessSpecifier AS) {
655  DS.SetRangeStart(Tok.getLocation());
656  while (1) {
657    int isInvalid = false;
658    const char *PrevSpec = 0;
659    SourceLocation Loc = Tok.getLocation();
660
661    switch (Tok.getKind()) {
662    default:
663    DoneWithDeclSpec:
664      // If this is not a declaration specifier token, we're done reading decl
665      // specifiers.  First verify that DeclSpec's are consistent.
666      DS.Finish(Diags, PP);
667      return;
668
669    case tok::coloncolon: // ::foo::bar
670      // Annotate C++ scope specifiers.  If we get one, loop.
671      if (TryAnnotateCXXScopeToken())
672        continue;
673      goto DoneWithDeclSpec;
674
675    case tok::annot_cxxscope: {
676      if (DS.hasTypeSpecifier())
677        goto DoneWithDeclSpec;
678
679      // We are looking for a qualified typename.
680      Token Next = NextToken();
681      if (Next.is(tok::annot_template_id) &&
682          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
683            ->Kind == TNK_Type_template) {
684        // We have a qualified template-id, e.g., N::A<int>
685        CXXScopeSpec SS;
686        ParseOptionalCXXScopeSpecifier(SS);
687        assert(Tok.is(tok::annot_template_id) &&
688               "ParseOptionalCXXScopeSpecifier not working");
689        AnnotateTemplateIdTokenAsType(&SS);
690        continue;
691      }
692
693      if (Next.isNot(tok::identifier))
694        goto DoneWithDeclSpec;
695
696      CXXScopeSpec SS;
697      SS.setScopeRep(Tok.getAnnotationValue());
698      SS.setRange(Tok.getAnnotationRange());
699
700      // If the next token is the name of the class type that the C++ scope
701      // denotes, followed by a '(', then this is a constructor declaration.
702      // We're done with the decl-specifiers.
703      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
704                                     CurScope, &SS) &&
705          GetLookAheadToken(2).is(tok::l_paren))
706        goto DoneWithDeclSpec;
707
708      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
709                                            Next.getLocation(), CurScope, &SS);
710
711      // If the referenced identifier is not a type, then this declspec is
712      // erroneous: We already checked about that it has no type specifier, and
713      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
714      // typename.
715      if (TypeRep == 0) {
716        ConsumeToken();   // Eat the scope spec so the identifier is current.
717        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
718        goto DoneWithDeclSpec;
719      }
720
721      ConsumeToken(); // The C++ scope.
722
723      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
724                                     TypeRep);
725      if (isInvalid)
726        break;
727
728      DS.SetRangeEnd(Tok.getLocation());
729      ConsumeToken(); // The typename.
730
731      continue;
732    }
733
734    case tok::annot_typename: {
735      if (Tok.getAnnotationValue())
736        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
737                                       Tok.getAnnotationValue());
738      else
739        DS.SetTypeSpecError();
740      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
741      ConsumeToken(); // The typename
742
743      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
744      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
745      // Objective-C interface.  If we don't have Objective-C or a '<', this is
746      // just a normal reference to a typedef name.
747      if (!Tok.is(tok::less) || !getLang().ObjC1)
748        continue;
749
750      SourceLocation EndProtoLoc;
751      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
752      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
753      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
754
755      DS.SetRangeEnd(EndProtoLoc);
756      continue;
757    }
758
759      // typedef-name
760    case tok::identifier: {
761      // In C++, check to see if this is a scope specifier like foo::bar::, if
762      // so handle it as such.  This is important for ctor parsing.
763      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
764        continue;
765
766      // This identifier can only be a typedef name if we haven't already seen
767      // a type-specifier.  Without this check we misparse:
768      //  typedef int X; struct Y { short X; };  as 'short int'.
769      if (DS.hasTypeSpecifier())
770        goto DoneWithDeclSpec;
771
772      // It has to be available as a typedef too!
773      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
774                                            Tok.getLocation(), CurScope);
775
776      // If this is not a typedef name, don't parse it as part of the declspec,
777      // it must be an implicit int or an error.
778      if (TypeRep == 0) {
779        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
780        goto DoneWithDeclSpec;
781      }
782
783      // C++: If the identifier is actually the name of the class type
784      // being defined and the next token is a '(', then this is a
785      // constructor declaration. We're done with the decl-specifiers
786      // and will treat this token as an identifier.
787      if (getLang().CPlusPlus && CurScope->isClassScope() &&
788          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
789          NextToken().getKind() == tok::l_paren)
790        goto DoneWithDeclSpec;
791
792      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
793                                     TypeRep);
794      if (isInvalid)
795        break;
796
797      DS.SetRangeEnd(Tok.getLocation());
798      ConsumeToken(); // The identifier
799
800      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
801      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
802      // Objective-C interface.  If we don't have Objective-C or a '<', this is
803      // just a normal reference to a typedef name.
804      if (!Tok.is(tok::less) || !getLang().ObjC1)
805        continue;
806
807      SourceLocation EndProtoLoc;
808      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
809      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
810      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
811
812      DS.SetRangeEnd(EndProtoLoc);
813
814      // Need to support trailing type qualifiers (e.g. "id<p> const").
815      // If a type specifier follows, it will be diagnosed elsewhere.
816      continue;
817    }
818
819      // type-name
820    case tok::annot_template_id: {
821      TemplateIdAnnotation *TemplateId
822        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
823      if (TemplateId->Kind != TNK_Type_template) {
824        // This template-id does not refer to a type name, so we're
825        // done with the type-specifiers.
826        goto DoneWithDeclSpec;
827      }
828
829      // Turn the template-id annotation token into a type annotation
830      // token, then try again to parse it as a type-specifier.
831      AnnotateTemplateIdTokenAsType();
832      continue;
833    }
834
835    // GNU attributes support.
836    case tok::kw___attribute:
837      DS.AddAttributes(ParseAttributes());
838      continue;
839
840    // Microsoft declspec support.
841    case tok::kw___declspec:
842      if (!PP.getLangOptions().Microsoft)
843        goto DoneWithDeclSpec;
844      DS.AddAttributes(ParseMicrosoftDeclSpec());
845      continue;
846
847    // Microsoft single token adornments.
848    case tok::kw___forceinline:
849    case tok::kw___w64:
850    case tok::kw___cdecl:
851    case tok::kw___stdcall:
852    case tok::kw___fastcall:
853      if (!PP.getLangOptions().Microsoft)
854        goto DoneWithDeclSpec;
855      // Just ignore it.
856      break;
857
858    // storage-class-specifier
859    case tok::kw_typedef:
860      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
861      break;
862    case tok::kw_extern:
863      if (DS.isThreadSpecified())
864        Diag(Tok, diag::ext_thread_before) << "extern";
865      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
866      break;
867    case tok::kw___private_extern__:
868      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
869                                         PrevSpec);
870      break;
871    case tok::kw_static:
872      if (DS.isThreadSpecified())
873        Diag(Tok, diag::ext_thread_before) << "static";
874      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
875      break;
876    case tok::kw_auto:
877      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
878      break;
879    case tok::kw_register:
880      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
881      break;
882    case tok::kw_mutable:
883      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
884      break;
885    case tok::kw___thread:
886      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
887      break;
888
889    // function-specifier
890    case tok::kw_inline:
891      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
892      break;
893    case tok::kw_virtual:
894      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
895      break;
896    case tok::kw_explicit:
897      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
898      break;
899
900    // friend
901    case tok::kw_friend:
902      isInvalid = DS.SetFriendSpec(Loc, PrevSpec);
903      break;
904
905    // type-specifier
906    case tok::kw_short:
907      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
908      break;
909    case tok::kw_long:
910      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
911        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
912      else
913        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
914      break;
915    case tok::kw_signed:
916      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
917      break;
918    case tok::kw_unsigned:
919      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
920      break;
921    case tok::kw__Complex:
922      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
923      break;
924    case tok::kw__Imaginary:
925      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
926      break;
927    case tok::kw_void:
928      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
929      break;
930    case tok::kw_char:
931      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
932      break;
933    case tok::kw_int:
934      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
935      break;
936    case tok::kw_float:
937      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
938      break;
939    case tok::kw_double:
940      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
941      break;
942    case tok::kw_wchar_t:
943      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
944      break;
945    case tok::kw_bool:
946    case tok::kw__Bool:
947      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
948      break;
949    case tok::kw__Decimal32:
950      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
951      break;
952    case tok::kw__Decimal64:
953      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
954      break;
955    case tok::kw__Decimal128:
956      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
957      break;
958
959    // class-specifier:
960    case tok::kw_class:
961    case tok::kw_struct:
962    case tok::kw_union: {
963      tok::TokenKind Kind = Tok.getKind();
964      ConsumeToken();
965      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
966      continue;
967    }
968
969    // enum-specifier:
970    case tok::kw_enum:
971      ConsumeToken();
972      ParseEnumSpecifier(Loc, DS, AS);
973      continue;
974
975    // cv-qualifier:
976    case tok::kw_const:
977      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
978      break;
979    case tok::kw_volatile:
980      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
981                                 getLang())*2;
982      break;
983    case tok::kw_restrict:
984      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
985                                 getLang())*2;
986      break;
987
988    // C++ typename-specifier:
989    case tok::kw_typename:
990      if (TryAnnotateTypeOrScopeToken())
991        continue;
992      break;
993
994    // GNU typeof support.
995    case tok::kw_typeof:
996      ParseTypeofSpecifier(DS);
997      continue;
998
999    case tok::less:
1000      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1001      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1002      // but we support it.
1003      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1004        goto DoneWithDeclSpec;
1005
1006      {
1007        SourceLocation EndProtoLoc;
1008        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1009        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1010        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1011        DS.SetRangeEnd(EndProtoLoc);
1012
1013        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1014          << CodeModificationHint::CreateInsertion(Loc, "id")
1015          << SourceRange(Loc, EndProtoLoc);
1016        // Need to support trailing type qualifiers (e.g. "id<p> const").
1017        // If a type specifier follows, it will be diagnosed elsewhere.
1018        continue;
1019      }
1020    }
1021    // If the specifier combination wasn't legal, issue a diagnostic.
1022    if (isInvalid) {
1023      assert(PrevSpec && "Method did not return previous specifier!");
1024      // Pick between error or extwarn.
1025      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1026                                       : diag::ext_duplicate_declspec;
1027      Diag(Tok, DiagID) << PrevSpec;
1028    }
1029    DS.SetRangeEnd(Tok.getLocation());
1030    ConsumeToken();
1031  }
1032}
1033
1034/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1035/// primarily follow the C++ grammar with additions for C99 and GNU,
1036/// which together subsume the C grammar. Note that the C++
1037/// type-specifier also includes the C type-qualifier (for const,
1038/// volatile, and C99 restrict). Returns true if a type-specifier was
1039/// found (and parsed), false otherwise.
1040///
1041///       type-specifier: [C++ 7.1.5]
1042///         simple-type-specifier
1043///         class-specifier
1044///         enum-specifier
1045///         elaborated-type-specifier  [TODO]
1046///         cv-qualifier
1047///
1048///       cv-qualifier: [C++ 7.1.5.1]
1049///         'const'
1050///         'volatile'
1051/// [C99]   'restrict'
1052///
1053///       simple-type-specifier: [ C++ 7.1.5.2]
1054///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1055///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1056///         'char'
1057///         'wchar_t'
1058///         'bool'
1059///         'short'
1060///         'int'
1061///         'long'
1062///         'signed'
1063///         'unsigned'
1064///         'float'
1065///         'double'
1066///         'void'
1067/// [C99]   '_Bool'
1068/// [C99]   '_Complex'
1069/// [C99]   '_Imaginary'  // Removed in TC2?
1070/// [GNU]   '_Decimal32'
1071/// [GNU]   '_Decimal64'
1072/// [GNU]   '_Decimal128'
1073/// [GNU]   typeof-specifier
1074/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1075/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1076bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
1077                                        const char *&PrevSpec,
1078                                      const ParsedTemplateInfo &TemplateInfo) {
1079  SourceLocation Loc = Tok.getLocation();
1080
1081  switch (Tok.getKind()) {
1082  case tok::identifier:   // foo::bar
1083  case tok::kw_typename:  // typename foo::bar
1084    // Annotate typenames and C++ scope specifiers.  If we get one, just
1085    // recurse to handle whatever we get.
1086    if (TryAnnotateTypeOrScopeToken())
1087      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1088    // Otherwise, not a type specifier.
1089    return false;
1090  case tok::coloncolon:   // ::foo::bar
1091    if (NextToken().is(tok::kw_new) ||    // ::new
1092        NextToken().is(tok::kw_delete))   // ::delete
1093      return false;
1094
1095    // Annotate typenames and C++ scope specifiers.  If we get one, just
1096    // recurse to handle whatever we get.
1097    if (TryAnnotateTypeOrScopeToken())
1098      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1099    // Otherwise, not a type specifier.
1100    return false;
1101
1102  // simple-type-specifier:
1103  case tok::annot_typename: {
1104    if (Tok.getAnnotationValue())
1105      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1106                                     Tok.getAnnotationValue());
1107    else
1108      DS.SetTypeSpecError();
1109    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1110    ConsumeToken(); // The typename
1111
1112    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1113    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1114    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1115    // just a normal reference to a typedef name.
1116    if (!Tok.is(tok::less) || !getLang().ObjC1)
1117      return true;
1118
1119    SourceLocation EndProtoLoc;
1120    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1121    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1122    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1123
1124    DS.SetRangeEnd(EndProtoLoc);
1125    return true;
1126  }
1127
1128  case tok::kw_short:
1129    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1130    break;
1131  case tok::kw_long:
1132    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1133      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1134    else
1135      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1136    break;
1137  case tok::kw_signed:
1138    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1139    break;
1140  case tok::kw_unsigned:
1141    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1142    break;
1143  case tok::kw__Complex:
1144    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1145    break;
1146  case tok::kw__Imaginary:
1147    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1148    break;
1149  case tok::kw_void:
1150    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1151    break;
1152  case tok::kw_char:
1153    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1154    break;
1155  case tok::kw_int:
1156    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1157    break;
1158  case tok::kw_float:
1159    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1160    break;
1161  case tok::kw_double:
1162    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1163    break;
1164  case tok::kw_wchar_t:
1165    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1166    break;
1167  case tok::kw_bool:
1168  case tok::kw__Bool:
1169    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1170    break;
1171  case tok::kw__Decimal32:
1172    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1173    break;
1174  case tok::kw__Decimal64:
1175    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1176    break;
1177  case tok::kw__Decimal128:
1178    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1179    break;
1180
1181  // class-specifier:
1182  case tok::kw_class:
1183  case tok::kw_struct:
1184  case tok::kw_union: {
1185    tok::TokenKind Kind = Tok.getKind();
1186    ConsumeToken();
1187    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1188    return true;
1189  }
1190
1191  // enum-specifier:
1192  case tok::kw_enum:
1193    ConsumeToken();
1194    ParseEnumSpecifier(Loc, DS);
1195    return true;
1196
1197  // cv-qualifier:
1198  case tok::kw_const:
1199    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1200                               getLang())*2;
1201    break;
1202  case tok::kw_volatile:
1203    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1204                               getLang())*2;
1205    break;
1206  case tok::kw_restrict:
1207    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1208                               getLang())*2;
1209    break;
1210
1211  // GNU typeof support.
1212  case tok::kw_typeof:
1213    ParseTypeofSpecifier(DS);
1214    return true;
1215
1216  case tok::kw___cdecl:
1217  case tok::kw___stdcall:
1218  case tok::kw___fastcall:
1219    if (!PP.getLangOptions().Microsoft) return false;
1220    ConsumeToken();
1221    return true;
1222
1223  default:
1224    // Not a type-specifier; do nothing.
1225    return false;
1226  }
1227
1228  // If the specifier combination wasn't legal, issue a diagnostic.
1229  if (isInvalid) {
1230    assert(PrevSpec && "Method did not return previous specifier!");
1231    // Pick between error or extwarn.
1232    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1233                                     : diag::ext_duplicate_declspec;
1234    Diag(Tok, DiagID) << PrevSpec;
1235  }
1236  DS.SetRangeEnd(Tok.getLocation());
1237  ConsumeToken(); // whatever we parsed above.
1238  return true;
1239}
1240
1241/// ParseStructDeclaration - Parse a struct declaration without the terminating
1242/// semicolon.
1243///
1244///       struct-declaration:
1245///         specifier-qualifier-list struct-declarator-list
1246/// [GNU]   __extension__ struct-declaration
1247/// [GNU]   specifier-qualifier-list
1248///       struct-declarator-list:
1249///         struct-declarator
1250///         struct-declarator-list ',' struct-declarator
1251/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1252///       struct-declarator:
1253///         declarator
1254/// [GNU]   declarator attributes[opt]
1255///         declarator[opt] ':' constant-expression
1256/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1257///
1258void Parser::
1259ParseStructDeclaration(DeclSpec &DS,
1260                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1261  if (Tok.is(tok::kw___extension__)) {
1262    // __extension__ silences extension warnings in the subexpression.
1263    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1264    ConsumeToken();
1265    return ParseStructDeclaration(DS, Fields);
1266  }
1267
1268  // Parse the common specifier-qualifiers-list piece.
1269  SourceLocation DSStart = Tok.getLocation();
1270  ParseSpecifierQualifierList(DS);
1271
1272  // If there are no declarators, this is a free-standing declaration
1273  // specifier. Let the actions module cope with it.
1274  if (Tok.is(tok::semi)) {
1275    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1276    return;
1277  }
1278
1279  // Read struct-declarators until we find the semicolon.
1280  Fields.push_back(FieldDeclarator(DS));
1281  while (1) {
1282    FieldDeclarator &DeclaratorInfo = Fields.back();
1283
1284    /// struct-declarator: declarator
1285    /// struct-declarator: declarator[opt] ':' constant-expression
1286    if (Tok.isNot(tok::colon))
1287      ParseDeclarator(DeclaratorInfo.D);
1288
1289    if (Tok.is(tok::colon)) {
1290      ConsumeToken();
1291      OwningExprResult Res(ParseConstantExpression());
1292      if (Res.isInvalid())
1293        SkipUntil(tok::semi, true, true);
1294      else
1295        DeclaratorInfo.BitfieldSize = Res.release();
1296    }
1297
1298    // If attributes exist after the declarator, parse them.
1299    if (Tok.is(tok::kw___attribute)) {
1300      SourceLocation Loc;
1301      AttributeList *AttrList = ParseAttributes(&Loc);
1302      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1303    }
1304
1305    // If we don't have a comma, it is either the end of the list (a ';')
1306    // or an error, bail out.
1307    if (Tok.isNot(tok::comma))
1308      return;
1309
1310    // Consume the comma.
1311    ConsumeToken();
1312
1313    // Parse the next declarator.
1314    Fields.push_back(FieldDeclarator(DS));
1315
1316    // Attributes are only allowed on the second declarator.
1317    if (Tok.is(tok::kw___attribute)) {
1318      SourceLocation Loc;
1319      AttributeList *AttrList = ParseAttributes(&Loc);
1320      Fields.back().D.AddAttributes(AttrList, Loc);
1321    }
1322  }
1323}
1324
1325/// ParseStructUnionBody
1326///       struct-contents:
1327///         struct-declaration-list
1328/// [EXT]   empty
1329/// [GNU]   "struct-declaration-list" without terminatoring ';'
1330///       struct-declaration-list:
1331///         struct-declaration
1332///         struct-declaration-list struct-declaration
1333/// [OBC]   '@' 'defs' '(' class-name ')'
1334///
1335void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1336                                  unsigned TagType, DeclPtrTy TagDecl) {
1337  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1338                                        PP.getSourceManager(),
1339                                        "parsing struct/union body");
1340
1341  SourceLocation LBraceLoc = ConsumeBrace();
1342
1343  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1344  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1345
1346  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1347  // C++.
1348  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1349    Diag(Tok, diag::ext_empty_struct_union_enum)
1350      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1351
1352  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1353  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1354
1355  // While we still have something to read, read the declarations in the struct.
1356  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1357    // Each iteration of this loop reads one struct-declaration.
1358
1359    // Check for extraneous top-level semicolon.
1360    if (Tok.is(tok::semi)) {
1361      Diag(Tok, diag::ext_extra_struct_semi)
1362        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1363      ConsumeToken();
1364      continue;
1365    }
1366
1367    // Parse all the comma separated declarators.
1368    DeclSpec DS;
1369    FieldDeclarators.clear();
1370    if (!Tok.is(tok::at)) {
1371      ParseStructDeclaration(DS, FieldDeclarators);
1372
1373      // Convert them all to fields.
1374      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1375        FieldDeclarator &FD = FieldDeclarators[i];
1376        // Install the declarator into the current TagDecl.
1377        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1378                                             DS.getSourceRange().getBegin(),
1379                                             FD.D, FD.BitfieldSize);
1380        FieldDecls.push_back(Field);
1381      }
1382    } else { // Handle @defs
1383      ConsumeToken();
1384      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1385        Diag(Tok, diag::err_unexpected_at);
1386        SkipUntil(tok::semi, true, true);
1387        continue;
1388      }
1389      ConsumeToken();
1390      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1391      if (!Tok.is(tok::identifier)) {
1392        Diag(Tok, diag::err_expected_ident);
1393        SkipUntil(tok::semi, true, true);
1394        continue;
1395      }
1396      llvm::SmallVector<DeclPtrTy, 16> Fields;
1397      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1398                        Tok.getIdentifierInfo(), Fields);
1399      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1400      ConsumeToken();
1401      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1402    }
1403
1404    if (Tok.is(tok::semi)) {
1405      ConsumeToken();
1406    } else if (Tok.is(tok::r_brace)) {
1407      Diag(Tok, diag::ext_expected_semi_decl_list);
1408      break;
1409    } else {
1410      Diag(Tok, diag::err_expected_semi_decl_list);
1411      // Skip to end of block or statement
1412      SkipUntil(tok::r_brace, true, true);
1413    }
1414  }
1415
1416  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1417
1418  AttributeList *AttrList = 0;
1419  // If attributes exist after struct contents, parse them.
1420  if (Tok.is(tok::kw___attribute))
1421    AttrList = ParseAttributes();
1422
1423  Actions.ActOnFields(CurScope,
1424                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1425                      LBraceLoc, RBraceLoc,
1426                      AttrList);
1427  StructScope.Exit();
1428  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1429}
1430
1431
1432/// ParseEnumSpecifier
1433///       enum-specifier: [C99 6.7.2.2]
1434///         'enum' identifier[opt] '{' enumerator-list '}'
1435///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1436/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1437///                                                 '}' attributes[opt]
1438///         'enum' identifier
1439/// [GNU]   'enum' attributes[opt] identifier
1440///
1441/// [C++] elaborated-type-specifier:
1442/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1443///
1444void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1445                                AccessSpecifier AS) {
1446  // Parse the tag portion of this.
1447
1448  AttributeList *Attr = 0;
1449  // If attributes exist after tag, parse them.
1450  if (Tok.is(tok::kw___attribute))
1451    Attr = ParseAttributes();
1452
1453  CXXScopeSpec SS;
1454  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1455    if (Tok.isNot(tok::identifier)) {
1456      Diag(Tok, diag::err_expected_ident);
1457      if (Tok.isNot(tok::l_brace)) {
1458        // Has no name and is not a definition.
1459        // Skip the rest of this declarator, up until the comma or semicolon.
1460        SkipUntil(tok::comma, true);
1461        return;
1462      }
1463    }
1464  }
1465
1466  // Must have either 'enum name' or 'enum {...}'.
1467  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1468    Diag(Tok, diag::err_expected_ident_lbrace);
1469
1470    // Skip the rest of this declarator, up until the comma or semicolon.
1471    SkipUntil(tok::comma, true);
1472    return;
1473  }
1474
1475  // If an identifier is present, consume and remember it.
1476  IdentifierInfo *Name = 0;
1477  SourceLocation NameLoc;
1478  if (Tok.is(tok::identifier)) {
1479    Name = Tok.getIdentifierInfo();
1480    NameLoc = ConsumeToken();
1481  }
1482
1483  // There are three options here.  If we have 'enum foo;', then this is a
1484  // forward declaration.  If we have 'enum foo {...' then this is a
1485  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1486  //
1487  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1488  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1489  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1490  //
1491  Action::TagKind TK;
1492  if (Tok.is(tok::l_brace))
1493    TK = Action::TK_Definition;
1494  else if (Tok.is(tok::semi))
1495    TK = Action::TK_Declaration;
1496  else
1497    TK = Action::TK_Reference;
1498  bool Owned = false;
1499  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1500                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1501                                       Owned);
1502
1503  if (Tok.is(tok::l_brace))
1504    ParseEnumBody(StartLoc, TagDecl);
1505
1506  // TODO: semantic analysis on the declspec for enums.
1507  const char *PrevSpec = 0;
1508  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1509                         TagDecl.getAs<void>(), Owned))
1510    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1511}
1512
1513/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1514///       enumerator-list:
1515///         enumerator
1516///         enumerator-list ',' enumerator
1517///       enumerator:
1518///         enumeration-constant
1519///         enumeration-constant '=' constant-expression
1520///       enumeration-constant:
1521///         identifier
1522///
1523void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1524  // Enter the scope of the enum body and start the definition.
1525  ParseScope EnumScope(this, Scope::DeclScope);
1526  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1527
1528  SourceLocation LBraceLoc = ConsumeBrace();
1529
1530  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1531  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1532    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1533
1534  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1535
1536  DeclPtrTy LastEnumConstDecl;
1537
1538  // Parse the enumerator-list.
1539  while (Tok.is(tok::identifier)) {
1540    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1541    SourceLocation IdentLoc = ConsumeToken();
1542
1543    SourceLocation EqualLoc;
1544    OwningExprResult AssignedVal(Actions);
1545    if (Tok.is(tok::equal)) {
1546      EqualLoc = ConsumeToken();
1547      AssignedVal = ParseConstantExpression();
1548      if (AssignedVal.isInvalid())
1549        SkipUntil(tok::comma, tok::r_brace, true, true);
1550    }
1551
1552    // Install the enumerator constant into EnumDecl.
1553    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1554                                                        LastEnumConstDecl,
1555                                                        IdentLoc, Ident,
1556                                                        EqualLoc,
1557                                                        AssignedVal.release());
1558    EnumConstantDecls.push_back(EnumConstDecl);
1559    LastEnumConstDecl = EnumConstDecl;
1560
1561    if (Tok.isNot(tok::comma))
1562      break;
1563    SourceLocation CommaLoc = ConsumeToken();
1564
1565    if (Tok.isNot(tok::identifier) &&
1566        !(getLang().C99 || getLang().CPlusPlus0x))
1567      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1568        << getLang().CPlusPlus
1569        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1570  }
1571
1572  // Eat the }.
1573  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1574
1575  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1576                        EnumConstantDecls.data(), EnumConstantDecls.size());
1577
1578  Action::AttrTy *AttrList = 0;
1579  // If attributes exist after the identifier list, parse them.
1580  if (Tok.is(tok::kw___attribute))
1581    AttrList = ParseAttributes(); // FIXME: where do they do?
1582
1583  EnumScope.Exit();
1584  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1585}
1586
1587/// isTypeSpecifierQualifier - Return true if the current token could be the
1588/// start of a type-qualifier-list.
1589bool Parser::isTypeQualifier() const {
1590  switch (Tok.getKind()) {
1591  default: return false;
1592    // type-qualifier
1593  case tok::kw_const:
1594  case tok::kw_volatile:
1595  case tok::kw_restrict:
1596    return true;
1597  }
1598}
1599
1600/// isTypeSpecifierQualifier - Return true if the current token could be the
1601/// start of a specifier-qualifier-list.
1602bool Parser::isTypeSpecifierQualifier() {
1603  switch (Tok.getKind()) {
1604  default: return false;
1605
1606  case tok::identifier:   // foo::bar
1607  case tok::kw_typename:  // typename T::type
1608    // Annotate typenames and C++ scope specifiers.  If we get one, just
1609    // recurse to handle whatever we get.
1610    if (TryAnnotateTypeOrScopeToken())
1611      return isTypeSpecifierQualifier();
1612    // Otherwise, not a type specifier.
1613    return false;
1614
1615  case tok::coloncolon:   // ::foo::bar
1616    if (NextToken().is(tok::kw_new) ||    // ::new
1617        NextToken().is(tok::kw_delete))   // ::delete
1618      return false;
1619
1620    // Annotate typenames and C++ scope specifiers.  If we get one, just
1621    // recurse to handle whatever we get.
1622    if (TryAnnotateTypeOrScopeToken())
1623      return isTypeSpecifierQualifier();
1624    // Otherwise, not a type specifier.
1625    return false;
1626
1627    // GNU attributes support.
1628  case tok::kw___attribute:
1629    // GNU typeof support.
1630  case tok::kw_typeof:
1631
1632    // type-specifiers
1633  case tok::kw_short:
1634  case tok::kw_long:
1635  case tok::kw_signed:
1636  case tok::kw_unsigned:
1637  case tok::kw__Complex:
1638  case tok::kw__Imaginary:
1639  case tok::kw_void:
1640  case tok::kw_char:
1641  case tok::kw_wchar_t:
1642  case tok::kw_int:
1643  case tok::kw_float:
1644  case tok::kw_double:
1645  case tok::kw_bool:
1646  case tok::kw__Bool:
1647  case tok::kw__Decimal32:
1648  case tok::kw__Decimal64:
1649  case tok::kw__Decimal128:
1650
1651    // struct-or-union-specifier (C99) or class-specifier (C++)
1652  case tok::kw_class:
1653  case tok::kw_struct:
1654  case tok::kw_union:
1655    // enum-specifier
1656  case tok::kw_enum:
1657
1658    // type-qualifier
1659  case tok::kw_const:
1660  case tok::kw_volatile:
1661  case tok::kw_restrict:
1662
1663    // typedef-name
1664  case tok::annot_typename:
1665    return true;
1666
1667    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1668  case tok::less:
1669    return getLang().ObjC1;
1670
1671  case tok::kw___cdecl:
1672  case tok::kw___stdcall:
1673  case tok::kw___fastcall:
1674    return PP.getLangOptions().Microsoft;
1675  }
1676}
1677
1678/// isDeclarationSpecifier() - Return true if the current token is part of a
1679/// declaration specifier.
1680bool Parser::isDeclarationSpecifier() {
1681  switch (Tok.getKind()) {
1682  default: return false;
1683
1684  case tok::identifier:   // foo::bar
1685    // Unfortunate hack to support "Class.factoryMethod" notation.
1686    if (getLang().ObjC1 && NextToken().is(tok::period))
1687      return false;
1688    // Fall through
1689
1690  case tok::kw_typename: // typename T::type
1691    // Annotate typenames and C++ scope specifiers.  If we get one, just
1692    // recurse to handle whatever we get.
1693    if (TryAnnotateTypeOrScopeToken())
1694      return isDeclarationSpecifier();
1695    // Otherwise, not a declaration specifier.
1696    return false;
1697  case tok::coloncolon:   // ::foo::bar
1698    if (NextToken().is(tok::kw_new) ||    // ::new
1699        NextToken().is(tok::kw_delete))   // ::delete
1700      return false;
1701
1702    // Annotate typenames and C++ scope specifiers.  If we get one, just
1703    // recurse to handle whatever we get.
1704    if (TryAnnotateTypeOrScopeToken())
1705      return isDeclarationSpecifier();
1706    // Otherwise, not a declaration specifier.
1707    return false;
1708
1709    // storage-class-specifier
1710  case tok::kw_typedef:
1711  case tok::kw_extern:
1712  case tok::kw___private_extern__:
1713  case tok::kw_static:
1714  case tok::kw_auto:
1715  case tok::kw_register:
1716  case tok::kw___thread:
1717
1718    // type-specifiers
1719  case tok::kw_short:
1720  case tok::kw_long:
1721  case tok::kw_signed:
1722  case tok::kw_unsigned:
1723  case tok::kw__Complex:
1724  case tok::kw__Imaginary:
1725  case tok::kw_void:
1726  case tok::kw_char:
1727  case tok::kw_wchar_t:
1728  case tok::kw_int:
1729  case tok::kw_float:
1730  case tok::kw_double:
1731  case tok::kw_bool:
1732  case tok::kw__Bool:
1733  case tok::kw__Decimal32:
1734  case tok::kw__Decimal64:
1735  case tok::kw__Decimal128:
1736
1737    // struct-or-union-specifier (C99) or class-specifier (C++)
1738  case tok::kw_class:
1739  case tok::kw_struct:
1740  case tok::kw_union:
1741    // enum-specifier
1742  case tok::kw_enum:
1743
1744    // type-qualifier
1745  case tok::kw_const:
1746  case tok::kw_volatile:
1747  case tok::kw_restrict:
1748
1749    // function-specifier
1750  case tok::kw_inline:
1751  case tok::kw_virtual:
1752  case tok::kw_explicit:
1753
1754    // typedef-name
1755  case tok::annot_typename:
1756
1757    // GNU typeof support.
1758  case tok::kw_typeof:
1759
1760    // GNU attributes.
1761  case tok::kw___attribute:
1762    return true;
1763
1764    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1765  case tok::less:
1766    return getLang().ObjC1;
1767
1768  case tok::kw___declspec:
1769  case tok::kw___cdecl:
1770  case tok::kw___stdcall:
1771  case tok::kw___fastcall:
1772    return PP.getLangOptions().Microsoft;
1773  }
1774}
1775
1776
1777/// ParseTypeQualifierListOpt
1778///       type-qualifier-list: [C99 6.7.5]
1779///         type-qualifier
1780/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1781///         type-qualifier-list type-qualifier
1782/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1783///
1784void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1785  while (1) {
1786    int isInvalid = false;
1787    const char *PrevSpec = 0;
1788    SourceLocation Loc = Tok.getLocation();
1789
1790    switch (Tok.getKind()) {
1791    case tok::kw_const:
1792      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1793                                 getLang())*2;
1794      break;
1795    case tok::kw_volatile:
1796      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1797                                 getLang())*2;
1798      break;
1799    case tok::kw_restrict:
1800      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1801                                 getLang())*2;
1802      break;
1803    case tok::kw___ptr64:
1804    case tok::kw___cdecl:
1805    case tok::kw___stdcall:
1806    case tok::kw___fastcall:
1807      if (!PP.getLangOptions().Microsoft)
1808        goto DoneWithTypeQuals;
1809      // Just ignore it.
1810      break;
1811    case tok::kw___attribute:
1812      if (AttributesAllowed) {
1813        DS.AddAttributes(ParseAttributes());
1814        continue; // do *not* consume the next token!
1815      }
1816      // otherwise, FALL THROUGH!
1817    default:
1818      DoneWithTypeQuals:
1819      // If this is not a type-qualifier token, we're done reading type
1820      // qualifiers.  First verify that DeclSpec's are consistent.
1821      DS.Finish(Diags, PP);
1822      return;
1823    }
1824
1825    // If the specifier combination wasn't legal, issue a diagnostic.
1826    if (isInvalid) {
1827      assert(PrevSpec && "Method did not return previous specifier!");
1828      // Pick between error or extwarn.
1829      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1830                                      : diag::ext_duplicate_declspec;
1831      Diag(Tok, DiagID) << PrevSpec;
1832    }
1833    ConsumeToken();
1834  }
1835}
1836
1837
1838/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1839///
1840void Parser::ParseDeclarator(Declarator &D) {
1841  /// This implements the 'declarator' production in the C grammar, then checks
1842  /// for well-formedness and issues diagnostics.
1843  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1844}
1845
1846/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1847/// is parsed by the function passed to it. Pass null, and the direct-declarator
1848/// isn't parsed at all, making this function effectively parse the C++
1849/// ptr-operator production.
1850///
1851///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1852/// [C]     pointer[opt] direct-declarator
1853/// [C++]   direct-declarator
1854/// [C++]   ptr-operator declarator
1855///
1856///       pointer: [C99 6.7.5]
1857///         '*' type-qualifier-list[opt]
1858///         '*' type-qualifier-list[opt] pointer
1859///
1860///       ptr-operator:
1861///         '*' cv-qualifier-seq[opt]
1862///         '&'
1863/// [C++0x] '&&'
1864/// [GNU]   '&' restrict[opt] attributes[opt]
1865/// [GNU?]  '&&' restrict[opt] attributes[opt]
1866///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1867void Parser::ParseDeclaratorInternal(Declarator &D,
1868                                     DirectDeclParseFunction DirectDeclParser) {
1869
1870  // C++ member pointers start with a '::' or a nested-name.
1871  // Member pointers get special handling, since there's no place for the
1872  // scope spec in the generic path below.
1873  if (getLang().CPlusPlus &&
1874      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1875       Tok.is(tok::annot_cxxscope))) {
1876    CXXScopeSpec SS;
1877    if (ParseOptionalCXXScopeSpecifier(SS)) {
1878      if(Tok.isNot(tok::star)) {
1879        // The scope spec really belongs to the direct-declarator.
1880        D.getCXXScopeSpec() = SS;
1881        if (DirectDeclParser)
1882          (this->*DirectDeclParser)(D);
1883        return;
1884      }
1885
1886      SourceLocation Loc = ConsumeToken();
1887      D.SetRangeEnd(Loc);
1888      DeclSpec DS;
1889      ParseTypeQualifierListOpt(DS);
1890      D.ExtendWithDeclSpec(DS);
1891
1892      // Recurse to parse whatever is left.
1893      ParseDeclaratorInternal(D, DirectDeclParser);
1894
1895      // Sema will have to catch (syntactically invalid) pointers into global
1896      // scope. It has to catch pointers into namespace scope anyway.
1897      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1898                                                      Loc, DS.TakeAttributes()),
1899                    /* Don't replace range end. */SourceLocation());
1900      return;
1901    }
1902  }
1903
1904  tok::TokenKind Kind = Tok.getKind();
1905  // Not a pointer, C++ reference, or block.
1906  if (Kind != tok::star && Kind != tok::caret &&
1907      (Kind != tok::amp || !getLang().CPlusPlus) &&
1908      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1909      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1910    if (DirectDeclParser)
1911      (this->*DirectDeclParser)(D);
1912    return;
1913  }
1914
1915  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1916  // '&&' -> rvalue reference
1917  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1918  D.SetRangeEnd(Loc);
1919
1920  if (Kind == tok::star || Kind == tok::caret) {
1921    // Is a pointer.
1922    DeclSpec DS;
1923
1924    ParseTypeQualifierListOpt(DS);
1925    D.ExtendWithDeclSpec(DS);
1926
1927    // Recursively parse the declarator.
1928    ParseDeclaratorInternal(D, DirectDeclParser);
1929    if (Kind == tok::star)
1930      // Remember that we parsed a pointer type, and remember the type-quals.
1931      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1932                                                DS.TakeAttributes()),
1933                    SourceLocation());
1934    else
1935      // Remember that we parsed a Block type, and remember the type-quals.
1936      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1937                                                     Loc, DS.TakeAttributes()),
1938                    SourceLocation());
1939  } else {
1940    // Is a reference
1941    DeclSpec DS;
1942
1943    // Complain about rvalue references in C++03, but then go on and build
1944    // the declarator.
1945    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1946      Diag(Loc, diag::err_rvalue_reference);
1947
1948    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1949    // cv-qualifiers are introduced through the use of a typedef or of a
1950    // template type argument, in which case the cv-qualifiers are ignored.
1951    //
1952    // [GNU] Retricted references are allowed.
1953    // [GNU] Attributes on references are allowed.
1954    ParseTypeQualifierListOpt(DS);
1955    D.ExtendWithDeclSpec(DS);
1956
1957    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1958      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1959        Diag(DS.getConstSpecLoc(),
1960             diag::err_invalid_reference_qualifier_application) << "const";
1961      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1962        Diag(DS.getVolatileSpecLoc(),
1963             diag::err_invalid_reference_qualifier_application) << "volatile";
1964    }
1965
1966    // Recursively parse the declarator.
1967    ParseDeclaratorInternal(D, DirectDeclParser);
1968
1969    if (D.getNumTypeObjects() > 0) {
1970      // C++ [dcl.ref]p4: There shall be no references to references.
1971      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1972      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1973        if (const IdentifierInfo *II = D.getIdentifier())
1974          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1975           << II;
1976        else
1977          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1978            << "type name";
1979
1980        // Once we've complained about the reference-to-reference, we
1981        // can go ahead and build the (technically ill-formed)
1982        // declarator: reference collapsing will take care of it.
1983      }
1984    }
1985
1986    // Remember that we parsed a reference type. It doesn't have type-quals.
1987    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1988                                                DS.TakeAttributes(),
1989                                                Kind == tok::amp),
1990                  SourceLocation());
1991  }
1992}
1993
1994/// ParseDirectDeclarator
1995///       direct-declarator: [C99 6.7.5]
1996/// [C99]   identifier
1997///         '(' declarator ')'
1998/// [GNU]   '(' attributes declarator ')'
1999/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2000/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2001/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2002/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2003/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2004///         direct-declarator '(' parameter-type-list ')'
2005///         direct-declarator '(' identifier-list[opt] ')'
2006/// [GNU]   direct-declarator '(' parameter-forward-declarations
2007///                    parameter-type-list[opt] ')'
2008/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2009///                    cv-qualifier-seq[opt] exception-specification[opt]
2010/// [C++]   declarator-id
2011///
2012///       declarator-id: [C++ 8]
2013///         id-expression
2014///         '::'[opt] nested-name-specifier[opt] type-name
2015///
2016///       id-expression: [C++ 5.1]
2017///         unqualified-id
2018///         qualified-id            [TODO]
2019///
2020///       unqualified-id: [C++ 5.1]
2021///         identifier
2022///         operator-function-id
2023///         conversion-function-id  [TODO]
2024///          '~' class-name
2025///         template-id
2026///
2027void Parser::ParseDirectDeclarator(Declarator &D) {
2028  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2029
2030  if (getLang().CPlusPlus) {
2031    if (D.mayHaveIdentifier()) {
2032      // ParseDeclaratorInternal might already have parsed the scope.
2033      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2034        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
2035      if (afterCXXScope) {
2036        // Change the declaration context for name lookup, until this function
2037        // is exited (and the declarator has been parsed).
2038        DeclScopeObj.EnterDeclaratorScope();
2039      }
2040
2041      if (Tok.is(tok::identifier)) {
2042        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2043
2044        // If this identifier is the name of the current class, it's a
2045        // constructor name.
2046        if (!D.getDeclSpec().hasTypeSpecifier() &&
2047            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2048          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2049                                               Tok.getLocation(), CurScope),
2050                           Tok.getLocation());
2051        // This is a normal identifier.
2052        } else
2053          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2054        ConsumeToken();
2055        goto PastIdentifier;
2056      } else if (Tok.is(tok::annot_template_id)) {
2057        TemplateIdAnnotation *TemplateId
2058          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2059
2060        // FIXME: Could this template-id name a constructor?
2061
2062        // FIXME: This is an egregious hack, where we silently ignore
2063        // the specialization (which should be a function template
2064        // specialization name) and use the name instead. This hack
2065        // will go away when we have support for function
2066        // specializations.
2067        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2068        TemplateId->Destroy();
2069        ConsumeToken();
2070        goto PastIdentifier;
2071      } else if (Tok.is(tok::kw_operator)) {
2072        SourceLocation OperatorLoc = Tok.getLocation();
2073        SourceLocation EndLoc;
2074
2075        // First try the name of an overloaded operator
2076        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2077          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2078        } else {
2079          // This must be a conversion function (C++ [class.conv.fct]).
2080          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2081            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2082          else {
2083            D.SetIdentifier(0, Tok.getLocation());
2084          }
2085        }
2086        goto PastIdentifier;
2087      } else if (Tok.is(tok::tilde)) {
2088        // This should be a C++ destructor.
2089        SourceLocation TildeLoc = ConsumeToken();
2090        if (Tok.is(tok::identifier)) {
2091          // FIXME: Inaccurate.
2092          SourceLocation NameLoc = Tok.getLocation();
2093          SourceLocation EndLoc;
2094          TypeResult Type = ParseClassName(EndLoc);
2095          if (Type.isInvalid())
2096            D.SetIdentifier(0, TildeLoc);
2097          else
2098            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2099        } else {
2100          Diag(Tok, diag::err_expected_class_name);
2101          D.SetIdentifier(0, TildeLoc);
2102        }
2103        goto PastIdentifier;
2104      }
2105
2106      // If we reached this point, token is not identifier and not '~'.
2107
2108      if (afterCXXScope) {
2109        Diag(Tok, diag::err_expected_unqualified_id);
2110        D.SetIdentifier(0, Tok.getLocation());
2111        D.setInvalidType(true);
2112        goto PastIdentifier;
2113      }
2114    }
2115  }
2116
2117  // If we reached this point, we are either in C/ObjC or the token didn't
2118  // satisfy any of the C++-specific checks.
2119  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2120    assert(!getLang().CPlusPlus &&
2121           "There's a C++-specific check for tok::identifier above");
2122    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2123    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2124    ConsumeToken();
2125  } else if (Tok.is(tok::l_paren)) {
2126    // direct-declarator: '(' declarator ')'
2127    // direct-declarator: '(' attributes declarator ')'
2128    // Example: 'char (*X)'   or 'int (*XX)(void)'
2129    ParseParenDeclarator(D);
2130  } else if (D.mayOmitIdentifier()) {
2131    // This could be something simple like "int" (in which case the declarator
2132    // portion is empty), if an abstract-declarator is allowed.
2133    D.SetIdentifier(0, Tok.getLocation());
2134  } else {
2135    if (D.getContext() == Declarator::MemberContext)
2136      Diag(Tok, diag::err_expected_member_name_or_semi)
2137        << D.getDeclSpec().getSourceRange();
2138    else if (getLang().CPlusPlus)
2139      Diag(Tok, diag::err_expected_unqualified_id);
2140    else
2141      Diag(Tok, diag::err_expected_ident_lparen);
2142    D.SetIdentifier(0, Tok.getLocation());
2143    D.setInvalidType(true);
2144  }
2145
2146 PastIdentifier:
2147  assert(D.isPastIdentifier() &&
2148         "Haven't past the location of the identifier yet?");
2149
2150  while (1) {
2151    if (Tok.is(tok::l_paren)) {
2152      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2153      // In such a case, check if we actually have a function declarator; if it
2154      // is not, the declarator has been fully parsed.
2155      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2156        // When not in file scope, warn for ambiguous function declarators, just
2157        // in case the author intended it as a variable definition.
2158        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2159        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2160          break;
2161      }
2162      ParseFunctionDeclarator(ConsumeParen(), D);
2163    } else if (Tok.is(tok::l_square)) {
2164      ParseBracketDeclarator(D);
2165    } else {
2166      break;
2167    }
2168  }
2169}
2170
2171/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2172/// only called before the identifier, so these are most likely just grouping
2173/// parens for precedence.  If we find that these are actually function
2174/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2175///
2176///       direct-declarator:
2177///         '(' declarator ')'
2178/// [GNU]   '(' attributes declarator ')'
2179///         direct-declarator '(' parameter-type-list ')'
2180///         direct-declarator '(' identifier-list[opt] ')'
2181/// [GNU]   direct-declarator '(' parameter-forward-declarations
2182///                    parameter-type-list[opt] ')'
2183///
2184void Parser::ParseParenDeclarator(Declarator &D) {
2185  SourceLocation StartLoc = ConsumeParen();
2186  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2187
2188  // Eat any attributes before we look at whether this is a grouping or function
2189  // declarator paren.  If this is a grouping paren, the attribute applies to
2190  // the type being built up, for example:
2191  //     int (__attribute__(()) *x)(long y)
2192  // If this ends up not being a grouping paren, the attribute applies to the
2193  // first argument, for example:
2194  //     int (__attribute__(()) int x)
2195  // In either case, we need to eat any attributes to be able to determine what
2196  // sort of paren this is.
2197  //
2198  AttributeList *AttrList = 0;
2199  bool RequiresArg = false;
2200  if (Tok.is(tok::kw___attribute)) {
2201    AttrList = ParseAttributes();
2202
2203    // We require that the argument list (if this is a non-grouping paren) be
2204    // present even if the attribute list was empty.
2205    RequiresArg = true;
2206  }
2207  // Eat any Microsoft extensions.
2208  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2209          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2210    ConsumeToken();
2211
2212  // If we haven't past the identifier yet (or where the identifier would be
2213  // stored, if this is an abstract declarator), then this is probably just
2214  // grouping parens. However, if this could be an abstract-declarator, then
2215  // this could also be the start of function arguments (consider 'void()').
2216  bool isGrouping;
2217
2218  if (!D.mayOmitIdentifier()) {
2219    // If this can't be an abstract-declarator, this *must* be a grouping
2220    // paren, because we haven't seen the identifier yet.
2221    isGrouping = true;
2222  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2223             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2224             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2225    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2226    // considered to be a type, not a K&R identifier-list.
2227    isGrouping = false;
2228  } else {
2229    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2230    isGrouping = true;
2231  }
2232
2233  // If this is a grouping paren, handle:
2234  // direct-declarator: '(' declarator ')'
2235  // direct-declarator: '(' attributes declarator ')'
2236  if (isGrouping) {
2237    bool hadGroupingParens = D.hasGroupingParens();
2238    D.setGroupingParens(true);
2239    if (AttrList)
2240      D.AddAttributes(AttrList, SourceLocation());
2241
2242    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2243    // Match the ')'.
2244    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2245
2246    D.setGroupingParens(hadGroupingParens);
2247    D.SetRangeEnd(Loc);
2248    return;
2249  }
2250
2251  // Okay, if this wasn't a grouping paren, it must be the start of a function
2252  // argument list.  Recognize that this declarator will never have an
2253  // identifier (and remember where it would have been), then call into
2254  // ParseFunctionDeclarator to handle of argument list.
2255  D.SetIdentifier(0, Tok.getLocation());
2256
2257  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2258}
2259
2260/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2261/// declarator D up to a paren, which indicates that we are parsing function
2262/// arguments.
2263///
2264/// If AttrList is non-null, then the caller parsed those arguments immediately
2265/// after the open paren - they should be considered to be the first argument of
2266/// a parameter.  If RequiresArg is true, then the first argument of the
2267/// function is required to be present and required to not be an identifier
2268/// list.
2269///
2270/// This method also handles this portion of the grammar:
2271///       parameter-type-list: [C99 6.7.5]
2272///         parameter-list
2273///         parameter-list ',' '...'
2274///
2275///       parameter-list: [C99 6.7.5]
2276///         parameter-declaration
2277///         parameter-list ',' parameter-declaration
2278///
2279///       parameter-declaration: [C99 6.7.5]
2280///         declaration-specifiers declarator
2281/// [C++]   declaration-specifiers declarator '=' assignment-expression
2282/// [GNU]   declaration-specifiers declarator attributes
2283///         declaration-specifiers abstract-declarator[opt]
2284/// [C++]   declaration-specifiers abstract-declarator[opt]
2285///           '=' assignment-expression
2286/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2287///
2288/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2289/// and "exception-specification[opt]".
2290///
2291void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2292                                     AttributeList *AttrList,
2293                                     bool RequiresArg) {
2294  // lparen is already consumed!
2295  assert(D.isPastIdentifier() && "Should not call before identifier!");
2296
2297  // This parameter list may be empty.
2298  if (Tok.is(tok::r_paren)) {
2299    if (RequiresArg) {
2300      Diag(Tok, diag::err_argument_required_after_attribute);
2301      delete AttrList;
2302    }
2303
2304    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2305
2306    // cv-qualifier-seq[opt].
2307    DeclSpec DS;
2308    bool hasExceptionSpec = false;
2309    SourceLocation ThrowLoc;
2310    bool hasAnyExceptionSpec = false;
2311    llvm::SmallVector<TypeTy*, 2> Exceptions;
2312    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2313    if (getLang().CPlusPlus) {
2314      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2315      if (!DS.getSourceRange().getEnd().isInvalid())
2316        Loc = DS.getSourceRange().getEnd();
2317
2318      // Parse exception-specification[opt].
2319      if (Tok.is(tok::kw_throw)) {
2320        hasExceptionSpec = true;
2321        ThrowLoc = Tok.getLocation();
2322        ParseExceptionSpecification(Loc, Exceptions, ExceptionRanges,
2323                                    hasAnyExceptionSpec);
2324        assert(Exceptions.size() == ExceptionRanges.size() &&
2325               "Produced different number of exception types and ranges.");
2326      }
2327    }
2328
2329    // Remember that we parsed a function type, and remember the attributes.
2330    // int() -> no prototype, no '...'.
2331    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2332                                               /*variadic*/ false,
2333                                               SourceLocation(),
2334                                               /*arglist*/ 0, 0,
2335                                               DS.getTypeQualifiers(),
2336                                               hasExceptionSpec, ThrowLoc,
2337                                               hasAnyExceptionSpec,
2338                                               Exceptions.data(),
2339                                               ExceptionRanges.data(),
2340                                               Exceptions.size(),
2341                                               LParenLoc, D),
2342                  Loc);
2343    return;
2344  }
2345
2346  // Alternatively, this parameter list may be an identifier list form for a
2347  // K&R-style function:  void foo(a,b,c)
2348  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2349    if (!TryAnnotateTypeOrScopeToken()) {
2350      // K&R identifier lists can't have typedefs as identifiers, per
2351      // C99 6.7.5.3p11.
2352      if (RequiresArg) {
2353        Diag(Tok, diag::err_argument_required_after_attribute);
2354        delete AttrList;
2355      }
2356      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2357      // normal declarators, not for abstract-declarators.
2358      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2359    }
2360  }
2361
2362  // Finally, a normal, non-empty parameter type list.
2363
2364  // Build up an array of information about the parsed arguments.
2365  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2366
2367  // Enter function-declaration scope, limiting any declarators to the
2368  // function prototype scope, including parameter declarators.
2369  ParseScope PrototypeScope(this,
2370                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2371
2372  bool IsVariadic = false;
2373  SourceLocation EllipsisLoc;
2374  while (1) {
2375    if (Tok.is(tok::ellipsis)) {
2376      IsVariadic = true;
2377      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2378      break;
2379    }
2380
2381    SourceLocation DSStart = Tok.getLocation();
2382
2383    // Parse the declaration-specifiers.
2384    DeclSpec DS;
2385
2386    // If the caller parsed attributes for the first argument, add them now.
2387    if (AttrList) {
2388      DS.AddAttributes(AttrList);
2389      AttrList = 0;  // Only apply the attributes to the first parameter.
2390    }
2391    ParseDeclarationSpecifiers(DS);
2392
2393    // Parse the declarator.  This is "PrototypeContext", because we must
2394    // accept either 'declarator' or 'abstract-declarator' here.
2395    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2396    ParseDeclarator(ParmDecl);
2397
2398    // Parse GNU attributes, if present.
2399    if (Tok.is(tok::kw___attribute)) {
2400      SourceLocation Loc;
2401      AttributeList *AttrList = ParseAttributes(&Loc);
2402      ParmDecl.AddAttributes(AttrList, Loc);
2403    }
2404
2405    // Remember this parsed parameter in ParamInfo.
2406    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2407
2408    // DefArgToks is used when the parsing of default arguments needs
2409    // to be delayed.
2410    CachedTokens *DefArgToks = 0;
2411
2412    // If no parameter was specified, verify that *something* was specified,
2413    // otherwise we have a missing type and identifier.
2414    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2415        ParmDecl.getNumTypeObjects() == 0) {
2416      // Completely missing, emit error.
2417      Diag(DSStart, diag::err_missing_param);
2418    } else {
2419      // Otherwise, we have something.  Add it and let semantic analysis try
2420      // to grok it and add the result to the ParamInfo we are building.
2421
2422      // Inform the actions module about the parameter declarator, so it gets
2423      // added to the current scope.
2424      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2425
2426      // Parse the default argument, if any. We parse the default
2427      // arguments in all dialects; the semantic analysis in
2428      // ActOnParamDefaultArgument will reject the default argument in
2429      // C.
2430      if (Tok.is(tok::equal)) {
2431        SourceLocation EqualLoc = Tok.getLocation();
2432
2433        // Parse the default argument
2434        if (D.getContext() == Declarator::MemberContext) {
2435          // If we're inside a class definition, cache the tokens
2436          // corresponding to the default argument. We'll actually parse
2437          // them when we see the end of the class definition.
2438          // FIXME: Templates will require something similar.
2439          // FIXME: Can we use a smart pointer for Toks?
2440          DefArgToks = new CachedTokens;
2441
2442          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2443                                    tok::semi, false)) {
2444            delete DefArgToks;
2445            DefArgToks = 0;
2446            Actions.ActOnParamDefaultArgumentError(Param);
2447          } else
2448            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2449        } else {
2450          // Consume the '='.
2451          ConsumeToken();
2452
2453          OwningExprResult DefArgResult(ParseAssignmentExpression());
2454          if (DefArgResult.isInvalid()) {
2455            Actions.ActOnParamDefaultArgumentError(Param);
2456            SkipUntil(tok::comma, tok::r_paren, true, true);
2457          } else {
2458            // Inform the actions module about the default argument
2459            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2460                                              move(DefArgResult));
2461          }
2462        }
2463      }
2464
2465      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2466                                          ParmDecl.getIdentifierLoc(), Param,
2467                                          DefArgToks));
2468    }
2469
2470    // If the next token is a comma, consume it and keep reading arguments.
2471    if (Tok.isNot(tok::comma)) break;
2472
2473    // Consume the comma.
2474    ConsumeToken();
2475  }
2476
2477  // Leave prototype scope.
2478  PrototypeScope.Exit();
2479
2480  // If we have the closing ')', eat it.
2481  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2482
2483  DeclSpec DS;
2484  bool hasExceptionSpec = false;
2485  SourceLocation ThrowLoc;
2486  bool hasAnyExceptionSpec = false;
2487  llvm::SmallVector<TypeTy*, 2> Exceptions;
2488  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2489  if (getLang().CPlusPlus) {
2490    // Parse cv-qualifier-seq[opt].
2491    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2492      if (!DS.getSourceRange().getEnd().isInvalid())
2493        Loc = DS.getSourceRange().getEnd();
2494
2495    // Parse exception-specification[opt].
2496    if (Tok.is(tok::kw_throw)) {
2497      hasExceptionSpec = true;
2498      ThrowLoc = Tok.getLocation();
2499      ParseExceptionSpecification(Loc, Exceptions, ExceptionRanges,
2500                                  hasAnyExceptionSpec);
2501      assert(Exceptions.size() == ExceptionRanges.size() &&
2502             "Produced different number of exception types and ranges.");
2503    }
2504  }
2505
2506  // Remember that we parsed a function type, and remember the attributes.
2507  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2508                                             EllipsisLoc,
2509                                             ParamInfo.data(), ParamInfo.size(),
2510                                             DS.getTypeQualifiers(),
2511                                             hasExceptionSpec, ThrowLoc,
2512                                             hasAnyExceptionSpec,
2513                                             Exceptions.data(),
2514                                             ExceptionRanges.data(),
2515                                             Exceptions.size(), LParenLoc, D),
2516                Loc);
2517}
2518
2519/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2520/// we found a K&R-style identifier list instead of a type argument list.  The
2521/// current token is known to be the first identifier in the list.
2522///
2523///       identifier-list: [C99 6.7.5]
2524///         identifier
2525///         identifier-list ',' identifier
2526///
2527void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2528                                                   Declarator &D) {
2529  // Build up an array of information about the parsed arguments.
2530  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2531  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2532
2533  // If there was no identifier specified for the declarator, either we are in
2534  // an abstract-declarator, or we are in a parameter declarator which was found
2535  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2536  // diagnose this.
2537  if (!D.getIdentifier())
2538    Diag(Tok, diag::ext_ident_list_in_param);
2539
2540  // Tok is known to be the first identifier in the list.  Remember this
2541  // identifier in ParamInfo.
2542  ParamsSoFar.insert(Tok.getIdentifierInfo());
2543  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2544                                                 Tok.getLocation(),
2545                                                 DeclPtrTy()));
2546
2547  ConsumeToken();  // eat the first identifier.
2548
2549  while (Tok.is(tok::comma)) {
2550    // Eat the comma.
2551    ConsumeToken();
2552
2553    // If this isn't an identifier, report the error and skip until ')'.
2554    if (Tok.isNot(tok::identifier)) {
2555      Diag(Tok, diag::err_expected_ident);
2556      SkipUntil(tok::r_paren);
2557      return;
2558    }
2559
2560    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2561
2562    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2563    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2564      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2565
2566    // Verify that the argument identifier has not already been mentioned.
2567    if (!ParamsSoFar.insert(ParmII)) {
2568      Diag(Tok, diag::err_param_redefinition) << ParmII;
2569    } else {
2570      // Remember this identifier in ParamInfo.
2571      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2572                                                     Tok.getLocation(),
2573                                                     DeclPtrTy()));
2574    }
2575
2576    // Eat the identifier.
2577    ConsumeToken();
2578  }
2579
2580  // If we have the closing ')', eat it and we're done.
2581  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2582
2583  // Remember that we parsed a function type, and remember the attributes.  This
2584  // function type is always a K&R style function type, which is not varargs and
2585  // has no prototype.
2586  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2587                                             SourceLocation(),
2588                                             &ParamInfo[0], ParamInfo.size(),
2589                                             /*TypeQuals*/0,
2590                                             /*exception*/false,
2591                                             SourceLocation(), false, 0, 0, 0,
2592                                             LParenLoc, D),
2593                RLoc);
2594}
2595
2596/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2597/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2598/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2599/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2600/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2601void Parser::ParseBracketDeclarator(Declarator &D) {
2602  SourceLocation StartLoc = ConsumeBracket();
2603
2604  // C array syntax has many features, but by-far the most common is [] and [4].
2605  // This code does a fast path to handle some of the most obvious cases.
2606  if (Tok.getKind() == tok::r_square) {
2607    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2608    // Remember that we parsed the empty array type.
2609    OwningExprResult NumElements(Actions);
2610    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2611                  EndLoc);
2612    return;
2613  } else if (Tok.getKind() == tok::numeric_constant &&
2614             GetLookAheadToken(1).is(tok::r_square)) {
2615    // [4] is very common.  Parse the numeric constant expression.
2616    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2617    ConsumeToken();
2618
2619    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2620
2621    // If there was an error parsing the assignment-expression, recover.
2622    if (ExprRes.isInvalid())
2623      ExprRes.release();  // Deallocate expr, just use [].
2624
2625    // Remember that we parsed a array type, and remember its features.
2626    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2627                                            ExprRes.release(), StartLoc),
2628                  EndLoc);
2629    return;
2630  }
2631
2632  // If valid, this location is the position where we read the 'static' keyword.
2633  SourceLocation StaticLoc;
2634  if (Tok.is(tok::kw_static))
2635    StaticLoc = ConsumeToken();
2636
2637  // If there is a type-qualifier-list, read it now.
2638  // Type qualifiers in an array subscript are a C99 feature.
2639  DeclSpec DS;
2640  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2641
2642  // If we haven't already read 'static', check to see if there is one after the
2643  // type-qualifier-list.
2644  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2645    StaticLoc = ConsumeToken();
2646
2647  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2648  bool isStar = false;
2649  OwningExprResult NumElements(Actions);
2650
2651  // Handle the case where we have '[*]' as the array size.  However, a leading
2652  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2653  // the the token after the star is a ']'.  Since stars in arrays are
2654  // infrequent, use of lookahead is not costly here.
2655  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2656    ConsumeToken();  // Eat the '*'.
2657
2658    if (StaticLoc.isValid()) {
2659      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2660      StaticLoc = SourceLocation();  // Drop the static.
2661    }
2662    isStar = true;
2663  } else if (Tok.isNot(tok::r_square)) {
2664    // Note, in C89, this production uses the constant-expr production instead
2665    // of assignment-expr.  The only difference is that assignment-expr allows
2666    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2667    // are not i-c-e's, so we don't need to distinguish between the two here.
2668
2669    // Parse the assignment-expression now.
2670    NumElements = ParseAssignmentExpression();
2671  }
2672
2673  // If there was an error parsing the assignment-expression, recover.
2674  if (NumElements.isInvalid()) {
2675    D.setInvalidType(true);
2676    // If the expression was invalid, skip it.
2677    SkipUntil(tok::r_square);
2678    return;
2679  }
2680
2681  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2682
2683  // Remember that we parsed a array type, and remember its features.
2684  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2685                                          StaticLoc.isValid(), isStar,
2686                                          NumElements.release(), StartLoc),
2687                EndLoc);
2688}
2689
2690/// [GNU]   typeof-specifier:
2691///           typeof ( expressions )
2692///           typeof ( type-name )
2693/// [GNU/C++] typeof unary-expression
2694///
2695void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2696  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2697  Token OpTok = Tok;
2698  SourceLocation StartLoc = ConsumeToken();
2699
2700  bool isCastExpr;
2701  TypeTy *CastTy;
2702  SourceRange CastRange;
2703  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2704                                                               isCastExpr,
2705                                                               CastTy,
2706                                                               CastRange);
2707
2708  if (CastRange.getEnd().isInvalid())
2709    // FIXME: Not accurate, the range gets one token more than it should.
2710    DS.SetRangeEnd(Tok.getLocation());
2711  else
2712    DS.SetRangeEnd(CastRange.getEnd());
2713
2714  if (isCastExpr) {
2715    if (!CastTy) {
2716      DS.SetTypeSpecError();
2717      return;
2718    }
2719
2720    const char *PrevSpec = 0;
2721    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2722    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2723                           CastTy))
2724      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2725    return;
2726  }
2727
2728  // If we get here, the operand to the typeof was an expresion.
2729  if (Operand.isInvalid()) {
2730    DS.SetTypeSpecError();
2731    return;
2732  }
2733
2734  const char *PrevSpec = 0;
2735  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2736  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2737                         Operand.release()))
2738    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2739}
2740