1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGRecordLayout.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/Sequence.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalVariable.h"
32using namespace clang;
33using namespace CodeGen;
34
35//===----------------------------------------------------------------------===//
36//                            ConstantAggregateBuilder
37//===----------------------------------------------------------------------===//
38
39namespace {
40class ConstExprEmitter;
41
42struct ConstantAggregateBuilderUtils {
43  CodeGenModule &CGM;
44
45  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46
47  CharUnits getAlignment(const llvm::Constant *C) const {
48    return CharUnits::fromQuantity(
49        CGM.getDataLayout().getABITypeAlignment(C->getType()));
50  }
51
52  CharUnits getSize(llvm::Type *Ty) const {
53    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54  }
55
56  CharUnits getSize(const llvm::Constant *C) const {
57    return getSize(C->getType());
58  }
59
60  llvm::Constant *getPadding(CharUnits PadSize) const {
61    llvm::Type *Ty = CGM.Int8Ty;
62    if (PadSize > CharUnits::One())
63      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64    return llvm::UndefValue::get(Ty);
65  }
66
67  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
69    return llvm::ConstantAggregateZero::get(Ty);
70  }
71};
72
73/// Incremental builder for an llvm::Constant* holding a struct or array
74/// constant.
75class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76  /// The elements of the constant. These two arrays must have the same size;
77  /// Offsets[i] describes the offset of Elems[i] within the constant. The
78  /// elements are kept in increasing offset order, and we ensure that there
79  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80  ///
81  /// This may contain explicit padding elements (in order to create a
82  /// natural layout), but need not. Gaps between elements are implicitly
83  /// considered to be filled with undef.
84  llvm::SmallVector<llvm::Constant*, 32> Elems;
85  llvm::SmallVector<CharUnits, 32> Offsets;
86
87  /// The size of the constant (the maximum end offset of any added element).
88  /// May be larger than the end of Elems.back() if we split the last element
89  /// and removed some trailing undefs.
90  CharUnits Size = CharUnits::Zero();
91
92  /// This is true only if laying out Elems in order as the elements of a
93  /// non-packed LLVM struct will give the correct layout.
94  bool NaturalLayout = true;
95
96  bool split(size_t Index, CharUnits Hint);
97  Optional<size_t> splitAt(CharUnits Pos);
98
99  static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                   ArrayRef<llvm::Constant *> Elems,
101                                   ArrayRef<CharUnits> Offsets,
102                                   CharUnits StartOffset, CharUnits Size,
103                                   bool NaturalLayout, llvm::Type *DesiredTy,
104                                   bool AllowOversized);
105
106public:
107  ConstantAggregateBuilder(CodeGenModule &CGM)
108      : ConstantAggregateBuilderUtils(CGM) {}
109
110  /// Update or overwrite the value starting at \p Offset with \c C.
111  ///
112  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113  ///        a constant that has already been added. This flag is only used to
114  ///        detect bugs.
115  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116
117  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119
120  /// Attempt to condense the value starting at \p Offset to a constant of type
121  /// \p DesiredTy.
122  void condense(CharUnits Offset, llvm::Type *DesiredTy);
123
124  /// Produce a constant representing the entire accumulated value, ideally of
125  /// the specified type. If \p AllowOversized, the constant might be larger
126  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128  /// even if we can't represent it as that type.
129  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                     NaturalLayout, DesiredTy, AllowOversized);
132  }
133};
134
135template<typename Container, typename Range = std::initializer_list<
136                                 typename Container::value_type>>
137static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138  assert(BeginOff <= EndOff && "invalid replacement range");
139  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140}
141
142bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                          bool AllowOverwrite) {
144  // Common case: appending to a layout.
145  if (Offset >= Size) {
146    CharUnits Align = getAlignment(C);
147    CharUnits AlignedSize = Size.alignTo(Align);
148    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149      NaturalLayout = false;
150    else if (AlignedSize < Offset) {
151      Elems.push_back(getPadding(Offset - Size));
152      Offsets.push_back(Size);
153    }
154    Elems.push_back(C);
155    Offsets.push_back(Offset);
156    Size = Offset + getSize(C);
157    return true;
158  }
159
160  // Uncommon case: constant overlaps what we've already created.
161  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162  if (!FirstElemToReplace)
163    return false;
164
165  CharUnits CSize = getSize(C);
166  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167  if (!LastElemToReplace)
168    return false;
169
170  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171         "unexpectedly overwriting field");
172
173  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175  Size = std::max(Size, Offset + CSize);
176  NaturalLayout = false;
177  return true;
178}
179
180bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                              bool AllowOverwrite) {
182  const ASTContext &Context = CGM.getContext();
183  const uint64_t CharWidth = CGM.getContext().getCharWidth();
184
185  // Offset of where we want the first bit to go within the bits of the
186  // current char.
187  unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188
189  // We split bit-fields up into individual bytes. Walk over the bytes and
190  // update them.
191  for (CharUnits OffsetInChars =
192           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193       /**/; ++OffsetInChars) {
194    // Number of bits we want to fill in this char.
195    unsigned WantedBits =
196        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197
198    // Get a char containing the bits we want in the right places. The other
199    // bits have unspecified values.
200    llvm::APInt BitsThisChar = Bits;
201    if (BitsThisChar.getBitWidth() < CharWidth)
202      BitsThisChar = BitsThisChar.zext(CharWidth);
203    if (CGM.getDataLayout().isBigEndian()) {
204      // Figure out how much to shift by. We may need to left-shift if we have
205      // less than one byte of Bits left.
206      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207      if (Shift > 0)
208        BitsThisChar.lshrInPlace(Shift);
209      else if (Shift < 0)
210        BitsThisChar = BitsThisChar.shl(-Shift);
211    } else {
212      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213    }
214    if (BitsThisChar.getBitWidth() > CharWidth)
215      BitsThisChar = BitsThisChar.trunc(CharWidth);
216
217    if (WantedBits == CharWidth) {
218      // Got a full byte: just add it directly.
219      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220          OffsetInChars, AllowOverwrite);
221    } else {
222      // Partial byte: update the existing integer if there is one. If we
223      // can't split out a 1-CharUnit range to update, then we can't add
224      // these bits and fail the entire constant emission.
225      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226      if (!FirstElemToUpdate)
227        return false;
228      llvm::Optional<size_t> LastElemToUpdate =
229          splitAt(OffsetInChars + CharUnits::One());
230      if (!LastElemToUpdate)
231        return false;
232      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233             "should have at most one element covering one byte");
234
235      // Figure out which bits we want and discard the rest.
236      llvm::APInt UpdateMask(CharWidth, 0);
237      if (CGM.getDataLayout().isBigEndian())
238        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                           CharWidth - OffsetWithinChar);
240      else
241        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242      BitsThisChar &= UpdateMask;
243
244      if (*FirstElemToUpdate == *LastElemToUpdate ||
245          Elems[*FirstElemToUpdate]->isNullValue() ||
246          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247        // All existing bits are either zero or undef.
248        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249            OffsetInChars, /*AllowOverwrite*/ true);
250      } else {
251        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252        // In order to perform a partial update, we need the existing bitwise
253        // value, which we can only extract for a constant int.
254        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255        if (!CI)
256          return false;
257        // Because this is a 1-CharUnit range, the constant occupying it must
258        // be exactly one CharUnit wide.
259        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261               "unexpectedly overwriting bitfield");
262        BitsThisChar |= (CI->getValue() & ~UpdateMask);
263        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264      }
265    }
266
267    // Stop if we've added all the bits.
268    if (WantedBits == Bits.getBitWidth())
269      break;
270
271    // Remove the consumed bits from Bits.
272    if (!CGM.getDataLayout().isBigEndian())
273      Bits.lshrInPlace(WantedBits);
274    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275
276    // The remanining bits go at the start of the following bytes.
277    OffsetWithinChar = 0;
278  }
279
280  return true;
281}
282
283/// Returns a position within Elems and Offsets such that all elements
284/// before the returned index end before Pos and all elements at or after
285/// the returned index begin at or after Pos. Splits elements as necessary
286/// to ensure this. Returns None if we find something we can't split.
287Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288  if (Pos >= Size)
289    return Offsets.size();
290
291  while (true) {
292    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293    if (FirstAfterPos == Offsets.begin())
294      return 0;
295
296    // If we already have an element starting at Pos, we're done.
297    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298    if (Offsets[LastAtOrBeforePosIndex] == Pos)
299      return LastAtOrBeforePosIndex;
300
301    // We found an element starting before Pos. Check for overlap.
302    if (Offsets[LastAtOrBeforePosIndex] +
303        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304      return LastAtOrBeforePosIndex + 1;
305
306    // Try to decompose it into smaller constants.
307    if (!split(LastAtOrBeforePosIndex, Pos))
308      return None;
309  }
310}
311
312/// Split the constant at index Index, if possible. Return true if we did.
313/// Hint indicates the location at which we'd like to split, but may be
314/// ignored.
315bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316  NaturalLayout = false;
317  llvm::Constant *C = Elems[Index];
318  CharUnits Offset = Offsets[Index];
319
320  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321    replace(Elems, Index, Index + 1,
322            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
323                            [&](unsigned Op) { return CA->getOperand(Op); }));
324    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
325      // Array or vector.
326      CharUnits ElemSize = getSize(Seq->getElementType());
327      replace(
328          Offsets, Index, Index + 1,
329          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
330                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
331    } else {
332      // Must be a struct.
333      auto *ST = cast<llvm::StructType>(CA->getType());
334      const llvm::StructLayout *Layout =
335          CGM.getDataLayout().getStructLayout(ST);
336      replace(Offsets, Index, Index + 1,
337              llvm::map_range(
338                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
339                    return Offset + CharUnits::fromQuantity(
340                                        Layout->getElementOffset(Op));
341                  }));
342    }
343    return true;
344  }
345
346  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
347    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
348    CharUnits ElemSize = getSize(CDS->getElementType());
349    replace(Elems, Index, Index + 1,
350            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
351                            [&](unsigned Elem) {
352                              return CDS->getElementAsConstant(Elem);
353                            }));
354    replace(Offsets, Index, Index + 1,
355            llvm::map_range(
356                llvm::seq(0u, CDS->getNumElements()),
357                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
358    return true;
359  }
360
361  if (isa<llvm::ConstantAggregateZero>(C)) {
362    CharUnits ElemSize = getSize(C);
363    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
364    replace(Elems, Index, Index + 1,
365            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
366    replace(Offsets, Index, Index + 1, {Offset, Hint});
367    return true;
368  }
369
370  if (isa<llvm::UndefValue>(C)) {
371    replace(Elems, Index, Index + 1, {});
372    replace(Offsets, Index, Index + 1, {});
373    return true;
374  }
375
376  // FIXME: We could split a ConstantInt if the need ever arose.
377  // We don't need to do this to handle bit-fields because we always eagerly
378  // split them into 1-byte chunks.
379
380  return false;
381}
382
383static llvm::Constant *
384EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
385                  llvm::Type *CommonElementType, unsigned ArrayBound,
386                  SmallVectorImpl<llvm::Constant *> &Elements,
387                  llvm::Constant *Filler);
388
389llvm::Constant *ConstantAggregateBuilder::buildFrom(
390    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
391    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
392    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
393  ConstantAggregateBuilderUtils Utils(CGM);
394
395  if (Elems.empty())
396    return llvm::UndefValue::get(DesiredTy);
397
398  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
399
400  // If we want an array type, see if all the elements are the same type and
401  // appropriately spaced.
402  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
403    assert(!AllowOversized && "oversized array emission not supported");
404
405    bool CanEmitArray = true;
406    llvm::Type *CommonType = Elems[0]->getType();
407    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
408    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
409    SmallVector<llvm::Constant*, 32> ArrayElements;
410    for (size_t I = 0; I != Elems.size(); ++I) {
411      // Skip zeroes; we'll use a zero value as our array filler.
412      if (Elems[I]->isNullValue())
413        continue;
414
415      // All remaining elements must be the same type.
416      if (Elems[I]->getType() != CommonType ||
417          Offset(I) % ElemSize != 0) {
418        CanEmitArray = false;
419        break;
420      }
421      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
422      ArrayElements.back() = Elems[I];
423    }
424
425    if (CanEmitArray) {
426      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
427                               ArrayElements, Filler);
428    }
429
430    // Can't emit as an array, carry on to emit as a struct.
431  }
432
433  CharUnits DesiredSize = Utils.getSize(DesiredTy);
434  CharUnits Align = CharUnits::One();
435  for (llvm::Constant *C : Elems)
436    Align = std::max(Align, Utils.getAlignment(C));
437  CharUnits AlignedSize = Size.alignTo(Align);
438
439  bool Packed = false;
440  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
441  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
442  if ((DesiredSize < AlignedSize && !AllowOversized) ||
443      DesiredSize.alignTo(Align) != DesiredSize) {
444    // The natural layout would be the wrong size; force use of a packed layout.
445    NaturalLayout = false;
446    Packed = true;
447  } else if (DesiredSize > AlignedSize) {
448    // The constant would be too small. Add padding to fix it.
449    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
450    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
451    UnpackedElems = UnpackedElemStorage;
452  }
453
454  // If we don't have a natural layout, insert padding as necessary.
455  // As we go, double-check to see if we can actually just emit Elems
456  // as a non-packed struct and do so opportunistically if possible.
457  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
458  if (!NaturalLayout) {
459    CharUnits SizeSoFar = CharUnits::Zero();
460    for (size_t I = 0; I != Elems.size(); ++I) {
461      CharUnits Align = Utils.getAlignment(Elems[I]);
462      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
463      CharUnits DesiredOffset = Offset(I);
464      assert(DesiredOffset >= SizeSoFar && "elements out of order");
465
466      if (DesiredOffset != NaturalOffset)
467        Packed = true;
468      if (DesiredOffset != SizeSoFar)
469        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
470      PackedElems.push_back(Elems[I]);
471      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
472    }
473    // If we're using the packed layout, pad it out to the desired size if
474    // necessary.
475    if (Packed) {
476      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
477             "requested size is too small for contents");
478      if (SizeSoFar < DesiredSize)
479        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
480    }
481  }
482
483  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
484      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
485
486  // Pick the type to use.  If the type is layout identical to the desired
487  // type then use it, otherwise use whatever the builder produced for us.
488  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
489    if (DesiredSTy->isLayoutIdentical(STy))
490      STy = DesiredSTy;
491  }
492
493  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
494}
495
496void ConstantAggregateBuilder::condense(CharUnits Offset,
497                                        llvm::Type *DesiredTy) {
498  CharUnits Size = getSize(DesiredTy);
499
500  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
501  if (!FirstElemToReplace)
502    return;
503  size_t First = *FirstElemToReplace;
504
505  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
506  if (!LastElemToReplace)
507    return;
508  size_t Last = *LastElemToReplace;
509
510  size_t Length = Last - First;
511  if (Length == 0)
512    return;
513
514  if (Length == 1 && Offsets[First] == Offset &&
515      getSize(Elems[First]) == Size) {
516    // Re-wrap single element structs if necessary. Otherwise, leave any single
517    // element constant of the right size alone even if it has the wrong type.
518    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
519    if (STy && STy->getNumElements() == 1 &&
520        STy->getElementType(0) == Elems[First]->getType())
521      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
522    return;
523  }
524
525  llvm::Constant *Replacement = buildFrom(
526      CGM, makeArrayRef(Elems).slice(First, Length),
527      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
528      /*known to have natural layout=*/false, DesiredTy, false);
529  replace(Elems, First, Last, {Replacement});
530  replace(Offsets, First, Last, {Offset});
531}
532
533//===----------------------------------------------------------------------===//
534//                            ConstStructBuilder
535//===----------------------------------------------------------------------===//
536
537class ConstStructBuilder {
538  CodeGenModule &CGM;
539  ConstantEmitter &Emitter;
540  ConstantAggregateBuilder &Builder;
541  CharUnits StartOffset;
542
543public:
544  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
545                                     InitListExpr *ILE, QualType StructTy);
546  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
547                                     const APValue &Value, QualType ValTy);
548  static bool UpdateStruct(ConstantEmitter &Emitter,
549                           ConstantAggregateBuilder &Const, CharUnits Offset,
550                           InitListExpr *Updater);
551
552private:
553  ConstStructBuilder(ConstantEmitter &Emitter,
554                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
555      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
556        StartOffset(StartOffset) {}
557
558  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
559                   llvm::Constant *InitExpr, bool AllowOverwrite = false);
560
561  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
562                   bool AllowOverwrite = false);
563
564  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
565                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
566
567  bool Build(InitListExpr *ILE, bool AllowOverwrite);
568  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
569             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
570  llvm::Constant *Finalize(QualType Ty);
571};
572
573bool ConstStructBuilder::AppendField(
574    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
575    bool AllowOverwrite) {
576  const ASTContext &Context = CGM.getContext();
577
578  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
579
580  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
581}
582
583bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
584                                     llvm::Constant *InitCst,
585                                     bool AllowOverwrite) {
586  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
587}
588
589bool ConstStructBuilder::AppendBitField(
590    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
591    bool AllowOverwrite) {
592  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
593  llvm::APInt FieldValue = CI->getValue();
594
595  // Promote the size of FieldValue if necessary
596  // FIXME: This should never occur, but currently it can because initializer
597  // constants are cast to bool, and because clang is not enforcing bitfield
598  // width limits.
599  if (FieldSize > FieldValue.getBitWidth())
600    FieldValue = FieldValue.zext(FieldSize);
601
602  // Truncate the size of FieldValue to the bit field size.
603  if (FieldSize < FieldValue.getBitWidth())
604    FieldValue = FieldValue.trunc(FieldSize);
605
606  return Builder.addBits(FieldValue,
607                         CGM.getContext().toBits(StartOffset) + FieldOffset,
608                         AllowOverwrite);
609}
610
611static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
612                                      ConstantAggregateBuilder &Const,
613                                      CharUnits Offset, QualType Type,
614                                      InitListExpr *Updater) {
615  if (Type->isRecordType())
616    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
617
618  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
619  if (!CAT)
620    return false;
621  QualType ElemType = CAT->getElementType();
622  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
623  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
624
625  llvm::Constant *FillC = nullptr;
626  if (Expr *Filler = Updater->getArrayFiller()) {
627    if (!isa<NoInitExpr>(Filler)) {
628      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
629      if (!FillC)
630        return false;
631    }
632  }
633
634  unsigned NumElementsToUpdate =
635      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
636  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
637    Expr *Init = nullptr;
638    if (I < Updater->getNumInits())
639      Init = Updater->getInit(I);
640
641    if (!Init && FillC) {
642      if (!Const.add(FillC, Offset, true))
643        return false;
644    } else if (!Init || isa<NoInitExpr>(Init)) {
645      continue;
646    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
647      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
648                                     ChildILE))
649        return false;
650      // Attempt to reduce the array element to a single constant if necessary.
651      Const.condense(Offset, ElemTy);
652    } else {
653      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
654      if (!Const.add(Val, Offset, true))
655        return false;
656    }
657  }
658
659  return true;
660}
661
662bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
663  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
664  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
665
666  unsigned FieldNo = -1;
667  unsigned ElementNo = 0;
668
669  // Bail out if we have base classes. We could support these, but they only
670  // arise in C++1z where we will have already constant folded most interesting
671  // cases. FIXME: There are still a few more cases we can handle this way.
672  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
673    if (CXXRD->getNumBases())
674      return false;
675
676  for (FieldDecl *Field : RD->fields()) {
677    ++FieldNo;
678
679    // If this is a union, skip all the fields that aren't being initialized.
680    if (RD->isUnion() &&
681        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
682      continue;
683
684    // Don't emit anonymous bitfields or zero-sized fields.
685    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
686      continue;
687
688    // Get the initializer.  A struct can include fields without initializers,
689    // we just use explicit null values for them.
690    Expr *Init = nullptr;
691    if (ElementNo < ILE->getNumInits())
692      Init = ILE->getInit(ElementNo++);
693    if (Init && isa<NoInitExpr>(Init))
694      continue;
695
696    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
697    // represents additional overwriting of our current constant value, and not
698    // a new constant to emit independently.
699    if (AllowOverwrite &&
700        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
701      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
702        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
703            Layout.getFieldOffset(FieldNo));
704        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
705                                       Field->getType(), SubILE))
706          return false;
707        // If we split apart the field's value, try to collapse it down to a
708        // single value now.
709        Builder.condense(StartOffset + Offset,
710                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
711        continue;
712      }
713    }
714
715    llvm::Constant *EltInit =
716        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
717             : Emitter.emitNullForMemory(Field->getType());
718    if (!EltInit)
719      return false;
720
721    if (!Field->isBitField()) {
722      // Handle non-bitfield members.
723      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
724                       AllowOverwrite))
725        return false;
726      // After emitting a non-empty field with [[no_unique_address]], we may
727      // need to overwrite its tail padding.
728      if (Field->hasAttr<NoUniqueAddressAttr>())
729        AllowOverwrite = true;
730    } else {
731      // Otherwise we have a bitfield.
732      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
733        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
734                            AllowOverwrite))
735          return false;
736      } else {
737        // We are trying to initialize a bitfield with a non-trivial constant,
738        // this must require run-time code.
739        return false;
740      }
741    }
742  }
743
744  return true;
745}
746
747namespace {
748struct BaseInfo {
749  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
750    : Decl(Decl), Offset(Offset), Index(Index) {
751  }
752
753  const CXXRecordDecl *Decl;
754  CharUnits Offset;
755  unsigned Index;
756
757  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
758};
759}
760
761bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
762                               bool IsPrimaryBase,
763                               const CXXRecordDecl *VTableClass,
764                               CharUnits Offset) {
765  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
766
767  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
768    // Add a vtable pointer, if we need one and it hasn't already been added.
769    if (CD->isDynamicClass() && !IsPrimaryBase) {
770      llvm::Constant *VTableAddressPoint =
771          CGM.getCXXABI().getVTableAddressPointForConstExpr(
772              BaseSubobject(CD, Offset), VTableClass);
773      if (!AppendBytes(Offset, VTableAddressPoint))
774        return false;
775    }
776
777    // Accumulate and sort bases, in order to visit them in address order, which
778    // may not be the same as declaration order.
779    SmallVector<BaseInfo, 8> Bases;
780    Bases.reserve(CD->getNumBases());
781    unsigned BaseNo = 0;
782    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
783         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
784      assert(!Base->isVirtual() && "should not have virtual bases here");
785      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
786      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
787      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
788    }
789    llvm::stable_sort(Bases);
790
791    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
792      BaseInfo &Base = Bases[I];
793
794      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
795      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
796            VTableClass, Offset + Base.Offset);
797    }
798  }
799
800  unsigned FieldNo = 0;
801  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
802
803  bool AllowOverwrite = false;
804  for (RecordDecl::field_iterator Field = RD->field_begin(),
805       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
806    // If this is a union, skip all the fields that aren't being initialized.
807    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
808      continue;
809
810    // Don't emit anonymous bitfields or zero-sized fields.
811    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
812      continue;
813
814    // Emit the value of the initializer.
815    const APValue &FieldValue =
816      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
817    llvm::Constant *EltInit =
818      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
819    if (!EltInit)
820      return false;
821
822    if (!Field->isBitField()) {
823      // Handle non-bitfield members.
824      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
825                       EltInit, AllowOverwrite))
826        return false;
827      // After emitting a non-empty field with [[no_unique_address]], we may
828      // need to overwrite its tail padding.
829      if (Field->hasAttr<NoUniqueAddressAttr>())
830        AllowOverwrite = true;
831    } else {
832      // Otherwise we have a bitfield.
833      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
834                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
835        return false;
836    }
837  }
838
839  return true;
840}
841
842llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
843  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
844  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
845  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
846}
847
848llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
849                                                InitListExpr *ILE,
850                                                QualType ValTy) {
851  ConstantAggregateBuilder Const(Emitter.CGM);
852  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
853
854  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
855    return nullptr;
856
857  return Builder.Finalize(ValTy);
858}
859
860llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
861                                                const APValue &Val,
862                                                QualType ValTy) {
863  ConstantAggregateBuilder Const(Emitter.CGM);
864  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
865
866  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
867  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
868  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
869    return nullptr;
870
871  return Builder.Finalize(ValTy);
872}
873
874bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
875                                      ConstantAggregateBuilder &Const,
876                                      CharUnits Offset, InitListExpr *Updater) {
877  return ConstStructBuilder(Emitter, Const, Offset)
878      .Build(Updater, /*AllowOverwrite*/ true);
879}
880
881//===----------------------------------------------------------------------===//
882//                             ConstExprEmitter
883//===----------------------------------------------------------------------===//
884
885static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
886                                                    CodeGenFunction *CGF,
887                                              const CompoundLiteralExpr *E) {
888  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
889  if (llvm::GlobalVariable *Addr =
890          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
891    return ConstantAddress(Addr, Align);
892
893  LangAS addressSpace = E->getType().getAddressSpace();
894
895  ConstantEmitter emitter(CGM, CGF);
896  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
897                                                    addressSpace, E->getType());
898  if (!C) {
899    assert(!E->isFileScope() &&
900           "file-scope compound literal did not have constant initializer!");
901    return ConstantAddress::invalid();
902  }
903
904  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
905                                     CGM.isTypeConstant(E->getType(), true),
906                                     llvm::GlobalValue::InternalLinkage,
907                                     C, ".compoundliteral", nullptr,
908                                     llvm::GlobalVariable::NotThreadLocal,
909                    CGM.getContext().getTargetAddressSpace(addressSpace));
910  emitter.finalize(GV);
911  GV->setAlignment(Align.getAsAlign());
912  CGM.setAddrOfConstantCompoundLiteral(E, GV);
913  return ConstantAddress(GV, Align);
914}
915
916static llvm::Constant *
917EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
918                  llvm::Type *CommonElementType, unsigned ArrayBound,
919                  SmallVectorImpl<llvm::Constant *> &Elements,
920                  llvm::Constant *Filler) {
921  // Figure out how long the initial prefix of non-zero elements is.
922  unsigned NonzeroLength = ArrayBound;
923  if (Elements.size() < NonzeroLength && Filler->isNullValue())
924    NonzeroLength = Elements.size();
925  if (NonzeroLength == Elements.size()) {
926    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
927      --NonzeroLength;
928  }
929
930  if (NonzeroLength == 0)
931    return llvm::ConstantAggregateZero::get(DesiredType);
932
933  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
934  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
935  if (TrailingZeroes >= 8) {
936    assert(Elements.size() >= NonzeroLength &&
937           "missing initializer for non-zero element");
938
939    // If all the elements had the same type up to the trailing zeroes, emit a
940    // struct of two arrays (the nonzero data and the zeroinitializer).
941    if (CommonElementType && NonzeroLength >= 8) {
942      llvm::Constant *Initial = llvm::ConstantArray::get(
943          llvm::ArrayType::get(CommonElementType, NonzeroLength),
944          makeArrayRef(Elements).take_front(NonzeroLength));
945      Elements.resize(2);
946      Elements[0] = Initial;
947    } else {
948      Elements.resize(NonzeroLength + 1);
949    }
950
951    auto *FillerType =
952        CommonElementType ? CommonElementType : DesiredType->getElementType();
953    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
954    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
955    CommonElementType = nullptr;
956  } else if (Elements.size() != ArrayBound) {
957    // Otherwise pad to the right size with the filler if necessary.
958    Elements.resize(ArrayBound, Filler);
959    if (Filler->getType() != CommonElementType)
960      CommonElementType = nullptr;
961  }
962
963  // If all elements have the same type, just emit an array constant.
964  if (CommonElementType)
965    return llvm::ConstantArray::get(
966        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
967
968  // We have mixed types. Use a packed struct.
969  llvm::SmallVector<llvm::Type *, 16> Types;
970  Types.reserve(Elements.size());
971  for (llvm::Constant *Elt : Elements)
972    Types.push_back(Elt->getType());
973  llvm::StructType *SType =
974      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
975  return llvm::ConstantStruct::get(SType, Elements);
976}
977
978// This class only needs to handle arrays, structs and unions. Outside C++11
979// mode, we don't currently constant fold those types.  All other types are
980// handled by constant folding.
981//
982// Constant folding is currently missing support for a few features supported
983// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
984class ConstExprEmitter :
985  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
986  CodeGenModule &CGM;
987  ConstantEmitter &Emitter;
988  llvm::LLVMContext &VMContext;
989public:
990  ConstExprEmitter(ConstantEmitter &emitter)
991    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
992  }
993
994  //===--------------------------------------------------------------------===//
995  //                            Visitor Methods
996  //===--------------------------------------------------------------------===//
997
998  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
999    return nullptr;
1000  }
1001
1002  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1003    return Visit(CE->getSubExpr(), T);
1004  }
1005
1006  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1007    return Visit(PE->getSubExpr(), T);
1008  }
1009
1010  llvm::Constant *
1011  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1012                                    QualType T) {
1013    return Visit(PE->getReplacement(), T);
1014  }
1015
1016  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1017                                            QualType T) {
1018    return Visit(GE->getResultExpr(), T);
1019  }
1020
1021  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1022    return Visit(CE->getChosenSubExpr(), T);
1023  }
1024
1025  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1026    return Visit(E->getInitializer(), T);
1027  }
1028
1029  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1030    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1031      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1032    Expr *subExpr = E->getSubExpr();
1033
1034    switch (E->getCastKind()) {
1035    case CK_ToUnion: {
1036      // GCC cast to union extension
1037      assert(E->getType()->isUnionType() &&
1038             "Destination type is not union type!");
1039
1040      auto field = E->getTargetUnionField();
1041
1042      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1043      if (!C) return nullptr;
1044
1045      auto destTy = ConvertType(destType);
1046      if (C->getType() == destTy) return C;
1047
1048      // Build a struct with the union sub-element as the first member,
1049      // and padded to the appropriate size.
1050      SmallVector<llvm::Constant*, 2> Elts;
1051      SmallVector<llvm::Type*, 2> Types;
1052      Elts.push_back(C);
1053      Types.push_back(C->getType());
1054      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1055      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1056
1057      assert(CurSize <= TotalSize && "Union size mismatch!");
1058      if (unsigned NumPadBytes = TotalSize - CurSize) {
1059        llvm::Type *Ty = CGM.Int8Ty;
1060        if (NumPadBytes > 1)
1061          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1062
1063        Elts.push_back(llvm::UndefValue::get(Ty));
1064        Types.push_back(Ty);
1065      }
1066
1067      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1068      return llvm::ConstantStruct::get(STy, Elts);
1069    }
1070
1071    case CK_AddressSpaceConversion: {
1072      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1073      if (!C) return nullptr;
1074      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1075      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1076      llvm::Type *destTy = ConvertType(E->getType());
1077      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1078                                                             destAS, destTy);
1079    }
1080
1081    case CK_LValueToRValue:
1082    case CK_AtomicToNonAtomic:
1083    case CK_NonAtomicToAtomic:
1084    case CK_NoOp:
1085    case CK_ConstructorConversion:
1086      return Visit(subExpr, destType);
1087
1088    case CK_IntToOCLSampler:
1089      llvm_unreachable("global sampler variables are not generated");
1090
1091    case CK_Dependent: llvm_unreachable("saw dependent cast!");
1092
1093    case CK_BuiltinFnToFnPtr:
1094      llvm_unreachable("builtin functions are handled elsewhere");
1095
1096    case CK_ReinterpretMemberPointer:
1097    case CK_DerivedToBaseMemberPointer:
1098    case CK_BaseToDerivedMemberPointer: {
1099      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1100      if (!C) return nullptr;
1101      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1102    }
1103
1104    // These will never be supported.
1105    case CK_ObjCObjectLValueCast:
1106    case CK_ARCProduceObject:
1107    case CK_ARCConsumeObject:
1108    case CK_ARCReclaimReturnedObject:
1109    case CK_ARCExtendBlockObject:
1110    case CK_CopyAndAutoreleaseBlockObject:
1111      return nullptr;
1112
1113    // These don't need to be handled here because Evaluate knows how to
1114    // evaluate them in the cases where they can be folded.
1115    case CK_BitCast:
1116    case CK_ToVoid:
1117    case CK_Dynamic:
1118    case CK_LValueBitCast:
1119    case CK_LValueToRValueBitCast:
1120    case CK_NullToMemberPointer:
1121    case CK_UserDefinedConversion:
1122    case CK_CPointerToObjCPointerCast:
1123    case CK_BlockPointerToObjCPointerCast:
1124    case CK_AnyPointerToBlockPointerCast:
1125    case CK_ArrayToPointerDecay:
1126    case CK_FunctionToPointerDecay:
1127    case CK_BaseToDerived:
1128    case CK_DerivedToBase:
1129    case CK_UncheckedDerivedToBase:
1130    case CK_MemberPointerToBoolean:
1131    case CK_VectorSplat:
1132    case CK_FloatingRealToComplex:
1133    case CK_FloatingComplexToReal:
1134    case CK_FloatingComplexToBoolean:
1135    case CK_FloatingComplexCast:
1136    case CK_FloatingComplexToIntegralComplex:
1137    case CK_IntegralRealToComplex:
1138    case CK_IntegralComplexToReal:
1139    case CK_IntegralComplexToBoolean:
1140    case CK_IntegralComplexCast:
1141    case CK_IntegralComplexToFloatingComplex:
1142    case CK_PointerToIntegral:
1143    case CK_PointerToBoolean:
1144    case CK_NullToPointer:
1145    case CK_IntegralCast:
1146    case CK_BooleanToSignedIntegral:
1147    case CK_IntegralToPointer:
1148    case CK_IntegralToBoolean:
1149    case CK_IntegralToFloating:
1150    case CK_FloatingToIntegral:
1151    case CK_FloatingToBoolean:
1152    case CK_FloatingCast:
1153    case CK_FixedPointCast:
1154    case CK_FixedPointToBoolean:
1155    case CK_FixedPointToIntegral:
1156    case CK_IntegralToFixedPoint:
1157    case CK_ZeroToOCLOpaqueType:
1158      return nullptr;
1159    }
1160    llvm_unreachable("Invalid CastKind");
1161  }
1162
1163  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1164    // No need for a DefaultInitExprScope: we don't handle 'this' in a
1165    // constant expression.
1166    return Visit(DIE->getExpr(), T);
1167  }
1168
1169  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1170    if (!E->cleanupsHaveSideEffects())
1171      return Visit(E->getSubExpr(), T);
1172    return nullptr;
1173  }
1174
1175  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1176                                                QualType T) {
1177    return Visit(E->getSubExpr(), T);
1178  }
1179
1180  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1181    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1182    assert(CAT && "can't emit array init for non-constant-bound array");
1183    unsigned NumInitElements = ILE->getNumInits();
1184    unsigned NumElements = CAT->getSize().getZExtValue();
1185
1186    // Initialising an array requires us to automatically
1187    // initialise any elements that have not been initialised explicitly
1188    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1189
1190    QualType EltType = CAT->getElementType();
1191
1192    // Initialize remaining array elements.
1193    llvm::Constant *fillC = nullptr;
1194    if (Expr *filler = ILE->getArrayFiller()) {
1195      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1196      if (!fillC)
1197        return nullptr;
1198    }
1199
1200    // Copy initializer elements.
1201    SmallVector<llvm::Constant*, 16> Elts;
1202    if (fillC && fillC->isNullValue())
1203      Elts.reserve(NumInitableElts + 1);
1204    else
1205      Elts.reserve(NumElements);
1206
1207    llvm::Type *CommonElementType = nullptr;
1208    for (unsigned i = 0; i < NumInitableElts; ++i) {
1209      Expr *Init = ILE->getInit(i);
1210      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1211      if (!C)
1212        return nullptr;
1213      if (i == 0)
1214        CommonElementType = C->getType();
1215      else if (C->getType() != CommonElementType)
1216        CommonElementType = nullptr;
1217      Elts.push_back(C);
1218    }
1219
1220    llvm::ArrayType *Desired =
1221        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1222    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1223                             fillC);
1224  }
1225
1226  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1227    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1228  }
1229
1230  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1231                                             QualType T) {
1232    return CGM.EmitNullConstant(T);
1233  }
1234
1235  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1236    if (ILE->isTransparent())
1237      return Visit(ILE->getInit(0), T);
1238
1239    if (ILE->getType()->isArrayType())
1240      return EmitArrayInitialization(ILE, T);
1241
1242    if (ILE->getType()->isRecordType())
1243      return EmitRecordInitialization(ILE, T);
1244
1245    return nullptr;
1246  }
1247
1248  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1249                                                QualType destType) {
1250    auto C = Visit(E->getBase(), destType);
1251    if (!C)
1252      return nullptr;
1253
1254    ConstantAggregateBuilder Const(CGM);
1255    Const.add(C, CharUnits::Zero(), false);
1256
1257    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1258                                   E->getUpdater()))
1259      return nullptr;
1260
1261    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1262    bool HasFlexibleArray = false;
1263    if (auto *RT = destType->getAs<RecordType>())
1264      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1265    return Const.build(ValTy, HasFlexibleArray);
1266  }
1267
1268  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1269    if (!E->getConstructor()->isTrivial())
1270      return nullptr;
1271
1272    // FIXME: We should not have to call getBaseElementType here.
1273    const auto *RT =
1274        CGM.getContext().getBaseElementType(Ty)->castAs<RecordType>();
1275    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1276
1277    // If the class doesn't have a trivial destructor, we can't emit it as a
1278    // constant expr.
1279    if (!RD->hasTrivialDestructor())
1280      return nullptr;
1281
1282    // Only copy and default constructors can be trivial.
1283
1284
1285    if (E->getNumArgs()) {
1286      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1287      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1288             "trivial ctor has argument but isn't a copy/move ctor");
1289
1290      Expr *Arg = E->getArg(0);
1291      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1292             "argument to copy ctor is of wrong type");
1293
1294      return Visit(Arg, Ty);
1295    }
1296
1297    return CGM.EmitNullConstant(Ty);
1298  }
1299
1300  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1301    // This is a string literal initializing an array in an initializer.
1302    return CGM.GetConstantArrayFromStringLiteral(E);
1303  }
1304
1305  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1306    // This must be an @encode initializing an array in a static initializer.
1307    // Don't emit it as the address of the string, emit the string data itself
1308    // as an inline array.
1309    std::string Str;
1310    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1311    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1312
1313    // Resize the string to the right size, adding zeros at the end, or
1314    // truncating as needed.
1315    Str.resize(CAT->getSize().getZExtValue(), '\0');
1316    return llvm::ConstantDataArray::getString(VMContext, Str, false);
1317  }
1318
1319  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1320    return Visit(E->getSubExpr(), T);
1321  }
1322
1323  // Utility methods
1324  llvm::Type *ConvertType(QualType T) {
1325    return CGM.getTypes().ConvertType(T);
1326  }
1327};
1328
1329}  // end anonymous namespace.
1330
1331llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1332                                                        AbstractState saved) {
1333  Abstract = saved.OldValue;
1334
1335  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1336         "created a placeholder while doing an abstract emission?");
1337
1338  // No validation necessary for now.
1339  // No cleanup to do for now.
1340  return C;
1341}
1342
1343llvm::Constant *
1344ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1345  auto state = pushAbstract();
1346  auto C = tryEmitPrivateForVarInit(D);
1347  return validateAndPopAbstract(C, state);
1348}
1349
1350llvm::Constant *
1351ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1352  auto state = pushAbstract();
1353  auto C = tryEmitPrivate(E, destType);
1354  return validateAndPopAbstract(C, state);
1355}
1356
1357llvm::Constant *
1358ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1359  auto state = pushAbstract();
1360  auto C = tryEmitPrivate(value, destType);
1361  return validateAndPopAbstract(C, state);
1362}
1363
1364llvm::Constant *
1365ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1366  auto state = pushAbstract();
1367  auto C = tryEmitPrivate(E, destType);
1368  C = validateAndPopAbstract(C, state);
1369  if (!C) {
1370    CGM.Error(E->getExprLoc(),
1371              "internal error: could not emit constant value \"abstractly\"");
1372    C = CGM.EmitNullConstant(destType);
1373  }
1374  return C;
1375}
1376
1377llvm::Constant *
1378ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1379                              QualType destType) {
1380  auto state = pushAbstract();
1381  auto C = tryEmitPrivate(value, destType);
1382  C = validateAndPopAbstract(C, state);
1383  if (!C) {
1384    CGM.Error(loc,
1385              "internal error: could not emit constant value \"abstractly\"");
1386    C = CGM.EmitNullConstant(destType);
1387  }
1388  return C;
1389}
1390
1391llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1392  initializeNonAbstract(D.getType().getAddressSpace());
1393  return markIfFailed(tryEmitPrivateForVarInit(D));
1394}
1395
1396llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1397                                                       LangAS destAddrSpace,
1398                                                       QualType destType) {
1399  initializeNonAbstract(destAddrSpace);
1400  return markIfFailed(tryEmitPrivateForMemory(E, destType));
1401}
1402
1403llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1404                                                    LangAS destAddrSpace,
1405                                                    QualType destType) {
1406  initializeNonAbstract(destAddrSpace);
1407  auto C = tryEmitPrivateForMemory(value, destType);
1408  assert(C && "couldn't emit constant value non-abstractly?");
1409  return C;
1410}
1411
1412llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1413  assert(!Abstract && "cannot get current address for abstract constant");
1414
1415
1416
1417  // Make an obviously ill-formed global that should blow up compilation
1418  // if it survives.
1419  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1420                                         llvm::GlobalValue::PrivateLinkage,
1421                                         /*init*/ nullptr,
1422                                         /*name*/ "",
1423                                         /*before*/ nullptr,
1424                                         llvm::GlobalVariable::NotThreadLocal,
1425                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1426
1427  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1428
1429  return global;
1430}
1431
1432void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1433                                           llvm::GlobalValue *placeholder) {
1434  assert(!PlaceholderAddresses.empty());
1435  assert(PlaceholderAddresses.back().first == nullptr);
1436  assert(PlaceholderAddresses.back().second == placeholder);
1437  PlaceholderAddresses.back().first = signal;
1438}
1439
1440namespace {
1441  struct ReplacePlaceholders {
1442    CodeGenModule &CGM;
1443
1444    /// The base address of the global.
1445    llvm::Constant *Base;
1446    llvm::Type *BaseValueTy = nullptr;
1447
1448    /// The placeholder addresses that were registered during emission.
1449    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1450
1451    /// The locations of the placeholder signals.
1452    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1453
1454    /// The current index stack.  We use a simple unsigned stack because
1455    /// we assume that placeholders will be relatively sparse in the
1456    /// initializer, but we cache the index values we find just in case.
1457    llvm::SmallVector<unsigned, 8> Indices;
1458    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1459
1460    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1461                        ArrayRef<std::pair<llvm::Constant*,
1462                                           llvm::GlobalVariable*>> addresses)
1463        : CGM(CGM), Base(base),
1464          PlaceholderAddresses(addresses.begin(), addresses.end()) {
1465    }
1466
1467    void replaceInInitializer(llvm::Constant *init) {
1468      // Remember the type of the top-most initializer.
1469      BaseValueTy = init->getType();
1470
1471      // Initialize the stack.
1472      Indices.push_back(0);
1473      IndexValues.push_back(nullptr);
1474
1475      // Recurse into the initializer.
1476      findLocations(init);
1477
1478      // Check invariants.
1479      assert(IndexValues.size() == Indices.size() && "mismatch");
1480      assert(Indices.size() == 1 && "didn't pop all indices");
1481
1482      // Do the replacement; this basically invalidates 'init'.
1483      assert(Locations.size() == PlaceholderAddresses.size() &&
1484             "missed a placeholder?");
1485
1486      // We're iterating over a hashtable, so this would be a source of
1487      // non-determinism in compiler output *except* that we're just
1488      // messing around with llvm::Constant structures, which never itself
1489      // does anything that should be visible in compiler output.
1490      for (auto &entry : Locations) {
1491        assert(entry.first->getParent() == nullptr && "not a placeholder!");
1492        entry.first->replaceAllUsesWith(entry.second);
1493        entry.first->eraseFromParent();
1494      }
1495    }
1496
1497  private:
1498    void findLocations(llvm::Constant *init) {
1499      // Recurse into aggregates.
1500      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1501        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1502          Indices.push_back(i);
1503          IndexValues.push_back(nullptr);
1504
1505          findLocations(agg->getOperand(i));
1506
1507          IndexValues.pop_back();
1508          Indices.pop_back();
1509        }
1510        return;
1511      }
1512
1513      // Otherwise, check for registered constants.
1514      while (true) {
1515        auto it = PlaceholderAddresses.find(init);
1516        if (it != PlaceholderAddresses.end()) {
1517          setLocation(it->second);
1518          break;
1519        }
1520
1521        // Look through bitcasts or other expressions.
1522        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1523          init = expr->getOperand(0);
1524        } else {
1525          break;
1526        }
1527      }
1528    }
1529
1530    void setLocation(llvm::GlobalVariable *placeholder) {
1531      assert(Locations.find(placeholder) == Locations.end() &&
1532             "already found location for placeholder!");
1533
1534      // Lazily fill in IndexValues with the values from Indices.
1535      // We do this in reverse because we should always have a strict
1536      // prefix of indices from the start.
1537      assert(Indices.size() == IndexValues.size());
1538      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1539        if (IndexValues[i]) {
1540#ifndef NDEBUG
1541          for (size_t j = 0; j != i + 1; ++j) {
1542            assert(IndexValues[j] &&
1543                   isa<llvm::ConstantInt>(IndexValues[j]) &&
1544                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1545                     == Indices[j]);
1546          }
1547#endif
1548          break;
1549        }
1550
1551        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1552      }
1553
1554      // Form a GEP and then bitcast to the placeholder type so that the
1555      // replacement will succeed.
1556      llvm::Constant *location =
1557        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1558                                                     Base, IndexValues);
1559      location = llvm::ConstantExpr::getBitCast(location,
1560                                                placeholder->getType());
1561
1562      Locations.insert({placeholder, location});
1563    }
1564  };
1565}
1566
1567void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1568  assert(InitializedNonAbstract &&
1569         "finalizing emitter that was used for abstract emission?");
1570  assert(!Finalized && "finalizing emitter multiple times");
1571  assert(global->getInitializer());
1572
1573  // Note that we might also be Failed.
1574  Finalized = true;
1575
1576  if (!PlaceholderAddresses.empty()) {
1577    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1578      .replaceInInitializer(global->getInitializer());
1579    PlaceholderAddresses.clear(); // satisfy
1580  }
1581}
1582
1583ConstantEmitter::~ConstantEmitter() {
1584  assert((!InitializedNonAbstract || Finalized || Failed) &&
1585         "not finalized after being initialized for non-abstract emission");
1586  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1587}
1588
1589static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1590  if (auto AT = type->getAs<AtomicType>()) {
1591    return CGM.getContext().getQualifiedType(AT->getValueType(),
1592                                             type.getQualifiers());
1593  }
1594  return type;
1595}
1596
1597llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1598  // Make a quick check if variable can be default NULL initialized
1599  // and avoid going through rest of code which may do, for c++11,
1600  // initialization of memory to all NULLs.
1601  if (!D.hasLocalStorage()) {
1602    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1603    if (Ty->isRecordType())
1604      if (const CXXConstructExpr *E =
1605          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1606        const CXXConstructorDecl *CD = E->getConstructor();
1607        if (CD->isTrivial() && CD->isDefaultConstructor())
1608          return CGM.EmitNullConstant(D.getType());
1609      }
1610    InConstantContext = true;
1611  }
1612
1613  QualType destType = D.getType();
1614
1615  // Try to emit the initializer.  Note that this can allow some things that
1616  // are not allowed by tryEmitPrivateForMemory alone.
1617  if (auto value = D.evaluateValue()) {
1618    return tryEmitPrivateForMemory(*value, destType);
1619  }
1620
1621  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1622  // reference is a constant expression, and the reference binds to a temporary,
1623  // then constant initialization is performed. ConstExprEmitter will
1624  // incorrectly emit a prvalue constant in this case, and the calling code
1625  // interprets that as the (pointer) value of the reference, rather than the
1626  // desired value of the referee.
1627  if (destType->isReferenceType())
1628    return nullptr;
1629
1630  const Expr *E = D.getInit();
1631  assert(E && "No initializer to emit");
1632
1633  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1634  auto C =
1635    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1636  return (C ? emitForMemory(C, destType) : nullptr);
1637}
1638
1639llvm::Constant *
1640ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1641  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1642  auto C = tryEmitAbstract(E, nonMemoryDestType);
1643  return (C ? emitForMemory(C, destType) : nullptr);
1644}
1645
1646llvm::Constant *
1647ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1648                                          QualType destType) {
1649  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1650  auto C = tryEmitAbstract(value, nonMemoryDestType);
1651  return (C ? emitForMemory(C, destType) : nullptr);
1652}
1653
1654llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1655                                                         QualType destType) {
1656  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1657  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1658  return (C ? emitForMemory(C, destType) : nullptr);
1659}
1660
1661llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1662                                                         QualType destType) {
1663  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1664  auto C = tryEmitPrivate(value, nonMemoryDestType);
1665  return (C ? emitForMemory(C, destType) : nullptr);
1666}
1667
1668llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1669                                               llvm::Constant *C,
1670                                               QualType destType) {
1671  // For an _Atomic-qualified constant, we may need to add tail padding.
1672  if (auto AT = destType->getAs<AtomicType>()) {
1673    QualType destValueType = AT->getValueType();
1674    C = emitForMemory(CGM, C, destValueType);
1675
1676    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1677    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1678    if (innerSize == outerSize)
1679      return C;
1680
1681    assert(innerSize < outerSize && "emitted over-large constant for atomic");
1682    llvm::Constant *elts[] = {
1683      C,
1684      llvm::ConstantAggregateZero::get(
1685          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1686    };
1687    return llvm::ConstantStruct::getAnon(elts);
1688  }
1689
1690  // Zero-extend bool.
1691  if (C->getType()->isIntegerTy(1)) {
1692    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1693    return llvm::ConstantExpr::getZExt(C, boolTy);
1694  }
1695
1696  return C;
1697}
1698
1699llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1700                                                QualType destType) {
1701  Expr::EvalResult Result;
1702
1703  bool Success = false;
1704
1705  if (destType->isReferenceType())
1706    Success = E->EvaluateAsLValue(Result, CGM.getContext());
1707  else
1708    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1709
1710  llvm::Constant *C;
1711  if (Success && !Result.HasSideEffects)
1712    C = tryEmitPrivate(Result.Val, destType);
1713  else
1714    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1715
1716  return C;
1717}
1718
1719llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1720  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1721}
1722
1723namespace {
1724/// A struct which can be used to peephole certain kinds of finalization
1725/// that normally happen during l-value emission.
1726struct ConstantLValue {
1727  llvm::Constant *Value;
1728  bool HasOffsetApplied;
1729
1730  /*implicit*/ ConstantLValue(llvm::Constant *value,
1731                              bool hasOffsetApplied = false)
1732    : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1733
1734  /*implicit*/ ConstantLValue(ConstantAddress address)
1735    : ConstantLValue(address.getPointer()) {}
1736};
1737
1738/// A helper class for emitting constant l-values.
1739class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1740                                                      ConstantLValue> {
1741  CodeGenModule &CGM;
1742  ConstantEmitter &Emitter;
1743  const APValue &Value;
1744  QualType DestType;
1745
1746  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1747  friend StmtVisitorBase;
1748
1749public:
1750  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1751                        QualType destType)
1752    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1753
1754  llvm::Constant *tryEmit();
1755
1756private:
1757  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1758  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1759
1760  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1761  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1762  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1763  ConstantLValue VisitStringLiteral(const StringLiteral *E);
1764  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1765  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1766  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1767  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1768  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1769  ConstantLValue VisitCallExpr(const CallExpr *E);
1770  ConstantLValue VisitBlockExpr(const BlockExpr *E);
1771  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1772  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1773  ConstantLValue VisitMaterializeTemporaryExpr(
1774                                         const MaterializeTemporaryExpr *E);
1775
1776  bool hasNonZeroOffset() const {
1777    return !Value.getLValueOffset().isZero();
1778  }
1779
1780  /// Return the value offset.
1781  llvm::Constant *getOffset() {
1782    return llvm::ConstantInt::get(CGM.Int64Ty,
1783                                  Value.getLValueOffset().getQuantity());
1784  }
1785
1786  /// Apply the value offset to the given constant.
1787  llvm::Constant *applyOffset(llvm::Constant *C) {
1788    if (!hasNonZeroOffset())
1789      return C;
1790
1791    llvm::Type *origPtrTy = C->getType();
1792    unsigned AS = origPtrTy->getPointerAddressSpace();
1793    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1794    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1795    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1796    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1797    return C;
1798  }
1799};
1800
1801}
1802
1803llvm::Constant *ConstantLValueEmitter::tryEmit() {
1804  const APValue::LValueBase &base = Value.getLValueBase();
1805
1806  // The destination type should be a pointer or reference
1807  // type, but it might also be a cast thereof.
1808  //
1809  // FIXME: the chain of casts required should be reflected in the APValue.
1810  // We need this in order to correctly handle things like a ptrtoint of a
1811  // non-zero null pointer and addrspace casts that aren't trivially
1812  // represented in LLVM IR.
1813  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1814  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1815
1816  // If there's no base at all, this is a null or absolute pointer,
1817  // possibly cast back to an integer type.
1818  if (!base) {
1819    return tryEmitAbsolute(destTy);
1820  }
1821
1822  // Otherwise, try to emit the base.
1823  ConstantLValue result = tryEmitBase(base);
1824
1825  // If that failed, we're done.
1826  llvm::Constant *value = result.Value;
1827  if (!value) return nullptr;
1828
1829  // Apply the offset if necessary and not already done.
1830  if (!result.HasOffsetApplied) {
1831    value = applyOffset(value);
1832  }
1833
1834  // Convert to the appropriate type; this could be an lvalue for
1835  // an integer.  FIXME: performAddrSpaceCast
1836  if (isa<llvm::PointerType>(destTy))
1837    return llvm::ConstantExpr::getPointerCast(value, destTy);
1838
1839  return llvm::ConstantExpr::getPtrToInt(value, destTy);
1840}
1841
1842/// Try to emit an absolute l-value, such as a null pointer or an integer
1843/// bitcast to pointer type.
1844llvm::Constant *
1845ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1846  // If we're producing a pointer, this is easy.
1847  auto destPtrTy = cast<llvm::PointerType>(destTy);
1848  if (Value.isNullPointer()) {
1849    // FIXME: integer offsets from non-zero null pointers.
1850    return CGM.getNullPointer(destPtrTy, DestType);
1851  }
1852
1853  // Convert the integer to a pointer-sized integer before converting it
1854  // to a pointer.
1855  // FIXME: signedness depends on the original integer type.
1856  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1857  llvm::Constant *C;
1858  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1859                                         /*isSigned*/ false);
1860  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1861  return C;
1862}
1863
1864ConstantLValue
1865ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1866  // Handle values.
1867  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1868    if (D->hasAttr<WeakRefAttr>())
1869      return CGM.GetWeakRefReference(D).getPointer();
1870
1871    if (auto FD = dyn_cast<FunctionDecl>(D))
1872      return CGM.GetAddrOfFunction(FD);
1873
1874    if (auto VD = dyn_cast<VarDecl>(D)) {
1875      // We can never refer to a variable with local storage.
1876      if (!VD->hasLocalStorage()) {
1877        if (VD->isFileVarDecl() || VD->hasExternalStorage())
1878          return CGM.GetAddrOfGlobalVar(VD);
1879
1880        if (VD->isLocalVarDecl()) {
1881          return CGM.getOrCreateStaticVarDecl(
1882              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1883        }
1884      }
1885    }
1886
1887    return nullptr;
1888  }
1889
1890  // Handle typeid(T).
1891  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1892    llvm::Type *StdTypeInfoPtrTy =
1893        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1894    llvm::Constant *TypeInfo =
1895        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1896    if (TypeInfo->getType() != StdTypeInfoPtrTy)
1897      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1898    return TypeInfo;
1899  }
1900
1901  // Otherwise, it must be an expression.
1902  return Visit(base.get<const Expr*>());
1903}
1904
1905ConstantLValue
1906ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1907  return Visit(E->getSubExpr());
1908}
1909
1910ConstantLValue
1911ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1912  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1913}
1914
1915ConstantLValue
1916ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1917  return CGM.GetAddrOfConstantStringFromLiteral(E);
1918}
1919
1920ConstantLValue
1921ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1922  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1923}
1924
1925static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1926                                                    QualType T,
1927                                                    CodeGenModule &CGM) {
1928  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1929  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1930}
1931
1932ConstantLValue
1933ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1934  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1935}
1936
1937ConstantLValue
1938ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1939  assert(E->isExpressibleAsConstantInitializer() &&
1940         "this boxed expression can't be emitted as a compile-time constant");
1941  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1942  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1943}
1944
1945ConstantLValue
1946ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1947  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1948}
1949
1950ConstantLValue
1951ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1952  assert(Emitter.CGF && "Invalid address of label expression outside function");
1953  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1954  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1955                                   CGM.getTypes().ConvertType(E->getType()));
1956  return Ptr;
1957}
1958
1959ConstantLValue
1960ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1961  unsigned builtin = E->getBuiltinCallee();
1962  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1963      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1964    return nullptr;
1965
1966  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1967  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1968    return CGM.getObjCRuntime().GenerateConstantString(literal);
1969  } else {
1970    // FIXME: need to deal with UCN conversion issues.
1971    return CGM.GetAddrOfConstantCFString(literal);
1972  }
1973}
1974
1975ConstantLValue
1976ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1977  StringRef functionName;
1978  if (auto CGF = Emitter.CGF)
1979    functionName = CGF->CurFn->getName();
1980  else
1981    functionName = "global";
1982
1983  return CGM.GetAddrOfGlobalBlock(E, functionName);
1984}
1985
1986ConstantLValue
1987ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1988  QualType T;
1989  if (E->isTypeOperand())
1990    T = E->getTypeOperand(CGM.getContext());
1991  else
1992    T = E->getExprOperand()->getType();
1993  return CGM.GetAddrOfRTTIDescriptor(T);
1994}
1995
1996ConstantLValue
1997ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1998  return CGM.GetAddrOfUuidDescriptor(E);
1999}
2000
2001ConstantLValue
2002ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2003                                            const MaterializeTemporaryExpr *E) {
2004  assert(E->getStorageDuration() == SD_Static);
2005  SmallVector<const Expr *, 2> CommaLHSs;
2006  SmallVector<SubobjectAdjustment, 2> Adjustments;
2007  const Expr *Inner =
2008      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2009  return CGM.GetAddrOfGlobalTemporary(E, Inner);
2010}
2011
2012llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2013                                                QualType DestType) {
2014  switch (Value.getKind()) {
2015  case APValue::None:
2016  case APValue::Indeterminate:
2017    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2018    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2019  case APValue::LValue:
2020    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2021  case APValue::Int:
2022    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2023  case APValue::FixedPoint:
2024    return llvm::ConstantInt::get(CGM.getLLVMContext(),
2025                                  Value.getFixedPoint().getValue());
2026  case APValue::ComplexInt: {
2027    llvm::Constant *Complex[2];
2028
2029    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2030                                        Value.getComplexIntReal());
2031    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2032                                        Value.getComplexIntImag());
2033
2034    // FIXME: the target may want to specify that this is packed.
2035    llvm::StructType *STy =
2036        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2037    return llvm::ConstantStruct::get(STy, Complex);
2038  }
2039  case APValue::Float: {
2040    const llvm::APFloat &Init = Value.getFloat();
2041    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2042        !CGM.getContext().getLangOpts().NativeHalfType &&
2043        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2044      return llvm::ConstantInt::get(CGM.getLLVMContext(),
2045                                    Init.bitcastToAPInt());
2046    else
2047      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2048  }
2049  case APValue::ComplexFloat: {
2050    llvm::Constant *Complex[2];
2051
2052    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2053                                       Value.getComplexFloatReal());
2054    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2055                                       Value.getComplexFloatImag());
2056
2057    // FIXME: the target may want to specify that this is packed.
2058    llvm::StructType *STy =
2059        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2060    return llvm::ConstantStruct::get(STy, Complex);
2061  }
2062  case APValue::Vector: {
2063    unsigned NumElts = Value.getVectorLength();
2064    SmallVector<llvm::Constant *, 4> Inits(NumElts);
2065
2066    for (unsigned I = 0; I != NumElts; ++I) {
2067      const APValue &Elt = Value.getVectorElt(I);
2068      if (Elt.isInt())
2069        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2070      else if (Elt.isFloat())
2071        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2072      else
2073        llvm_unreachable("unsupported vector element type");
2074    }
2075    return llvm::ConstantVector::get(Inits);
2076  }
2077  case APValue::AddrLabelDiff: {
2078    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2079    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2080    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2081    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2082    if (!LHS || !RHS) return nullptr;
2083
2084    // Compute difference
2085    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2086    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2087    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2088    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2089
2090    // LLVM is a bit sensitive about the exact format of the
2091    // address-of-label difference; make sure to truncate after
2092    // the subtraction.
2093    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2094  }
2095  case APValue::Struct:
2096  case APValue::Union:
2097    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2098  case APValue::Array: {
2099    const ConstantArrayType *CAT =
2100        CGM.getContext().getAsConstantArrayType(DestType);
2101    unsigned NumElements = Value.getArraySize();
2102    unsigned NumInitElts = Value.getArrayInitializedElts();
2103
2104    // Emit array filler, if there is one.
2105    llvm::Constant *Filler = nullptr;
2106    if (Value.hasArrayFiller()) {
2107      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2108                                        CAT->getElementType());
2109      if (!Filler)
2110        return nullptr;
2111    }
2112
2113    // Emit initializer elements.
2114    SmallVector<llvm::Constant*, 16> Elts;
2115    if (Filler && Filler->isNullValue())
2116      Elts.reserve(NumInitElts + 1);
2117    else
2118      Elts.reserve(NumElements);
2119
2120    llvm::Type *CommonElementType = nullptr;
2121    for (unsigned I = 0; I < NumInitElts; ++I) {
2122      llvm::Constant *C = tryEmitPrivateForMemory(
2123          Value.getArrayInitializedElt(I), CAT->getElementType());
2124      if (!C) return nullptr;
2125
2126      if (I == 0)
2127        CommonElementType = C->getType();
2128      else if (C->getType() != CommonElementType)
2129        CommonElementType = nullptr;
2130      Elts.push_back(C);
2131    }
2132
2133    // This means that the array type is probably "IncompleteType" or some
2134    // type that is not ConstantArray.
2135    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
2136      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
2137      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
2138      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
2139                                                    NumElements);
2140      return llvm::ConstantAggregateZero::get(AType);
2141    }
2142
2143    llvm::ArrayType *Desired =
2144        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2145    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2146                             Filler);
2147  }
2148  case APValue::MemberPointer:
2149    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2150  }
2151  llvm_unreachable("Unknown APValue kind");
2152}
2153
2154llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2155    const CompoundLiteralExpr *E) {
2156  return EmittedCompoundLiterals.lookup(E);
2157}
2158
2159void CodeGenModule::setAddrOfConstantCompoundLiteral(
2160    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2161  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2162  (void)Ok;
2163  assert(Ok && "CLE has already been emitted!");
2164}
2165
2166ConstantAddress
2167CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2168  assert(E->isFileScope() && "not a file-scope compound literal expr");
2169  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2170}
2171
2172llvm::Constant *
2173CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2174  // Member pointer constants always have a very particular form.
2175  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2176  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2177
2178  // A member function pointer.
2179  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2180    return getCXXABI().EmitMemberFunctionPointer(method);
2181
2182  // Otherwise, a member data pointer.
2183  uint64_t fieldOffset = getContext().getFieldOffset(decl);
2184  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2185  return getCXXABI().EmitMemberDataPointer(type, chars);
2186}
2187
2188static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2189                                               llvm::Type *baseType,
2190                                               const CXXRecordDecl *base);
2191
2192static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2193                                        const RecordDecl *record,
2194                                        bool asCompleteObject) {
2195  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2196  llvm::StructType *structure =
2197    (asCompleteObject ? layout.getLLVMType()
2198                      : layout.getBaseSubobjectLLVMType());
2199
2200  unsigned numElements = structure->getNumElements();
2201  std::vector<llvm::Constant *> elements(numElements);
2202
2203  auto CXXR = dyn_cast<CXXRecordDecl>(record);
2204  // Fill in all the bases.
2205  if (CXXR) {
2206    for (const auto &I : CXXR->bases()) {
2207      if (I.isVirtual()) {
2208        // Ignore virtual bases; if we're laying out for a complete
2209        // object, we'll lay these out later.
2210        continue;
2211      }
2212
2213      const CXXRecordDecl *base =
2214        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2215
2216      // Ignore empty bases.
2217      if (base->isEmpty() ||
2218          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2219              .isZero())
2220        continue;
2221
2222      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2223      llvm::Type *baseType = structure->getElementType(fieldIndex);
2224      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2225    }
2226  }
2227
2228  // Fill in all the fields.
2229  for (const auto *Field : record->fields()) {
2230    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2231    // will fill in later.)
2232    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2233      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2234      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2235    }
2236
2237    // For unions, stop after the first named field.
2238    if (record->isUnion()) {
2239      if (Field->getIdentifier())
2240        break;
2241      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2242        if (FieldRD->findFirstNamedDataMember())
2243          break;
2244    }
2245  }
2246
2247  // Fill in the virtual bases, if we're working with the complete object.
2248  if (CXXR && asCompleteObject) {
2249    for (const auto &I : CXXR->vbases()) {
2250      const CXXRecordDecl *base =
2251        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2252
2253      // Ignore empty bases.
2254      if (base->isEmpty())
2255        continue;
2256
2257      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2258
2259      // We might have already laid this field out.
2260      if (elements[fieldIndex]) continue;
2261
2262      llvm::Type *baseType = structure->getElementType(fieldIndex);
2263      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2264    }
2265  }
2266
2267  // Now go through all other fields and zero them out.
2268  for (unsigned i = 0; i != numElements; ++i) {
2269    if (!elements[i])
2270      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2271  }
2272
2273  return llvm::ConstantStruct::get(structure, elements);
2274}
2275
2276/// Emit the null constant for a base subobject.
2277static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2278                                               llvm::Type *baseType,
2279                                               const CXXRecordDecl *base) {
2280  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2281
2282  // Just zero out bases that don't have any pointer to data members.
2283  if (baseLayout.isZeroInitializableAsBase())
2284    return llvm::Constant::getNullValue(baseType);
2285
2286  // Otherwise, we can just use its null constant.
2287  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2288}
2289
2290llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2291                                                   QualType T) {
2292  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2293}
2294
2295llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2296  if (T->getAs<PointerType>())
2297    return getNullPointer(
2298        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2299
2300  if (getTypes().isZeroInitializable(T))
2301    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2302
2303  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2304    llvm::ArrayType *ATy =
2305      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2306
2307    QualType ElementTy = CAT->getElementType();
2308
2309    llvm::Constant *Element =
2310      ConstantEmitter::emitNullForMemory(*this, ElementTy);
2311    unsigned NumElements = CAT->getSize().getZExtValue();
2312    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2313    return llvm::ConstantArray::get(ATy, Array);
2314  }
2315
2316  if (const RecordType *RT = T->getAs<RecordType>())
2317    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2318
2319  assert(T->isMemberDataPointerType() &&
2320         "Should only see pointers to data members here!");
2321
2322  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2323}
2324
2325llvm::Constant *
2326CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2327  return ::EmitNullConstant(*this, Record, false);
2328}
2329