CGExprConstant.cpp revision 355940
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenModule.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/Builtins.h"
25#include "llvm/ADT/Sequence.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalVariable.h"
31using namespace clang;
32using namespace CodeGen;
33
34//===----------------------------------------------------------------------===//
35//                            ConstantAggregateBuilder
36//===----------------------------------------------------------------------===//
37
38namespace {
39class ConstExprEmitter;
40
41struct ConstantAggregateBuilderUtils {
42  CodeGenModule &CGM;
43
44  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
45
46  CharUnits getAlignment(const llvm::Constant *C) const {
47    return CharUnits::fromQuantity(
48        CGM.getDataLayout().getABITypeAlignment(C->getType()));
49  }
50
51  CharUnits getSize(llvm::Type *Ty) const {
52    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
53  }
54
55  CharUnits getSize(const llvm::Constant *C) const {
56    return getSize(C->getType());
57  }
58
59  llvm::Constant *getPadding(CharUnits PadSize) const {
60    llvm::Type *Ty = CGM.Int8Ty;
61    if (PadSize > CharUnits::One())
62      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
63    return llvm::UndefValue::get(Ty);
64  }
65
66  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
67    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
68    return llvm::ConstantAggregateZero::get(Ty);
69  }
70};
71
72/// Incremental builder for an llvm::Constant* holding a struct or array
73/// constant.
74class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
75  /// The elements of the constant. These two arrays must have the same size;
76  /// Offsets[i] describes the offset of Elems[i] within the constant. The
77  /// elements are kept in increasing offset order, and we ensure that there
78  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
79  ///
80  /// This may contain explicit padding elements (in order to create a
81  /// natural layout), but need not. Gaps between elements are implicitly
82  /// considered to be filled with undef.
83  llvm::SmallVector<llvm::Constant*, 32> Elems;
84  llvm::SmallVector<CharUnits, 32> Offsets;
85
86  /// The size of the constant (the maximum end offset of any added element).
87  /// May be larger than the end of Elems.back() if we split the last element
88  /// and removed some trailing undefs.
89  CharUnits Size = CharUnits::Zero();
90
91  /// This is true only if laying out Elems in order as the elements of a
92  /// non-packed LLVM struct will give the correct layout.
93  bool NaturalLayout = true;
94
95  bool split(size_t Index, CharUnits Hint);
96  Optional<size_t> splitAt(CharUnits Pos);
97
98  static llvm::Constant *buildFrom(CodeGenModule &CGM,
99                                   ArrayRef<llvm::Constant *> Elems,
100                                   ArrayRef<CharUnits> Offsets,
101                                   CharUnits StartOffset, CharUnits Size,
102                                   bool NaturalLayout, llvm::Type *DesiredTy,
103                                   bool AllowOversized);
104
105public:
106  ConstantAggregateBuilder(CodeGenModule &CGM)
107      : ConstantAggregateBuilderUtils(CGM) {}
108
109  /// Update or overwrite the value starting at \p Offset with \c C.
110  ///
111  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
112  ///        a constant that has already been added. This flag is only used to
113  ///        detect bugs.
114  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
115
116  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
117  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
118
119  /// Attempt to condense the value starting at \p Offset to a constant of type
120  /// \p DesiredTy.
121  void condense(CharUnits Offset, llvm::Type *DesiredTy);
122
123  /// Produce a constant representing the entire accumulated value, ideally of
124  /// the specified type. If \p AllowOversized, the constant might be larger
125  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
126  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
127  /// even if we can't represent it as that type.
128  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
129    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
130                     NaturalLayout, DesiredTy, AllowOversized);
131  }
132};
133
134template<typename Container, typename Range = std::initializer_list<
135                                 typename Container::value_type>>
136static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
137  assert(BeginOff <= EndOff && "invalid replacement range");
138  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
139}
140
141bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
142                          bool AllowOverwrite) {
143  // Common case: appending to a layout.
144  if (Offset >= Size) {
145    CharUnits Align = getAlignment(C);
146    CharUnits AlignedSize = Size.alignTo(Align);
147    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
148      NaturalLayout = false;
149    else if (AlignedSize < Offset) {
150      Elems.push_back(getPadding(Offset - Size));
151      Offsets.push_back(Size);
152    }
153    Elems.push_back(C);
154    Offsets.push_back(Offset);
155    Size = Offset + getSize(C);
156    return true;
157  }
158
159  // Uncommon case: constant overlaps what we've already created.
160  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
161  if (!FirstElemToReplace)
162    return false;
163
164  CharUnits CSize = getSize(C);
165  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
166  if (!LastElemToReplace)
167    return false;
168
169  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
170         "unexpectedly overwriting field");
171
172  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
173  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
174  Size = std::max(Size, Offset + CSize);
175  NaturalLayout = false;
176  return true;
177}
178
179bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
180                              bool AllowOverwrite) {
181  const ASTContext &Context = CGM.getContext();
182  const uint64_t CharWidth = CGM.getContext().getCharWidth();
183
184  // Offset of where we want the first bit to go within the bits of the
185  // current char.
186  unsigned OffsetWithinChar = OffsetInBits % CharWidth;
187
188  // We split bit-fields up into individual bytes. Walk over the bytes and
189  // update them.
190  for (CharUnits OffsetInChars =
191           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
192       /**/; ++OffsetInChars) {
193    // Number of bits we want to fill in this char.
194    unsigned WantedBits =
195        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
196
197    // Get a char containing the bits we want in the right places. The other
198    // bits have unspecified values.
199    llvm::APInt BitsThisChar = Bits;
200    if (BitsThisChar.getBitWidth() < CharWidth)
201      BitsThisChar = BitsThisChar.zext(CharWidth);
202    if (CGM.getDataLayout().isBigEndian()) {
203      // Figure out how much to shift by. We may need to left-shift if we have
204      // less than one byte of Bits left.
205      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
206      if (Shift > 0)
207        BitsThisChar.lshrInPlace(Shift);
208      else if (Shift < 0)
209        BitsThisChar = BitsThisChar.shl(-Shift);
210    } else {
211      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
212    }
213    if (BitsThisChar.getBitWidth() > CharWidth)
214      BitsThisChar = BitsThisChar.trunc(CharWidth);
215
216    if (WantedBits == CharWidth) {
217      // Got a full byte: just add it directly.
218      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
219          OffsetInChars, AllowOverwrite);
220    } else {
221      // Partial byte: update the existing integer if there is one. If we
222      // can't split out a 1-CharUnit range to update, then we can't add
223      // these bits and fail the entire constant emission.
224      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
225      if (!FirstElemToUpdate)
226        return false;
227      llvm::Optional<size_t> LastElemToUpdate =
228          splitAt(OffsetInChars + CharUnits::One());
229      if (!LastElemToUpdate)
230        return false;
231      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
232             "should have at most one element covering one byte");
233
234      // Figure out which bits we want and discard the rest.
235      llvm::APInt UpdateMask(CharWidth, 0);
236      if (CGM.getDataLayout().isBigEndian())
237        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
238                           CharWidth - OffsetWithinChar);
239      else
240        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
241      BitsThisChar &= UpdateMask;
242
243      if (*FirstElemToUpdate == *LastElemToUpdate ||
244          Elems[*FirstElemToUpdate]->isNullValue() ||
245          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
246        // All existing bits are either zero or undef.
247        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
248            OffsetInChars, /*AllowOverwrite*/ true);
249      } else {
250        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
251        // In order to perform a partial update, we need the existing bitwise
252        // value, which we can only extract for a constant int.
253        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
254        if (!CI)
255          return false;
256        // Because this is a 1-CharUnit range, the constant occupying it must
257        // be exactly one CharUnit wide.
258        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
259        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
260               "unexpectedly overwriting bitfield");
261        BitsThisChar |= (CI->getValue() & ~UpdateMask);
262        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
263      }
264    }
265
266    // Stop if we've added all the bits.
267    if (WantedBits == Bits.getBitWidth())
268      break;
269
270    // Remove the consumed bits from Bits.
271    if (!CGM.getDataLayout().isBigEndian())
272      Bits.lshrInPlace(WantedBits);
273    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
274
275    // The remanining bits go at the start of the following bytes.
276    OffsetWithinChar = 0;
277  }
278
279  return true;
280}
281
282/// Returns a position within Elems and Offsets such that all elements
283/// before the returned index end before Pos and all elements at or after
284/// the returned index begin at or after Pos. Splits elements as necessary
285/// to ensure this. Returns None if we find something we can't split.
286Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
287  if (Pos >= Size)
288    return Offsets.size();
289
290  while (true) {
291    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
292    if (FirstAfterPos == Offsets.begin())
293      return 0;
294
295    // If we already have an element starting at Pos, we're done.
296    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
297    if (Offsets[LastAtOrBeforePosIndex] == Pos)
298      return LastAtOrBeforePosIndex;
299
300    // We found an element starting before Pos. Check for overlap.
301    if (Offsets[LastAtOrBeforePosIndex] +
302        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
303      return LastAtOrBeforePosIndex + 1;
304
305    // Try to decompose it into smaller constants.
306    if (!split(LastAtOrBeforePosIndex, Pos))
307      return None;
308  }
309}
310
311/// Split the constant at index Index, if possible. Return true if we did.
312/// Hint indicates the location at which we'd like to split, but may be
313/// ignored.
314bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
315  NaturalLayout = false;
316  llvm::Constant *C = Elems[Index];
317  CharUnits Offset = Offsets[Index];
318
319  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
320    replace(Elems, Index, Index + 1,
321            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
322                            [&](unsigned Op) { return CA->getOperand(Op); }));
323    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
324      // Array or vector.
325      CharUnits ElemSize = getSize(Seq->getElementType());
326      replace(
327          Offsets, Index, Index + 1,
328          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
329                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
330    } else {
331      // Must be a struct.
332      auto *ST = cast<llvm::StructType>(CA->getType());
333      const llvm::StructLayout *Layout =
334          CGM.getDataLayout().getStructLayout(ST);
335      replace(Offsets, Index, Index + 1,
336              llvm::map_range(
337                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
338                    return Offset + CharUnits::fromQuantity(
339                                        Layout->getElementOffset(Op));
340                  }));
341    }
342    return true;
343  }
344
345  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
346    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
347    CharUnits ElemSize = getSize(CDS->getElementType());
348    replace(Elems, Index, Index + 1,
349            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
350                            [&](unsigned Elem) {
351                              return CDS->getElementAsConstant(Elem);
352                            }));
353    replace(Offsets, Index, Index + 1,
354            llvm::map_range(
355                llvm::seq(0u, CDS->getNumElements()),
356                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
357    return true;
358  }
359
360  if (isa<llvm::ConstantAggregateZero>(C)) {
361    CharUnits ElemSize = getSize(C);
362    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
363    replace(Elems, Index, Index + 1,
364            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
365    replace(Offsets, Index, Index + 1, {Offset, Hint});
366    return true;
367  }
368
369  if (isa<llvm::UndefValue>(C)) {
370    replace(Elems, Index, Index + 1, {});
371    replace(Offsets, Index, Index + 1, {});
372    return true;
373  }
374
375  // FIXME: We could split a ConstantInt if the need ever arose.
376  // We don't need to do this to handle bit-fields because we always eagerly
377  // split them into 1-byte chunks.
378
379  return false;
380}
381
382static llvm::Constant *
383EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
384                  llvm::Type *CommonElementType, unsigned ArrayBound,
385                  SmallVectorImpl<llvm::Constant *> &Elements,
386                  llvm::Constant *Filler);
387
388llvm::Constant *ConstantAggregateBuilder::buildFrom(
389    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
390    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
391    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
392  ConstantAggregateBuilderUtils Utils(CGM);
393
394  if (Elems.empty())
395    return llvm::UndefValue::get(DesiredTy);
396
397  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
398
399  // If we want an array type, see if all the elements are the same type and
400  // appropriately spaced.
401  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
402    assert(!AllowOversized && "oversized array emission not supported");
403
404    bool CanEmitArray = true;
405    llvm::Type *CommonType = Elems[0]->getType();
406    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
407    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
408    SmallVector<llvm::Constant*, 32> ArrayElements;
409    for (size_t I = 0; I != Elems.size(); ++I) {
410      // Skip zeroes; we'll use a zero value as our array filler.
411      if (Elems[I]->isNullValue())
412        continue;
413
414      // All remaining elements must be the same type.
415      if (Elems[I]->getType() != CommonType ||
416          Offset(I) % ElemSize != 0) {
417        CanEmitArray = false;
418        break;
419      }
420      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
421      ArrayElements.back() = Elems[I];
422    }
423
424    if (CanEmitArray) {
425      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
426                               ArrayElements, Filler);
427    }
428
429    // Can't emit as an array, carry on to emit as a struct.
430  }
431
432  CharUnits DesiredSize = Utils.getSize(DesiredTy);
433  CharUnits Align = CharUnits::One();
434  for (llvm::Constant *C : Elems)
435    Align = std::max(Align, Utils.getAlignment(C));
436  CharUnits AlignedSize = Size.alignTo(Align);
437
438  bool Packed = false;
439  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
440  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
441  if ((DesiredSize < AlignedSize && !AllowOversized) ||
442      DesiredSize.alignTo(Align) != DesiredSize) {
443    // The natural layout would be the wrong size; force use of a packed layout.
444    NaturalLayout = false;
445    Packed = true;
446  } else if (DesiredSize > AlignedSize) {
447    // The constant would be too small. Add padding to fix it.
448    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
449    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
450    UnpackedElems = UnpackedElemStorage;
451  }
452
453  // If we don't have a natural layout, insert padding as necessary.
454  // As we go, double-check to see if we can actually just emit Elems
455  // as a non-packed struct and do so opportunistically if possible.
456  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
457  if (!NaturalLayout) {
458    CharUnits SizeSoFar = CharUnits::Zero();
459    for (size_t I = 0; I != Elems.size(); ++I) {
460      CharUnits Align = Utils.getAlignment(Elems[I]);
461      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
462      CharUnits DesiredOffset = Offset(I);
463      assert(DesiredOffset >= SizeSoFar && "elements out of order");
464
465      if (DesiredOffset != NaturalOffset)
466        Packed = true;
467      if (DesiredOffset != SizeSoFar)
468        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
469      PackedElems.push_back(Elems[I]);
470      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
471    }
472    // If we're using the packed layout, pad it out to the desired size if
473    // necessary.
474    if (Packed) {
475      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
476             "requested size is too small for contents");
477      if (SizeSoFar < DesiredSize)
478        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
479    }
480  }
481
482  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
483      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
484
485  // Pick the type to use.  If the type is layout identical to the desired
486  // type then use it, otherwise use whatever the builder produced for us.
487  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
488    if (DesiredSTy->isLayoutIdentical(STy))
489      STy = DesiredSTy;
490  }
491
492  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
493}
494
495void ConstantAggregateBuilder::condense(CharUnits Offset,
496                                        llvm::Type *DesiredTy) {
497  CharUnits Size = getSize(DesiredTy);
498
499  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
500  if (!FirstElemToReplace)
501    return;
502  size_t First = *FirstElemToReplace;
503
504  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
505  if (!LastElemToReplace)
506    return;
507  size_t Last = *LastElemToReplace;
508
509  size_t Length = Last - First;
510  if (Length == 0)
511    return;
512
513  if (Length == 1 && Offsets[First] == Offset &&
514      getSize(Elems[First]) == Size) {
515    // Re-wrap single element structs if necessary. Otherwise, leave any single
516    // element constant of the right size alone even if it has the wrong type.
517    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
518    if (STy && STy->getNumElements() == 1 &&
519        STy->getElementType(0) == Elems[First]->getType())
520      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
521    return;
522  }
523
524  llvm::Constant *Replacement = buildFrom(
525      CGM, makeArrayRef(Elems).slice(First, Length),
526      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
527      /*known to have natural layout=*/false, DesiredTy, false);
528  replace(Elems, First, Last, {Replacement});
529  replace(Offsets, First, Last, {Offset});
530}
531
532//===----------------------------------------------------------------------===//
533//                            ConstStructBuilder
534//===----------------------------------------------------------------------===//
535
536class ConstStructBuilder {
537  CodeGenModule &CGM;
538  ConstantEmitter &Emitter;
539  ConstantAggregateBuilder &Builder;
540  CharUnits StartOffset;
541
542public:
543  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
544                                     InitListExpr *ILE, QualType StructTy);
545  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
546                                     const APValue &Value, QualType ValTy);
547  static bool UpdateStruct(ConstantEmitter &Emitter,
548                           ConstantAggregateBuilder &Const, CharUnits Offset,
549                           InitListExpr *Updater);
550
551private:
552  ConstStructBuilder(ConstantEmitter &Emitter,
553                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
554      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
555        StartOffset(StartOffset) {}
556
557  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
558                   llvm::Constant *InitExpr, bool AllowOverwrite = false);
559
560  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
561                   bool AllowOverwrite = false);
562
563  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
564                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
565
566  bool Build(InitListExpr *ILE, bool AllowOverwrite);
567  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
568             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
569  llvm::Constant *Finalize(QualType Ty);
570};
571
572bool ConstStructBuilder::AppendField(
573    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
574    bool AllowOverwrite) {
575  const ASTContext &Context = CGM.getContext();
576
577  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
578
579  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
580}
581
582bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
583                                     llvm::Constant *InitCst,
584                                     bool AllowOverwrite) {
585  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
586}
587
588bool ConstStructBuilder::AppendBitField(
589    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
590    bool AllowOverwrite) {
591  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
592  llvm::APInt FieldValue = CI->getValue();
593
594  // Promote the size of FieldValue if necessary
595  // FIXME: This should never occur, but currently it can because initializer
596  // constants are cast to bool, and because clang is not enforcing bitfield
597  // width limits.
598  if (FieldSize > FieldValue.getBitWidth())
599    FieldValue = FieldValue.zext(FieldSize);
600
601  // Truncate the size of FieldValue to the bit field size.
602  if (FieldSize < FieldValue.getBitWidth())
603    FieldValue = FieldValue.trunc(FieldSize);
604
605  return Builder.addBits(FieldValue,
606                         CGM.getContext().toBits(StartOffset) + FieldOffset,
607                         AllowOverwrite);
608}
609
610static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
611                                      ConstantAggregateBuilder &Const,
612                                      CharUnits Offset, QualType Type,
613                                      InitListExpr *Updater) {
614  if (Type->isRecordType())
615    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
616
617  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
618  if (!CAT)
619    return false;
620  QualType ElemType = CAT->getElementType();
621  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
622  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
623
624  llvm::Constant *FillC = nullptr;
625  if (Expr *Filler = Updater->getArrayFiller()) {
626    if (!isa<NoInitExpr>(Filler)) {
627      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
628      if (!FillC)
629        return false;
630    }
631  }
632
633  unsigned NumElementsToUpdate =
634      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
635  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
636    Expr *Init = nullptr;
637    if (I < Updater->getNumInits())
638      Init = Updater->getInit(I);
639
640    if (!Init && FillC) {
641      if (!Const.add(FillC, Offset, true))
642        return false;
643    } else if (!Init || isa<NoInitExpr>(Init)) {
644      continue;
645    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
646      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
647                                     ChildILE))
648        return false;
649      // Attempt to reduce the array element to a single constant if necessary.
650      Const.condense(Offset, ElemTy);
651    } else {
652      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
653      if (!Const.add(Val, Offset, true))
654        return false;
655    }
656  }
657
658  return true;
659}
660
661bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
662  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
663  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
664
665  unsigned FieldNo = -1;
666  unsigned ElementNo = 0;
667
668  // Bail out if we have base classes. We could support these, but they only
669  // arise in C++1z where we will have already constant folded most interesting
670  // cases. FIXME: There are still a few more cases we can handle this way.
671  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
672    if (CXXRD->getNumBases())
673      return false;
674
675  for (FieldDecl *Field : RD->fields()) {
676    ++FieldNo;
677
678    // If this is a union, skip all the fields that aren't being initialized.
679    if (RD->isUnion() &&
680        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
681      continue;
682
683    // Don't emit anonymous bitfields or zero-sized fields.
684    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
685      continue;
686
687    // Get the initializer.  A struct can include fields without initializers,
688    // we just use explicit null values for them.
689    Expr *Init = nullptr;
690    if (ElementNo < ILE->getNumInits())
691      Init = ILE->getInit(ElementNo++);
692    if (Init && isa<NoInitExpr>(Init))
693      continue;
694
695    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
696    // represents additional overwriting of our current constant value, and not
697    // a new constant to emit independently.
698    if (AllowOverwrite &&
699        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
700      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
701        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
702            Layout.getFieldOffset(FieldNo));
703        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
704                                       Field->getType(), SubILE))
705          return false;
706        // If we split apart the field's value, try to collapse it down to a
707        // single value now.
708        Builder.condense(StartOffset + Offset,
709                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
710        continue;
711      }
712    }
713
714    llvm::Constant *EltInit =
715        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
716             : Emitter.emitNullForMemory(Field->getType());
717    if (!EltInit)
718      return false;
719
720    if (!Field->isBitField()) {
721      // Handle non-bitfield members.
722      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
723                       AllowOverwrite))
724        return false;
725      // After emitting a non-empty field with [[no_unique_address]], we may
726      // need to overwrite its tail padding.
727      if (Field->hasAttr<NoUniqueAddressAttr>())
728        AllowOverwrite = true;
729    } else {
730      // Otherwise we have a bitfield.
731      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
732        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
733                            AllowOverwrite))
734          return false;
735      } else {
736        // We are trying to initialize a bitfield with a non-trivial constant,
737        // this must require run-time code.
738        return false;
739      }
740    }
741  }
742
743  return true;
744}
745
746namespace {
747struct BaseInfo {
748  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
749    : Decl(Decl), Offset(Offset), Index(Index) {
750  }
751
752  const CXXRecordDecl *Decl;
753  CharUnits Offset;
754  unsigned Index;
755
756  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
757};
758}
759
760bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
761                               bool IsPrimaryBase,
762                               const CXXRecordDecl *VTableClass,
763                               CharUnits Offset) {
764  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
765
766  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
767    // Add a vtable pointer, if we need one and it hasn't already been added.
768    if (CD->isDynamicClass() && !IsPrimaryBase) {
769      llvm::Constant *VTableAddressPoint =
770          CGM.getCXXABI().getVTableAddressPointForConstExpr(
771              BaseSubobject(CD, Offset), VTableClass);
772      if (!AppendBytes(Offset, VTableAddressPoint))
773        return false;
774    }
775
776    // Accumulate and sort bases, in order to visit them in address order, which
777    // may not be the same as declaration order.
778    SmallVector<BaseInfo, 8> Bases;
779    Bases.reserve(CD->getNumBases());
780    unsigned BaseNo = 0;
781    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
782         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
783      assert(!Base->isVirtual() && "should not have virtual bases here");
784      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
785      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
786      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
787    }
788    llvm::stable_sort(Bases);
789
790    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
791      BaseInfo &Base = Bases[I];
792
793      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
794      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
795            VTableClass, Offset + Base.Offset);
796    }
797  }
798
799  unsigned FieldNo = 0;
800  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
801
802  bool AllowOverwrite = false;
803  for (RecordDecl::field_iterator Field = RD->field_begin(),
804       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
805    // If this is a union, skip all the fields that aren't being initialized.
806    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
807      continue;
808
809    // Don't emit anonymous bitfields or zero-sized fields.
810    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
811      continue;
812
813    // Emit the value of the initializer.
814    const APValue &FieldValue =
815      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
816    llvm::Constant *EltInit =
817      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
818    if (!EltInit)
819      return false;
820
821    if (!Field->isBitField()) {
822      // Handle non-bitfield members.
823      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
824                       EltInit, AllowOverwrite))
825        return false;
826      // After emitting a non-empty field with [[no_unique_address]], we may
827      // need to overwrite its tail padding.
828      if (Field->hasAttr<NoUniqueAddressAttr>())
829        AllowOverwrite = true;
830    } else {
831      // Otherwise we have a bitfield.
832      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
833                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
834        return false;
835    }
836  }
837
838  return true;
839}
840
841llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
842  RecordDecl *RD = Type->getAs<RecordType>()->getDecl();
843  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
844  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
845}
846
847llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
848                                                InitListExpr *ILE,
849                                                QualType ValTy) {
850  ConstantAggregateBuilder Const(Emitter.CGM);
851  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
852
853  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
854    return nullptr;
855
856  return Builder.Finalize(ValTy);
857}
858
859llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
860                                                const APValue &Val,
861                                                QualType ValTy) {
862  ConstantAggregateBuilder Const(Emitter.CGM);
863  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
864
865  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
866  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
867  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
868    return nullptr;
869
870  return Builder.Finalize(ValTy);
871}
872
873bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
874                                      ConstantAggregateBuilder &Const,
875                                      CharUnits Offset, InitListExpr *Updater) {
876  return ConstStructBuilder(Emitter, Const, Offset)
877      .Build(Updater, /*AllowOverwrite*/ true);
878}
879
880//===----------------------------------------------------------------------===//
881//                             ConstExprEmitter
882//===----------------------------------------------------------------------===//
883
884static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
885                                                    CodeGenFunction *CGF,
886                                              const CompoundLiteralExpr *E) {
887  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
888  if (llvm::GlobalVariable *Addr =
889          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
890    return ConstantAddress(Addr, Align);
891
892  LangAS addressSpace = E->getType().getAddressSpace();
893
894  ConstantEmitter emitter(CGM, CGF);
895  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
896                                                    addressSpace, E->getType());
897  if (!C) {
898    assert(!E->isFileScope() &&
899           "file-scope compound literal did not have constant initializer!");
900    return ConstantAddress::invalid();
901  }
902
903  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
904                                     CGM.isTypeConstant(E->getType(), true),
905                                     llvm::GlobalValue::InternalLinkage,
906                                     C, ".compoundliteral", nullptr,
907                                     llvm::GlobalVariable::NotThreadLocal,
908                    CGM.getContext().getTargetAddressSpace(addressSpace));
909  emitter.finalize(GV);
910  GV->setAlignment(Align.getQuantity());
911  CGM.setAddrOfConstantCompoundLiteral(E, GV);
912  return ConstantAddress(GV, Align);
913}
914
915static llvm::Constant *
916EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
917                  llvm::Type *CommonElementType, unsigned ArrayBound,
918                  SmallVectorImpl<llvm::Constant *> &Elements,
919                  llvm::Constant *Filler) {
920  // Figure out how long the initial prefix of non-zero elements is.
921  unsigned NonzeroLength = ArrayBound;
922  if (Elements.size() < NonzeroLength && Filler->isNullValue())
923    NonzeroLength = Elements.size();
924  if (NonzeroLength == Elements.size()) {
925    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
926      --NonzeroLength;
927  }
928
929  if (NonzeroLength == 0)
930    return llvm::ConstantAggregateZero::get(DesiredType);
931
932  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
933  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
934  if (TrailingZeroes >= 8) {
935    assert(Elements.size() >= NonzeroLength &&
936           "missing initializer for non-zero element");
937
938    // If all the elements had the same type up to the trailing zeroes, emit a
939    // struct of two arrays (the nonzero data and the zeroinitializer).
940    if (CommonElementType && NonzeroLength >= 8) {
941      llvm::Constant *Initial = llvm::ConstantArray::get(
942          llvm::ArrayType::get(CommonElementType, NonzeroLength),
943          makeArrayRef(Elements).take_front(NonzeroLength));
944      Elements.resize(2);
945      Elements[0] = Initial;
946    } else {
947      Elements.resize(NonzeroLength + 1);
948    }
949
950    auto *FillerType =
951        CommonElementType ? CommonElementType : DesiredType->getElementType();
952    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
953    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
954    CommonElementType = nullptr;
955  } else if (Elements.size() != ArrayBound) {
956    // Otherwise pad to the right size with the filler if necessary.
957    Elements.resize(ArrayBound, Filler);
958    if (Filler->getType() != CommonElementType)
959      CommonElementType = nullptr;
960  }
961
962  // If all elements have the same type, just emit an array constant.
963  if (CommonElementType)
964    return llvm::ConstantArray::get(
965        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
966
967  // We have mixed types. Use a packed struct.
968  llvm::SmallVector<llvm::Type *, 16> Types;
969  Types.reserve(Elements.size());
970  for (llvm::Constant *Elt : Elements)
971    Types.push_back(Elt->getType());
972  llvm::StructType *SType =
973      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
974  return llvm::ConstantStruct::get(SType, Elements);
975}
976
977// This class only needs to handle arrays, structs and unions. Outside C++11
978// mode, we don't currently constant fold those types.  All other types are
979// handled by constant folding.
980//
981// Constant folding is currently missing support for a few features supported
982// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
983class ConstExprEmitter :
984  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
985  CodeGenModule &CGM;
986  ConstantEmitter &Emitter;
987  llvm::LLVMContext &VMContext;
988public:
989  ConstExprEmitter(ConstantEmitter &emitter)
990    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
991  }
992
993  //===--------------------------------------------------------------------===//
994  //                            Visitor Methods
995  //===--------------------------------------------------------------------===//
996
997  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
998    return nullptr;
999  }
1000
1001  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1002    return Visit(CE->getSubExpr(), T);
1003  }
1004
1005  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1006    return Visit(PE->getSubExpr(), T);
1007  }
1008
1009  llvm::Constant *
1010  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1011                                    QualType T) {
1012    return Visit(PE->getReplacement(), T);
1013  }
1014
1015  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1016                                            QualType T) {
1017    return Visit(GE->getResultExpr(), T);
1018  }
1019
1020  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1021    return Visit(CE->getChosenSubExpr(), T);
1022  }
1023
1024  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1025    return Visit(E->getInitializer(), T);
1026  }
1027
1028  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1029    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1030      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1031    Expr *subExpr = E->getSubExpr();
1032
1033    switch (E->getCastKind()) {
1034    case CK_ToUnion: {
1035      // GCC cast to union extension
1036      assert(E->getType()->isUnionType() &&
1037             "Destination type is not union type!");
1038
1039      auto field = E->getTargetUnionField();
1040
1041      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1042      if (!C) return nullptr;
1043
1044      auto destTy = ConvertType(destType);
1045      if (C->getType() == destTy) return C;
1046
1047      // Build a struct with the union sub-element as the first member,
1048      // and padded to the appropriate size.
1049      SmallVector<llvm::Constant*, 2> Elts;
1050      SmallVector<llvm::Type*, 2> Types;
1051      Elts.push_back(C);
1052      Types.push_back(C->getType());
1053      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1054      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1055
1056      assert(CurSize <= TotalSize && "Union size mismatch!");
1057      if (unsigned NumPadBytes = TotalSize - CurSize) {
1058        llvm::Type *Ty = CGM.Int8Ty;
1059        if (NumPadBytes > 1)
1060          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1061
1062        Elts.push_back(llvm::UndefValue::get(Ty));
1063        Types.push_back(Ty);
1064      }
1065
1066      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1067      return llvm::ConstantStruct::get(STy, Elts);
1068    }
1069
1070    case CK_AddressSpaceConversion: {
1071      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1072      if (!C) return nullptr;
1073      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1074      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1075      llvm::Type *destTy = ConvertType(E->getType());
1076      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1077                                                             destAS, destTy);
1078    }
1079
1080    case CK_LValueToRValue:
1081    case CK_AtomicToNonAtomic:
1082    case CK_NonAtomicToAtomic:
1083    case CK_NoOp:
1084    case CK_ConstructorConversion:
1085      return Visit(subExpr, destType);
1086
1087    case CK_IntToOCLSampler:
1088      llvm_unreachable("global sampler variables are not generated");
1089
1090    case CK_Dependent: llvm_unreachable("saw dependent cast!");
1091
1092    case CK_BuiltinFnToFnPtr:
1093      llvm_unreachable("builtin functions are handled elsewhere");
1094
1095    case CK_ReinterpretMemberPointer:
1096    case CK_DerivedToBaseMemberPointer:
1097    case CK_BaseToDerivedMemberPointer: {
1098      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1099      if (!C) return nullptr;
1100      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1101    }
1102
1103    // These will never be supported.
1104    case CK_ObjCObjectLValueCast:
1105    case CK_ARCProduceObject:
1106    case CK_ARCConsumeObject:
1107    case CK_ARCReclaimReturnedObject:
1108    case CK_ARCExtendBlockObject:
1109    case CK_CopyAndAutoreleaseBlockObject:
1110      return nullptr;
1111
1112    // These don't need to be handled here because Evaluate knows how to
1113    // evaluate them in the cases where they can be folded.
1114    case CK_BitCast:
1115    case CK_ToVoid:
1116    case CK_Dynamic:
1117    case CK_LValueBitCast:
1118    case CK_LValueToRValueBitCast:
1119    case CK_NullToMemberPointer:
1120    case CK_UserDefinedConversion:
1121    case CK_CPointerToObjCPointerCast:
1122    case CK_BlockPointerToObjCPointerCast:
1123    case CK_AnyPointerToBlockPointerCast:
1124    case CK_ArrayToPointerDecay:
1125    case CK_FunctionToPointerDecay:
1126    case CK_BaseToDerived:
1127    case CK_DerivedToBase:
1128    case CK_UncheckedDerivedToBase:
1129    case CK_MemberPointerToBoolean:
1130    case CK_VectorSplat:
1131    case CK_FloatingRealToComplex:
1132    case CK_FloatingComplexToReal:
1133    case CK_FloatingComplexToBoolean:
1134    case CK_FloatingComplexCast:
1135    case CK_FloatingComplexToIntegralComplex:
1136    case CK_IntegralRealToComplex:
1137    case CK_IntegralComplexToReal:
1138    case CK_IntegralComplexToBoolean:
1139    case CK_IntegralComplexCast:
1140    case CK_IntegralComplexToFloatingComplex:
1141    case CK_PointerToIntegral:
1142    case CK_PointerToBoolean:
1143    case CK_NullToPointer:
1144    case CK_IntegralCast:
1145    case CK_BooleanToSignedIntegral:
1146    case CK_IntegralToPointer:
1147    case CK_IntegralToBoolean:
1148    case CK_IntegralToFloating:
1149    case CK_FloatingToIntegral:
1150    case CK_FloatingToBoolean:
1151    case CK_FloatingCast:
1152    case CK_FixedPointCast:
1153    case CK_FixedPointToBoolean:
1154    case CK_FixedPointToIntegral:
1155    case CK_IntegralToFixedPoint:
1156    case CK_ZeroToOCLOpaqueType:
1157      return nullptr;
1158    }
1159    llvm_unreachable("Invalid CastKind");
1160  }
1161
1162  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1163    // No need for a DefaultInitExprScope: we don't handle 'this' in a
1164    // constant expression.
1165    return Visit(DIE->getExpr(), T);
1166  }
1167
1168  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1169    if (!E->cleanupsHaveSideEffects())
1170      return Visit(E->getSubExpr(), T);
1171    return nullptr;
1172  }
1173
1174  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1175                                                QualType T) {
1176    return Visit(E->GetTemporaryExpr(), T);
1177  }
1178
1179  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1180    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1181    assert(CAT && "can't emit array init for non-constant-bound array");
1182    unsigned NumInitElements = ILE->getNumInits();
1183    unsigned NumElements = CAT->getSize().getZExtValue();
1184
1185    // Initialising an array requires us to automatically
1186    // initialise any elements that have not been initialised explicitly
1187    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1188
1189    QualType EltType = CAT->getElementType();
1190
1191    // Initialize remaining array elements.
1192    llvm::Constant *fillC = nullptr;
1193    if (Expr *filler = ILE->getArrayFiller()) {
1194      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1195      if (!fillC)
1196        return nullptr;
1197    }
1198
1199    // Copy initializer elements.
1200    SmallVector<llvm::Constant*, 16> Elts;
1201    if (fillC && fillC->isNullValue())
1202      Elts.reserve(NumInitableElts + 1);
1203    else
1204      Elts.reserve(NumElements);
1205
1206    llvm::Type *CommonElementType = nullptr;
1207    for (unsigned i = 0; i < NumInitableElts; ++i) {
1208      Expr *Init = ILE->getInit(i);
1209      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1210      if (!C)
1211        return nullptr;
1212      if (i == 0)
1213        CommonElementType = C->getType();
1214      else if (C->getType() != CommonElementType)
1215        CommonElementType = nullptr;
1216      Elts.push_back(C);
1217    }
1218
1219    llvm::ArrayType *Desired =
1220        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1221    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1222                             fillC);
1223  }
1224
1225  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1226    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1227  }
1228
1229  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1230                                             QualType T) {
1231    return CGM.EmitNullConstant(T);
1232  }
1233
1234  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1235    if (ILE->isTransparent())
1236      return Visit(ILE->getInit(0), T);
1237
1238    if (ILE->getType()->isArrayType())
1239      return EmitArrayInitialization(ILE, T);
1240
1241    if (ILE->getType()->isRecordType())
1242      return EmitRecordInitialization(ILE, T);
1243
1244    return nullptr;
1245  }
1246
1247  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1248                                                QualType destType) {
1249    auto C = Visit(E->getBase(), destType);
1250    if (!C)
1251      return nullptr;
1252
1253    ConstantAggregateBuilder Const(CGM);
1254    Const.add(C, CharUnits::Zero(), false);
1255
1256    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1257                                   E->getUpdater()))
1258      return nullptr;
1259
1260    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1261    bool HasFlexibleArray = false;
1262    if (auto *RT = destType->getAs<RecordType>())
1263      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1264    return Const.build(ValTy, HasFlexibleArray);
1265  }
1266
1267  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1268    if (!E->getConstructor()->isTrivial())
1269      return nullptr;
1270
1271    // FIXME: We should not have to call getBaseElementType here.
1272    const RecordType *RT =
1273      CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1274    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1275
1276    // If the class doesn't have a trivial destructor, we can't emit it as a
1277    // constant expr.
1278    if (!RD->hasTrivialDestructor())
1279      return nullptr;
1280
1281    // Only copy and default constructors can be trivial.
1282
1283
1284    if (E->getNumArgs()) {
1285      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1286      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1287             "trivial ctor has argument but isn't a copy/move ctor");
1288
1289      Expr *Arg = E->getArg(0);
1290      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1291             "argument to copy ctor is of wrong type");
1292
1293      return Visit(Arg, Ty);
1294    }
1295
1296    return CGM.EmitNullConstant(Ty);
1297  }
1298
1299  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1300    // This is a string literal initializing an array in an initializer.
1301    return CGM.GetConstantArrayFromStringLiteral(E);
1302  }
1303
1304  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1305    // This must be an @encode initializing an array in a static initializer.
1306    // Don't emit it as the address of the string, emit the string data itself
1307    // as an inline array.
1308    std::string Str;
1309    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1310    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1311
1312    // Resize the string to the right size, adding zeros at the end, or
1313    // truncating as needed.
1314    Str.resize(CAT->getSize().getZExtValue(), '\0');
1315    return llvm::ConstantDataArray::getString(VMContext, Str, false);
1316  }
1317
1318  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1319    return Visit(E->getSubExpr(), T);
1320  }
1321
1322  // Utility methods
1323  llvm::Type *ConvertType(QualType T) {
1324    return CGM.getTypes().ConvertType(T);
1325  }
1326};
1327
1328}  // end anonymous namespace.
1329
1330llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1331                                                        AbstractState saved) {
1332  Abstract = saved.OldValue;
1333
1334  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1335         "created a placeholder while doing an abstract emission?");
1336
1337  // No validation necessary for now.
1338  // No cleanup to do for now.
1339  return C;
1340}
1341
1342llvm::Constant *
1343ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1344  auto state = pushAbstract();
1345  auto C = tryEmitPrivateForVarInit(D);
1346  return validateAndPopAbstract(C, state);
1347}
1348
1349llvm::Constant *
1350ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1351  auto state = pushAbstract();
1352  auto C = tryEmitPrivate(E, destType);
1353  return validateAndPopAbstract(C, state);
1354}
1355
1356llvm::Constant *
1357ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1358  auto state = pushAbstract();
1359  auto C = tryEmitPrivate(value, destType);
1360  return validateAndPopAbstract(C, state);
1361}
1362
1363llvm::Constant *
1364ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1365  auto state = pushAbstract();
1366  auto C = tryEmitPrivate(E, destType);
1367  C = validateAndPopAbstract(C, state);
1368  if (!C) {
1369    CGM.Error(E->getExprLoc(),
1370              "internal error: could not emit constant value \"abstractly\"");
1371    C = CGM.EmitNullConstant(destType);
1372  }
1373  return C;
1374}
1375
1376llvm::Constant *
1377ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1378                              QualType destType) {
1379  auto state = pushAbstract();
1380  auto C = tryEmitPrivate(value, destType);
1381  C = validateAndPopAbstract(C, state);
1382  if (!C) {
1383    CGM.Error(loc,
1384              "internal error: could not emit constant value \"abstractly\"");
1385    C = CGM.EmitNullConstant(destType);
1386  }
1387  return C;
1388}
1389
1390llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1391  initializeNonAbstract(D.getType().getAddressSpace());
1392  return markIfFailed(tryEmitPrivateForVarInit(D));
1393}
1394
1395llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1396                                                       LangAS destAddrSpace,
1397                                                       QualType destType) {
1398  initializeNonAbstract(destAddrSpace);
1399  return markIfFailed(tryEmitPrivateForMemory(E, destType));
1400}
1401
1402llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1403                                                    LangAS destAddrSpace,
1404                                                    QualType destType) {
1405  initializeNonAbstract(destAddrSpace);
1406  auto C = tryEmitPrivateForMemory(value, destType);
1407  assert(C && "couldn't emit constant value non-abstractly?");
1408  return C;
1409}
1410
1411llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1412  assert(!Abstract && "cannot get current address for abstract constant");
1413
1414
1415
1416  // Make an obviously ill-formed global that should blow up compilation
1417  // if it survives.
1418  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1419                                         llvm::GlobalValue::PrivateLinkage,
1420                                         /*init*/ nullptr,
1421                                         /*name*/ "",
1422                                         /*before*/ nullptr,
1423                                         llvm::GlobalVariable::NotThreadLocal,
1424                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1425
1426  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1427
1428  return global;
1429}
1430
1431void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1432                                           llvm::GlobalValue *placeholder) {
1433  assert(!PlaceholderAddresses.empty());
1434  assert(PlaceholderAddresses.back().first == nullptr);
1435  assert(PlaceholderAddresses.back().second == placeholder);
1436  PlaceholderAddresses.back().first = signal;
1437}
1438
1439namespace {
1440  struct ReplacePlaceholders {
1441    CodeGenModule &CGM;
1442
1443    /// The base address of the global.
1444    llvm::Constant *Base;
1445    llvm::Type *BaseValueTy = nullptr;
1446
1447    /// The placeholder addresses that were registered during emission.
1448    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1449
1450    /// The locations of the placeholder signals.
1451    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1452
1453    /// The current index stack.  We use a simple unsigned stack because
1454    /// we assume that placeholders will be relatively sparse in the
1455    /// initializer, but we cache the index values we find just in case.
1456    llvm::SmallVector<unsigned, 8> Indices;
1457    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1458
1459    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1460                        ArrayRef<std::pair<llvm::Constant*,
1461                                           llvm::GlobalVariable*>> addresses)
1462        : CGM(CGM), Base(base),
1463          PlaceholderAddresses(addresses.begin(), addresses.end()) {
1464    }
1465
1466    void replaceInInitializer(llvm::Constant *init) {
1467      // Remember the type of the top-most initializer.
1468      BaseValueTy = init->getType();
1469
1470      // Initialize the stack.
1471      Indices.push_back(0);
1472      IndexValues.push_back(nullptr);
1473
1474      // Recurse into the initializer.
1475      findLocations(init);
1476
1477      // Check invariants.
1478      assert(IndexValues.size() == Indices.size() && "mismatch");
1479      assert(Indices.size() == 1 && "didn't pop all indices");
1480
1481      // Do the replacement; this basically invalidates 'init'.
1482      assert(Locations.size() == PlaceholderAddresses.size() &&
1483             "missed a placeholder?");
1484
1485      // We're iterating over a hashtable, so this would be a source of
1486      // non-determinism in compiler output *except* that we're just
1487      // messing around with llvm::Constant structures, which never itself
1488      // does anything that should be visible in compiler output.
1489      for (auto &entry : Locations) {
1490        assert(entry.first->getParent() == nullptr && "not a placeholder!");
1491        entry.first->replaceAllUsesWith(entry.second);
1492        entry.first->eraseFromParent();
1493      }
1494    }
1495
1496  private:
1497    void findLocations(llvm::Constant *init) {
1498      // Recurse into aggregates.
1499      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1500        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1501          Indices.push_back(i);
1502          IndexValues.push_back(nullptr);
1503
1504          findLocations(agg->getOperand(i));
1505
1506          IndexValues.pop_back();
1507          Indices.pop_back();
1508        }
1509        return;
1510      }
1511
1512      // Otherwise, check for registered constants.
1513      while (true) {
1514        auto it = PlaceholderAddresses.find(init);
1515        if (it != PlaceholderAddresses.end()) {
1516          setLocation(it->second);
1517          break;
1518        }
1519
1520        // Look through bitcasts or other expressions.
1521        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1522          init = expr->getOperand(0);
1523        } else {
1524          break;
1525        }
1526      }
1527    }
1528
1529    void setLocation(llvm::GlobalVariable *placeholder) {
1530      assert(Locations.find(placeholder) == Locations.end() &&
1531             "already found location for placeholder!");
1532
1533      // Lazily fill in IndexValues with the values from Indices.
1534      // We do this in reverse because we should always have a strict
1535      // prefix of indices from the start.
1536      assert(Indices.size() == IndexValues.size());
1537      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1538        if (IndexValues[i]) {
1539#ifndef NDEBUG
1540          for (size_t j = 0; j != i + 1; ++j) {
1541            assert(IndexValues[j] &&
1542                   isa<llvm::ConstantInt>(IndexValues[j]) &&
1543                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1544                     == Indices[j]);
1545          }
1546#endif
1547          break;
1548        }
1549
1550        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1551      }
1552
1553      // Form a GEP and then bitcast to the placeholder type so that the
1554      // replacement will succeed.
1555      llvm::Constant *location =
1556        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1557                                                     Base, IndexValues);
1558      location = llvm::ConstantExpr::getBitCast(location,
1559                                                placeholder->getType());
1560
1561      Locations.insert({placeholder, location});
1562    }
1563  };
1564}
1565
1566void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1567  assert(InitializedNonAbstract &&
1568         "finalizing emitter that was used for abstract emission?");
1569  assert(!Finalized && "finalizing emitter multiple times");
1570  assert(global->getInitializer());
1571
1572  // Note that we might also be Failed.
1573  Finalized = true;
1574
1575  if (!PlaceholderAddresses.empty()) {
1576    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1577      .replaceInInitializer(global->getInitializer());
1578    PlaceholderAddresses.clear(); // satisfy
1579  }
1580}
1581
1582ConstantEmitter::~ConstantEmitter() {
1583  assert((!InitializedNonAbstract || Finalized || Failed) &&
1584         "not finalized after being initialized for non-abstract emission");
1585  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1586}
1587
1588static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1589  if (auto AT = type->getAs<AtomicType>()) {
1590    return CGM.getContext().getQualifiedType(AT->getValueType(),
1591                                             type.getQualifiers());
1592  }
1593  return type;
1594}
1595
1596llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1597  // Make a quick check if variable can be default NULL initialized
1598  // and avoid going through rest of code which may do, for c++11,
1599  // initialization of memory to all NULLs.
1600  if (!D.hasLocalStorage()) {
1601    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1602    if (Ty->isRecordType())
1603      if (const CXXConstructExpr *E =
1604          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1605        const CXXConstructorDecl *CD = E->getConstructor();
1606        if (CD->isTrivial() && CD->isDefaultConstructor())
1607          return CGM.EmitNullConstant(D.getType());
1608      }
1609    InConstantContext = true;
1610  }
1611
1612  QualType destType = D.getType();
1613
1614  // Try to emit the initializer.  Note that this can allow some things that
1615  // are not allowed by tryEmitPrivateForMemory alone.
1616  if (auto value = D.evaluateValue()) {
1617    return tryEmitPrivateForMemory(*value, destType);
1618  }
1619
1620  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1621  // reference is a constant expression, and the reference binds to a temporary,
1622  // then constant initialization is performed. ConstExprEmitter will
1623  // incorrectly emit a prvalue constant in this case, and the calling code
1624  // interprets that as the (pointer) value of the reference, rather than the
1625  // desired value of the referee.
1626  if (destType->isReferenceType())
1627    return nullptr;
1628
1629  const Expr *E = D.getInit();
1630  assert(E && "No initializer to emit");
1631
1632  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1633  auto C =
1634    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1635  return (C ? emitForMemory(C, destType) : nullptr);
1636}
1637
1638llvm::Constant *
1639ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1640  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1641  auto C = tryEmitAbstract(E, nonMemoryDestType);
1642  return (C ? emitForMemory(C, destType) : nullptr);
1643}
1644
1645llvm::Constant *
1646ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1647                                          QualType destType) {
1648  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1649  auto C = tryEmitAbstract(value, nonMemoryDestType);
1650  return (C ? emitForMemory(C, destType) : nullptr);
1651}
1652
1653llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1654                                                         QualType destType) {
1655  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1656  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1657  return (C ? emitForMemory(C, destType) : nullptr);
1658}
1659
1660llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1661                                                         QualType destType) {
1662  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1663  auto C = tryEmitPrivate(value, nonMemoryDestType);
1664  return (C ? emitForMemory(C, destType) : nullptr);
1665}
1666
1667llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1668                                               llvm::Constant *C,
1669                                               QualType destType) {
1670  // For an _Atomic-qualified constant, we may need to add tail padding.
1671  if (auto AT = destType->getAs<AtomicType>()) {
1672    QualType destValueType = AT->getValueType();
1673    C = emitForMemory(CGM, C, destValueType);
1674
1675    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1676    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1677    if (innerSize == outerSize)
1678      return C;
1679
1680    assert(innerSize < outerSize && "emitted over-large constant for atomic");
1681    llvm::Constant *elts[] = {
1682      C,
1683      llvm::ConstantAggregateZero::get(
1684          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1685    };
1686    return llvm::ConstantStruct::getAnon(elts);
1687  }
1688
1689  // Zero-extend bool.
1690  if (C->getType()->isIntegerTy(1)) {
1691    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1692    return llvm::ConstantExpr::getZExt(C, boolTy);
1693  }
1694
1695  return C;
1696}
1697
1698llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1699                                                QualType destType) {
1700  Expr::EvalResult Result;
1701
1702  bool Success = false;
1703
1704  if (destType->isReferenceType())
1705    Success = E->EvaluateAsLValue(Result, CGM.getContext());
1706  else
1707    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1708
1709  llvm::Constant *C;
1710  if (Success && !Result.HasSideEffects)
1711    C = tryEmitPrivate(Result.Val, destType);
1712  else
1713    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1714
1715  return C;
1716}
1717
1718llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1719  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1720}
1721
1722namespace {
1723/// A struct which can be used to peephole certain kinds of finalization
1724/// that normally happen during l-value emission.
1725struct ConstantLValue {
1726  llvm::Constant *Value;
1727  bool HasOffsetApplied;
1728
1729  /*implicit*/ ConstantLValue(llvm::Constant *value,
1730                              bool hasOffsetApplied = false)
1731    : Value(value), HasOffsetApplied(false) {}
1732
1733  /*implicit*/ ConstantLValue(ConstantAddress address)
1734    : ConstantLValue(address.getPointer()) {}
1735};
1736
1737/// A helper class for emitting constant l-values.
1738class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1739                                                      ConstantLValue> {
1740  CodeGenModule &CGM;
1741  ConstantEmitter &Emitter;
1742  const APValue &Value;
1743  QualType DestType;
1744
1745  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1746  friend StmtVisitorBase;
1747
1748public:
1749  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1750                        QualType destType)
1751    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1752
1753  llvm::Constant *tryEmit();
1754
1755private:
1756  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1757  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1758
1759  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1760  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1761  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1762  ConstantLValue VisitStringLiteral(const StringLiteral *E);
1763  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1764  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1765  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1766  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1767  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1768  ConstantLValue VisitCallExpr(const CallExpr *E);
1769  ConstantLValue VisitBlockExpr(const BlockExpr *E);
1770  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1771  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1772  ConstantLValue VisitMaterializeTemporaryExpr(
1773                                         const MaterializeTemporaryExpr *E);
1774
1775  bool hasNonZeroOffset() const {
1776    return !Value.getLValueOffset().isZero();
1777  }
1778
1779  /// Return the value offset.
1780  llvm::Constant *getOffset() {
1781    return llvm::ConstantInt::get(CGM.Int64Ty,
1782                                  Value.getLValueOffset().getQuantity());
1783  }
1784
1785  /// Apply the value offset to the given constant.
1786  llvm::Constant *applyOffset(llvm::Constant *C) {
1787    if (!hasNonZeroOffset())
1788      return C;
1789
1790    llvm::Type *origPtrTy = C->getType();
1791    unsigned AS = origPtrTy->getPointerAddressSpace();
1792    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1793    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1794    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1795    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1796    return C;
1797  }
1798};
1799
1800}
1801
1802llvm::Constant *ConstantLValueEmitter::tryEmit() {
1803  const APValue::LValueBase &base = Value.getLValueBase();
1804
1805  // The destination type should be a pointer or reference
1806  // type, but it might also be a cast thereof.
1807  //
1808  // FIXME: the chain of casts required should be reflected in the APValue.
1809  // We need this in order to correctly handle things like a ptrtoint of a
1810  // non-zero null pointer and addrspace casts that aren't trivially
1811  // represented in LLVM IR.
1812  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1813  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1814
1815  // If there's no base at all, this is a null or absolute pointer,
1816  // possibly cast back to an integer type.
1817  if (!base) {
1818    return tryEmitAbsolute(destTy);
1819  }
1820
1821  // Otherwise, try to emit the base.
1822  ConstantLValue result = tryEmitBase(base);
1823
1824  // If that failed, we're done.
1825  llvm::Constant *value = result.Value;
1826  if (!value) return nullptr;
1827
1828  // Apply the offset if necessary and not already done.
1829  if (!result.HasOffsetApplied) {
1830    value = applyOffset(value);
1831  }
1832
1833  // Convert to the appropriate type; this could be an lvalue for
1834  // an integer.  FIXME: performAddrSpaceCast
1835  if (isa<llvm::PointerType>(destTy))
1836    return llvm::ConstantExpr::getPointerCast(value, destTy);
1837
1838  return llvm::ConstantExpr::getPtrToInt(value, destTy);
1839}
1840
1841/// Try to emit an absolute l-value, such as a null pointer or an integer
1842/// bitcast to pointer type.
1843llvm::Constant *
1844ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1845  // If we're producing a pointer, this is easy.
1846  auto destPtrTy = cast<llvm::PointerType>(destTy);
1847  if (Value.isNullPointer()) {
1848    // FIXME: integer offsets from non-zero null pointers.
1849    return CGM.getNullPointer(destPtrTy, DestType);
1850  }
1851
1852  // Convert the integer to a pointer-sized integer before converting it
1853  // to a pointer.
1854  // FIXME: signedness depends on the original integer type.
1855  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1856  llvm::Constant *C;
1857  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1858                                         /*isSigned*/ false);
1859  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1860  return C;
1861}
1862
1863ConstantLValue
1864ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1865  // Handle values.
1866  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1867    if (D->hasAttr<WeakRefAttr>())
1868      return CGM.GetWeakRefReference(D).getPointer();
1869
1870    if (auto FD = dyn_cast<FunctionDecl>(D))
1871      return CGM.GetAddrOfFunction(FD);
1872
1873    if (auto VD = dyn_cast<VarDecl>(D)) {
1874      // We can never refer to a variable with local storage.
1875      if (!VD->hasLocalStorage()) {
1876        if (VD->isFileVarDecl() || VD->hasExternalStorage())
1877          return CGM.GetAddrOfGlobalVar(VD);
1878
1879        if (VD->isLocalVarDecl()) {
1880          return CGM.getOrCreateStaticVarDecl(
1881              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1882        }
1883      }
1884    }
1885
1886    return nullptr;
1887  }
1888
1889  // Handle typeid(T).
1890  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1891    llvm::Type *StdTypeInfoPtrTy =
1892        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1893    llvm::Constant *TypeInfo =
1894        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1895    if (TypeInfo->getType() != StdTypeInfoPtrTy)
1896      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1897    return TypeInfo;
1898  }
1899
1900  // Otherwise, it must be an expression.
1901  return Visit(base.get<const Expr*>());
1902}
1903
1904ConstantLValue
1905ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1906  return Visit(E->getSubExpr());
1907}
1908
1909ConstantLValue
1910ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1911  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1912}
1913
1914ConstantLValue
1915ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1916  return CGM.GetAddrOfConstantStringFromLiteral(E);
1917}
1918
1919ConstantLValue
1920ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1921  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1922}
1923
1924static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1925                                                    QualType T,
1926                                                    CodeGenModule &CGM) {
1927  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1928  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1929}
1930
1931ConstantLValue
1932ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1933  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1934}
1935
1936ConstantLValue
1937ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1938  assert(E->isExpressibleAsConstantInitializer() &&
1939         "this boxed expression can't be emitted as a compile-time constant");
1940  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1941  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1942}
1943
1944ConstantLValue
1945ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1946  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1947}
1948
1949ConstantLValue
1950ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1951  assert(Emitter.CGF && "Invalid address of label expression outside function");
1952  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1953  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1954                                   CGM.getTypes().ConvertType(E->getType()));
1955  return Ptr;
1956}
1957
1958ConstantLValue
1959ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1960  unsigned builtin = E->getBuiltinCallee();
1961  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1962      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1963    return nullptr;
1964
1965  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1966  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1967    return CGM.getObjCRuntime().GenerateConstantString(literal);
1968  } else {
1969    // FIXME: need to deal with UCN conversion issues.
1970    return CGM.GetAddrOfConstantCFString(literal);
1971  }
1972}
1973
1974ConstantLValue
1975ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1976  StringRef functionName;
1977  if (auto CGF = Emitter.CGF)
1978    functionName = CGF->CurFn->getName();
1979  else
1980    functionName = "global";
1981
1982  return CGM.GetAddrOfGlobalBlock(E, functionName);
1983}
1984
1985ConstantLValue
1986ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1987  QualType T;
1988  if (E->isTypeOperand())
1989    T = E->getTypeOperand(CGM.getContext());
1990  else
1991    T = E->getExprOperand()->getType();
1992  return CGM.GetAddrOfRTTIDescriptor(T);
1993}
1994
1995ConstantLValue
1996ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1997  return CGM.GetAddrOfUuidDescriptor(E);
1998}
1999
2000ConstantLValue
2001ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2002                                            const MaterializeTemporaryExpr *E) {
2003  assert(E->getStorageDuration() == SD_Static);
2004  SmallVector<const Expr *, 2> CommaLHSs;
2005  SmallVector<SubobjectAdjustment, 2> Adjustments;
2006  const Expr *Inner = E->GetTemporaryExpr()
2007      ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2008  return CGM.GetAddrOfGlobalTemporary(E, Inner);
2009}
2010
2011llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2012                                                QualType DestType) {
2013  switch (Value.getKind()) {
2014  case APValue::None:
2015  case APValue::Indeterminate:
2016    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2017    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2018  case APValue::LValue:
2019    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2020  case APValue::Int:
2021    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2022  case APValue::FixedPoint:
2023    return llvm::ConstantInt::get(CGM.getLLVMContext(),
2024                                  Value.getFixedPoint().getValue());
2025  case APValue::ComplexInt: {
2026    llvm::Constant *Complex[2];
2027
2028    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2029                                        Value.getComplexIntReal());
2030    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2031                                        Value.getComplexIntImag());
2032
2033    // FIXME: the target may want to specify that this is packed.
2034    llvm::StructType *STy =
2035        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2036    return llvm::ConstantStruct::get(STy, Complex);
2037  }
2038  case APValue::Float: {
2039    const llvm::APFloat &Init = Value.getFloat();
2040    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2041        !CGM.getContext().getLangOpts().NativeHalfType &&
2042        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2043      return llvm::ConstantInt::get(CGM.getLLVMContext(),
2044                                    Init.bitcastToAPInt());
2045    else
2046      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2047  }
2048  case APValue::ComplexFloat: {
2049    llvm::Constant *Complex[2];
2050
2051    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2052                                       Value.getComplexFloatReal());
2053    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2054                                       Value.getComplexFloatImag());
2055
2056    // FIXME: the target may want to specify that this is packed.
2057    llvm::StructType *STy =
2058        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2059    return llvm::ConstantStruct::get(STy, Complex);
2060  }
2061  case APValue::Vector: {
2062    unsigned NumElts = Value.getVectorLength();
2063    SmallVector<llvm::Constant *, 4> Inits(NumElts);
2064
2065    for (unsigned I = 0; I != NumElts; ++I) {
2066      const APValue &Elt = Value.getVectorElt(I);
2067      if (Elt.isInt())
2068        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2069      else if (Elt.isFloat())
2070        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2071      else
2072        llvm_unreachable("unsupported vector element type");
2073    }
2074    return llvm::ConstantVector::get(Inits);
2075  }
2076  case APValue::AddrLabelDiff: {
2077    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2078    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2079    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2080    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2081    if (!LHS || !RHS) return nullptr;
2082
2083    // Compute difference
2084    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2085    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2086    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2087    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2088
2089    // LLVM is a bit sensitive about the exact format of the
2090    // address-of-label difference; make sure to truncate after
2091    // the subtraction.
2092    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2093  }
2094  case APValue::Struct:
2095  case APValue::Union:
2096    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2097  case APValue::Array: {
2098    const ConstantArrayType *CAT =
2099        CGM.getContext().getAsConstantArrayType(DestType);
2100    unsigned NumElements = Value.getArraySize();
2101    unsigned NumInitElts = Value.getArrayInitializedElts();
2102
2103    // Emit array filler, if there is one.
2104    llvm::Constant *Filler = nullptr;
2105    if (Value.hasArrayFiller()) {
2106      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2107                                        CAT->getElementType());
2108      if (!Filler)
2109        return nullptr;
2110    }
2111
2112    // Emit initializer elements.
2113    SmallVector<llvm::Constant*, 16> Elts;
2114    if (Filler && Filler->isNullValue())
2115      Elts.reserve(NumInitElts + 1);
2116    else
2117      Elts.reserve(NumElements);
2118
2119    llvm::Type *CommonElementType = nullptr;
2120    for (unsigned I = 0; I < NumInitElts; ++I) {
2121      llvm::Constant *C = tryEmitPrivateForMemory(
2122          Value.getArrayInitializedElt(I), CAT->getElementType());
2123      if (!C) return nullptr;
2124
2125      if (I == 0)
2126        CommonElementType = C->getType();
2127      else if (C->getType() != CommonElementType)
2128        CommonElementType = nullptr;
2129      Elts.push_back(C);
2130    }
2131
2132    // This means that the array type is probably "IncompleteType" or some
2133    // type that is not ConstantArray.
2134    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
2135      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
2136      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
2137      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
2138                                                    NumElements);
2139      return llvm::ConstantAggregateZero::get(AType);
2140    }
2141
2142    llvm::ArrayType *Desired =
2143        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2144    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2145                             Filler);
2146  }
2147  case APValue::MemberPointer:
2148    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2149  }
2150  llvm_unreachable("Unknown APValue kind");
2151}
2152
2153llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2154    const CompoundLiteralExpr *E) {
2155  return EmittedCompoundLiterals.lookup(E);
2156}
2157
2158void CodeGenModule::setAddrOfConstantCompoundLiteral(
2159    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2160  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2161  (void)Ok;
2162  assert(Ok && "CLE has already been emitted!");
2163}
2164
2165ConstantAddress
2166CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2167  assert(E->isFileScope() && "not a file-scope compound literal expr");
2168  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2169}
2170
2171llvm::Constant *
2172CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2173  // Member pointer constants always have a very particular form.
2174  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2175  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2176
2177  // A member function pointer.
2178  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2179    return getCXXABI().EmitMemberFunctionPointer(method);
2180
2181  // Otherwise, a member data pointer.
2182  uint64_t fieldOffset = getContext().getFieldOffset(decl);
2183  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2184  return getCXXABI().EmitMemberDataPointer(type, chars);
2185}
2186
2187static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2188                                               llvm::Type *baseType,
2189                                               const CXXRecordDecl *base);
2190
2191static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2192                                        const RecordDecl *record,
2193                                        bool asCompleteObject) {
2194  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2195  llvm::StructType *structure =
2196    (asCompleteObject ? layout.getLLVMType()
2197                      : layout.getBaseSubobjectLLVMType());
2198
2199  unsigned numElements = structure->getNumElements();
2200  std::vector<llvm::Constant *> elements(numElements);
2201
2202  auto CXXR = dyn_cast<CXXRecordDecl>(record);
2203  // Fill in all the bases.
2204  if (CXXR) {
2205    for (const auto &I : CXXR->bases()) {
2206      if (I.isVirtual()) {
2207        // Ignore virtual bases; if we're laying out for a complete
2208        // object, we'll lay these out later.
2209        continue;
2210      }
2211
2212      const CXXRecordDecl *base =
2213        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2214
2215      // Ignore empty bases.
2216      if (base->isEmpty() ||
2217          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2218              .isZero())
2219        continue;
2220
2221      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2222      llvm::Type *baseType = structure->getElementType(fieldIndex);
2223      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2224    }
2225  }
2226
2227  // Fill in all the fields.
2228  for (const auto *Field : record->fields()) {
2229    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2230    // will fill in later.)
2231    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2232      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2233      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2234    }
2235
2236    // For unions, stop after the first named field.
2237    if (record->isUnion()) {
2238      if (Field->getIdentifier())
2239        break;
2240      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2241        if (FieldRD->findFirstNamedDataMember())
2242          break;
2243    }
2244  }
2245
2246  // Fill in the virtual bases, if we're working with the complete object.
2247  if (CXXR && asCompleteObject) {
2248    for (const auto &I : CXXR->vbases()) {
2249      const CXXRecordDecl *base =
2250        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2251
2252      // Ignore empty bases.
2253      if (base->isEmpty())
2254        continue;
2255
2256      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2257
2258      // We might have already laid this field out.
2259      if (elements[fieldIndex]) continue;
2260
2261      llvm::Type *baseType = structure->getElementType(fieldIndex);
2262      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2263    }
2264  }
2265
2266  // Now go through all other fields and zero them out.
2267  for (unsigned i = 0; i != numElements; ++i) {
2268    if (!elements[i])
2269      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2270  }
2271
2272  return llvm::ConstantStruct::get(structure, elements);
2273}
2274
2275/// Emit the null constant for a base subobject.
2276static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2277                                               llvm::Type *baseType,
2278                                               const CXXRecordDecl *base) {
2279  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2280
2281  // Just zero out bases that don't have any pointer to data members.
2282  if (baseLayout.isZeroInitializableAsBase())
2283    return llvm::Constant::getNullValue(baseType);
2284
2285  // Otherwise, we can just use its null constant.
2286  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2287}
2288
2289llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2290                                                   QualType T) {
2291  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2292}
2293
2294llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2295  if (T->getAs<PointerType>())
2296    return getNullPointer(
2297        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2298
2299  if (getTypes().isZeroInitializable(T))
2300    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2301
2302  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2303    llvm::ArrayType *ATy =
2304      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2305
2306    QualType ElementTy = CAT->getElementType();
2307
2308    llvm::Constant *Element =
2309      ConstantEmitter::emitNullForMemory(*this, ElementTy);
2310    unsigned NumElements = CAT->getSize().getZExtValue();
2311    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2312    return llvm::ConstantArray::get(ATy, Array);
2313  }
2314
2315  if (const RecordType *RT = T->getAs<RecordType>())
2316    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2317
2318  assert(T->isMemberDataPointerType() &&
2319         "Should only see pointers to data members here!");
2320
2321  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2322}
2323
2324llvm::Constant *
2325CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2326  return ::EmitNullConstant(*this, Record, false);
2327}
2328