1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28using namespace clang;
29using namespace CodeGen;
30
31typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32static TryEmitResult
33tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                   QualType ET,
36                                   RValue Result);
37
38/// Given the address of a variable of pointer type, find the correct
39/// null to store into it.
40static llvm::Constant *getNullForVariable(Address addr) {
41  llvm::Type *type = addr.getElementType();
42  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43}
44
45/// Emits an instance of NSConstantString representing the object.
46llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47{
48  llvm::Constant *C =
49      CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50  // FIXME: This bitcast should just be made an invariant on the Runtime.
51  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52}
53
54/// EmitObjCBoxedExpr - This routine generates code to call
55/// the appropriate expression boxing method. This will either be
56/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57/// or [NSValue valueWithBytes:objCType:].
58///
59llvm::Value *
60CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61  // Generate the correct selector for this literal's concrete type.
62  // Get the method.
63  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64  const Expr *SubExpr = E->getSubExpr();
65
66  if (E->isExpressibleAsConstantInitializer()) {
67    ConstantEmitter ConstEmitter(CGM);
68    return ConstEmitter.tryEmitAbstract(E, E->getType());
69  }
70
71  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72  Selector Sel = BoxingMethod->getSelector();
73
74  // Generate a reference to the class pointer, which will be the receiver.
75  // Assumes that the method was introduced in the class that should be
76  // messaged (avoids pulling it out of the result type).
77  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80
81  CallArgList Args;
82  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84
85  // ObjCBoxedExpr supports boxing of structs and unions
86  // via [NSValue valueWithBytes:objCType:]
87  const QualType ValueType(SubExpr->getType().getCanonicalType());
88  if (ValueType->isObjCBoxableRecordType()) {
89    // Emit CodeGen for first parameter
90    // and cast value to correct type
91    Address Temporary = CreateMemTemp(SubExpr->getType());
92    EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93    Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94    Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95
96    // Create char array to store type encoding
97    std::string Str;
98    getContext().getObjCEncodingForType(ValueType, Str);
99    llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100
101    // Cast type encoding to correct type
102    const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103    QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104    llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105
106    Args.add(RValue::get(Cast), EncodingQT);
107  } else {
108    Args.add(EmitAnyExpr(SubExpr), ArgQT);
109  }
110
111  RValue result = Runtime.GenerateMessageSend(
112      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113      Args, ClassDecl, BoxingMethod);
114  return Builder.CreateBitCast(result.getScalarVal(),
115                               ConvertType(E->getType()));
116}
117
118llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                    const ObjCMethodDecl *MethodWithObjects) {
120  ASTContext &Context = CGM.getContext();
121  const ObjCDictionaryLiteral *DLE = nullptr;
122  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123  if (!ALE)
124    DLE = cast<ObjCDictionaryLiteral>(E);
125
126  // Optimize empty collections by referencing constants, when available.
127  uint64_t NumElements =
128    ALE ? ALE->getNumElements() : DLE->getNumElements();
129  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130    StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131    QualType IdTy(CGM.getContext().getObjCIdType());
132    llvm::Constant *Constant =
133        CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134    LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135    llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136    cast<llvm::LoadInst>(Ptr)->setMetadata(
137        CGM.getModule().getMDKindID("invariant.load"),
138        llvm::MDNode::get(getLLVMContext(), None));
139    return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140  }
141
142  // Compute the type of the array we're initializing.
143  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                            NumElements);
145  QualType ElementType = Context.getObjCIdType().withConst();
146  QualType ElementArrayType
147    = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                   ArrayType::Normal, /*IndexTypeQuals=*/0);
149
150  // Allocate the temporary array(s).
151  Address Objects = CreateMemTemp(ElementArrayType, "objects");
152  Address Keys = Address::invalid();
153  if (DLE)
154    Keys = CreateMemTemp(ElementArrayType, "keys");
155
156  // In ARC, we may need to do extra work to keep all the keys and
157  // values alive until after the call.
158  SmallVector<llvm::Value *, 16> NeededObjects;
159  bool TrackNeededObjects =
160    (getLangOpts().ObjCAutoRefCount &&
161    CGM.getCodeGenOpts().OptimizationLevel != 0);
162
163  // Perform the actual initialialization of the array(s).
164  for (uint64_t i = 0; i < NumElements; i++) {
165    if (ALE) {
166      // Emit the element and store it to the appropriate array slot.
167      const Expr *Rhs = ALE->getElement(i);
168      LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                 ElementType, AlignmentSource::Decl);
170
171      llvm::Value *value = EmitScalarExpr(Rhs);
172      EmitStoreThroughLValue(RValue::get(value), LV, true);
173      if (TrackNeededObjects) {
174        NeededObjects.push_back(value);
175      }
176    } else {
177      // Emit the key and store it to the appropriate array slot.
178      const Expr *Key = DLE->getKeyValueElement(i).Key;
179      LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                    ElementType, AlignmentSource::Decl);
181      llvm::Value *keyValue = EmitScalarExpr(Key);
182      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183
184      // Emit the value and store it to the appropriate array slot.
185      const Expr *Value = DLE->getKeyValueElement(i).Value;
186      LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                      ElementType, AlignmentSource::Decl);
188      llvm::Value *valueValue = EmitScalarExpr(Value);
189      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190      if (TrackNeededObjects) {
191        NeededObjects.push_back(keyValue);
192        NeededObjects.push_back(valueValue);
193      }
194    }
195  }
196
197  // Generate the argument list.
198  CallArgList Args;
199  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200  const ParmVarDecl *argDecl = *PI++;
201  QualType ArgQT = argDecl->getType().getUnqualifiedType();
202  Args.add(RValue::get(Objects.getPointer()), ArgQT);
203  if (DLE) {
204    argDecl = *PI++;
205    ArgQT = argDecl->getType().getUnqualifiedType();
206    Args.add(RValue::get(Keys.getPointer()), ArgQT);
207  }
208  argDecl = *PI;
209  ArgQT = argDecl->getType().getUnqualifiedType();
210  llvm::Value *Count =
211    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212  Args.add(RValue::get(Count), ArgQT);
213
214  // Generate a reference to the class pointer, which will be the receiver.
215  Selector Sel = MethodWithObjects->getSelector();
216  QualType ResultType = E->getType();
217  const ObjCObjectPointerType *InterfacePointerType
218    = ResultType->getAsObjCInterfacePointerType();
219  ObjCInterfaceDecl *Class
220    = InterfacePointerType->getObjectType()->getInterface();
221  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223
224  // Generate the message send.
225  RValue result = Runtime.GenerateMessageSend(
226      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227      Receiver, Args, Class, MethodWithObjects);
228
229  // The above message send needs these objects, but in ARC they are
230  // passed in a buffer that is essentially __unsafe_unretained.
231  // Therefore we must prevent the optimizer from releasing them until
232  // after the call.
233  if (TrackNeededObjects) {
234    EmitARCIntrinsicUse(NeededObjects);
235  }
236
237  return Builder.CreateBitCast(result.getScalarVal(),
238                               ConvertType(E->getType()));
239}
240
241llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243}
244
245llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                            const ObjCDictionaryLiteral *E) {
247  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248}
249
250/// Emit a selector.
251llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252  // Untyped selector.
253  // Note that this implementation allows for non-constant strings to be passed
254  // as arguments to @selector().  Currently, the only thing preventing this
255  // behaviour is the type checking in the front end.
256  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257}
258
259llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260  // FIXME: This should pass the Decl not the name.
261  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262}
263
264/// Adjust the type of an Objective-C object that doesn't match up due
265/// to type erasure at various points, e.g., related result types or the use
266/// of parameterized classes.
267static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                   RValue Result) {
269  if (!ExpT->isObjCRetainableType())
270    return Result;
271
272  // If the converted types are the same, we're done.
273  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274  if (ExpLLVMTy == Result.getScalarVal()->getType())
275    return Result;
276
277  // We have applied a substitution. Cast the rvalue appropriately.
278  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                               ExpLLVMTy));
280}
281
282/// Decide whether to extend the lifetime of the receiver of a
283/// returns-inner-pointer message.
284static bool
285shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286  switch (message->getReceiverKind()) {
287
288  // For a normal instance message, we should extend unless the
289  // receiver is loaded from a variable with precise lifetime.
290  case ObjCMessageExpr::Instance: {
291    const Expr *receiver = message->getInstanceReceiver();
292
293    // Look through OVEs.
294    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295      if (opaque->getSourceExpr())
296        receiver = opaque->getSourceExpr()->IgnoreParens();
297    }
298
299    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301    receiver = ice->getSubExpr()->IgnoreParens();
302
303    // Look through OVEs.
304    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305      if (opaque->getSourceExpr())
306        receiver = opaque->getSourceExpr()->IgnoreParens();
307    }
308
309    // Only __strong variables.
310    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311      return true;
312
313    // All ivars and fields have precise lifetime.
314    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315      return false;
316
317    // Otherwise, check for variables.
318    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319    if (!declRef) return true;
320    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321    if (!var) return true;
322
323    // All variables have precise lifetime except local variables with
324    // automatic storage duration that aren't specially marked.
325    return (var->hasLocalStorage() &&
326            !var->hasAttr<ObjCPreciseLifetimeAttr>());
327  }
328
329  case ObjCMessageExpr::Class:
330  case ObjCMessageExpr::SuperClass:
331    // It's never necessary for class objects.
332    return false;
333
334  case ObjCMessageExpr::SuperInstance:
335    // We generally assume that 'self' lives throughout a method call.
336    return false;
337  }
338
339  llvm_unreachable("invalid receiver kind");
340}
341
342/// Given an expression of ObjC pointer type, check whether it was
343/// immediately loaded from an ARC __weak l-value.
344static const Expr *findWeakLValue(const Expr *E) {
345  assert(E->getType()->isObjCRetainableType());
346  E = E->IgnoreParens();
347  if (auto CE = dyn_cast<CastExpr>(E)) {
348    if (CE->getCastKind() == CK_LValueToRValue) {
349      if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350        return CE->getSubExpr();
351    }
352  }
353
354  return nullptr;
355}
356
357/// The ObjC runtime may provide entrypoints that are likely to be faster
358/// than an ordinary message send of the appropriate selector.
359///
360/// The entrypoints are guaranteed to be equivalent to just sending the
361/// corresponding message.  If the entrypoint is implemented naively as just a
362/// message send, using it is a trade-off: it sacrifices a few cycles of
363/// overhead to save a small amount of code.  However, it's possible for
364/// runtimes to detect and special-case classes that use "standard"
365/// behavior; if that's dynamically a large proportion of all objects, using
366/// the entrypoint will also be faster than using a message send.
367///
368/// If the runtime does support a required entrypoint, then this method will
369/// generate a call and return the resulting value.  Otherwise it will return
370/// None and the caller can generate a msgSend instead.
371static Optional<llvm::Value *>
372tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                  llvm::Value *Receiver,
374                                  const CallArgList& Args, Selector Sel,
375                                  const ObjCMethodDecl *method,
376                                  bool isClassMessage) {
377  auto &CGM = CGF.CGM;
378  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379    return None;
380
381  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382  switch (Sel.getMethodFamily()) {
383  case OMF_alloc:
384    if (isClassMessage &&
385        Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386        ResultType->isObjCObjectPointerType()) {
387        // [Foo alloc] -> objc_alloc(Foo) or
388        // [self alloc] -> objc_alloc(self)
389        if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390          return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391        // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392        // [self allocWithZone:nil] -> objc_allocWithZone(self)
393        if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394            Args.size() == 1 && Args.front().getType()->isPointerType() &&
395            Sel.getNameForSlot(0) == "allocWithZone") {
396          const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397          if (isa<llvm::ConstantPointerNull>(arg))
398            return CGF.EmitObjCAllocWithZone(Receiver,
399                                             CGF.ConvertType(ResultType));
400          return None;
401        }
402    }
403    break;
404
405  case OMF_autorelease:
406    if (ResultType->isObjCObjectPointerType() &&
407        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408        Runtime.shouldUseARCFunctionsForRetainRelease())
409      return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410    break;
411
412  case OMF_retain:
413    if (ResultType->isObjCObjectPointerType() &&
414        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415        Runtime.shouldUseARCFunctionsForRetainRelease())
416      return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417    break;
418
419  case OMF_release:
420    if (ResultType->isVoidType() &&
421        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422        Runtime.shouldUseARCFunctionsForRetainRelease()) {
423      CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424      return nullptr;
425    }
426    break;
427
428  default:
429    break;
430  }
431  return None;
432}
433
434CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435    CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436    Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437    const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438    bool isClassMessage) {
439  if (Optional<llvm::Value *> SpecializedResult =
440          tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                            Sel, Method, isClassMessage)) {
442    return RValue::get(SpecializedResult.getValue());
443  }
444  return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                             Method);
446}
447
448/// Instead of '[[MyClass alloc] init]', try to generate
449/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450/// caller side, as well as the optimized objc_alloc.
451static Optional<llvm::Value *>
452tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455    return None;
456
457  // Match the exact pattern '[[MyClass alloc] init]'.
458  Selector Sel = OME->getSelector();
459  if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460      !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461      Sel.getNameForSlot(0) != "init")
462    return None;
463
464  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
465  // with 'cls' a Class.
466  auto *SubOME =
467      dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468  if (!SubOME)
469    return None;
470  Selector SubSel = SubOME->getSelector();
471
472  if (!SubOME->getType()->isObjCObjectPointerType() ||
473      !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
474    return None;
475
476  llvm::Value *Receiver = nullptr;
477  switch (SubOME->getReceiverKind()) {
478  case ObjCMessageExpr::Instance:
479    if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
480      return None;
481    Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
482    break;
483
484  case ObjCMessageExpr::Class: {
485    QualType ReceiverType = SubOME->getClassReceiver();
486    const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
487    const ObjCInterfaceDecl *ID = ObjTy->getInterface();
488    assert(ID && "null interface should be impossible here");
489    Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
490    break;
491  }
492  case ObjCMessageExpr::SuperInstance:
493  case ObjCMessageExpr::SuperClass:
494    return None;
495  }
496
497  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
498}
499
500RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
501                                            ReturnValueSlot Return) {
502  // Only the lookup mechanism and first two arguments of the method
503  // implementation vary between runtimes.  We can get the receiver and
504  // arguments in generic code.
505
506  bool isDelegateInit = E->isDelegateInitCall();
507
508  const ObjCMethodDecl *method = E->getMethodDecl();
509
510  // If the method is -retain, and the receiver's being loaded from
511  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
512  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
513      method->getMethodFamily() == OMF_retain) {
514    if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
515      LValue lvalue = EmitLValue(lvalueExpr);
516      llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
517      return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
518    }
519  }
520
521  if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
522    return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
523
524  // We don't retain the receiver in delegate init calls, and this is
525  // safe because the receiver value is always loaded from 'self',
526  // which we zero out.  We don't want to Block_copy block receivers,
527  // though.
528  bool retainSelf =
529    (!isDelegateInit &&
530     CGM.getLangOpts().ObjCAutoRefCount &&
531     method &&
532     method->hasAttr<NSConsumesSelfAttr>());
533
534  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
535  bool isSuperMessage = false;
536  bool isClassMessage = false;
537  ObjCInterfaceDecl *OID = nullptr;
538  // Find the receiver
539  QualType ReceiverType;
540  llvm::Value *Receiver = nullptr;
541  switch (E->getReceiverKind()) {
542  case ObjCMessageExpr::Instance:
543    ReceiverType = E->getInstanceReceiver()->getType();
544    isClassMessage = ReceiverType->isObjCClassType();
545    if (retainSelf) {
546      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
547                                                   E->getInstanceReceiver());
548      Receiver = ter.getPointer();
549      if (ter.getInt()) retainSelf = false;
550    } else
551      Receiver = EmitScalarExpr(E->getInstanceReceiver());
552    break;
553
554  case ObjCMessageExpr::Class: {
555    ReceiverType = E->getClassReceiver();
556    OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
557    assert(OID && "Invalid Objective-C class message send");
558    Receiver = Runtime.GetClass(*this, OID);
559    isClassMessage = true;
560    break;
561  }
562
563  case ObjCMessageExpr::SuperInstance:
564    ReceiverType = E->getSuperType();
565    Receiver = LoadObjCSelf();
566    isSuperMessage = true;
567    break;
568
569  case ObjCMessageExpr::SuperClass:
570    ReceiverType = E->getSuperType();
571    Receiver = LoadObjCSelf();
572    isSuperMessage = true;
573    isClassMessage = true;
574    break;
575  }
576
577  if (retainSelf)
578    Receiver = EmitARCRetainNonBlock(Receiver);
579
580  // In ARC, we sometimes want to "extend the lifetime"
581  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
582  // messages.
583  if (getLangOpts().ObjCAutoRefCount && method &&
584      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
585      shouldExtendReceiverForInnerPointerMessage(E))
586    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
587
588  QualType ResultType = method ? method->getReturnType() : E->getType();
589
590  CallArgList Args;
591  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
592
593  // For delegate init calls in ARC, do an unsafe store of null into
594  // self.  This represents the call taking direct ownership of that
595  // value.  We have to do this after emitting the other call
596  // arguments because they might also reference self, but we don't
597  // have to worry about any of them modifying self because that would
598  // be an undefined read and write of an object in unordered
599  // expressions.
600  if (isDelegateInit) {
601    assert(getLangOpts().ObjCAutoRefCount &&
602           "delegate init calls should only be marked in ARC");
603
604    // Do an unsafe store of null into self.
605    Address selfAddr =
606      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
607    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
608  }
609
610  RValue result;
611  if (isSuperMessage) {
612    // super is only valid in an Objective-C method
613    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
614    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
615    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
616                                              E->getSelector(),
617                                              OMD->getClassInterface(),
618                                              isCategoryImpl,
619                                              Receiver,
620                                              isClassMessage,
621                                              Args,
622                                              method);
623  } else {
624    // Call runtime methods directly if we can.
625    result = Runtime.GeneratePossiblySpecializedMessageSend(
626        *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
627        method, isClassMessage);
628  }
629
630  // For delegate init calls in ARC, implicitly store the result of
631  // the call back into self.  This takes ownership of the value.
632  if (isDelegateInit) {
633    Address selfAddr =
634      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
635    llvm::Value *newSelf = result.getScalarVal();
636
637    // The delegate return type isn't necessarily a matching type; in
638    // fact, it's quite likely to be 'id'.
639    llvm::Type *selfTy = selfAddr.getElementType();
640    newSelf = Builder.CreateBitCast(newSelf, selfTy);
641
642    Builder.CreateStore(newSelf, selfAddr);
643  }
644
645  return AdjustObjCObjectType(*this, E->getType(), result);
646}
647
648namespace {
649struct FinishARCDealloc final : EHScopeStack::Cleanup {
650  void Emit(CodeGenFunction &CGF, Flags flags) override {
651    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
652
653    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
654    const ObjCInterfaceDecl *iface = impl->getClassInterface();
655    if (!iface->getSuperClass()) return;
656
657    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
658
659    // Call [super dealloc] if we have a superclass.
660    llvm::Value *self = CGF.LoadObjCSelf();
661
662    CallArgList args;
663    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
664                                                      CGF.getContext().VoidTy,
665                                                      method->getSelector(),
666                                                      iface,
667                                                      isCategory,
668                                                      self,
669                                                      /*is class msg*/ false,
670                                                      args,
671                                                      method);
672  }
673};
674}
675
676/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
677/// the LLVM function and sets the other context used by
678/// CodeGenFunction.
679void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
680                                      const ObjCContainerDecl *CD) {
681  SourceLocation StartLoc = OMD->getBeginLoc();
682  FunctionArgList args;
683  // Check if we should generate debug info for this method.
684  if (OMD->hasAttr<NoDebugAttr>())
685    DebugInfo = nullptr; // disable debug info indefinitely for this function
686
687  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
688
689  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
690  if (OMD->isDirectMethod()) {
691    Fn->setVisibility(llvm::Function::HiddenVisibility);
692    CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
693    CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
694  } else {
695    CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
696  }
697
698  args.push_back(OMD->getSelfDecl());
699  args.push_back(OMD->getCmdDecl());
700
701  args.append(OMD->param_begin(), OMD->param_end());
702
703  CurGD = OMD;
704  CurEHLocation = OMD->getEndLoc();
705
706  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
707                OMD->getLocation(), StartLoc);
708
709  if (OMD->isDirectMethod()) {
710    // This function is a direct call, it has to implement a nil check
711    // on entry.
712    //
713    // TODO: possibly have several entry points to elide the check
714    CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
715  }
716
717  // In ARC, certain methods get an extra cleanup.
718  if (CGM.getLangOpts().ObjCAutoRefCount &&
719      OMD->isInstanceMethod() &&
720      OMD->getSelector().isUnarySelector()) {
721    const IdentifierInfo *ident =
722      OMD->getSelector().getIdentifierInfoForSlot(0);
723    if (ident->isStr("dealloc"))
724      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
725  }
726}
727
728static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
729                                              LValue lvalue, QualType type);
730
731/// Generate an Objective-C method.  An Objective-C method is a C function with
732/// its pointer, name, and types registered in the class structure.
733void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
734  StartObjCMethod(OMD, OMD->getClassInterface());
735  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
736  assert(isa<CompoundStmt>(OMD->getBody()));
737  incrementProfileCounter(OMD->getBody());
738  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
739  FinishFunction(OMD->getBodyRBrace());
740}
741
742/// emitStructGetterCall - Call the runtime function to load a property
743/// into the return value slot.
744static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
745                                 bool isAtomic, bool hasStrong) {
746  ASTContext &Context = CGF.getContext();
747
748  Address src =
749      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
750          .getAddress(CGF);
751
752  // objc_copyStruct (ReturnValue, &structIvar,
753  //                  sizeof (Type of Ivar), isAtomic, false);
754  CallArgList args;
755
756  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
757  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
758
759  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
760  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
761
762  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
763  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
764  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
765  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
766
767  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
768  CGCallee callee = CGCallee::forDirect(fn);
769  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
770               callee, ReturnValueSlot(), args);
771}
772
773/// Determine whether the given architecture supports unaligned atomic
774/// accesses.  They don't have to be fast, just faster than a function
775/// call and a mutex.
776static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
777  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
778  // currently supported by the backend.)
779  return 0;
780}
781
782/// Return the maximum size that permits atomic accesses for the given
783/// architecture.
784static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
785                                        llvm::Triple::ArchType arch) {
786  // ARM has 8-byte atomic accesses, but it's not clear whether we
787  // want to rely on them here.
788
789  // In the default case, just assume that any size up to a pointer is
790  // fine given adequate alignment.
791  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
792}
793
794namespace {
795  class PropertyImplStrategy {
796  public:
797    enum StrategyKind {
798      /// The 'native' strategy is to use the architecture's provided
799      /// reads and writes.
800      Native,
801
802      /// Use objc_setProperty and objc_getProperty.
803      GetSetProperty,
804
805      /// Use objc_setProperty for the setter, but use expression
806      /// evaluation for the getter.
807      SetPropertyAndExpressionGet,
808
809      /// Use objc_copyStruct.
810      CopyStruct,
811
812      /// The 'expression' strategy is to emit normal assignment or
813      /// lvalue-to-rvalue expressions.
814      Expression
815    };
816
817    StrategyKind getKind() const { return StrategyKind(Kind); }
818
819    bool hasStrongMember() const { return HasStrong; }
820    bool isAtomic() const { return IsAtomic; }
821    bool isCopy() const { return IsCopy; }
822
823    CharUnits getIvarSize() const { return IvarSize; }
824    CharUnits getIvarAlignment() const { return IvarAlignment; }
825
826    PropertyImplStrategy(CodeGenModule &CGM,
827                         const ObjCPropertyImplDecl *propImpl);
828
829  private:
830    unsigned Kind : 8;
831    unsigned IsAtomic : 1;
832    unsigned IsCopy : 1;
833    unsigned HasStrong : 1;
834
835    CharUnits IvarSize;
836    CharUnits IvarAlignment;
837  };
838}
839
840/// Pick an implementation strategy for the given property synthesis.
841PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
842                                     const ObjCPropertyImplDecl *propImpl) {
843  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
844  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
845
846  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
847  IsAtomic = prop->isAtomic();
848  HasStrong = false; // doesn't matter here.
849
850  // Evaluate the ivar's size and alignment.
851  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
852  QualType ivarType = ivar->getType();
853  std::tie(IvarSize, IvarAlignment) =
854      CGM.getContext().getTypeInfoInChars(ivarType);
855
856  // If we have a copy property, we always have to use getProperty/setProperty.
857  // TODO: we could actually use setProperty and an expression for non-atomics.
858  if (IsCopy) {
859    Kind = GetSetProperty;
860    return;
861  }
862
863  // Handle retain.
864  if (setterKind == ObjCPropertyDecl::Retain) {
865    // In GC-only, there's nothing special that needs to be done.
866    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
867      // fallthrough
868
869    // In ARC, if the property is non-atomic, use expression emission,
870    // which translates to objc_storeStrong.  This isn't required, but
871    // it's slightly nicer.
872    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
873      // Using standard expression emission for the setter is only
874      // acceptable if the ivar is __strong, which won't be true if
875      // the property is annotated with __attribute__((NSObject)).
876      // TODO: falling all the way back to objc_setProperty here is
877      // just laziness, though;  we could still use objc_storeStrong
878      // if we hacked it right.
879      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
880        Kind = Expression;
881      else
882        Kind = SetPropertyAndExpressionGet;
883      return;
884
885    // Otherwise, we need to at least use setProperty.  However, if
886    // the property isn't atomic, we can use normal expression
887    // emission for the getter.
888    } else if (!IsAtomic) {
889      Kind = SetPropertyAndExpressionGet;
890      return;
891
892    // Otherwise, we have to use both setProperty and getProperty.
893    } else {
894      Kind = GetSetProperty;
895      return;
896    }
897  }
898
899  // If we're not atomic, just use expression accesses.
900  if (!IsAtomic) {
901    Kind = Expression;
902    return;
903  }
904
905  // Properties on bitfield ivars need to be emitted using expression
906  // accesses even if they're nominally atomic.
907  if (ivar->isBitField()) {
908    Kind = Expression;
909    return;
910  }
911
912  // GC-qualified or ARC-qualified ivars need to be emitted as
913  // expressions.  This actually works out to being atomic anyway,
914  // except for ARC __strong, but that should trigger the above code.
915  if (ivarType.hasNonTrivialObjCLifetime() ||
916      (CGM.getLangOpts().getGC() &&
917       CGM.getContext().getObjCGCAttrKind(ivarType))) {
918    Kind = Expression;
919    return;
920  }
921
922  // Compute whether the ivar has strong members.
923  if (CGM.getLangOpts().getGC())
924    if (const RecordType *recordType = ivarType->getAs<RecordType>())
925      HasStrong = recordType->getDecl()->hasObjectMember();
926
927  // We can never access structs with object members with a native
928  // access, because we need to use write barriers.  This is what
929  // objc_copyStruct is for.
930  if (HasStrong) {
931    Kind = CopyStruct;
932    return;
933  }
934
935  // Otherwise, this is target-dependent and based on the size and
936  // alignment of the ivar.
937
938  // If the size of the ivar is not a power of two, give up.  We don't
939  // want to get into the business of doing compare-and-swaps.
940  if (!IvarSize.isPowerOfTwo()) {
941    Kind = CopyStruct;
942    return;
943  }
944
945  llvm::Triple::ArchType arch =
946    CGM.getTarget().getTriple().getArch();
947
948  // Most architectures require memory to fit within a single cache
949  // line, so the alignment has to be at least the size of the access.
950  // Otherwise we have to grab a lock.
951  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
952    Kind = CopyStruct;
953    return;
954  }
955
956  // If the ivar's size exceeds the architecture's maximum atomic
957  // access size, we have to use CopyStruct.
958  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
959    Kind = CopyStruct;
960    return;
961  }
962
963  // Otherwise, we can use native loads and stores.
964  Kind = Native;
965}
966
967/// Generate an Objective-C property getter function.
968///
969/// The given Decl must be an ObjCImplementationDecl. \@synthesize
970/// is illegal within a category.
971void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
972                                         const ObjCPropertyImplDecl *PID) {
973  llvm::Constant *AtomicHelperFn =
974      CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
975  ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
976  assert(OMD && "Invalid call to generate getter (empty method)");
977  StartObjCMethod(OMD, IMP->getClassInterface());
978
979  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
980
981  FinishFunction(OMD->getEndLoc());
982}
983
984static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
985  const Expr *getter = propImpl->getGetterCXXConstructor();
986  if (!getter) return true;
987
988  // Sema only makes only of these when the ivar has a C++ class type,
989  // so the form is pretty constrained.
990
991  // If the property has a reference type, we might just be binding a
992  // reference, in which case the result will be a gl-value.  We should
993  // treat this as a non-trivial operation.
994  if (getter->isGLValue())
995    return false;
996
997  // If we selected a trivial copy-constructor, we're okay.
998  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
999    return (construct->getConstructor()->isTrivial());
1000
1001  // The constructor might require cleanups (in which case it's never
1002  // trivial).
1003  assert(isa<ExprWithCleanups>(getter));
1004  return false;
1005}
1006
1007/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1008/// copy the ivar into the resturn slot.
1009static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1010                                          llvm::Value *returnAddr,
1011                                          ObjCIvarDecl *ivar,
1012                                          llvm::Constant *AtomicHelperFn) {
1013  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1014  //                           AtomicHelperFn);
1015  CallArgList args;
1016
1017  // The 1st argument is the return Slot.
1018  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1019
1020  // The 2nd argument is the address of the ivar.
1021  llvm::Value *ivarAddr =
1022      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1023          .getPointer(CGF);
1024  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1025  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1026
1027  // Third argument is the helper function.
1028  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1029
1030  llvm::FunctionCallee copyCppAtomicObjectFn =
1031      CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1032  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1033  CGF.EmitCall(
1034      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1035               callee, ReturnValueSlot(), args);
1036}
1037
1038void
1039CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1040                                        const ObjCPropertyImplDecl *propImpl,
1041                                        const ObjCMethodDecl *GetterMethodDecl,
1042                                        llvm::Constant *AtomicHelperFn) {
1043  // If there's a non-trivial 'get' expression, we just have to emit that.
1044  if (!hasTrivialGetExpr(propImpl)) {
1045    if (!AtomicHelperFn) {
1046      auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1047                                     propImpl->getGetterCXXConstructor(),
1048                                     /* NRVOCandidate=*/nullptr);
1049      EmitReturnStmt(*ret);
1050    }
1051    else {
1052      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1054                                    ivar, AtomicHelperFn);
1055    }
1056    return;
1057  }
1058
1059  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1060  QualType propType = prop->getType();
1061  ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1062
1063  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064
1065  // Pick an implementation strategy.
1066  PropertyImplStrategy strategy(CGM, propImpl);
1067  switch (strategy.getKind()) {
1068  case PropertyImplStrategy::Native: {
1069    // We don't need to do anything for a zero-size struct.
1070    if (strategy.getIvarSize().isZero())
1071      return;
1072
1073    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1074
1075    // Currently, all atomic accesses have to be through integer
1076    // types, so there's no point in trying to pick a prettier type.
1077    uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1078    llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1079    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1080
1081    // Perform an atomic load.  This does not impose ordering constraints.
1082    Address ivarAddr = LV.getAddress(*this);
1083    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1084    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1085    load->setAtomic(llvm::AtomicOrdering::Unordered);
1086
1087    // Store that value into the return address.  Doing this with a
1088    // bitcast is likely to produce some pretty ugly IR, but it's not
1089    // the *most* terrible thing in the world.
1090    llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1091    uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1092    llvm::Value *ivarVal = load;
1093    if (ivarSize > retTySize) {
1094      llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1095      ivarVal = Builder.CreateTrunc(load, newTy);
1096      bitcastType = newTy->getPointerTo();
1097    }
1098    Builder.CreateStore(ivarVal,
1099                        Builder.CreateBitCast(ReturnValue, bitcastType));
1100
1101    // Make sure we don't do an autorelease.
1102    AutoreleaseResult = false;
1103    return;
1104  }
1105
1106  case PropertyImplStrategy::GetSetProperty: {
1107    llvm::FunctionCallee getPropertyFn =
1108        CGM.getObjCRuntime().GetPropertyGetFunction();
1109    if (!getPropertyFn) {
1110      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1111      return;
1112    }
1113    CGCallee callee = CGCallee::forDirect(getPropertyFn);
1114
1115    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1116    // FIXME: Can't this be simpler? This might even be worse than the
1117    // corresponding gcc code.
1118    llvm::Value *cmd =
1119      Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1120    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1121    llvm::Value *ivarOffset =
1122      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1123
1124    CallArgList args;
1125    args.add(RValue::get(self), getContext().getObjCIdType());
1126    args.add(RValue::get(cmd), getContext().getObjCSelType());
1127    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1129             getContext().BoolTy);
1130
1131    // FIXME: We shouldn't need to get the function info here, the
1132    // runtime already should have computed it to build the function.
1133    llvm::CallBase *CallInstruction;
1134    RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1135                             getContext().getObjCIdType(), args),
1136                         callee, ReturnValueSlot(), args, &CallInstruction);
1137    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1138      call->setTailCall();
1139
1140    // We need to fix the type here. Ivars with copy & retain are
1141    // always objects so we don't need to worry about complex or
1142    // aggregates.
1143    RV = RValue::get(Builder.CreateBitCast(
1144        RV.getScalarVal(),
1145        getTypes().ConvertType(getterMethod->getReturnType())));
1146
1147    EmitReturnOfRValue(RV, propType);
1148
1149    // objc_getProperty does an autorelease, so we should suppress ours.
1150    AutoreleaseResult = false;
1151
1152    return;
1153  }
1154
1155  case PropertyImplStrategy::CopyStruct:
1156    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1157                         strategy.hasStrongMember());
1158    return;
1159
1160  case PropertyImplStrategy::Expression:
1161  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1162    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1163
1164    QualType ivarType = ivar->getType();
1165    switch (getEvaluationKind(ivarType)) {
1166    case TEK_Complex: {
1167      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1168      EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1169                         /*init*/ true);
1170      return;
1171    }
1172    case TEK_Aggregate: {
1173      // The return value slot is guaranteed to not be aliased, but
1174      // that's not necessarily the same as "on the stack", so
1175      // we still potentially need objc_memmove_collectable.
1176      EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1177                        /* Src= */ LV, ivarType, getOverlapForReturnValue());
1178      return;
1179    }
1180    case TEK_Scalar: {
1181      llvm::Value *value;
1182      if (propType->isReferenceType()) {
1183        value = LV.getAddress(*this).getPointer();
1184      } else {
1185        // We want to load and autoreleaseReturnValue ARC __weak ivars.
1186        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1187          if (getLangOpts().ObjCAutoRefCount) {
1188            value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1189          } else {
1190            value = EmitARCLoadWeak(LV.getAddress(*this));
1191          }
1192
1193        // Otherwise we want to do a simple load, suppressing the
1194        // final autorelease.
1195        } else {
1196          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1197          AutoreleaseResult = false;
1198        }
1199
1200        value = Builder.CreateBitCast(
1201            value, ConvertType(GetterMethodDecl->getReturnType()));
1202      }
1203
1204      EmitReturnOfRValue(RValue::get(value), propType);
1205      return;
1206    }
1207    }
1208    llvm_unreachable("bad evaluation kind");
1209  }
1210
1211  }
1212  llvm_unreachable("bad @property implementation strategy!");
1213}
1214
1215/// emitStructSetterCall - Call the runtime function to store the value
1216/// from the first formal parameter into the given ivar.
1217static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1218                                 ObjCIvarDecl *ivar) {
1219  // objc_copyStruct (&structIvar, &Arg,
1220  //                  sizeof (struct something), true, false);
1221  CallArgList args;
1222
1223  // The first argument is the address of the ivar.
1224  llvm::Value *ivarAddr =
1225      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1226          .getPointer(CGF);
1227  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1228  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1229
1230  // The second argument is the address of the parameter variable.
1231  ParmVarDecl *argVar = *OMD->param_begin();
1232  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1233                     argVar->getType().getNonReferenceType(), VK_LValue,
1234                     SourceLocation());
1235  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1236  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1237  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1238
1239  // The third argument is the sizeof the type.
1240  llvm::Value *size =
1241    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1242  args.add(RValue::get(size), CGF.getContext().getSizeType());
1243
1244  // The fourth argument is the 'isAtomic' flag.
1245  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1246
1247  // The fifth argument is the 'hasStrong' flag.
1248  // FIXME: should this really always be false?
1249  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1250
1251  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1252  CGCallee callee = CGCallee::forDirect(fn);
1253  CGF.EmitCall(
1254      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1255               callee, ReturnValueSlot(), args);
1256}
1257
1258/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1259/// the value from the first formal parameter into the given ivar, using
1260/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1261static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1262                                          ObjCMethodDecl *OMD,
1263                                          ObjCIvarDecl *ivar,
1264                                          llvm::Constant *AtomicHelperFn) {
1265  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1266  //                           AtomicHelperFn);
1267  CallArgList args;
1268
1269  // The first argument is the address of the ivar.
1270  llvm::Value *ivarAddr =
1271      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1272          .getPointer(CGF);
1273  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1274  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1275
1276  // The second argument is the address of the parameter variable.
1277  ParmVarDecl *argVar = *OMD->param_begin();
1278  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1279                     argVar->getType().getNonReferenceType(), VK_LValue,
1280                     SourceLocation());
1281  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1282  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1283  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1284
1285  // Third argument is the helper function.
1286  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1287
1288  llvm::FunctionCallee fn =
1289      CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1290  CGCallee callee = CGCallee::forDirect(fn);
1291  CGF.EmitCall(
1292      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1293               callee, ReturnValueSlot(), args);
1294}
1295
1296
1297static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1298  Expr *setter = PID->getSetterCXXAssignment();
1299  if (!setter) return true;
1300
1301  // Sema only makes only of these when the ivar has a C++ class type,
1302  // so the form is pretty constrained.
1303
1304  // An operator call is trivial if the function it calls is trivial.
1305  // This also implies that there's nothing non-trivial going on with
1306  // the arguments, because operator= can only be trivial if it's a
1307  // synthesized assignment operator and therefore both parameters are
1308  // references.
1309  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1310    if (const FunctionDecl *callee
1311          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1312      if (callee->isTrivial())
1313        return true;
1314    return false;
1315  }
1316
1317  assert(isa<ExprWithCleanups>(setter));
1318  return false;
1319}
1320
1321static bool UseOptimizedSetter(CodeGenModule &CGM) {
1322  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1323    return false;
1324  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1325}
1326
1327void
1328CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1329                                        const ObjCPropertyImplDecl *propImpl,
1330                                        llvm::Constant *AtomicHelperFn) {
1331  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1332  ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1333
1334  // Just use the setter expression if Sema gave us one and it's
1335  // non-trivial.
1336  if (!hasTrivialSetExpr(propImpl)) {
1337    if (!AtomicHelperFn)
1338      // If non-atomic, assignment is called directly.
1339      EmitStmt(propImpl->getSetterCXXAssignment());
1340    else
1341      // If atomic, assignment is called via a locking api.
1342      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1343                                    AtomicHelperFn);
1344    return;
1345  }
1346
1347  PropertyImplStrategy strategy(CGM, propImpl);
1348  switch (strategy.getKind()) {
1349  case PropertyImplStrategy::Native: {
1350    // We don't need to do anything for a zero-size struct.
1351    if (strategy.getIvarSize().isZero())
1352      return;
1353
1354    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1355
1356    LValue ivarLValue =
1357      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1358    Address ivarAddr = ivarLValue.getAddress(*this);
1359
1360    // Currently, all atomic accesses have to be through integer
1361    // types, so there's no point in trying to pick a prettier type.
1362    llvm::Type *bitcastType =
1363      llvm::Type::getIntNTy(getLLVMContext(),
1364                            getContext().toBits(strategy.getIvarSize()));
1365
1366    // Cast both arguments to the chosen operation type.
1367    argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1368    ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1369
1370    // This bitcast load is likely to cause some nasty IR.
1371    llvm::Value *load = Builder.CreateLoad(argAddr);
1372
1373    // Perform an atomic store.  There are no memory ordering requirements.
1374    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1375    store->setAtomic(llvm::AtomicOrdering::Unordered);
1376    return;
1377  }
1378
1379  case PropertyImplStrategy::GetSetProperty:
1380  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1381
1382    llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1383    llvm::FunctionCallee setPropertyFn = nullptr;
1384    if (UseOptimizedSetter(CGM)) {
1385      // 10.8 and iOS 6.0 code and GC is off
1386      setOptimizedPropertyFn =
1387          CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1388              strategy.isAtomic(), strategy.isCopy());
1389      if (!setOptimizedPropertyFn) {
1390        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1391        return;
1392      }
1393    }
1394    else {
1395      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1396      if (!setPropertyFn) {
1397        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1398        return;
1399      }
1400    }
1401
1402    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1403    //                       <is-atomic>, <is-copy>).
1404    llvm::Value *cmd =
1405      Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1406    llvm::Value *self =
1407      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1408    llvm::Value *ivarOffset =
1409      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1410    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1411    llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1412    arg = Builder.CreateBitCast(arg, VoidPtrTy);
1413
1414    CallArgList args;
1415    args.add(RValue::get(self), getContext().getObjCIdType());
1416    args.add(RValue::get(cmd), getContext().getObjCSelType());
1417    if (setOptimizedPropertyFn) {
1418      args.add(RValue::get(arg), getContext().getObjCIdType());
1419      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1420      CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1421      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1422               callee, ReturnValueSlot(), args);
1423    } else {
1424      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1425      args.add(RValue::get(arg), getContext().getObjCIdType());
1426      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1427               getContext().BoolTy);
1428      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1429               getContext().BoolTy);
1430      // FIXME: We shouldn't need to get the function info here, the runtime
1431      // already should have computed it to build the function.
1432      CGCallee callee = CGCallee::forDirect(setPropertyFn);
1433      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1434               callee, ReturnValueSlot(), args);
1435    }
1436
1437    return;
1438  }
1439
1440  case PropertyImplStrategy::CopyStruct:
1441    emitStructSetterCall(*this, setterMethod, ivar);
1442    return;
1443
1444  case PropertyImplStrategy::Expression:
1445    break;
1446  }
1447
1448  // Otherwise, fake up some ASTs and emit a normal assignment.
1449  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1450  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1451                   VK_LValue, SourceLocation());
1452  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1453                            selfDecl->getType(), CK_LValueToRValue, &self,
1454                            VK_RValue);
1455  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1456                          SourceLocation(), SourceLocation(),
1457                          &selfLoad, true, true);
1458
1459  ParmVarDecl *argDecl = *setterMethod->param_begin();
1460  QualType argType = argDecl->getType().getNonReferenceType();
1461  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1462                  SourceLocation());
1463  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1464                           argType.getUnqualifiedType(), CK_LValueToRValue,
1465                           &arg, VK_RValue);
1466
1467  // The property type can differ from the ivar type in some situations with
1468  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1469  // The following absurdity is just to ensure well-formed IR.
1470  CastKind argCK = CK_NoOp;
1471  if (ivarRef.getType()->isObjCObjectPointerType()) {
1472    if (argLoad.getType()->isObjCObjectPointerType())
1473      argCK = CK_BitCast;
1474    else if (argLoad.getType()->isBlockPointerType())
1475      argCK = CK_BlockPointerToObjCPointerCast;
1476    else
1477      argCK = CK_CPointerToObjCPointerCast;
1478  } else if (ivarRef.getType()->isBlockPointerType()) {
1479     if (argLoad.getType()->isBlockPointerType())
1480      argCK = CK_BitCast;
1481    else
1482      argCK = CK_AnyPointerToBlockPointerCast;
1483  } else if (ivarRef.getType()->isPointerType()) {
1484    argCK = CK_BitCast;
1485  }
1486  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1487                           ivarRef.getType(), argCK, &argLoad,
1488                           VK_RValue);
1489  Expr *finalArg = &argLoad;
1490  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1491                                           argLoad.getType()))
1492    finalArg = &argCast;
1493
1494
1495  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1496                        ivarRef.getType(), VK_RValue, OK_Ordinary,
1497                        SourceLocation(), FPOptions());
1498  EmitStmt(&assign);
1499}
1500
1501/// Generate an Objective-C property setter function.
1502///
1503/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1504/// is illegal within a category.
1505void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1506                                         const ObjCPropertyImplDecl *PID) {
1507  llvm::Constant *AtomicHelperFn =
1508      CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1509  ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1510  assert(OMD && "Invalid call to generate setter (empty method)");
1511  StartObjCMethod(OMD, IMP->getClassInterface());
1512
1513  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1514
1515  FinishFunction(OMD->getEndLoc());
1516}
1517
1518namespace {
1519  struct DestroyIvar final : EHScopeStack::Cleanup {
1520  private:
1521    llvm::Value *addr;
1522    const ObjCIvarDecl *ivar;
1523    CodeGenFunction::Destroyer *destroyer;
1524    bool useEHCleanupForArray;
1525  public:
1526    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1527                CodeGenFunction::Destroyer *destroyer,
1528                bool useEHCleanupForArray)
1529      : addr(addr), ivar(ivar), destroyer(destroyer),
1530        useEHCleanupForArray(useEHCleanupForArray) {}
1531
1532    void Emit(CodeGenFunction &CGF, Flags flags) override {
1533      LValue lvalue
1534        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1535      CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1536                      flags.isForNormalCleanup() && useEHCleanupForArray);
1537    }
1538  };
1539}
1540
1541/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1542static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1543                                      Address addr,
1544                                      QualType type) {
1545  llvm::Value *null = getNullForVariable(addr);
1546  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1547}
1548
1549static void emitCXXDestructMethod(CodeGenFunction &CGF,
1550                                  ObjCImplementationDecl *impl) {
1551  CodeGenFunction::RunCleanupsScope scope(CGF);
1552
1553  llvm::Value *self = CGF.LoadObjCSelf();
1554
1555  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1556  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1557       ivar; ivar = ivar->getNextIvar()) {
1558    QualType type = ivar->getType();
1559
1560    // Check whether the ivar is a destructible type.
1561    QualType::DestructionKind dtorKind = type.isDestructedType();
1562    if (!dtorKind) continue;
1563
1564    CodeGenFunction::Destroyer *destroyer = nullptr;
1565
1566    // Use a call to objc_storeStrong to destroy strong ivars, for the
1567    // general benefit of the tools.
1568    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1569      destroyer = destroyARCStrongWithStore;
1570
1571    // Otherwise use the default for the destruction kind.
1572    } else {
1573      destroyer = CGF.getDestroyer(dtorKind);
1574    }
1575
1576    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1577
1578    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1579                                         cleanupKind & EHCleanup);
1580  }
1581
1582  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1583}
1584
1585void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1586                                                 ObjCMethodDecl *MD,
1587                                                 bool ctor) {
1588  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1589  StartObjCMethod(MD, IMP->getClassInterface());
1590
1591  // Emit .cxx_construct.
1592  if (ctor) {
1593    // Suppress the final autorelease in ARC.
1594    AutoreleaseResult = false;
1595
1596    for (const auto *IvarInit : IMP->inits()) {
1597      FieldDecl *Field = IvarInit->getAnyMember();
1598      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1599      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1600                                    LoadObjCSelf(), Ivar, 0);
1601      EmitAggExpr(IvarInit->getInit(),
1602                  AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1603                                          AggValueSlot::DoesNotNeedGCBarriers,
1604                                          AggValueSlot::IsNotAliased,
1605                                          AggValueSlot::DoesNotOverlap));
1606    }
1607    // constructor returns 'self'.
1608    CodeGenTypes &Types = CGM.getTypes();
1609    QualType IdTy(CGM.getContext().getObjCIdType());
1610    llvm::Value *SelfAsId =
1611      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1612    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1613
1614  // Emit .cxx_destruct.
1615  } else {
1616    emitCXXDestructMethod(*this, IMP);
1617  }
1618  FinishFunction();
1619}
1620
1621llvm::Value *CodeGenFunction::LoadObjCSelf() {
1622  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1623  DeclRefExpr DRE(getContext(), Self,
1624                  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1625                  Self->getType(), VK_LValue, SourceLocation());
1626  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1627}
1628
1629QualType CodeGenFunction::TypeOfSelfObject() {
1630  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1631  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1632  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1633    getContext().getCanonicalType(selfDecl->getType()));
1634  return PTy->getPointeeType();
1635}
1636
1637void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1638  llvm::FunctionCallee EnumerationMutationFnPtr =
1639      CGM.getObjCRuntime().EnumerationMutationFunction();
1640  if (!EnumerationMutationFnPtr) {
1641    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1642    return;
1643  }
1644  CGCallee EnumerationMutationFn =
1645    CGCallee::forDirect(EnumerationMutationFnPtr);
1646
1647  CGDebugInfo *DI = getDebugInfo();
1648  if (DI)
1649    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1650
1651  RunCleanupsScope ForScope(*this);
1652
1653  // The local variable comes into scope immediately.
1654  AutoVarEmission variable = AutoVarEmission::invalid();
1655  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1656    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1657
1658  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1659
1660  // Fast enumeration state.
1661  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1662  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1663  EmitNullInitialization(StatePtr, StateTy);
1664
1665  // Number of elements in the items array.
1666  static const unsigned NumItems = 16;
1667
1668  // Fetch the countByEnumeratingWithState:objects:count: selector.
1669  IdentifierInfo *II[] = {
1670    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1671    &CGM.getContext().Idents.get("objects"),
1672    &CGM.getContext().Idents.get("count")
1673  };
1674  Selector FastEnumSel =
1675    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1676
1677  QualType ItemsTy =
1678    getContext().getConstantArrayType(getContext().getObjCIdType(),
1679                                      llvm::APInt(32, NumItems), nullptr,
1680                                      ArrayType::Normal, 0);
1681  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1682
1683  // Emit the collection pointer.  In ARC, we do a retain.
1684  llvm::Value *Collection;
1685  if (getLangOpts().ObjCAutoRefCount) {
1686    Collection = EmitARCRetainScalarExpr(S.getCollection());
1687
1688    // Enter a cleanup to do the release.
1689    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1690  } else {
1691    Collection = EmitScalarExpr(S.getCollection());
1692  }
1693
1694  // The 'continue' label needs to appear within the cleanup for the
1695  // collection object.
1696  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1697
1698  // Send it our message:
1699  CallArgList Args;
1700
1701  // The first argument is a temporary of the enumeration-state type.
1702  Args.add(RValue::get(StatePtr.getPointer()),
1703           getContext().getPointerType(StateTy));
1704
1705  // The second argument is a temporary array with space for NumItems
1706  // pointers.  We'll actually be loading elements from the array
1707  // pointer written into the control state; this buffer is so that
1708  // collections that *aren't* backed by arrays can still queue up
1709  // batches of elements.
1710  Args.add(RValue::get(ItemsPtr.getPointer()),
1711           getContext().getPointerType(ItemsTy));
1712
1713  // The third argument is the capacity of that temporary array.
1714  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1715  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1716  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1717
1718  // Start the enumeration.
1719  RValue CountRV =
1720      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1721                                               getContext().getNSUIntegerType(),
1722                                               FastEnumSel, Collection, Args);
1723
1724  // The initial number of objects that were returned in the buffer.
1725  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1726
1727  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1728  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1729
1730  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1731
1732  // If the limit pointer was zero to begin with, the collection is
1733  // empty; skip all this. Set the branch weight assuming this has the same
1734  // probability of exiting the loop as any other loop exit.
1735  uint64_t EntryCount = getCurrentProfileCount();
1736  Builder.CreateCondBr(
1737      Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1738      LoopInitBB,
1739      createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1740
1741  // Otherwise, initialize the loop.
1742  EmitBlock(LoopInitBB);
1743
1744  // Save the initial mutations value.  This is the value at an
1745  // address that was written into the state object by
1746  // countByEnumeratingWithState:objects:count:.
1747  Address StateMutationsPtrPtr =
1748      Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1749  llvm::Value *StateMutationsPtr
1750    = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1751
1752  llvm::Value *initialMutations =
1753    Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1754                              "forcoll.initial-mutations");
1755
1756  // Start looping.  This is the point we return to whenever we have a
1757  // fresh, non-empty batch of objects.
1758  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1759  EmitBlock(LoopBodyBB);
1760
1761  // The current index into the buffer.
1762  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1763  index->addIncoming(zero, LoopInitBB);
1764
1765  // The current buffer size.
1766  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1767  count->addIncoming(initialBufferLimit, LoopInitBB);
1768
1769  incrementProfileCounter(&S);
1770
1771  // Check whether the mutations value has changed from where it was
1772  // at start.  StateMutationsPtr should actually be invariant between
1773  // refreshes.
1774  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1775  llvm::Value *currentMutations
1776    = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1777                                "statemutations");
1778
1779  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1780  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1781
1782  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1783                       WasNotMutatedBB, WasMutatedBB);
1784
1785  // If so, call the enumeration-mutation function.
1786  EmitBlock(WasMutatedBB);
1787  llvm::Value *V =
1788    Builder.CreateBitCast(Collection,
1789                          ConvertType(getContext().getObjCIdType()));
1790  CallArgList Args2;
1791  Args2.add(RValue::get(V), getContext().getObjCIdType());
1792  // FIXME: We shouldn't need to get the function info here, the runtime already
1793  // should have computed it to build the function.
1794  EmitCall(
1795          CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1796           EnumerationMutationFn, ReturnValueSlot(), Args2);
1797
1798  // Otherwise, or if the mutation function returns, just continue.
1799  EmitBlock(WasNotMutatedBB);
1800
1801  // Initialize the element variable.
1802  RunCleanupsScope elementVariableScope(*this);
1803  bool elementIsVariable;
1804  LValue elementLValue;
1805  QualType elementType;
1806  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1807    // Initialize the variable, in case it's a __block variable or something.
1808    EmitAutoVarInit(variable);
1809
1810    const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1811    DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1812                        D->getType(), VK_LValue, SourceLocation());
1813    elementLValue = EmitLValue(&tempDRE);
1814    elementType = D->getType();
1815    elementIsVariable = true;
1816
1817    if (D->isARCPseudoStrong())
1818      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1819  } else {
1820    elementLValue = LValue(); // suppress warning
1821    elementType = cast<Expr>(S.getElement())->getType();
1822    elementIsVariable = false;
1823  }
1824  llvm::Type *convertedElementType = ConvertType(elementType);
1825
1826  // Fetch the buffer out of the enumeration state.
1827  // TODO: this pointer should actually be invariant between
1828  // refreshes, which would help us do certain loop optimizations.
1829  Address StateItemsPtr =
1830      Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1831  llvm::Value *EnumStateItems =
1832    Builder.CreateLoad(StateItemsPtr, "stateitems");
1833
1834  // Fetch the value at the current index from the buffer.
1835  llvm::Value *CurrentItemPtr =
1836    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1837  llvm::Value *CurrentItem =
1838    Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1839
1840  // Cast that value to the right type.
1841  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1842                                      "currentitem");
1843
1844  // Make sure we have an l-value.  Yes, this gets evaluated every
1845  // time through the loop.
1846  if (!elementIsVariable) {
1847    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1848    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1849  } else {
1850    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1851                           /*isInit*/ true);
1852  }
1853
1854  // If we do have an element variable, this assignment is the end of
1855  // its initialization.
1856  if (elementIsVariable)
1857    EmitAutoVarCleanups(variable);
1858
1859  // Perform the loop body, setting up break and continue labels.
1860  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1861  {
1862    RunCleanupsScope Scope(*this);
1863    EmitStmt(S.getBody());
1864  }
1865  BreakContinueStack.pop_back();
1866
1867  // Destroy the element variable now.
1868  elementVariableScope.ForceCleanup();
1869
1870  // Check whether there are more elements.
1871  EmitBlock(AfterBody.getBlock());
1872
1873  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1874
1875  // First we check in the local buffer.
1876  llvm::Value *indexPlusOne =
1877      Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1878
1879  // If we haven't overrun the buffer yet, we can continue.
1880  // Set the branch weights based on the simplifying assumption that this is
1881  // like a while-loop, i.e., ignoring that the false branch fetches more
1882  // elements and then returns to the loop.
1883  Builder.CreateCondBr(
1884      Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1885      createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1886
1887  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1888  count->addIncoming(count, AfterBody.getBlock());
1889
1890  // Otherwise, we have to fetch more elements.
1891  EmitBlock(FetchMoreBB);
1892
1893  CountRV =
1894      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1895                                               getContext().getNSUIntegerType(),
1896                                               FastEnumSel, Collection, Args);
1897
1898  // If we got a zero count, we're done.
1899  llvm::Value *refetchCount = CountRV.getScalarVal();
1900
1901  // (note that the message send might split FetchMoreBB)
1902  index->addIncoming(zero, Builder.GetInsertBlock());
1903  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1904
1905  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1906                       EmptyBB, LoopBodyBB);
1907
1908  // No more elements.
1909  EmitBlock(EmptyBB);
1910
1911  if (!elementIsVariable) {
1912    // If the element was not a declaration, set it to be null.
1913
1914    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1915    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1916    EmitStoreThroughLValue(RValue::get(null), elementLValue);
1917  }
1918
1919  if (DI)
1920    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1921
1922  ForScope.ForceCleanup();
1923  EmitBlock(LoopEnd.getBlock());
1924}
1925
1926void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1927  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1928}
1929
1930void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1931  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1932}
1933
1934void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1935                                              const ObjCAtSynchronizedStmt &S) {
1936  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1937}
1938
1939namespace {
1940  struct CallObjCRelease final : EHScopeStack::Cleanup {
1941    CallObjCRelease(llvm::Value *object) : object(object) {}
1942    llvm::Value *object;
1943
1944    void Emit(CodeGenFunction &CGF, Flags flags) override {
1945      // Releases at the end of the full-expression are imprecise.
1946      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1947    }
1948  };
1949}
1950
1951/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1952/// release at the end of the full-expression.
1953llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1954                                                    llvm::Value *object) {
1955  // If we're in a conditional branch, we need to make the cleanup
1956  // conditional.
1957  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1958  return object;
1959}
1960
1961llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1962                                                           llvm::Value *value) {
1963  return EmitARCRetainAutorelease(type, value);
1964}
1965
1966/// Given a number of pointers, inform the optimizer that they're
1967/// being intrinsically used up until this point in the program.
1968void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1969  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1970  if (!fn)
1971    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1972
1973  // This isn't really a "runtime" function, but as an intrinsic it
1974  // doesn't really matter as long as we align things up.
1975  EmitNounwindRuntimeCall(fn, values);
1976}
1977
1978static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1979  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1980    // If the target runtime doesn't naturally support ARC, emit weak
1981    // references to the runtime support library.  We don't really
1982    // permit this to fail, but we need a particular relocation style.
1983    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1984        !CGM.getTriple().isOSBinFormatCOFF()) {
1985      F->setLinkage(llvm::Function::ExternalWeakLinkage);
1986    }
1987  }
1988}
1989
1990static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1991                                         llvm::FunctionCallee RTF) {
1992  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1993}
1994
1995/// Perform an operation having the signature
1996///   i8* (i8*)
1997/// where a null input causes a no-op and returns null.
1998static llvm::Value *emitARCValueOperation(
1999    CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2000    llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2001    llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2002  if (isa<llvm::ConstantPointerNull>(value))
2003    return value;
2004
2005  if (!fn) {
2006    fn = CGF.CGM.getIntrinsic(IntID);
2007    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2008  }
2009
2010  // Cast the argument to 'id'.
2011  llvm::Type *origType = returnType ? returnType : value->getType();
2012  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2013
2014  // Call the function.
2015  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2016  call->setTailCallKind(tailKind);
2017
2018  // Cast the result back to the original type.
2019  return CGF.Builder.CreateBitCast(call, origType);
2020}
2021
2022/// Perform an operation having the following signature:
2023///   i8* (i8**)
2024static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2025                                         llvm::Function *&fn,
2026                                         llvm::Intrinsic::ID IntID) {
2027  if (!fn) {
2028    fn = CGF.CGM.getIntrinsic(IntID);
2029    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2030  }
2031
2032  // Cast the argument to 'id*'.
2033  llvm::Type *origType = addr.getElementType();
2034  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2035
2036  // Call the function.
2037  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2038
2039  // Cast the result back to a dereference of the original type.
2040  if (origType != CGF.Int8PtrTy)
2041    result = CGF.Builder.CreateBitCast(result, origType);
2042
2043  return result;
2044}
2045
2046/// Perform an operation having the following signature:
2047///   i8* (i8**, i8*)
2048static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2049                                          llvm::Value *value,
2050                                          llvm::Function *&fn,
2051                                          llvm::Intrinsic::ID IntID,
2052                                          bool ignored) {
2053  assert(addr.getElementType() == value->getType());
2054
2055  if (!fn) {
2056    fn = CGF.CGM.getIntrinsic(IntID);
2057    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2058  }
2059
2060  llvm::Type *origType = value->getType();
2061
2062  llvm::Value *args[] = {
2063    CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2064    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2065  };
2066  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2067
2068  if (ignored) return nullptr;
2069
2070  return CGF.Builder.CreateBitCast(result, origType);
2071}
2072
2073/// Perform an operation having the following signature:
2074///   void (i8**, i8**)
2075static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2076                                 llvm::Function *&fn,
2077                                 llvm::Intrinsic::ID IntID) {
2078  assert(dst.getType() == src.getType());
2079
2080  if (!fn) {
2081    fn = CGF.CGM.getIntrinsic(IntID);
2082    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2083  }
2084
2085  llvm::Value *args[] = {
2086    CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2087    CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2088  };
2089  CGF.EmitNounwindRuntimeCall(fn, args);
2090}
2091
2092/// Perform an operation having the signature
2093///   i8* (i8*)
2094/// where a null input causes a no-op and returns null.
2095static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2096                                           llvm::Value *value,
2097                                           llvm::Type *returnType,
2098                                           llvm::FunctionCallee &fn,
2099                                           StringRef fnName) {
2100  if (isa<llvm::ConstantPointerNull>(value))
2101    return value;
2102
2103  if (!fn) {
2104    llvm::FunctionType *fnType =
2105      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2106    fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2107
2108    // We have Native ARC, so set nonlazybind attribute for performance
2109    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2110      if (fnName == "objc_retain")
2111        f->addFnAttr(llvm::Attribute::NonLazyBind);
2112  }
2113
2114  // Cast the argument to 'id'.
2115  llvm::Type *origType = returnType ? returnType : value->getType();
2116  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2117
2118  // Call the function.
2119  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2120
2121  // Cast the result back to the original type.
2122  return CGF.Builder.CreateBitCast(Inst, origType);
2123}
2124
2125/// Produce the code to do a retain.  Based on the type, calls one of:
2126///   call i8* \@objc_retain(i8* %value)
2127///   call i8* \@objc_retainBlock(i8* %value)
2128llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2129  if (type->isBlockPointerType())
2130    return EmitARCRetainBlock(value, /*mandatory*/ false);
2131  else
2132    return EmitARCRetainNonBlock(value);
2133}
2134
2135/// Retain the given object, with normal retain semantics.
2136///   call i8* \@objc_retain(i8* %value)
2137llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2138  return emitARCValueOperation(*this, value, nullptr,
2139                               CGM.getObjCEntrypoints().objc_retain,
2140                               llvm::Intrinsic::objc_retain);
2141}
2142
2143/// Retain the given block, with _Block_copy semantics.
2144///   call i8* \@objc_retainBlock(i8* %value)
2145///
2146/// \param mandatory - If false, emit the call with metadata
2147/// indicating that it's okay for the optimizer to eliminate this call
2148/// if it can prove that the block never escapes except down the stack.
2149llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2150                                                 bool mandatory) {
2151  llvm::Value *result
2152    = emitARCValueOperation(*this, value, nullptr,
2153                            CGM.getObjCEntrypoints().objc_retainBlock,
2154                            llvm::Intrinsic::objc_retainBlock);
2155
2156  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2157  // tell the optimizer that it doesn't need to do this copy if the
2158  // block doesn't escape, where being passed as an argument doesn't
2159  // count as escaping.
2160  if (!mandatory && isa<llvm::Instruction>(result)) {
2161    llvm::CallInst *call
2162      = cast<llvm::CallInst>(result->stripPointerCasts());
2163    assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2164
2165    call->setMetadata("clang.arc.copy_on_escape",
2166                      llvm::MDNode::get(Builder.getContext(), None));
2167  }
2168
2169  return result;
2170}
2171
2172static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2173  // Fetch the void(void) inline asm which marks that we're going to
2174  // do something with the autoreleased return value.
2175  llvm::InlineAsm *&marker
2176    = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2177  if (!marker) {
2178    StringRef assembly
2179      = CGF.CGM.getTargetCodeGenInfo()
2180           .getARCRetainAutoreleasedReturnValueMarker();
2181
2182    // If we have an empty assembly string, there's nothing to do.
2183    if (assembly.empty()) {
2184
2185    // Otherwise, at -O0, build an inline asm that we're going to call
2186    // in a moment.
2187    } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2188      llvm::FunctionType *type =
2189        llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2190
2191      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2192
2193    // If we're at -O1 and above, we don't want to litter the code
2194    // with this marker yet, so leave a breadcrumb for the ARC
2195    // optimizer to pick up.
2196    } else {
2197      const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2198      if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2199        auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2200        CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2201      }
2202    }
2203  }
2204
2205  // Call the marker asm if we made one, which we do only at -O0.
2206  if (marker)
2207    CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2208}
2209
2210/// Retain the given object which is the result of a function call.
2211///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2212///
2213/// Yes, this function name is one character away from a different
2214/// call with completely different semantics.
2215llvm::Value *
2216CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2217  emitAutoreleasedReturnValueMarker(*this);
2218  llvm::CallInst::TailCallKind tailKind =
2219      CGM.getTargetCodeGenInfo()
2220              .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2221          ? llvm::CallInst::TCK_NoTail
2222          : llvm::CallInst::TCK_None;
2223  return emitARCValueOperation(
2224      *this, value, nullptr,
2225      CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2226      llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2227}
2228
2229/// Claim a possibly-autoreleased return value at +0.  This is only
2230/// valid to do in contexts which do not rely on the retain to keep
2231/// the object valid for all of its uses; for example, when
2232/// the value is ignored, or when it is being assigned to an
2233/// __unsafe_unretained variable.
2234///
2235///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2236llvm::Value *
2237CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2238  emitAutoreleasedReturnValueMarker(*this);
2239  return emitARCValueOperation(*this, value, nullptr,
2240              CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2241                     llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2242}
2243
2244/// Release the given object.
2245///   call void \@objc_release(i8* %value)
2246void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2247                                     ARCPreciseLifetime_t precise) {
2248  if (isa<llvm::ConstantPointerNull>(value)) return;
2249
2250  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2251  if (!fn) {
2252    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2253    setARCRuntimeFunctionLinkage(CGM, fn);
2254  }
2255
2256  // Cast the argument to 'id'.
2257  value = Builder.CreateBitCast(value, Int8PtrTy);
2258
2259  // Call objc_release.
2260  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2261
2262  if (precise == ARCImpreciseLifetime) {
2263    call->setMetadata("clang.imprecise_release",
2264                      llvm::MDNode::get(Builder.getContext(), None));
2265  }
2266}
2267
2268/// Destroy a __strong variable.
2269///
2270/// At -O0, emit a call to store 'null' into the address;
2271/// instrumenting tools prefer this because the address is exposed,
2272/// but it's relatively cumbersome to optimize.
2273///
2274/// At -O1 and above, just load and call objc_release.
2275///
2276///   call void \@objc_storeStrong(i8** %addr, i8* null)
2277void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2278                                           ARCPreciseLifetime_t precise) {
2279  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2280    llvm::Value *null = getNullForVariable(addr);
2281    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2282    return;
2283  }
2284
2285  llvm::Value *value = Builder.CreateLoad(addr);
2286  EmitARCRelease(value, precise);
2287}
2288
2289/// Store into a strong object.  Always calls this:
2290///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2291llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2292                                                     llvm::Value *value,
2293                                                     bool ignored) {
2294  assert(addr.getElementType() == value->getType());
2295
2296  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2297  if (!fn) {
2298    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2299    setARCRuntimeFunctionLinkage(CGM, fn);
2300  }
2301
2302  llvm::Value *args[] = {
2303    Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2304    Builder.CreateBitCast(value, Int8PtrTy)
2305  };
2306  EmitNounwindRuntimeCall(fn, args);
2307
2308  if (ignored) return nullptr;
2309  return value;
2310}
2311
2312/// Store into a strong object.  Sometimes calls this:
2313///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2314/// Other times, breaks it down into components.
2315llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2316                                                 llvm::Value *newValue,
2317                                                 bool ignored) {
2318  QualType type = dst.getType();
2319  bool isBlock = type->isBlockPointerType();
2320
2321  // Use a store barrier at -O0 unless this is a block type or the
2322  // lvalue is inadequately aligned.
2323  if (shouldUseFusedARCCalls() &&
2324      !isBlock &&
2325      (dst.getAlignment().isZero() ||
2326       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2327    return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2328  }
2329
2330  // Otherwise, split it out.
2331
2332  // Retain the new value.
2333  newValue = EmitARCRetain(type, newValue);
2334
2335  // Read the old value.
2336  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2337
2338  // Store.  We do this before the release so that any deallocs won't
2339  // see the old value.
2340  EmitStoreOfScalar(newValue, dst);
2341
2342  // Finally, release the old value.
2343  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2344
2345  return newValue;
2346}
2347
2348/// Autorelease the given object.
2349///   call i8* \@objc_autorelease(i8* %value)
2350llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2351  return emitARCValueOperation(*this, value, nullptr,
2352                               CGM.getObjCEntrypoints().objc_autorelease,
2353                               llvm::Intrinsic::objc_autorelease);
2354}
2355
2356/// Autorelease the given object.
2357///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2358llvm::Value *
2359CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2360  return emitARCValueOperation(*this, value, nullptr,
2361                            CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2362                               llvm::Intrinsic::objc_autoreleaseReturnValue,
2363                               llvm::CallInst::TCK_Tail);
2364}
2365
2366/// Do a fused retain/autorelease of the given object.
2367///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2368llvm::Value *
2369CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2370  return emitARCValueOperation(*this, value, nullptr,
2371                     CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2372                             llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2373                               llvm::CallInst::TCK_Tail);
2374}
2375
2376/// Do a fused retain/autorelease of the given object.
2377///   call i8* \@objc_retainAutorelease(i8* %value)
2378/// or
2379///   %retain = call i8* \@objc_retainBlock(i8* %value)
2380///   call i8* \@objc_autorelease(i8* %retain)
2381llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2382                                                       llvm::Value *value) {
2383  if (!type->isBlockPointerType())
2384    return EmitARCRetainAutoreleaseNonBlock(value);
2385
2386  if (isa<llvm::ConstantPointerNull>(value)) return value;
2387
2388  llvm::Type *origType = value->getType();
2389  value = Builder.CreateBitCast(value, Int8PtrTy);
2390  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2391  value = EmitARCAutorelease(value);
2392  return Builder.CreateBitCast(value, origType);
2393}
2394
2395/// Do a fused retain/autorelease of the given object.
2396///   call i8* \@objc_retainAutorelease(i8* %value)
2397llvm::Value *
2398CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2399  return emitARCValueOperation(*this, value, nullptr,
2400                               CGM.getObjCEntrypoints().objc_retainAutorelease,
2401                               llvm::Intrinsic::objc_retainAutorelease);
2402}
2403
2404/// i8* \@objc_loadWeak(i8** %addr)
2405/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2406llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2407  return emitARCLoadOperation(*this, addr,
2408                              CGM.getObjCEntrypoints().objc_loadWeak,
2409                              llvm::Intrinsic::objc_loadWeak);
2410}
2411
2412/// i8* \@objc_loadWeakRetained(i8** %addr)
2413llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2414  return emitARCLoadOperation(*this, addr,
2415                              CGM.getObjCEntrypoints().objc_loadWeakRetained,
2416                              llvm::Intrinsic::objc_loadWeakRetained);
2417}
2418
2419/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2420/// Returns %value.
2421llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2422                                               llvm::Value *value,
2423                                               bool ignored) {
2424  return emitARCStoreOperation(*this, addr, value,
2425                               CGM.getObjCEntrypoints().objc_storeWeak,
2426                               llvm::Intrinsic::objc_storeWeak, ignored);
2427}
2428
2429/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2430/// Returns %value.  %addr is known to not have a current weak entry.
2431/// Essentially equivalent to:
2432///   *addr = nil; objc_storeWeak(addr, value);
2433void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2434  // If we're initializing to null, just write null to memory; no need
2435  // to get the runtime involved.  But don't do this if optimization
2436  // is enabled, because accounting for this would make the optimizer
2437  // much more complicated.
2438  if (isa<llvm::ConstantPointerNull>(value) &&
2439      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2440    Builder.CreateStore(value, addr);
2441    return;
2442  }
2443
2444  emitARCStoreOperation(*this, addr, value,
2445                        CGM.getObjCEntrypoints().objc_initWeak,
2446                        llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2447}
2448
2449/// void \@objc_destroyWeak(i8** %addr)
2450/// Essentially objc_storeWeak(addr, nil).
2451void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2452  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2453  if (!fn) {
2454    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2455    setARCRuntimeFunctionLinkage(CGM, fn);
2456  }
2457
2458  // Cast the argument to 'id*'.
2459  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2460
2461  EmitNounwindRuntimeCall(fn, addr.getPointer());
2462}
2463
2464/// void \@objc_moveWeak(i8** %dest, i8** %src)
2465/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2466/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2467void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2468  emitARCCopyOperation(*this, dst, src,
2469                       CGM.getObjCEntrypoints().objc_moveWeak,
2470                       llvm::Intrinsic::objc_moveWeak);
2471}
2472
2473/// void \@objc_copyWeak(i8** %dest, i8** %src)
2474/// Disregards the current value in %dest.  Essentially
2475///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2476void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2477  emitARCCopyOperation(*this, dst, src,
2478                       CGM.getObjCEntrypoints().objc_copyWeak,
2479                       llvm::Intrinsic::objc_copyWeak);
2480}
2481
2482void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2483                                            Address SrcAddr) {
2484  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2485  Object = EmitObjCConsumeObject(Ty, Object);
2486  EmitARCStoreWeak(DstAddr, Object, false);
2487}
2488
2489void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2490                                            Address SrcAddr) {
2491  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2492  Object = EmitObjCConsumeObject(Ty, Object);
2493  EmitARCStoreWeak(DstAddr, Object, false);
2494  EmitARCDestroyWeak(SrcAddr);
2495}
2496
2497/// Produce the code to do a objc_autoreleasepool_push.
2498///   call i8* \@objc_autoreleasePoolPush(void)
2499llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2500  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2501  if (!fn) {
2502    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2503    setARCRuntimeFunctionLinkage(CGM, fn);
2504  }
2505
2506  return EmitNounwindRuntimeCall(fn);
2507}
2508
2509/// Produce the code to do a primitive release.
2510///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2511void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2512  assert(value->getType() == Int8PtrTy);
2513
2514  if (getInvokeDest()) {
2515    // Call the runtime method not the intrinsic if we are handling exceptions
2516    llvm::FunctionCallee &fn =
2517        CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2518    if (!fn) {
2519      llvm::FunctionType *fnType =
2520        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2521      fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2522      setARCRuntimeFunctionLinkage(CGM, fn);
2523    }
2524
2525    // objc_autoreleasePoolPop can throw.
2526    EmitRuntimeCallOrInvoke(fn, value);
2527  } else {
2528    llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2529    if (!fn) {
2530      fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2531      setARCRuntimeFunctionLinkage(CGM, fn);
2532    }
2533
2534    EmitRuntimeCall(fn, value);
2535  }
2536}
2537
2538/// Produce the code to do an MRR version objc_autoreleasepool_push.
2539/// Which is: [[NSAutoreleasePool alloc] init];
2540/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2541/// init is declared as: - (id) init; in its NSObject super class.
2542///
2543llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2544  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2545  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2546  // [NSAutoreleasePool alloc]
2547  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2548  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2549  CallArgList Args;
2550  RValue AllocRV =
2551    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2552                                getContext().getObjCIdType(),
2553                                AllocSel, Receiver, Args);
2554
2555  // [Receiver init]
2556  Receiver = AllocRV.getScalarVal();
2557  II = &CGM.getContext().Idents.get("init");
2558  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2559  RValue InitRV =
2560    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2561                                getContext().getObjCIdType(),
2562                                InitSel, Receiver, Args);
2563  return InitRV.getScalarVal();
2564}
2565
2566/// Allocate the given objc object.
2567///   call i8* \@objc_alloc(i8* %value)
2568llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2569                                            llvm::Type *resultType) {
2570  return emitObjCValueOperation(*this, value, resultType,
2571                                CGM.getObjCEntrypoints().objc_alloc,
2572                                "objc_alloc");
2573}
2574
2575/// Allocate the given objc object.
2576///   call i8* \@objc_allocWithZone(i8* %value)
2577llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2578                                                    llvm::Type *resultType) {
2579  return emitObjCValueOperation(*this, value, resultType,
2580                                CGM.getObjCEntrypoints().objc_allocWithZone,
2581                                "objc_allocWithZone");
2582}
2583
2584llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2585                                                llvm::Type *resultType) {
2586  return emitObjCValueOperation(*this, value, resultType,
2587                                CGM.getObjCEntrypoints().objc_alloc_init,
2588                                "objc_alloc_init");
2589}
2590
2591/// Produce the code to do a primitive release.
2592/// [tmp drain];
2593void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2594  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2595  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2596  CallArgList Args;
2597  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2598                              getContext().VoidTy, DrainSel, Arg, Args);
2599}
2600
2601void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2602                                              Address addr,
2603                                              QualType type) {
2604  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2605}
2606
2607void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2608                                                Address addr,
2609                                                QualType type) {
2610  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2611}
2612
2613void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2614                                     Address addr,
2615                                     QualType type) {
2616  CGF.EmitARCDestroyWeak(addr);
2617}
2618
2619void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2620                                          QualType type) {
2621  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2622  CGF.EmitARCIntrinsicUse(value);
2623}
2624
2625/// Autorelease the given object.
2626///   call i8* \@objc_autorelease(i8* %value)
2627llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2628                                                  llvm::Type *returnType) {
2629  return emitObjCValueOperation(
2630      *this, value, returnType,
2631      CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2632      "objc_autorelease");
2633}
2634
2635/// Retain the given object, with normal retain semantics.
2636///   call i8* \@objc_retain(i8* %value)
2637llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2638                                                     llvm::Type *returnType) {
2639  return emitObjCValueOperation(
2640      *this, value, returnType,
2641      CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2642}
2643
2644/// Release the given object.
2645///   call void \@objc_release(i8* %value)
2646void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2647                                      ARCPreciseLifetime_t precise) {
2648  if (isa<llvm::ConstantPointerNull>(value)) return;
2649
2650  llvm::FunctionCallee &fn =
2651      CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2652  if (!fn) {
2653    llvm::FunctionType *fnType =
2654        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2655    fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2656    setARCRuntimeFunctionLinkage(CGM, fn);
2657    // We have Native ARC, so set nonlazybind attribute for performance
2658    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2659      f->addFnAttr(llvm::Attribute::NonLazyBind);
2660  }
2661
2662  // Cast the argument to 'id'.
2663  value = Builder.CreateBitCast(value, Int8PtrTy);
2664
2665  // Call objc_release.
2666  llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2667
2668  if (precise == ARCImpreciseLifetime) {
2669    call->setMetadata("clang.imprecise_release",
2670                      llvm::MDNode::get(Builder.getContext(), None));
2671  }
2672}
2673
2674namespace {
2675  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2676    llvm::Value *Token;
2677
2678    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2679
2680    void Emit(CodeGenFunction &CGF, Flags flags) override {
2681      CGF.EmitObjCAutoreleasePoolPop(Token);
2682    }
2683  };
2684  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2685    llvm::Value *Token;
2686
2687    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2688
2689    void Emit(CodeGenFunction &CGF, Flags flags) override {
2690      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2691    }
2692  };
2693}
2694
2695void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2696  if (CGM.getLangOpts().ObjCAutoRefCount)
2697    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2698  else
2699    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2700}
2701
2702static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2703  switch (lifetime) {
2704  case Qualifiers::OCL_None:
2705  case Qualifiers::OCL_ExplicitNone:
2706  case Qualifiers::OCL_Strong:
2707  case Qualifiers::OCL_Autoreleasing:
2708    return true;
2709
2710  case Qualifiers::OCL_Weak:
2711    return false;
2712  }
2713
2714  llvm_unreachable("impossible lifetime!");
2715}
2716
2717static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2718                                                  LValue lvalue,
2719                                                  QualType type) {
2720  llvm::Value *result;
2721  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2722  if (shouldRetain) {
2723    result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2724  } else {
2725    assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2726    result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2727  }
2728  return TryEmitResult(result, !shouldRetain);
2729}
2730
2731static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2732                                                  const Expr *e) {
2733  e = e->IgnoreParens();
2734  QualType type = e->getType();
2735
2736  // If we're loading retained from a __strong xvalue, we can avoid
2737  // an extra retain/release pair by zeroing out the source of this
2738  // "move" operation.
2739  if (e->isXValue() &&
2740      !type.isConstQualified() &&
2741      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2742    // Emit the lvalue.
2743    LValue lv = CGF.EmitLValue(e);
2744
2745    // Load the object pointer.
2746    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2747                                               SourceLocation()).getScalarVal();
2748
2749    // Set the source pointer to NULL.
2750    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2751
2752    return TryEmitResult(result, true);
2753  }
2754
2755  // As a very special optimization, in ARC++, if the l-value is the
2756  // result of a non-volatile assignment, do a simple retain of the
2757  // result of the call to objc_storeWeak instead of reloading.
2758  if (CGF.getLangOpts().CPlusPlus &&
2759      !type.isVolatileQualified() &&
2760      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2761      isa<BinaryOperator>(e) &&
2762      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2763    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2764
2765  // Try to emit code for scalar constant instead of emitting LValue and
2766  // loading it because we are not guaranteed to have an l-value. One of such
2767  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2768  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2769    auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2770    if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2771      return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2772                           !shouldRetainObjCLifetime(type.getObjCLifetime()));
2773  }
2774
2775  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2776}
2777
2778typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2779                                         llvm::Value *value)>
2780  ValueTransform;
2781
2782/// Insert code immediately after a call.
2783static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2784                                              llvm::Value *value,
2785                                              ValueTransform doAfterCall,
2786                                              ValueTransform doFallback) {
2787  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2788    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2789
2790    // Place the retain immediately following the call.
2791    CGF.Builder.SetInsertPoint(call->getParent(),
2792                               ++llvm::BasicBlock::iterator(call));
2793    value = doAfterCall(CGF, value);
2794
2795    CGF.Builder.restoreIP(ip);
2796    return value;
2797  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2798    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2799
2800    // Place the retain at the beginning of the normal destination block.
2801    llvm::BasicBlock *BB = invoke->getNormalDest();
2802    CGF.Builder.SetInsertPoint(BB, BB->begin());
2803    value = doAfterCall(CGF, value);
2804
2805    CGF.Builder.restoreIP(ip);
2806    return value;
2807
2808  // Bitcasts can arise because of related-result returns.  Rewrite
2809  // the operand.
2810  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2811    llvm::Value *operand = bitcast->getOperand(0);
2812    operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2813    bitcast->setOperand(0, operand);
2814    return bitcast;
2815
2816  // Generic fall-back case.
2817  } else {
2818    // Retain using the non-block variant: we never need to do a copy
2819    // of a block that's been returned to us.
2820    return doFallback(CGF, value);
2821  }
2822}
2823
2824/// Given that the given expression is some sort of call (which does
2825/// not return retained), emit a retain following it.
2826static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2827                                            const Expr *e) {
2828  llvm::Value *value = CGF.EmitScalarExpr(e);
2829  return emitARCOperationAfterCall(CGF, value,
2830           [](CodeGenFunction &CGF, llvm::Value *value) {
2831             return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2832           },
2833           [](CodeGenFunction &CGF, llvm::Value *value) {
2834             return CGF.EmitARCRetainNonBlock(value);
2835           });
2836}
2837
2838/// Given that the given expression is some sort of call (which does
2839/// not return retained), perform an unsafeClaim following it.
2840static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2841                                                 const Expr *e) {
2842  llvm::Value *value = CGF.EmitScalarExpr(e);
2843  return emitARCOperationAfterCall(CGF, value,
2844           [](CodeGenFunction &CGF, llvm::Value *value) {
2845             return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2846           },
2847           [](CodeGenFunction &CGF, llvm::Value *value) {
2848             return value;
2849           });
2850}
2851
2852llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2853                                                      bool allowUnsafeClaim) {
2854  if (allowUnsafeClaim &&
2855      CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2856    return emitARCUnsafeClaimCallResult(*this, E);
2857  } else {
2858    llvm::Value *value = emitARCRetainCallResult(*this, E);
2859    return EmitObjCConsumeObject(E->getType(), value);
2860  }
2861}
2862
2863/// Determine whether it might be important to emit a separate
2864/// objc_retain_block on the result of the given expression, or
2865/// whether it's okay to just emit it in a +1 context.
2866static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2867  assert(e->getType()->isBlockPointerType());
2868  e = e->IgnoreParens();
2869
2870  // For future goodness, emit block expressions directly in +1
2871  // contexts if we can.
2872  if (isa<BlockExpr>(e))
2873    return false;
2874
2875  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2876    switch (cast->getCastKind()) {
2877    // Emitting these operations in +1 contexts is goodness.
2878    case CK_LValueToRValue:
2879    case CK_ARCReclaimReturnedObject:
2880    case CK_ARCConsumeObject:
2881    case CK_ARCProduceObject:
2882      return false;
2883
2884    // These operations preserve a block type.
2885    case CK_NoOp:
2886    case CK_BitCast:
2887      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2888
2889    // These operations are known to be bad (or haven't been considered).
2890    case CK_AnyPointerToBlockPointerCast:
2891    default:
2892      return true;
2893    }
2894  }
2895
2896  return true;
2897}
2898
2899namespace {
2900/// A CRTP base class for emitting expressions of retainable object
2901/// pointer type in ARC.
2902template <typename Impl, typename Result> class ARCExprEmitter {
2903protected:
2904  CodeGenFunction &CGF;
2905  Impl &asImpl() { return *static_cast<Impl*>(this); }
2906
2907  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2908
2909public:
2910  Result visit(const Expr *e);
2911  Result visitCastExpr(const CastExpr *e);
2912  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2913  Result visitBlockExpr(const BlockExpr *e);
2914  Result visitBinaryOperator(const BinaryOperator *e);
2915  Result visitBinAssign(const BinaryOperator *e);
2916  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2917  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2918  Result visitBinAssignWeak(const BinaryOperator *e);
2919  Result visitBinAssignStrong(const BinaryOperator *e);
2920
2921  // Minimal implementation:
2922  //   Result visitLValueToRValue(const Expr *e)
2923  //   Result visitConsumeObject(const Expr *e)
2924  //   Result visitExtendBlockObject(const Expr *e)
2925  //   Result visitReclaimReturnedObject(const Expr *e)
2926  //   Result visitCall(const Expr *e)
2927  //   Result visitExpr(const Expr *e)
2928  //
2929  //   Result emitBitCast(Result result, llvm::Type *resultType)
2930  //   llvm::Value *getValueOfResult(Result result)
2931};
2932}
2933
2934/// Try to emit a PseudoObjectExpr under special ARC rules.
2935///
2936/// This massively duplicates emitPseudoObjectRValue.
2937template <typename Impl, typename Result>
2938Result
2939ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2940  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2941
2942  // Find the result expression.
2943  const Expr *resultExpr = E->getResultExpr();
2944  assert(resultExpr);
2945  Result result;
2946
2947  for (PseudoObjectExpr::const_semantics_iterator
2948         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2949    const Expr *semantic = *i;
2950
2951    // If this semantic expression is an opaque value, bind it
2952    // to the result of its source expression.
2953    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2954      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2955      OVMA opaqueData;
2956
2957      // If this semantic is the result of the pseudo-object
2958      // expression, try to evaluate the source as +1.
2959      if (ov == resultExpr) {
2960        assert(!OVMA::shouldBindAsLValue(ov));
2961        result = asImpl().visit(ov->getSourceExpr());
2962        opaqueData = OVMA::bind(CGF, ov,
2963                            RValue::get(asImpl().getValueOfResult(result)));
2964
2965      // Otherwise, just bind it.
2966      } else {
2967        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2968      }
2969      opaques.push_back(opaqueData);
2970
2971    // Otherwise, if the expression is the result, evaluate it
2972    // and remember the result.
2973    } else if (semantic == resultExpr) {
2974      result = asImpl().visit(semantic);
2975
2976    // Otherwise, evaluate the expression in an ignored context.
2977    } else {
2978      CGF.EmitIgnoredExpr(semantic);
2979    }
2980  }
2981
2982  // Unbind all the opaques now.
2983  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2984    opaques[i].unbind(CGF);
2985
2986  return result;
2987}
2988
2989template <typename Impl, typename Result>
2990Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2991  // The default implementation just forwards the expression to visitExpr.
2992  return asImpl().visitExpr(e);
2993}
2994
2995template <typename Impl, typename Result>
2996Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2997  switch (e->getCastKind()) {
2998
2999  // No-op casts don't change the type, so we just ignore them.
3000  case CK_NoOp:
3001    return asImpl().visit(e->getSubExpr());
3002
3003  // These casts can change the type.
3004  case CK_CPointerToObjCPointerCast:
3005  case CK_BlockPointerToObjCPointerCast:
3006  case CK_AnyPointerToBlockPointerCast:
3007  case CK_BitCast: {
3008    llvm::Type *resultType = CGF.ConvertType(e->getType());
3009    assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3010    Result result = asImpl().visit(e->getSubExpr());
3011    return asImpl().emitBitCast(result, resultType);
3012  }
3013
3014  // Handle some casts specially.
3015  case CK_LValueToRValue:
3016    return asImpl().visitLValueToRValue(e->getSubExpr());
3017  case CK_ARCConsumeObject:
3018    return asImpl().visitConsumeObject(e->getSubExpr());
3019  case CK_ARCExtendBlockObject:
3020    return asImpl().visitExtendBlockObject(e->getSubExpr());
3021  case CK_ARCReclaimReturnedObject:
3022    return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3023
3024  // Otherwise, use the default logic.
3025  default:
3026    return asImpl().visitExpr(e);
3027  }
3028}
3029
3030template <typename Impl, typename Result>
3031Result
3032ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3033  switch (e->getOpcode()) {
3034  case BO_Comma:
3035    CGF.EmitIgnoredExpr(e->getLHS());
3036    CGF.EnsureInsertPoint();
3037    return asImpl().visit(e->getRHS());
3038
3039  case BO_Assign:
3040    return asImpl().visitBinAssign(e);
3041
3042  default:
3043    return asImpl().visitExpr(e);
3044  }
3045}
3046
3047template <typename Impl, typename Result>
3048Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3049  switch (e->getLHS()->getType().getObjCLifetime()) {
3050  case Qualifiers::OCL_ExplicitNone:
3051    return asImpl().visitBinAssignUnsafeUnretained(e);
3052
3053  case Qualifiers::OCL_Weak:
3054    return asImpl().visitBinAssignWeak(e);
3055
3056  case Qualifiers::OCL_Autoreleasing:
3057    return asImpl().visitBinAssignAutoreleasing(e);
3058
3059  case Qualifiers::OCL_Strong:
3060    return asImpl().visitBinAssignStrong(e);
3061
3062  case Qualifiers::OCL_None:
3063    return asImpl().visitExpr(e);
3064  }
3065  llvm_unreachable("bad ObjC ownership qualifier");
3066}
3067
3068/// The default rule for __unsafe_unretained emits the RHS recursively,
3069/// stores into the unsafe variable, and propagates the result outward.
3070template <typename Impl, typename Result>
3071Result ARCExprEmitter<Impl,Result>::
3072                    visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3073  // Recursively emit the RHS.
3074  // For __block safety, do this before emitting the LHS.
3075  Result result = asImpl().visit(e->getRHS());
3076
3077  // Perform the store.
3078  LValue lvalue =
3079    CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3080  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3081                             lvalue);
3082
3083  return result;
3084}
3085
3086template <typename Impl, typename Result>
3087Result
3088ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3089  return asImpl().visitExpr(e);
3090}
3091
3092template <typename Impl, typename Result>
3093Result
3094ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3095  return asImpl().visitExpr(e);
3096}
3097
3098template <typename Impl, typename Result>
3099Result
3100ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3101  return asImpl().visitExpr(e);
3102}
3103
3104/// The general expression-emission logic.
3105template <typename Impl, typename Result>
3106Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3107  // We should *never* see a nested full-expression here, because if
3108  // we fail to emit at +1, our caller must not retain after we close
3109  // out the full-expression.  This isn't as important in the unsafe
3110  // emitter.
3111  assert(!isa<ExprWithCleanups>(e));
3112
3113  // Look through parens, __extension__, generic selection, etc.
3114  e = e->IgnoreParens();
3115
3116  // Handle certain kinds of casts.
3117  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3118    return asImpl().visitCastExpr(ce);
3119
3120  // Handle the comma operator.
3121  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3122    return asImpl().visitBinaryOperator(op);
3123
3124  // TODO: handle conditional operators here
3125
3126  // For calls and message sends, use the retained-call logic.
3127  // Delegate inits are a special case in that they're the only
3128  // returns-retained expression that *isn't* surrounded by
3129  // a consume.
3130  } else if (isa<CallExpr>(e) ||
3131             (isa<ObjCMessageExpr>(e) &&
3132              !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3133    return asImpl().visitCall(e);
3134
3135  // Look through pseudo-object expressions.
3136  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3137    return asImpl().visitPseudoObjectExpr(pseudo);
3138  } else if (auto *be = dyn_cast<BlockExpr>(e))
3139    return asImpl().visitBlockExpr(be);
3140
3141  return asImpl().visitExpr(e);
3142}
3143
3144namespace {
3145
3146/// An emitter for +1 results.
3147struct ARCRetainExprEmitter :
3148  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3149
3150  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3151
3152  llvm::Value *getValueOfResult(TryEmitResult result) {
3153    return result.getPointer();
3154  }
3155
3156  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3157    llvm::Value *value = result.getPointer();
3158    value = CGF.Builder.CreateBitCast(value, resultType);
3159    result.setPointer(value);
3160    return result;
3161  }
3162
3163  TryEmitResult visitLValueToRValue(const Expr *e) {
3164    return tryEmitARCRetainLoadOfScalar(CGF, e);
3165  }
3166
3167  /// For consumptions, just emit the subexpression and thus elide
3168  /// the retain/release pair.
3169  TryEmitResult visitConsumeObject(const Expr *e) {
3170    llvm::Value *result = CGF.EmitScalarExpr(e);
3171    return TryEmitResult(result, true);
3172  }
3173
3174  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3175    TryEmitResult result = visitExpr(e);
3176    // Avoid the block-retain if this is a block literal that doesn't need to be
3177    // copied to the heap.
3178    if (e->getBlockDecl()->canAvoidCopyToHeap())
3179      result.setInt(true);
3180    return result;
3181  }
3182
3183  /// Block extends are net +0.  Naively, we could just recurse on
3184  /// the subexpression, but actually we need to ensure that the
3185  /// value is copied as a block, so there's a little filter here.
3186  TryEmitResult visitExtendBlockObject(const Expr *e) {
3187    llvm::Value *result; // will be a +0 value
3188
3189    // If we can't safely assume the sub-expression will produce a
3190    // block-copied value, emit the sub-expression at +0.
3191    if (shouldEmitSeparateBlockRetain(e)) {
3192      result = CGF.EmitScalarExpr(e);
3193
3194    // Otherwise, try to emit the sub-expression at +1 recursively.
3195    } else {
3196      TryEmitResult subresult = asImpl().visit(e);
3197
3198      // If that produced a retained value, just use that.
3199      if (subresult.getInt()) {
3200        return subresult;
3201      }
3202
3203      // Otherwise it's +0.
3204      result = subresult.getPointer();
3205    }
3206
3207    // Retain the object as a block.
3208    result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3209    return TryEmitResult(result, true);
3210  }
3211
3212  /// For reclaims, emit the subexpression as a retained call and
3213  /// skip the consumption.
3214  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3215    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3216    return TryEmitResult(result, true);
3217  }
3218
3219  /// When we have an undecorated call, retroactively do a claim.
3220  TryEmitResult visitCall(const Expr *e) {
3221    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3222    return TryEmitResult(result, true);
3223  }
3224
3225  // TODO: maybe special-case visitBinAssignWeak?
3226
3227  TryEmitResult visitExpr(const Expr *e) {
3228    // We didn't find an obvious production, so emit what we've got and
3229    // tell the caller that we didn't manage to retain.
3230    llvm::Value *result = CGF.EmitScalarExpr(e);
3231    return TryEmitResult(result, false);
3232  }
3233};
3234}
3235
3236static TryEmitResult
3237tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3238  return ARCRetainExprEmitter(CGF).visit(e);
3239}
3240
3241static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3242                                                LValue lvalue,
3243                                                QualType type) {
3244  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3245  llvm::Value *value = result.getPointer();
3246  if (!result.getInt())
3247    value = CGF.EmitARCRetain(type, value);
3248  return value;
3249}
3250
3251/// EmitARCRetainScalarExpr - Semantically equivalent to
3252/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3253/// best-effort attempt to peephole expressions that naturally produce
3254/// retained objects.
3255llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3256  // The retain needs to happen within the full-expression.
3257  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3258    enterFullExpression(cleanups);
3259    RunCleanupsScope scope(*this);
3260    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3261  }
3262
3263  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3264  llvm::Value *value = result.getPointer();
3265  if (!result.getInt())
3266    value = EmitARCRetain(e->getType(), value);
3267  return value;
3268}
3269
3270llvm::Value *
3271CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3272  // The retain needs to happen within the full-expression.
3273  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3274    enterFullExpression(cleanups);
3275    RunCleanupsScope scope(*this);
3276    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3277  }
3278
3279  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3280  llvm::Value *value = result.getPointer();
3281  if (result.getInt())
3282    value = EmitARCAutorelease(value);
3283  else
3284    value = EmitARCRetainAutorelease(e->getType(), value);
3285  return value;
3286}
3287
3288llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3289  llvm::Value *result;
3290  bool doRetain;
3291
3292  if (shouldEmitSeparateBlockRetain(e)) {
3293    result = EmitScalarExpr(e);
3294    doRetain = true;
3295  } else {
3296    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3297    result = subresult.getPointer();
3298    doRetain = !subresult.getInt();
3299  }
3300
3301  if (doRetain)
3302    result = EmitARCRetainBlock(result, /*mandatory*/ true);
3303  return EmitObjCConsumeObject(e->getType(), result);
3304}
3305
3306llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3307  // In ARC, retain and autorelease the expression.
3308  if (getLangOpts().ObjCAutoRefCount) {
3309    // Do so before running any cleanups for the full-expression.
3310    // EmitARCRetainAutoreleaseScalarExpr does this for us.
3311    return EmitARCRetainAutoreleaseScalarExpr(expr);
3312  }
3313
3314  // Otherwise, use the normal scalar-expression emission.  The
3315  // exception machinery doesn't do anything special with the
3316  // exception like retaining it, so there's no safety associated with
3317  // only running cleanups after the throw has started, and when it
3318  // matters it tends to be substantially inferior code.
3319  return EmitScalarExpr(expr);
3320}
3321
3322namespace {
3323
3324/// An emitter for assigning into an __unsafe_unretained context.
3325struct ARCUnsafeUnretainedExprEmitter :
3326  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3327
3328  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3329
3330  llvm::Value *getValueOfResult(llvm::Value *value) {
3331    return value;
3332  }
3333
3334  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3335    return CGF.Builder.CreateBitCast(value, resultType);
3336  }
3337
3338  llvm::Value *visitLValueToRValue(const Expr *e) {
3339    return CGF.EmitScalarExpr(e);
3340  }
3341
3342  /// For consumptions, just emit the subexpression and perform the
3343  /// consumption like normal.
3344  llvm::Value *visitConsumeObject(const Expr *e) {
3345    llvm::Value *value = CGF.EmitScalarExpr(e);
3346    return CGF.EmitObjCConsumeObject(e->getType(), value);
3347  }
3348
3349  /// No special logic for block extensions.  (This probably can't
3350  /// actually happen in this emitter, though.)
3351  llvm::Value *visitExtendBlockObject(const Expr *e) {
3352    return CGF.EmitARCExtendBlockObject(e);
3353  }
3354
3355  /// For reclaims, perform an unsafeClaim if that's enabled.
3356  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3357    return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3358  }
3359
3360  /// When we have an undecorated call, just emit it without adding
3361  /// the unsafeClaim.
3362  llvm::Value *visitCall(const Expr *e) {
3363    return CGF.EmitScalarExpr(e);
3364  }
3365
3366  /// Just do normal scalar emission in the default case.
3367  llvm::Value *visitExpr(const Expr *e) {
3368    return CGF.EmitScalarExpr(e);
3369  }
3370};
3371}
3372
3373static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3374                                                      const Expr *e) {
3375  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3376}
3377
3378/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3379/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3380/// avoiding any spurious retains, including by performing reclaims
3381/// with objc_unsafeClaimAutoreleasedReturnValue.
3382llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3383  // Look through full-expressions.
3384  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3385    enterFullExpression(cleanups);
3386    RunCleanupsScope scope(*this);
3387    return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3388  }
3389
3390  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3391}
3392
3393std::pair<LValue,llvm::Value*>
3394CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3395                                              bool ignored) {
3396  // Evaluate the RHS first.  If we're ignoring the result, assume
3397  // that we can emit at an unsafe +0.
3398  llvm::Value *value;
3399  if (ignored) {
3400    value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3401  } else {
3402    value = EmitScalarExpr(e->getRHS());
3403  }
3404
3405  // Emit the LHS and perform the store.
3406  LValue lvalue = EmitLValue(e->getLHS());
3407  EmitStoreOfScalar(value, lvalue);
3408
3409  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3410}
3411
3412std::pair<LValue,llvm::Value*>
3413CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3414                                    bool ignored) {
3415  // Evaluate the RHS first.
3416  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3417  llvm::Value *value = result.getPointer();
3418
3419  bool hasImmediateRetain = result.getInt();
3420
3421  // If we didn't emit a retained object, and the l-value is of block
3422  // type, then we need to emit the block-retain immediately in case
3423  // it invalidates the l-value.
3424  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3425    value = EmitARCRetainBlock(value, /*mandatory*/ false);
3426    hasImmediateRetain = true;
3427  }
3428
3429  LValue lvalue = EmitLValue(e->getLHS());
3430
3431  // If the RHS was emitted retained, expand this.
3432  if (hasImmediateRetain) {
3433    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3434    EmitStoreOfScalar(value, lvalue);
3435    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3436  } else {
3437    value = EmitARCStoreStrong(lvalue, value, ignored);
3438  }
3439
3440  return std::pair<LValue,llvm::Value*>(lvalue, value);
3441}
3442
3443std::pair<LValue,llvm::Value*>
3444CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3445  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3446  LValue lvalue = EmitLValue(e->getLHS());
3447
3448  EmitStoreOfScalar(value, lvalue);
3449
3450  return std::pair<LValue,llvm::Value*>(lvalue, value);
3451}
3452
3453void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3454                                          const ObjCAutoreleasePoolStmt &ARPS) {
3455  const Stmt *subStmt = ARPS.getSubStmt();
3456  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3457
3458  CGDebugInfo *DI = getDebugInfo();
3459  if (DI)
3460    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3461
3462  // Keep track of the current cleanup stack depth.
3463  RunCleanupsScope Scope(*this);
3464  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3465    llvm::Value *token = EmitObjCAutoreleasePoolPush();
3466    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3467  } else {
3468    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3469    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3470  }
3471
3472  for (const auto *I : S.body())
3473    EmitStmt(I);
3474
3475  if (DI)
3476    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3477}
3478
3479/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3480/// make sure it survives garbage collection until this point.
3481void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3482  // We just use an inline assembly.
3483  llvm::FunctionType *extenderType
3484    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3485  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3486                                                   /* assembly */ "",
3487                                                   /* constraints */ "r",
3488                                                   /* side effects */ true);
3489
3490  object = Builder.CreateBitCast(object, VoidPtrTy);
3491  EmitNounwindRuntimeCall(extender, object);
3492}
3493
3494/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3495/// non-trivial copy assignment function, produce following helper function.
3496/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3497///
3498llvm::Constant *
3499CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3500                                        const ObjCPropertyImplDecl *PID) {
3501  if (!getLangOpts().CPlusPlus ||
3502      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3503    return nullptr;
3504  QualType Ty = PID->getPropertyIvarDecl()->getType();
3505  if (!Ty->isRecordType())
3506    return nullptr;
3507  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3508  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3509    return nullptr;
3510  llvm::Constant *HelperFn = nullptr;
3511  if (hasTrivialSetExpr(PID))
3512    return nullptr;
3513  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3514  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3515    return HelperFn;
3516
3517  ASTContext &C = getContext();
3518  IdentifierInfo *II
3519    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3520
3521  QualType ReturnTy = C.VoidTy;
3522  QualType DestTy = C.getPointerType(Ty);
3523  QualType SrcTy = Ty;
3524  SrcTy.addConst();
3525  SrcTy = C.getPointerType(SrcTy);
3526
3527  SmallVector<QualType, 2> ArgTys;
3528  ArgTys.push_back(DestTy);
3529  ArgTys.push_back(SrcTy);
3530  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3531
3532  FunctionDecl *FD = FunctionDecl::Create(
3533      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3534      FunctionTy, nullptr, SC_Static, false, false);
3535
3536  FunctionArgList args;
3537  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3538                            ImplicitParamDecl::Other);
3539  args.push_back(&DstDecl);
3540  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3541                            ImplicitParamDecl::Other);
3542  args.push_back(&SrcDecl);
3543
3544  const CGFunctionInfo &FI =
3545      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3546
3547  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3548
3549  llvm::Function *Fn =
3550    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3551                           "__assign_helper_atomic_property_",
3552                           &CGM.getModule());
3553
3554  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3555
3556  StartFunction(FD, ReturnTy, Fn, FI, args);
3557
3558  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3559                      SourceLocation());
3560  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3561                    VK_LValue, OK_Ordinary, SourceLocation(), false);
3562
3563  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3564                      SourceLocation());
3565  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3566                    VK_LValue, OK_Ordinary, SourceLocation(), false);
3567
3568  Expr *Args[2] = { &DST, &SRC };
3569  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3570  CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3571      C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3572      VK_LValue, SourceLocation(), FPOptions());
3573
3574  EmitStmt(TheCall);
3575
3576  FinishFunction();
3577  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3578  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3579  return HelperFn;
3580}
3581
3582llvm::Constant *
3583CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3584                                            const ObjCPropertyImplDecl *PID) {
3585  if (!getLangOpts().CPlusPlus ||
3586      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3587    return nullptr;
3588  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3589  QualType Ty = PD->getType();
3590  if (!Ty->isRecordType())
3591    return nullptr;
3592  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3593    return nullptr;
3594  llvm::Constant *HelperFn = nullptr;
3595  if (hasTrivialGetExpr(PID))
3596    return nullptr;
3597  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3598  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3599    return HelperFn;
3600
3601  ASTContext &C = getContext();
3602  IdentifierInfo *II =
3603      &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3604
3605  QualType ReturnTy = C.VoidTy;
3606  QualType DestTy = C.getPointerType(Ty);
3607  QualType SrcTy = Ty;
3608  SrcTy.addConst();
3609  SrcTy = C.getPointerType(SrcTy);
3610
3611  SmallVector<QualType, 2> ArgTys;
3612  ArgTys.push_back(DestTy);
3613  ArgTys.push_back(SrcTy);
3614  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3615
3616  FunctionDecl *FD = FunctionDecl::Create(
3617      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3618      FunctionTy, nullptr, SC_Static, false, false);
3619
3620  FunctionArgList args;
3621  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3622                            ImplicitParamDecl::Other);
3623  args.push_back(&DstDecl);
3624  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3625                            ImplicitParamDecl::Other);
3626  args.push_back(&SrcDecl);
3627
3628  const CGFunctionInfo &FI =
3629      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3630
3631  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3632
3633  llvm::Function *Fn = llvm::Function::Create(
3634      LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3635      &CGM.getModule());
3636
3637  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3638
3639  StartFunction(FD, ReturnTy, Fn, FI, args);
3640
3641  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3642                      SourceLocation());
3643
3644  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3645                    VK_LValue, OK_Ordinary, SourceLocation(), false);
3646
3647  CXXConstructExpr *CXXConstExpr =
3648    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3649
3650  SmallVector<Expr*, 4> ConstructorArgs;
3651  ConstructorArgs.push_back(&SRC);
3652  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3653                         CXXConstExpr->arg_end());
3654
3655  CXXConstructExpr *TheCXXConstructExpr =
3656    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3657                             CXXConstExpr->getConstructor(),
3658                             CXXConstExpr->isElidable(),
3659                             ConstructorArgs,
3660                             CXXConstExpr->hadMultipleCandidates(),
3661                             CXXConstExpr->isListInitialization(),
3662                             CXXConstExpr->isStdInitListInitialization(),
3663                             CXXConstExpr->requiresZeroInitialization(),
3664                             CXXConstExpr->getConstructionKind(),
3665                             SourceRange());
3666
3667  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3668                      SourceLocation());
3669
3670  RValue DV = EmitAnyExpr(&DstExpr);
3671  CharUnits Alignment
3672    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3673  EmitAggExpr(TheCXXConstructExpr,
3674              AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3675                                    Qualifiers(),
3676                                    AggValueSlot::IsDestructed,
3677                                    AggValueSlot::DoesNotNeedGCBarriers,
3678                                    AggValueSlot::IsNotAliased,
3679                                    AggValueSlot::DoesNotOverlap));
3680
3681  FinishFunction();
3682  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3683  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3684  return HelperFn;
3685}
3686
3687llvm::Value *
3688CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3689  // Get selectors for retain/autorelease.
3690  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3691  Selector CopySelector =
3692      getContext().Selectors.getNullarySelector(CopyID);
3693  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3694  Selector AutoreleaseSelector =
3695      getContext().Selectors.getNullarySelector(AutoreleaseID);
3696
3697  // Emit calls to retain/autorelease.
3698  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3699  llvm::Value *Val = Block;
3700  RValue Result;
3701  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3702                                       Ty, CopySelector,
3703                                       Val, CallArgList(), nullptr, nullptr);
3704  Val = Result.getScalarVal();
3705  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3706                                       Ty, AutoreleaseSelector,
3707                                       Val, CallArgList(), nullptr, nullptr);
3708  Val = Result.getScalarVal();
3709  return Val;
3710}
3711
3712llvm::Value *
3713CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3714  assert(Args.size() == 3 && "Expected 3 argument here!");
3715
3716  if (!CGM.IsOSVersionAtLeastFn) {
3717    llvm::FunctionType *FTy =
3718        llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3719    CGM.IsOSVersionAtLeastFn =
3720        CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3721  }
3722
3723  llvm::Value *CallRes =
3724      EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3725
3726  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3727}
3728
3729void CodeGenModule::emitAtAvailableLinkGuard() {
3730  if (!IsOSVersionAtLeastFn)
3731    return;
3732  // @available requires CoreFoundation only on Darwin.
3733  if (!Target.getTriple().isOSDarwin())
3734    return;
3735  // Add -framework CoreFoundation to the linker commands. We still want to
3736  // emit the core foundation reference down below because otherwise if
3737  // CoreFoundation is not used in the code, the linker won't link the
3738  // framework.
3739  auto &Context = getLLVMContext();
3740  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3741                             llvm::MDString::get(Context, "CoreFoundation")};
3742  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3743  // Emit a reference to a symbol from CoreFoundation to ensure that
3744  // CoreFoundation is linked into the final binary.
3745  llvm::FunctionType *FTy =
3746      llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3747  llvm::FunctionCallee CFFunc =
3748      CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3749
3750  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3751  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3752      CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3753      llvm::AttributeList(), /*Local=*/true);
3754  llvm::Function *CFLinkCheckFunc =
3755      cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3756  if (CFLinkCheckFunc->empty()) {
3757    CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3758    CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3759    CodeGenFunction CGF(*this);
3760    CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3761    CGF.EmitNounwindRuntimeCall(CFFunc,
3762                                llvm::Constant::getNullValue(VoidPtrTy));
3763    CGF.Builder.CreateUnreachable();
3764    addCompilerUsedGlobal(CFLinkCheckFunc);
3765  }
3766}
3767
3768CGObjCRuntime::~CGObjCRuntime() {}
3769