CGExprConstant.cpp revision 341825
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Constant Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GlobalVariable.h"
30using namespace clang;
31using namespace CodeGen;
32
33//===----------------------------------------------------------------------===//
34//                            ConstStructBuilder
35//===----------------------------------------------------------------------===//
36
37namespace {
38class ConstExprEmitter;
39class ConstStructBuilder {
40  CodeGenModule &CGM;
41  ConstantEmitter &Emitter;
42
43  bool Packed;
44  CharUnits NextFieldOffsetInChars;
45  CharUnits LLVMStructAlignment;
46  SmallVector<llvm::Constant *, 32> Elements;
47public:
48  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
49                                     ConstExprEmitter *ExprEmitter,
50                                     llvm::ConstantStruct *Base,
51                                     InitListExpr *Updater,
52                                     QualType ValTy);
53  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
54                                     InitListExpr *ILE, QualType StructTy);
55  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
56                                     const APValue &Value, QualType ValTy);
57
58private:
59  ConstStructBuilder(ConstantEmitter &emitter)
60    : CGM(emitter.CGM), Emitter(emitter), Packed(false),
61    NextFieldOffsetInChars(CharUnits::Zero()),
62    LLVMStructAlignment(CharUnits::One()) { }
63
64  void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
65                   llvm::Constant *InitExpr);
66
67  void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
68
69  void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
70                      llvm::ConstantInt *InitExpr);
71
72  void AppendPadding(CharUnits PadSize);
73
74  void AppendTailPadding(CharUnits RecordSize);
75
76  void ConvertStructToPacked();
77
78  bool Build(InitListExpr *ILE);
79  bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base,
80             InitListExpr *Updater);
81  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
82             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
83  llvm::Constant *Finalize(QualType Ty);
84
85  CharUnits getAlignment(const llvm::Constant *C) const {
86    if (Packed)  return CharUnits::One();
87    return CharUnits::fromQuantity(
88        CGM.getDataLayout().getABITypeAlignment(C->getType()));
89  }
90
91  CharUnits getSizeInChars(const llvm::Constant *C) const {
92    return CharUnits::fromQuantity(
93        CGM.getDataLayout().getTypeAllocSize(C->getType()));
94  }
95};
96
97void ConstStructBuilder::
98AppendField(const FieldDecl *Field, uint64_t FieldOffset,
99            llvm::Constant *InitCst) {
100  const ASTContext &Context = CGM.getContext();
101
102  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
103
104  AppendBytes(FieldOffsetInChars, InitCst);
105}
106
107void ConstStructBuilder::
108AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
109
110  assert(NextFieldOffsetInChars <= FieldOffsetInChars
111         && "Field offset mismatch!");
112
113  CharUnits FieldAlignment = getAlignment(InitCst);
114
115  // Round up the field offset to the alignment of the field type.
116  CharUnits AlignedNextFieldOffsetInChars =
117      NextFieldOffsetInChars.alignTo(FieldAlignment);
118
119  if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
120    // We need to append padding.
121    AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
122
123    assert(NextFieldOffsetInChars == FieldOffsetInChars &&
124           "Did not add enough padding!");
125
126    AlignedNextFieldOffsetInChars =
127        NextFieldOffsetInChars.alignTo(FieldAlignment);
128  }
129
130  if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131    assert(!Packed && "Alignment is wrong even with a packed struct!");
132
133    // Convert the struct to a packed struct.
134    ConvertStructToPacked();
135
136    // After we pack the struct, we may need to insert padding.
137    if (NextFieldOffsetInChars < FieldOffsetInChars) {
138      // We need to append padding.
139      AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
140
141      assert(NextFieldOffsetInChars == FieldOffsetInChars &&
142             "Did not add enough padding!");
143    }
144    AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
145  }
146
147  // Add the field.
148  Elements.push_back(InitCst);
149  NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
150                           getSizeInChars(InitCst);
151
152  if (Packed)
153    assert(LLVMStructAlignment == CharUnits::One() &&
154           "Packed struct not byte-aligned!");
155  else
156    LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
157}
158
159void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
160                                        uint64_t FieldOffset,
161                                        llvm::ConstantInt *CI) {
162  const ASTContext &Context = CGM.getContext();
163  const uint64_t CharWidth = Context.getCharWidth();
164  uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
165  if (FieldOffset > NextFieldOffsetInBits) {
166    // We need to add padding.
167    CharUnits PadSize = Context.toCharUnitsFromBits(
168        llvm::alignTo(FieldOffset - NextFieldOffsetInBits,
169                      Context.getTargetInfo().getCharAlign()));
170
171    AppendPadding(PadSize);
172  }
173
174  uint64_t FieldSize = Field->getBitWidthValue(Context);
175
176  llvm::APInt FieldValue = CI->getValue();
177
178  // Promote the size of FieldValue if necessary
179  // FIXME: This should never occur, but currently it can because initializer
180  // constants are cast to bool, and because clang is not enforcing bitfield
181  // width limits.
182  if (FieldSize > FieldValue.getBitWidth())
183    FieldValue = FieldValue.zext(FieldSize);
184
185  // Truncate the size of FieldValue to the bit field size.
186  if (FieldSize < FieldValue.getBitWidth())
187    FieldValue = FieldValue.trunc(FieldSize);
188
189  NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
190  if (FieldOffset < NextFieldOffsetInBits) {
191    // Either part of the field or the entire field can go into the previous
192    // byte.
193    assert(!Elements.empty() && "Elements can't be empty!");
194
195    unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
196
197    bool FitsCompletelyInPreviousByte =
198      BitsInPreviousByte >= FieldValue.getBitWidth();
199
200    llvm::APInt Tmp = FieldValue;
201
202    if (!FitsCompletelyInPreviousByte) {
203      unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
204
205      if (CGM.getDataLayout().isBigEndian()) {
206        Tmp.lshrInPlace(NewFieldWidth);
207        Tmp = Tmp.trunc(BitsInPreviousByte);
208
209        // We want the remaining high bits.
210        FieldValue = FieldValue.trunc(NewFieldWidth);
211      } else {
212        Tmp = Tmp.trunc(BitsInPreviousByte);
213
214        // We want the remaining low bits.
215        FieldValue.lshrInPlace(BitsInPreviousByte);
216        FieldValue = FieldValue.trunc(NewFieldWidth);
217      }
218    }
219
220    Tmp = Tmp.zext(CharWidth);
221    if (CGM.getDataLayout().isBigEndian()) {
222      if (FitsCompletelyInPreviousByte)
223        Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
224    } else {
225      Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
226    }
227
228    // 'or' in the bits that go into the previous byte.
229    llvm::Value *LastElt = Elements.back();
230    if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
231      Tmp |= Val->getValue();
232    else {
233      assert(isa<llvm::UndefValue>(LastElt));
234      // If there is an undef field that we're adding to, it can either be a
235      // scalar undef (in which case, we just replace it with our field) or it
236      // is an array.  If it is an array, we have to pull one byte off the
237      // array so that the other undef bytes stay around.
238      if (!isa<llvm::IntegerType>(LastElt->getType())) {
239        // The undef padding will be a multibyte array, create a new smaller
240        // padding and then an hole for our i8 to get plopped into.
241        assert(isa<llvm::ArrayType>(LastElt->getType()) &&
242               "Expected array padding of undefs");
243        llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
244        assert(AT->getElementType()->isIntegerTy(CharWidth) &&
245               AT->getNumElements() != 0 &&
246               "Expected non-empty array padding of undefs");
247
248        // Remove the padding array.
249        NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
250        Elements.pop_back();
251
252        // Add the padding back in two chunks.
253        AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
254        AppendPadding(CharUnits::One());
255        assert(isa<llvm::UndefValue>(Elements.back()) &&
256               Elements.back()->getType()->isIntegerTy(CharWidth) &&
257               "Padding addition didn't work right");
258      }
259    }
260
261    Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
262
263    if (FitsCompletelyInPreviousByte)
264      return;
265  }
266
267  while (FieldValue.getBitWidth() > CharWidth) {
268    llvm::APInt Tmp;
269
270    if (CGM.getDataLayout().isBigEndian()) {
271      // We want the high bits.
272      Tmp =
273        FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
274    } else {
275      // We want the low bits.
276      Tmp = FieldValue.trunc(CharWidth);
277
278      FieldValue.lshrInPlace(CharWidth);
279    }
280
281    Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
282    ++NextFieldOffsetInChars;
283
284    FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
285  }
286
287  assert(FieldValue.getBitWidth() > 0 &&
288         "Should have at least one bit left!");
289  assert(FieldValue.getBitWidth() <= CharWidth &&
290         "Should not have more than a byte left!");
291
292  if (FieldValue.getBitWidth() < CharWidth) {
293    if (CGM.getDataLayout().isBigEndian()) {
294      unsigned BitWidth = FieldValue.getBitWidth();
295
296      FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
297    } else
298      FieldValue = FieldValue.zext(CharWidth);
299  }
300
301  // Append the last element.
302  Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
303                                            FieldValue));
304  ++NextFieldOffsetInChars;
305}
306
307void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
308  if (PadSize.isZero())
309    return;
310
311  llvm::Type *Ty = CGM.Int8Ty;
312  if (PadSize > CharUnits::One())
313    Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
314
315  llvm::Constant *C = llvm::UndefValue::get(Ty);
316  Elements.push_back(C);
317  assert(getAlignment(C) == CharUnits::One() &&
318         "Padding must have 1 byte alignment!");
319
320  NextFieldOffsetInChars += getSizeInChars(C);
321}
322
323void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
324  assert(NextFieldOffsetInChars <= RecordSize &&
325         "Size mismatch!");
326
327  AppendPadding(RecordSize - NextFieldOffsetInChars);
328}
329
330void ConstStructBuilder::ConvertStructToPacked() {
331  SmallVector<llvm::Constant *, 16> PackedElements;
332  CharUnits ElementOffsetInChars = CharUnits::Zero();
333
334  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
335    llvm::Constant *C = Elements[i];
336
337    CharUnits ElementAlign = CharUnits::fromQuantity(
338      CGM.getDataLayout().getABITypeAlignment(C->getType()));
339    CharUnits AlignedElementOffsetInChars =
340        ElementOffsetInChars.alignTo(ElementAlign);
341
342    if (AlignedElementOffsetInChars > ElementOffsetInChars) {
343      // We need some padding.
344      CharUnits NumChars =
345        AlignedElementOffsetInChars - ElementOffsetInChars;
346
347      llvm::Type *Ty = CGM.Int8Ty;
348      if (NumChars > CharUnits::One())
349        Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
350
351      llvm::Constant *Padding = llvm::UndefValue::get(Ty);
352      PackedElements.push_back(Padding);
353      ElementOffsetInChars += getSizeInChars(Padding);
354    }
355
356    PackedElements.push_back(C);
357    ElementOffsetInChars += getSizeInChars(C);
358  }
359
360  assert(ElementOffsetInChars == NextFieldOffsetInChars &&
361         "Packing the struct changed its size!");
362
363  Elements.swap(PackedElements);
364  LLVMStructAlignment = CharUnits::One();
365  Packed = true;
366}
367
368bool ConstStructBuilder::Build(InitListExpr *ILE) {
369  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
370  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
371
372  unsigned FieldNo = 0;
373  unsigned ElementNo = 0;
374
375  // Bail out if we have base classes. We could support these, but they only
376  // arise in C++1z where we will have already constant folded most interesting
377  // cases. FIXME: There are still a few more cases we can handle this way.
378  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
379    if (CXXRD->getNumBases())
380      return false;
381
382  for (RecordDecl::field_iterator Field = RD->field_begin(),
383       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
384    // If this is a union, skip all the fields that aren't being initialized.
385    if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
386      continue;
387
388    // Don't emit anonymous bitfields, they just affect layout.
389    if (Field->isUnnamedBitfield())
390      continue;
391
392    // Get the initializer.  A struct can include fields without initializers,
393    // we just use explicit null values for them.
394    llvm::Constant *EltInit;
395    if (ElementNo < ILE->getNumInits())
396      EltInit = Emitter.tryEmitPrivateForMemory(ILE->getInit(ElementNo++),
397                                                Field->getType());
398    else
399      EltInit = Emitter.emitNullForMemory(Field->getType());
400
401    if (!EltInit)
402      return false;
403
404    if (!Field->isBitField()) {
405      // Handle non-bitfield members.
406      AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
407    } else {
408      // Otherwise we have a bitfield.
409      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
410        AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI);
411      } else {
412        // We are trying to initialize a bitfield with a non-trivial constant,
413        // this must require run-time code.
414        return false;
415      }
416    }
417  }
418
419  return true;
420}
421
422namespace {
423struct BaseInfo {
424  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
425    : Decl(Decl), Offset(Offset), Index(Index) {
426  }
427
428  const CXXRecordDecl *Decl;
429  CharUnits Offset;
430  unsigned Index;
431
432  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
433};
434}
435
436bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
437                               bool IsPrimaryBase,
438                               const CXXRecordDecl *VTableClass,
439                               CharUnits Offset) {
440  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
441
442  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
443    // Add a vtable pointer, if we need one and it hasn't already been added.
444    if (CD->isDynamicClass() && !IsPrimaryBase) {
445      llvm::Constant *VTableAddressPoint =
446          CGM.getCXXABI().getVTableAddressPointForConstExpr(
447              BaseSubobject(CD, Offset), VTableClass);
448      AppendBytes(Offset, VTableAddressPoint);
449    }
450
451    // Accumulate and sort bases, in order to visit them in address order, which
452    // may not be the same as declaration order.
453    SmallVector<BaseInfo, 8> Bases;
454    Bases.reserve(CD->getNumBases());
455    unsigned BaseNo = 0;
456    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
457         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
458      assert(!Base->isVirtual() && "should not have virtual bases here");
459      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
460      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
461      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
462    }
463    std::stable_sort(Bases.begin(), Bases.end());
464
465    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
466      BaseInfo &Base = Bases[I];
467
468      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
469      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
470            VTableClass, Offset + Base.Offset);
471    }
472  }
473
474  unsigned FieldNo = 0;
475  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
476
477  for (RecordDecl::field_iterator Field = RD->field_begin(),
478       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
479    // If this is a union, skip all the fields that aren't being initialized.
480    if (RD->isUnion() && Val.getUnionField() != *Field)
481      continue;
482
483    // Don't emit anonymous bitfields, they just affect layout.
484    if (Field->isUnnamedBitfield())
485      continue;
486
487    // Emit the value of the initializer.
488    const APValue &FieldValue =
489      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
490    llvm::Constant *EltInit =
491      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
492    if (!EltInit)
493      return false;
494
495    if (!Field->isBitField()) {
496      // Handle non-bitfield members.
497      AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
498    } else {
499      // Otherwise we have a bitfield.
500      AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
501                     cast<llvm::ConstantInt>(EltInit));
502    }
503  }
504
505  return true;
506}
507
508llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
509  RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
510  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
511
512  CharUnits LayoutSizeInChars = Layout.getSize();
513
514  if (NextFieldOffsetInChars > LayoutSizeInChars) {
515    // If the struct is bigger than the size of the record type,
516    // we must have a flexible array member at the end.
517    assert(RD->hasFlexibleArrayMember() &&
518           "Must have flexible array member if struct is bigger than type!");
519
520    // No tail padding is necessary.
521  } else {
522    // Append tail padding if necessary.
523    CharUnits LLVMSizeInChars =
524        NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
525
526    if (LLVMSizeInChars != LayoutSizeInChars)
527      AppendTailPadding(LayoutSizeInChars);
528
529    LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
530
531    // Check if we need to convert the struct to a packed struct.
532    if (NextFieldOffsetInChars <= LayoutSizeInChars &&
533        LLVMSizeInChars > LayoutSizeInChars) {
534      assert(!Packed && "Size mismatch!");
535
536      ConvertStructToPacked();
537      assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
538             "Converting to packed did not help!");
539    }
540
541    LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment);
542
543    assert(LayoutSizeInChars == LLVMSizeInChars &&
544           "Tail padding mismatch!");
545  }
546
547  // Pick the type to use.  If the type is layout identical to the ConvertType
548  // type then use it, otherwise use whatever the builder produced for us.
549  llvm::StructType *STy =
550      llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
551                                               Elements, Packed);
552  llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
553  if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
554    if (ValSTy->isLayoutIdentical(STy))
555      STy = ValSTy;
556  }
557
558  llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
559
560  assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) ==
561             getSizeInChars(Result) &&
562         "Size mismatch!");
563
564  return Result;
565}
566
567llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
568                                                ConstExprEmitter *ExprEmitter,
569                                                llvm::ConstantStruct *Base,
570                                                InitListExpr *Updater,
571                                                QualType ValTy) {
572  ConstStructBuilder Builder(Emitter);
573  if (!Builder.Build(ExprEmitter, Base, Updater))
574    return nullptr;
575  return Builder.Finalize(ValTy);
576}
577
578llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
579                                                InitListExpr *ILE,
580                                                QualType ValTy) {
581  ConstStructBuilder Builder(Emitter);
582
583  if (!Builder.Build(ILE))
584    return nullptr;
585
586  return Builder.Finalize(ValTy);
587}
588
589llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
590                                                const APValue &Val,
591                                                QualType ValTy) {
592  ConstStructBuilder Builder(Emitter);
593
594  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
595  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
596  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
597    return nullptr;
598
599  return Builder.Finalize(ValTy);
600}
601
602
603//===----------------------------------------------------------------------===//
604//                             ConstExprEmitter
605//===----------------------------------------------------------------------===//
606
607static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
608                                                    CodeGenFunction *CGF,
609                                              const CompoundLiteralExpr *E) {
610  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
611  if (llvm::GlobalVariable *Addr =
612          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
613    return ConstantAddress(Addr, Align);
614
615  LangAS addressSpace = E->getType().getAddressSpace();
616
617  ConstantEmitter emitter(CGM, CGF);
618  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
619                                                    addressSpace, E->getType());
620  if (!C) {
621    assert(!E->isFileScope() &&
622           "file-scope compound literal did not have constant initializer!");
623    return ConstantAddress::invalid();
624  }
625
626  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
627                                     CGM.isTypeConstant(E->getType(), true),
628                                     llvm::GlobalValue::InternalLinkage,
629                                     C, ".compoundliteral", nullptr,
630                                     llvm::GlobalVariable::NotThreadLocal,
631                    CGM.getContext().getTargetAddressSpace(addressSpace));
632  emitter.finalize(GV);
633  GV->setAlignment(Align.getQuantity());
634  CGM.setAddrOfConstantCompoundLiteral(E, GV);
635  return ConstantAddress(GV, Align);
636}
637
638static llvm::Constant *
639EmitArrayConstant(CodeGenModule &CGM, const ConstantArrayType *DestType,
640                  llvm::Type *CommonElementType, unsigned ArrayBound,
641                  SmallVectorImpl<llvm::Constant *> &Elements,
642                  llvm::Constant *Filler) {
643  // Figure out how long the initial prefix of non-zero elements is.
644  unsigned NonzeroLength = ArrayBound;
645  if (Elements.size() < NonzeroLength && Filler->isNullValue())
646    NonzeroLength = Elements.size();
647  if (NonzeroLength == Elements.size()) {
648    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
649      --NonzeroLength;
650  }
651
652  if (NonzeroLength == 0) {
653    return llvm::ConstantAggregateZero::get(
654        CGM.getTypes().ConvertType(QualType(DestType, 0)));
655  }
656
657  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
658  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
659  if (TrailingZeroes >= 8) {
660    assert(Elements.size() >= NonzeroLength &&
661           "missing initializer for non-zero element");
662
663    // If all the elements had the same type up to the trailing zeroes, emit a
664    // struct of two arrays (the nonzero data and the zeroinitializer).
665    if (CommonElementType && NonzeroLength >= 8) {
666      llvm::Constant *Initial = llvm::ConstantArray::get(
667          llvm::ArrayType::get(CommonElementType, NonzeroLength),
668          makeArrayRef(Elements).take_front(NonzeroLength));
669      Elements.resize(2);
670      Elements[0] = Initial;
671    } else {
672      Elements.resize(NonzeroLength + 1);
673    }
674
675    auto *FillerType =
676        CommonElementType
677            ? CommonElementType
678            : CGM.getTypes().ConvertType(DestType->getElementType());
679    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
680    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
681    CommonElementType = nullptr;
682  } else if (Elements.size() != ArrayBound) {
683    // Otherwise pad to the right size with the filler if necessary.
684    Elements.resize(ArrayBound, Filler);
685    if (Filler->getType() != CommonElementType)
686      CommonElementType = nullptr;
687  }
688
689  // If all elements have the same type, just emit an array constant.
690  if (CommonElementType)
691    return llvm::ConstantArray::get(
692        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
693
694  // We have mixed types. Use a packed struct.
695  llvm::SmallVector<llvm::Type *, 16> Types;
696  Types.reserve(Elements.size());
697  for (llvm::Constant *Elt : Elements)
698    Types.push_back(Elt->getType());
699  llvm::StructType *SType =
700      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
701  return llvm::ConstantStruct::get(SType, Elements);
702}
703
704/// This class only needs to handle two cases:
705/// 1) Literals (this is used by APValue emission to emit literals).
706/// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
707///    constant fold these types).
708class ConstExprEmitter :
709  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
710  CodeGenModule &CGM;
711  ConstantEmitter &Emitter;
712  llvm::LLVMContext &VMContext;
713public:
714  ConstExprEmitter(ConstantEmitter &emitter)
715    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
716  }
717
718  //===--------------------------------------------------------------------===//
719  //                            Visitor Methods
720  //===--------------------------------------------------------------------===//
721
722  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
723    return nullptr;
724  }
725
726  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
727    return Visit(PE->getSubExpr(), T);
728  }
729
730  llvm::Constant *
731  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
732                                    QualType T) {
733    return Visit(PE->getReplacement(), T);
734  }
735
736  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
737                                            QualType T) {
738    return Visit(GE->getResultExpr(), T);
739  }
740
741  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
742    return Visit(CE->getChosenSubExpr(), T);
743  }
744
745  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
746    return Visit(E->getInitializer(), T);
747  }
748
749  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
750    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
751      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
752    Expr *subExpr = E->getSubExpr();
753
754    switch (E->getCastKind()) {
755    case CK_ToUnion: {
756      // GCC cast to union extension
757      assert(E->getType()->isUnionType() &&
758             "Destination type is not union type!");
759
760      auto field = E->getTargetUnionField();
761
762      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
763      if (!C) return nullptr;
764
765      auto destTy = ConvertType(destType);
766      if (C->getType() == destTy) return C;
767
768      // Build a struct with the union sub-element as the first member,
769      // and padded to the appropriate size.
770      SmallVector<llvm::Constant*, 2> Elts;
771      SmallVector<llvm::Type*, 2> Types;
772      Elts.push_back(C);
773      Types.push_back(C->getType());
774      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
775      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
776
777      assert(CurSize <= TotalSize && "Union size mismatch!");
778      if (unsigned NumPadBytes = TotalSize - CurSize) {
779        llvm::Type *Ty = CGM.Int8Ty;
780        if (NumPadBytes > 1)
781          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
782
783        Elts.push_back(llvm::UndefValue::get(Ty));
784        Types.push_back(Ty);
785      }
786
787      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
788      return llvm::ConstantStruct::get(STy, Elts);
789    }
790
791    case CK_AddressSpaceConversion: {
792      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
793      if (!C) return nullptr;
794      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
795      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
796      llvm::Type *destTy = ConvertType(E->getType());
797      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
798                                                             destAS, destTy);
799    }
800
801    case CK_LValueToRValue:
802    case CK_AtomicToNonAtomic:
803    case CK_NonAtomicToAtomic:
804    case CK_NoOp:
805    case CK_ConstructorConversion:
806      return Visit(subExpr, destType);
807
808    case CK_IntToOCLSampler:
809      llvm_unreachable("global sampler variables are not generated");
810
811    case CK_Dependent: llvm_unreachable("saw dependent cast!");
812
813    case CK_BuiltinFnToFnPtr:
814      llvm_unreachable("builtin functions are handled elsewhere");
815
816    case CK_ReinterpretMemberPointer:
817    case CK_DerivedToBaseMemberPointer:
818    case CK_BaseToDerivedMemberPointer: {
819      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
820      if (!C) return nullptr;
821      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
822    }
823
824    // These will never be supported.
825    case CK_ObjCObjectLValueCast:
826    case CK_ARCProduceObject:
827    case CK_ARCConsumeObject:
828    case CK_ARCReclaimReturnedObject:
829    case CK_ARCExtendBlockObject:
830    case CK_CopyAndAutoreleaseBlockObject:
831      return nullptr;
832
833    // These don't need to be handled here because Evaluate knows how to
834    // evaluate them in the cases where they can be folded.
835    case CK_BitCast:
836    case CK_ToVoid:
837    case CK_Dynamic:
838    case CK_LValueBitCast:
839    case CK_NullToMemberPointer:
840    case CK_UserDefinedConversion:
841    case CK_CPointerToObjCPointerCast:
842    case CK_BlockPointerToObjCPointerCast:
843    case CK_AnyPointerToBlockPointerCast:
844    case CK_ArrayToPointerDecay:
845    case CK_FunctionToPointerDecay:
846    case CK_BaseToDerived:
847    case CK_DerivedToBase:
848    case CK_UncheckedDerivedToBase:
849    case CK_MemberPointerToBoolean:
850    case CK_VectorSplat:
851    case CK_FloatingRealToComplex:
852    case CK_FloatingComplexToReal:
853    case CK_FloatingComplexToBoolean:
854    case CK_FloatingComplexCast:
855    case CK_FloatingComplexToIntegralComplex:
856    case CK_IntegralRealToComplex:
857    case CK_IntegralComplexToReal:
858    case CK_IntegralComplexToBoolean:
859    case CK_IntegralComplexCast:
860    case CK_IntegralComplexToFloatingComplex:
861    case CK_PointerToIntegral:
862    case CK_PointerToBoolean:
863    case CK_NullToPointer:
864    case CK_IntegralCast:
865    case CK_BooleanToSignedIntegral:
866    case CK_IntegralToPointer:
867    case CK_IntegralToBoolean:
868    case CK_IntegralToFloating:
869    case CK_FloatingToIntegral:
870    case CK_FloatingToBoolean:
871    case CK_FloatingCast:
872    case CK_ZeroToOCLEvent:
873    case CK_ZeroToOCLQueue:
874      return nullptr;
875    }
876    llvm_unreachable("Invalid CastKind");
877  }
878
879  llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE, QualType T) {
880    return Visit(DAE->getExpr(), T);
881  }
882
883  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
884    // No need for a DefaultInitExprScope: we don't handle 'this' in a
885    // constant expression.
886    return Visit(DIE->getExpr(), T);
887  }
888
889  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
890    if (!E->cleanupsHaveSideEffects())
891      return Visit(E->getSubExpr(), T);
892    return nullptr;
893  }
894
895  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
896                                                QualType T) {
897    return Visit(E->GetTemporaryExpr(), T);
898  }
899
900  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
901    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
902    assert(CAT && "can't emit array init for non-constant-bound array");
903    unsigned NumInitElements = ILE->getNumInits();
904    unsigned NumElements = CAT->getSize().getZExtValue();
905
906    // Initialising an array requires us to automatically
907    // initialise any elements that have not been initialised explicitly
908    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
909
910    QualType EltType = CAT->getElementType();
911
912    // Initialize remaining array elements.
913    llvm::Constant *fillC = nullptr;
914    if (Expr *filler = ILE->getArrayFiller()) {
915      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
916      if (!fillC)
917        return nullptr;
918    }
919
920    // Copy initializer elements.
921    SmallVector<llvm::Constant*, 16> Elts;
922    if (fillC && fillC->isNullValue())
923      Elts.reserve(NumInitableElts + 1);
924    else
925      Elts.reserve(NumElements);
926
927    llvm::Type *CommonElementType = nullptr;
928    for (unsigned i = 0; i < NumInitableElts; ++i) {
929      Expr *Init = ILE->getInit(i);
930      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
931      if (!C)
932        return nullptr;
933      if (i == 0)
934        CommonElementType = C->getType();
935      else if (C->getType() != CommonElementType)
936        CommonElementType = nullptr;
937      Elts.push_back(C);
938    }
939
940    return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
941                             fillC);
942  }
943
944  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
945    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
946  }
947
948  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
949                                             QualType T) {
950    return CGM.EmitNullConstant(T);
951  }
952
953  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
954    if (ILE->isTransparent())
955      return Visit(ILE->getInit(0), T);
956
957    if (ILE->getType()->isArrayType())
958      return EmitArrayInitialization(ILE, T);
959
960    if (ILE->getType()->isRecordType())
961      return EmitRecordInitialization(ILE, T);
962
963    return nullptr;
964  }
965
966  llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base,
967                                            InitListExpr *Updater,
968                                            QualType destType) {
969    if (auto destAT = CGM.getContext().getAsArrayType(destType)) {
970      llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(destType));
971      llvm::Type *ElemType = AType->getElementType();
972
973      unsigned NumInitElements = Updater->getNumInits();
974      unsigned NumElements = AType->getNumElements();
975
976      std::vector<llvm::Constant *> Elts;
977      Elts.reserve(NumElements);
978
979      QualType destElemType = destAT->getElementType();
980
981      if (auto DataArray = dyn_cast<llvm::ConstantDataArray>(Base))
982        for (unsigned i = 0; i != NumElements; ++i)
983          Elts.push_back(DataArray->getElementAsConstant(i));
984      else if (auto Array = dyn_cast<llvm::ConstantArray>(Base))
985        for (unsigned i = 0; i != NumElements; ++i)
986          Elts.push_back(Array->getOperand(i));
987      else
988        return nullptr; // FIXME: other array types not implemented
989
990      llvm::Constant *fillC = nullptr;
991      if (Expr *filler = Updater->getArrayFiller())
992        if (!isa<NoInitExpr>(filler))
993          fillC = Emitter.tryEmitAbstractForMemory(filler, destElemType);
994      bool RewriteType = (fillC && fillC->getType() != ElemType);
995
996      for (unsigned i = 0; i != NumElements; ++i) {
997        Expr *Init = nullptr;
998        if (i < NumInitElements)
999          Init = Updater->getInit(i);
1000
1001        if (!Init && fillC)
1002          Elts[i] = fillC;
1003        else if (!Init || isa<NoInitExpr>(Init))
1004          ; // Do nothing.
1005        else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1006          Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE, destElemType);
1007        else
1008          Elts[i] = Emitter.tryEmitPrivateForMemory(Init, destElemType);
1009
1010       if (!Elts[i])
1011          return nullptr;
1012        RewriteType |= (Elts[i]->getType() != ElemType);
1013      }
1014
1015      if (RewriteType) {
1016        std::vector<llvm::Type *> Types;
1017        Types.reserve(NumElements);
1018        for (unsigned i = 0; i != NumElements; ++i)
1019          Types.push_back(Elts[i]->getType());
1020        llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
1021                                                        Types, true);
1022        return llvm::ConstantStruct::get(SType, Elts);
1023      }
1024
1025      return llvm::ConstantArray::get(AType, Elts);
1026    }
1027
1028    if (destType->isRecordType())
1029      return ConstStructBuilder::BuildStruct(Emitter, this,
1030                 dyn_cast<llvm::ConstantStruct>(Base), Updater, destType);
1031
1032    return nullptr;
1033  }
1034
1035  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1036                                                QualType destType) {
1037    auto C = Visit(E->getBase(), destType);
1038    if (!C) return nullptr;
1039    return EmitDesignatedInitUpdater(C, E->getUpdater(), destType);
1040  }
1041
1042  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1043    if (!E->getConstructor()->isTrivial())
1044      return nullptr;
1045
1046    // FIXME: We should not have to call getBaseElementType here.
1047    const RecordType *RT =
1048      CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
1049    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1050
1051    // If the class doesn't have a trivial destructor, we can't emit it as a
1052    // constant expr.
1053    if (!RD->hasTrivialDestructor())
1054      return nullptr;
1055
1056    // Only copy and default constructors can be trivial.
1057
1058
1059    if (E->getNumArgs()) {
1060      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1061      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1062             "trivial ctor has argument but isn't a copy/move ctor");
1063
1064      Expr *Arg = E->getArg(0);
1065      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1066             "argument to copy ctor is of wrong type");
1067
1068      return Visit(Arg, Ty);
1069    }
1070
1071    return CGM.EmitNullConstant(Ty);
1072  }
1073
1074  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1075    return CGM.GetConstantArrayFromStringLiteral(E);
1076  }
1077
1078  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1079    // This must be an @encode initializing an array in a static initializer.
1080    // Don't emit it as the address of the string, emit the string data itself
1081    // as an inline array.
1082    std::string Str;
1083    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1084    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1085
1086    // Resize the string to the right size, adding zeros at the end, or
1087    // truncating as needed.
1088    Str.resize(CAT->getSize().getZExtValue(), '\0');
1089    return llvm::ConstantDataArray::getString(VMContext, Str, false);
1090  }
1091
1092  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1093    return Visit(E->getSubExpr(), T);
1094  }
1095
1096  // Utility methods
1097  llvm::Type *ConvertType(QualType T) {
1098    return CGM.getTypes().ConvertType(T);
1099  }
1100};
1101
1102}  // end anonymous namespace.
1103
1104bool ConstStructBuilder::Build(ConstExprEmitter *ExprEmitter,
1105                               llvm::ConstantStruct *Base,
1106                               InitListExpr *Updater) {
1107  assert(Base && "base expression should not be empty");
1108
1109  QualType ExprType = Updater->getType();
1110  RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl();
1111  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1112  const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout(
1113                                           Base->getType());
1114  unsigned FieldNo = -1;
1115  unsigned ElementNo = 0;
1116
1117  // Bail out if we have base classes. We could support these, but they only
1118  // arise in C++1z where we will have already constant folded most interesting
1119  // cases. FIXME: There are still a few more cases we can handle this way.
1120  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1121    if (CXXRD->getNumBases())
1122      return false;
1123
1124  for (FieldDecl *Field : RD->fields()) {
1125    ++FieldNo;
1126
1127    if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field)
1128      continue;
1129
1130    // Skip anonymous bitfields.
1131    if (Field->isUnnamedBitfield())
1132      continue;
1133
1134    llvm::Constant *EltInit = Base->getOperand(ElementNo);
1135
1136    // Bail out if the type of the ConstantStruct does not have the same layout
1137    // as the type of the InitListExpr.
1138    if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() ||
1139        Layout.getFieldOffset(ElementNo) !=
1140          BaseLayout->getElementOffsetInBits(ElementNo))
1141      return false;
1142
1143    // Get the initializer. If we encounter an empty field or a NoInitExpr,
1144    // we use values from the base expression.
1145    Expr *Init = nullptr;
1146    if (ElementNo < Updater->getNumInits())
1147      Init = Updater->getInit(ElementNo);
1148
1149    if (!Init || isa<NoInitExpr>(Init))
1150      ; // Do nothing.
1151    else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init))
1152      EltInit = ExprEmitter->EmitDesignatedInitUpdater(EltInit, ChildILE,
1153                                                       Field->getType());
1154    else
1155      EltInit = Emitter.tryEmitPrivateForMemory(Init, Field->getType());
1156
1157    ++ElementNo;
1158
1159    if (!EltInit)
1160      return false;
1161
1162    if (!Field->isBitField())
1163      AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit);
1164    else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit))
1165      AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI);
1166    else
1167      // Initializing a bitfield with a non-trivial constant?
1168      return false;
1169  }
1170
1171  return true;
1172}
1173
1174llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1175                                                        AbstractState saved) {
1176  Abstract = saved.OldValue;
1177
1178  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1179         "created a placeholder while doing an abstract emission?");
1180
1181  // No validation necessary for now.
1182  // No cleanup to do for now.
1183  return C;
1184}
1185
1186llvm::Constant *
1187ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1188  auto state = pushAbstract();
1189  auto C = tryEmitPrivateForVarInit(D);
1190  return validateAndPopAbstract(C, state);
1191}
1192
1193llvm::Constant *
1194ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1195  auto state = pushAbstract();
1196  auto C = tryEmitPrivate(E, destType);
1197  return validateAndPopAbstract(C, state);
1198}
1199
1200llvm::Constant *
1201ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1202  auto state = pushAbstract();
1203  auto C = tryEmitPrivate(value, destType);
1204  return validateAndPopAbstract(C, state);
1205}
1206
1207llvm::Constant *
1208ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1209  auto state = pushAbstract();
1210  auto C = tryEmitPrivate(E, destType);
1211  C = validateAndPopAbstract(C, state);
1212  if (!C) {
1213    CGM.Error(E->getExprLoc(),
1214              "internal error: could not emit constant value \"abstractly\"");
1215    C = CGM.EmitNullConstant(destType);
1216  }
1217  return C;
1218}
1219
1220llvm::Constant *
1221ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1222                              QualType destType) {
1223  auto state = pushAbstract();
1224  auto C = tryEmitPrivate(value, destType);
1225  C = validateAndPopAbstract(C, state);
1226  if (!C) {
1227    CGM.Error(loc,
1228              "internal error: could not emit constant value \"abstractly\"");
1229    C = CGM.EmitNullConstant(destType);
1230  }
1231  return C;
1232}
1233
1234llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1235  initializeNonAbstract(D.getType().getAddressSpace());
1236  return markIfFailed(tryEmitPrivateForVarInit(D));
1237}
1238
1239llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1240                                                       LangAS destAddrSpace,
1241                                                       QualType destType) {
1242  initializeNonAbstract(destAddrSpace);
1243  return markIfFailed(tryEmitPrivateForMemory(E, destType));
1244}
1245
1246llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1247                                                    LangAS destAddrSpace,
1248                                                    QualType destType) {
1249  initializeNonAbstract(destAddrSpace);
1250  auto C = tryEmitPrivateForMemory(value, destType);
1251  assert(C && "couldn't emit constant value non-abstractly?");
1252  return C;
1253}
1254
1255llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1256  assert(!Abstract && "cannot get current address for abstract constant");
1257
1258
1259
1260  // Make an obviously ill-formed global that should blow up compilation
1261  // if it survives.
1262  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1263                                         llvm::GlobalValue::PrivateLinkage,
1264                                         /*init*/ nullptr,
1265                                         /*name*/ "",
1266                                         /*before*/ nullptr,
1267                                         llvm::GlobalVariable::NotThreadLocal,
1268                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1269
1270  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1271
1272  return global;
1273}
1274
1275void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1276                                           llvm::GlobalValue *placeholder) {
1277  assert(!PlaceholderAddresses.empty());
1278  assert(PlaceholderAddresses.back().first == nullptr);
1279  assert(PlaceholderAddresses.back().second == placeholder);
1280  PlaceholderAddresses.back().first = signal;
1281}
1282
1283namespace {
1284  struct ReplacePlaceholders {
1285    CodeGenModule &CGM;
1286
1287    /// The base address of the global.
1288    llvm::Constant *Base;
1289    llvm::Type *BaseValueTy = nullptr;
1290
1291    /// The placeholder addresses that were registered during emission.
1292    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1293
1294    /// The locations of the placeholder signals.
1295    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1296
1297    /// The current index stack.  We use a simple unsigned stack because
1298    /// we assume that placeholders will be relatively sparse in the
1299    /// initializer, but we cache the index values we find just in case.
1300    llvm::SmallVector<unsigned, 8> Indices;
1301    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1302
1303    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1304                        ArrayRef<std::pair<llvm::Constant*,
1305                                           llvm::GlobalVariable*>> addresses)
1306        : CGM(CGM), Base(base),
1307          PlaceholderAddresses(addresses.begin(), addresses.end()) {
1308    }
1309
1310    void replaceInInitializer(llvm::Constant *init) {
1311      // Remember the type of the top-most initializer.
1312      BaseValueTy = init->getType();
1313
1314      // Initialize the stack.
1315      Indices.push_back(0);
1316      IndexValues.push_back(nullptr);
1317
1318      // Recurse into the initializer.
1319      findLocations(init);
1320
1321      // Check invariants.
1322      assert(IndexValues.size() == Indices.size() && "mismatch");
1323      assert(Indices.size() == 1 && "didn't pop all indices");
1324
1325      // Do the replacement; this basically invalidates 'init'.
1326      assert(Locations.size() == PlaceholderAddresses.size() &&
1327             "missed a placeholder?");
1328
1329      // We're iterating over a hashtable, so this would be a source of
1330      // non-determinism in compiler output *except* that we're just
1331      // messing around with llvm::Constant structures, which never itself
1332      // does anything that should be visible in compiler output.
1333      for (auto &entry : Locations) {
1334        assert(entry.first->getParent() == nullptr && "not a placeholder!");
1335        entry.first->replaceAllUsesWith(entry.second);
1336        entry.first->eraseFromParent();
1337      }
1338    }
1339
1340  private:
1341    void findLocations(llvm::Constant *init) {
1342      // Recurse into aggregates.
1343      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1344        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1345          Indices.push_back(i);
1346          IndexValues.push_back(nullptr);
1347
1348          findLocations(agg->getOperand(i));
1349
1350          IndexValues.pop_back();
1351          Indices.pop_back();
1352        }
1353        return;
1354      }
1355
1356      // Otherwise, check for registered constants.
1357      while (true) {
1358        auto it = PlaceholderAddresses.find(init);
1359        if (it != PlaceholderAddresses.end()) {
1360          setLocation(it->second);
1361          break;
1362        }
1363
1364        // Look through bitcasts or other expressions.
1365        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1366          init = expr->getOperand(0);
1367        } else {
1368          break;
1369        }
1370      }
1371    }
1372
1373    void setLocation(llvm::GlobalVariable *placeholder) {
1374      assert(Locations.find(placeholder) == Locations.end() &&
1375             "already found location for placeholder!");
1376
1377      // Lazily fill in IndexValues with the values from Indices.
1378      // We do this in reverse because we should always have a strict
1379      // prefix of indices from the start.
1380      assert(Indices.size() == IndexValues.size());
1381      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1382        if (IndexValues[i]) {
1383#ifndef NDEBUG
1384          for (size_t j = 0; j != i + 1; ++j) {
1385            assert(IndexValues[j] &&
1386                   isa<llvm::ConstantInt>(IndexValues[j]) &&
1387                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1388                     == Indices[j]);
1389          }
1390#endif
1391          break;
1392        }
1393
1394        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1395      }
1396
1397      // Form a GEP and then bitcast to the placeholder type so that the
1398      // replacement will succeed.
1399      llvm::Constant *location =
1400        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1401                                                     Base, IndexValues);
1402      location = llvm::ConstantExpr::getBitCast(location,
1403                                                placeholder->getType());
1404
1405      Locations.insert({placeholder, location});
1406    }
1407  };
1408}
1409
1410void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1411  assert(InitializedNonAbstract &&
1412         "finalizing emitter that was used for abstract emission?");
1413  assert(!Finalized && "finalizing emitter multiple times");
1414  assert(global->getInitializer());
1415
1416  // Note that we might also be Failed.
1417  Finalized = true;
1418
1419  if (!PlaceholderAddresses.empty()) {
1420    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1421      .replaceInInitializer(global->getInitializer());
1422    PlaceholderAddresses.clear(); // satisfy
1423  }
1424}
1425
1426ConstantEmitter::~ConstantEmitter() {
1427  assert((!InitializedNonAbstract || Finalized || Failed) &&
1428         "not finalized after being initialized for non-abstract emission");
1429  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1430}
1431
1432static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1433  if (auto AT = type->getAs<AtomicType>()) {
1434    return CGM.getContext().getQualifiedType(AT->getValueType(),
1435                                             type.getQualifiers());
1436  }
1437  return type;
1438}
1439
1440llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1441  // Make a quick check if variable can be default NULL initialized
1442  // and avoid going through rest of code which may do, for c++11,
1443  // initialization of memory to all NULLs.
1444  if (!D.hasLocalStorage()) {
1445    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1446    if (Ty->isRecordType())
1447      if (const CXXConstructExpr *E =
1448          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1449        const CXXConstructorDecl *CD = E->getConstructor();
1450        if (CD->isTrivial() && CD->isDefaultConstructor())
1451          return CGM.EmitNullConstant(D.getType());
1452      }
1453  }
1454
1455  QualType destType = D.getType();
1456
1457  // Try to emit the initializer.  Note that this can allow some things that
1458  // are not allowed by tryEmitPrivateForMemory alone.
1459  if (auto value = D.evaluateValue()) {
1460    return tryEmitPrivateForMemory(*value, destType);
1461  }
1462
1463  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1464  // reference is a constant expression, and the reference binds to a temporary,
1465  // then constant initialization is performed. ConstExprEmitter will
1466  // incorrectly emit a prvalue constant in this case, and the calling code
1467  // interprets that as the (pointer) value of the reference, rather than the
1468  // desired value of the referee.
1469  if (destType->isReferenceType())
1470    return nullptr;
1471
1472  const Expr *E = D.getInit();
1473  assert(E && "No initializer to emit");
1474
1475  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1476  auto C =
1477    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1478  return (C ? emitForMemory(C, destType) : nullptr);
1479}
1480
1481llvm::Constant *
1482ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1483  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1484  auto C = tryEmitAbstract(E, nonMemoryDestType);
1485  return (C ? emitForMemory(C, destType) : nullptr);
1486}
1487
1488llvm::Constant *
1489ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1490                                          QualType destType) {
1491  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1492  auto C = tryEmitAbstract(value, nonMemoryDestType);
1493  return (C ? emitForMemory(C, destType) : nullptr);
1494}
1495
1496llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1497                                                         QualType destType) {
1498  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1499  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1500  return (C ? emitForMemory(C, destType) : nullptr);
1501}
1502
1503llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1504                                                         QualType destType) {
1505  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1506  auto C = tryEmitPrivate(value, nonMemoryDestType);
1507  return (C ? emitForMemory(C, destType) : nullptr);
1508}
1509
1510llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1511                                               llvm::Constant *C,
1512                                               QualType destType) {
1513  // For an _Atomic-qualified constant, we may need to add tail padding.
1514  if (auto AT = destType->getAs<AtomicType>()) {
1515    QualType destValueType = AT->getValueType();
1516    C = emitForMemory(CGM, C, destValueType);
1517
1518    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1519    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1520    if (innerSize == outerSize)
1521      return C;
1522
1523    assert(innerSize < outerSize && "emitted over-large constant for atomic");
1524    llvm::Constant *elts[] = {
1525      C,
1526      llvm::ConstantAggregateZero::get(
1527          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1528    };
1529    return llvm::ConstantStruct::getAnon(elts);
1530  }
1531
1532  // Zero-extend bool.
1533  if (C->getType()->isIntegerTy(1)) {
1534    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1535    return llvm::ConstantExpr::getZExt(C, boolTy);
1536  }
1537
1538  return C;
1539}
1540
1541llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1542                                                QualType destType) {
1543  Expr::EvalResult Result;
1544
1545  bool Success = false;
1546
1547  if (destType->isReferenceType())
1548    Success = E->EvaluateAsLValue(Result, CGM.getContext());
1549  else
1550    Success = E->EvaluateAsRValue(Result, CGM.getContext());
1551
1552  llvm::Constant *C;
1553  if (Success && !Result.HasSideEffects)
1554    C = tryEmitPrivate(Result.Val, destType);
1555  else
1556    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1557
1558  return C;
1559}
1560
1561llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1562  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1563}
1564
1565namespace {
1566/// A struct which can be used to peephole certain kinds of finalization
1567/// that normally happen during l-value emission.
1568struct ConstantLValue {
1569  llvm::Constant *Value;
1570  bool HasOffsetApplied;
1571
1572  /*implicit*/ ConstantLValue(llvm::Constant *value,
1573                              bool hasOffsetApplied = false)
1574    : Value(value), HasOffsetApplied(false) {}
1575
1576  /*implicit*/ ConstantLValue(ConstantAddress address)
1577    : ConstantLValue(address.getPointer()) {}
1578};
1579
1580/// A helper class for emitting constant l-values.
1581class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1582                                                      ConstantLValue> {
1583  CodeGenModule &CGM;
1584  ConstantEmitter &Emitter;
1585  const APValue &Value;
1586  QualType DestType;
1587
1588  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1589  friend StmtVisitorBase;
1590
1591public:
1592  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1593                        QualType destType)
1594    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1595
1596  llvm::Constant *tryEmit();
1597
1598private:
1599  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1600  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1601
1602  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1603  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1604  ConstantLValue VisitStringLiteral(const StringLiteral *E);
1605  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1606  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1607  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1608  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1609  ConstantLValue VisitCallExpr(const CallExpr *E);
1610  ConstantLValue VisitBlockExpr(const BlockExpr *E);
1611  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1612  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
1613  ConstantLValue VisitMaterializeTemporaryExpr(
1614                                         const MaterializeTemporaryExpr *E);
1615
1616  bool hasNonZeroOffset() const {
1617    return !Value.getLValueOffset().isZero();
1618  }
1619
1620  /// Return the value offset.
1621  llvm::Constant *getOffset() {
1622    return llvm::ConstantInt::get(CGM.Int64Ty,
1623                                  Value.getLValueOffset().getQuantity());
1624  }
1625
1626  /// Apply the value offset to the given constant.
1627  llvm::Constant *applyOffset(llvm::Constant *C) {
1628    if (!hasNonZeroOffset())
1629      return C;
1630
1631    llvm::Type *origPtrTy = C->getType();
1632    unsigned AS = origPtrTy->getPointerAddressSpace();
1633    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1634    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1635    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1636    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1637    return C;
1638  }
1639};
1640
1641}
1642
1643llvm::Constant *ConstantLValueEmitter::tryEmit() {
1644  const APValue::LValueBase &base = Value.getLValueBase();
1645
1646  // Certain special array initializers are represented in APValue
1647  // as l-values referring to the base expression which generates the
1648  // array.  This happens with e.g. string literals.  These should
1649  // probably just get their own representation kind in APValue.
1650  if (DestType->isArrayType()) {
1651    assert(!hasNonZeroOffset() && "offset on array initializer");
1652    auto expr = const_cast<Expr*>(base.get<const Expr*>());
1653    return ConstExprEmitter(Emitter).Visit(expr, DestType);
1654  }
1655
1656  // Otherwise, the destination type should be a pointer or reference
1657  // type, but it might also be a cast thereof.
1658  //
1659  // FIXME: the chain of casts required should be reflected in the APValue.
1660  // We need this in order to correctly handle things like a ptrtoint of a
1661  // non-zero null pointer and addrspace casts that aren't trivially
1662  // represented in LLVM IR.
1663  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1664  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1665
1666  // If there's no base at all, this is a null or absolute pointer,
1667  // possibly cast back to an integer type.
1668  if (!base) {
1669    return tryEmitAbsolute(destTy);
1670  }
1671
1672  // Otherwise, try to emit the base.
1673  ConstantLValue result = tryEmitBase(base);
1674
1675  // If that failed, we're done.
1676  llvm::Constant *value = result.Value;
1677  if (!value) return nullptr;
1678
1679  // Apply the offset if necessary and not already done.
1680  if (!result.HasOffsetApplied) {
1681    value = applyOffset(value);
1682  }
1683
1684  // Convert to the appropriate type; this could be an lvalue for
1685  // an integer.  FIXME: performAddrSpaceCast
1686  if (isa<llvm::PointerType>(destTy))
1687    return llvm::ConstantExpr::getPointerCast(value, destTy);
1688
1689  return llvm::ConstantExpr::getPtrToInt(value, destTy);
1690}
1691
1692/// Try to emit an absolute l-value, such as a null pointer or an integer
1693/// bitcast to pointer type.
1694llvm::Constant *
1695ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1696  auto offset = getOffset();
1697
1698  // If we're producing a pointer, this is easy.
1699  if (auto destPtrTy = cast<llvm::PointerType>(destTy)) {
1700    if (Value.isNullPointer()) {
1701      // FIXME: integer offsets from non-zero null pointers.
1702      return CGM.getNullPointer(destPtrTy, DestType);
1703    }
1704
1705    // Convert the integer to a pointer-sized integer before converting it
1706    // to a pointer.
1707    // FIXME: signedness depends on the original integer type.
1708    auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1709    llvm::Constant *C = offset;
1710    C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1711                                           /*isSigned*/ false);
1712    C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1713    return C;
1714  }
1715
1716  // Otherwise, we're basically returning an integer constant.
1717
1718  // FIXME: this does the wrong thing with ptrtoint of a null pointer,
1719  // but since we don't know the original pointer type, there's not much
1720  // we can do about it.
1721
1722  auto C = getOffset();
1723  C = llvm::ConstantExpr::getIntegerCast(C, destTy, /*isSigned*/ false);
1724  return C;
1725}
1726
1727ConstantLValue
1728ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1729  // Handle values.
1730  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1731    if (D->hasAttr<WeakRefAttr>())
1732      return CGM.GetWeakRefReference(D).getPointer();
1733
1734    if (auto FD = dyn_cast<FunctionDecl>(D))
1735      return CGM.GetAddrOfFunction(FD);
1736
1737    if (auto VD = dyn_cast<VarDecl>(D)) {
1738      // We can never refer to a variable with local storage.
1739      if (!VD->hasLocalStorage()) {
1740        if (VD->isFileVarDecl() || VD->hasExternalStorage())
1741          return CGM.GetAddrOfGlobalVar(VD);
1742
1743        if (VD->isLocalVarDecl()) {
1744          return CGM.getOrCreateStaticVarDecl(
1745              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1746        }
1747      }
1748    }
1749
1750    return nullptr;
1751  }
1752
1753  // Otherwise, it must be an expression.
1754  return Visit(base.get<const Expr*>());
1755}
1756
1757ConstantLValue
1758ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1759  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1760}
1761
1762ConstantLValue
1763ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1764  return CGM.GetAddrOfConstantStringFromLiteral(E);
1765}
1766
1767ConstantLValue
1768ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1769  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1770}
1771
1772ConstantLValue
1773ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1774  auto C = CGM.getObjCRuntime().GenerateConstantString(E->getString());
1775  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(E->getType()));
1776}
1777
1778ConstantLValue
1779ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1780  if (auto CGF = Emitter.CGF) {
1781    LValue Res = CGF->EmitPredefinedLValue(E);
1782    return cast<ConstantAddress>(Res.getAddress());
1783  }
1784
1785  auto kind = E->getIdentType();
1786  if (kind == PredefinedExpr::PrettyFunction) {
1787    return CGM.GetAddrOfConstantCString("top level", ".tmp");
1788  }
1789
1790  return CGM.GetAddrOfConstantCString("", ".tmp");
1791}
1792
1793ConstantLValue
1794ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1795  assert(Emitter.CGF && "Invalid address of label expression outside function");
1796  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1797  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1798                                   CGM.getTypes().ConvertType(E->getType()));
1799  return Ptr;
1800}
1801
1802ConstantLValue
1803ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1804  unsigned builtin = E->getBuiltinCallee();
1805  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1806      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1807    return nullptr;
1808
1809  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1810  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1811    return CGM.getObjCRuntime().GenerateConstantString(literal);
1812  } else {
1813    // FIXME: need to deal with UCN conversion issues.
1814    return CGM.GetAddrOfConstantCFString(literal);
1815  }
1816}
1817
1818ConstantLValue
1819ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
1820  StringRef functionName;
1821  if (auto CGF = Emitter.CGF)
1822    functionName = CGF->CurFn->getName();
1823  else
1824    functionName = "global";
1825
1826  return CGM.GetAddrOfGlobalBlock(E, functionName);
1827}
1828
1829ConstantLValue
1830ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
1831  QualType T;
1832  if (E->isTypeOperand())
1833    T = E->getTypeOperand(CGM.getContext());
1834  else
1835    T = E->getExprOperand()->getType();
1836  return CGM.GetAddrOfRTTIDescriptor(T);
1837}
1838
1839ConstantLValue
1840ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
1841  return CGM.GetAddrOfUuidDescriptor(E);
1842}
1843
1844ConstantLValue
1845ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
1846                                            const MaterializeTemporaryExpr *E) {
1847  assert(E->getStorageDuration() == SD_Static);
1848  SmallVector<const Expr *, 2> CommaLHSs;
1849  SmallVector<SubobjectAdjustment, 2> Adjustments;
1850  const Expr *Inner = E->GetTemporaryExpr()
1851      ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1852  return CGM.GetAddrOfGlobalTemporary(E, Inner);
1853}
1854
1855llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
1856                                                QualType DestType) {
1857  switch (Value.getKind()) {
1858  case APValue::Uninitialized:
1859    llvm_unreachable("Constant expressions should be initialized.");
1860  case APValue::LValue:
1861    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
1862  case APValue::Int:
1863    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
1864  case APValue::ComplexInt: {
1865    llvm::Constant *Complex[2];
1866
1867    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1868                                        Value.getComplexIntReal());
1869    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
1870                                        Value.getComplexIntImag());
1871
1872    // FIXME: the target may want to specify that this is packed.
1873    llvm::StructType *STy =
1874        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1875    return llvm::ConstantStruct::get(STy, Complex);
1876  }
1877  case APValue::Float: {
1878    const llvm::APFloat &Init = Value.getFloat();
1879    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
1880        !CGM.getContext().getLangOpts().NativeHalfType &&
1881        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1882      return llvm::ConstantInt::get(CGM.getLLVMContext(),
1883                                    Init.bitcastToAPInt());
1884    else
1885      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
1886  }
1887  case APValue::ComplexFloat: {
1888    llvm::Constant *Complex[2];
1889
1890    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1891                                       Value.getComplexFloatReal());
1892    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
1893                                       Value.getComplexFloatImag());
1894
1895    // FIXME: the target may want to specify that this is packed.
1896    llvm::StructType *STy =
1897        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
1898    return llvm::ConstantStruct::get(STy, Complex);
1899  }
1900  case APValue::Vector: {
1901    unsigned NumElts = Value.getVectorLength();
1902    SmallVector<llvm::Constant *, 4> Inits(NumElts);
1903
1904    for (unsigned I = 0; I != NumElts; ++I) {
1905      const APValue &Elt = Value.getVectorElt(I);
1906      if (Elt.isInt())
1907        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
1908      else if (Elt.isFloat())
1909        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
1910      else
1911        llvm_unreachable("unsupported vector element type");
1912    }
1913    return llvm::ConstantVector::get(Inits);
1914  }
1915  case APValue::AddrLabelDiff: {
1916    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1917    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1918    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
1919    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
1920    if (!LHS || !RHS) return nullptr;
1921
1922    // Compute difference
1923    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
1924    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
1925    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
1926    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1927
1928    // LLVM is a bit sensitive about the exact format of the
1929    // address-of-label difference; make sure to truncate after
1930    // the subtraction.
1931    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1932  }
1933  case APValue::Struct:
1934  case APValue::Union:
1935    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
1936  case APValue::Array: {
1937    const ConstantArrayType *CAT =
1938        CGM.getContext().getAsConstantArrayType(DestType);
1939    unsigned NumElements = Value.getArraySize();
1940    unsigned NumInitElts = Value.getArrayInitializedElts();
1941
1942    // Emit array filler, if there is one.
1943    llvm::Constant *Filler = nullptr;
1944    if (Value.hasArrayFiller()) {
1945      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
1946                                        CAT->getElementType());
1947      if (!Filler)
1948        return nullptr;
1949    }
1950
1951    // Emit initializer elements.
1952    SmallVector<llvm::Constant*, 16> Elts;
1953    if (Filler && Filler->isNullValue())
1954      Elts.reserve(NumInitElts + 1);
1955    else
1956      Elts.reserve(NumElements);
1957
1958    llvm::Type *CommonElementType = nullptr;
1959    for (unsigned I = 0; I < NumInitElts; ++I) {
1960      llvm::Constant *C = tryEmitPrivateForMemory(
1961          Value.getArrayInitializedElt(I), CAT->getElementType());
1962      if (!C) return nullptr;
1963
1964      if (I == 0)
1965        CommonElementType = C->getType();
1966      else if (C->getType() != CommonElementType)
1967        CommonElementType = nullptr;
1968      Elts.push_back(C);
1969    }
1970
1971    return EmitArrayConstant(CGM, CAT, CommonElementType, NumElements, Elts,
1972                             Filler);
1973  }
1974  case APValue::MemberPointer:
1975    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
1976  }
1977  llvm_unreachable("Unknown APValue kind");
1978}
1979
1980llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
1981    const CompoundLiteralExpr *E) {
1982  return EmittedCompoundLiterals.lookup(E);
1983}
1984
1985void CodeGenModule::setAddrOfConstantCompoundLiteral(
1986    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
1987  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
1988  (void)Ok;
1989  assert(Ok && "CLE has already been emitted!");
1990}
1991
1992ConstantAddress
1993CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1994  assert(E->isFileScope() && "not a file-scope compound literal expr");
1995  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
1996}
1997
1998llvm::Constant *
1999CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2000  // Member pointer constants always have a very particular form.
2001  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2002  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2003
2004  // A member function pointer.
2005  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2006    return getCXXABI().EmitMemberFunctionPointer(method);
2007
2008  // Otherwise, a member data pointer.
2009  uint64_t fieldOffset = getContext().getFieldOffset(decl);
2010  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2011  return getCXXABI().EmitMemberDataPointer(type, chars);
2012}
2013
2014static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2015                                               llvm::Type *baseType,
2016                                               const CXXRecordDecl *base);
2017
2018static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2019                                        const RecordDecl *record,
2020                                        bool asCompleteObject) {
2021  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2022  llvm::StructType *structure =
2023    (asCompleteObject ? layout.getLLVMType()
2024                      : layout.getBaseSubobjectLLVMType());
2025
2026  unsigned numElements = structure->getNumElements();
2027  std::vector<llvm::Constant *> elements(numElements);
2028
2029  auto CXXR = dyn_cast<CXXRecordDecl>(record);
2030  // Fill in all the bases.
2031  if (CXXR) {
2032    for (const auto &I : CXXR->bases()) {
2033      if (I.isVirtual()) {
2034        // Ignore virtual bases; if we're laying out for a complete
2035        // object, we'll lay these out later.
2036        continue;
2037      }
2038
2039      const CXXRecordDecl *base =
2040        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2041
2042      // Ignore empty bases.
2043      if (base->isEmpty() ||
2044          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2045              .isZero())
2046        continue;
2047
2048      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2049      llvm::Type *baseType = structure->getElementType(fieldIndex);
2050      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2051    }
2052  }
2053
2054  // Fill in all the fields.
2055  for (const auto *Field : record->fields()) {
2056    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2057    // will fill in later.)
2058    if (!Field->isBitField()) {
2059      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2060      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2061    }
2062
2063    // For unions, stop after the first named field.
2064    if (record->isUnion()) {
2065      if (Field->getIdentifier())
2066        break;
2067      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2068        if (FieldRD->findFirstNamedDataMember())
2069          break;
2070    }
2071  }
2072
2073  // Fill in the virtual bases, if we're working with the complete object.
2074  if (CXXR && asCompleteObject) {
2075    for (const auto &I : CXXR->vbases()) {
2076      const CXXRecordDecl *base =
2077        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2078
2079      // Ignore empty bases.
2080      if (base->isEmpty())
2081        continue;
2082
2083      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2084
2085      // We might have already laid this field out.
2086      if (elements[fieldIndex]) continue;
2087
2088      llvm::Type *baseType = structure->getElementType(fieldIndex);
2089      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2090    }
2091  }
2092
2093  // Now go through all other fields and zero them out.
2094  for (unsigned i = 0; i != numElements; ++i) {
2095    if (!elements[i])
2096      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2097  }
2098
2099  return llvm::ConstantStruct::get(structure, elements);
2100}
2101
2102/// Emit the null constant for a base subobject.
2103static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2104                                               llvm::Type *baseType,
2105                                               const CXXRecordDecl *base) {
2106  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2107
2108  // Just zero out bases that don't have any pointer to data members.
2109  if (baseLayout.isZeroInitializableAsBase())
2110    return llvm::Constant::getNullValue(baseType);
2111
2112  // Otherwise, we can just use its null constant.
2113  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2114}
2115
2116llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2117                                                   QualType T) {
2118  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2119}
2120
2121llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2122  if (T->getAs<PointerType>())
2123    return getNullPointer(
2124        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2125
2126  if (getTypes().isZeroInitializable(T))
2127    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2128
2129  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2130    llvm::ArrayType *ATy =
2131      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2132
2133    QualType ElementTy = CAT->getElementType();
2134
2135    llvm::Constant *Element =
2136      ConstantEmitter::emitNullForMemory(*this, ElementTy);
2137    unsigned NumElements = CAT->getSize().getZExtValue();
2138    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2139    return llvm::ConstantArray::get(ATy, Array);
2140  }
2141
2142  if (const RecordType *RT = T->getAs<RecordType>())
2143    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2144
2145  assert(T->isMemberDataPointerType() &&
2146         "Should only see pointers to data members here!");
2147
2148  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2149}
2150
2151llvm::Constant *
2152CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2153  return ::EmitNullConstant(*this, Record, false);
2154}
2155