1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCall.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenFunction.h"
21#include "CodeGenModule.h"
22#include "ConstantEmitter.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/NSAPI.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CodeGenOptions.h"
30#include "llvm/ADT/Hashing.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/Support/ConvertUTF.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Path.h"
39#include "llvm/Transforms/Utils/SanitizerStats.h"
40
41#include <string>
42
43using namespace clang;
44using namespace CodeGen;
45
46//===--------------------------------------------------------------------===//
47//                        Miscellaneous Helper Methods
48//===--------------------------------------------------------------------===//
49
50llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51  unsigned addressSpace =
52      cast<llvm::PointerType>(value->getType())->getAddressSpace();
53
54  llvm::PointerType *destType = Int8PtrTy;
55  if (addressSpace)
56    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57
58  if (value->getType() == destType) return value;
59  return Builder.CreateBitCast(value, destType);
60}
61
62/// CreateTempAlloca - This creates a alloca and inserts it into the entry
63/// block.
64Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                     CharUnits Align,
66                                                     const Twine &Name,
67                                                     llvm::Value *ArraySize) {
68  auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69  Alloca->setAlignment(Align.getAsAlign());
70  return Address(Alloca, Align);
71}
72
73/// CreateTempAlloca - This creates a alloca and inserts it into the entry
74/// block. The alloca is casted to default address space if necessary.
75Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                          const Twine &Name,
77                                          llvm::Value *ArraySize,
78                                          Address *AllocaAddr) {
79  auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80  if (AllocaAddr)
81    *AllocaAddr = Alloca;
82  llvm::Value *V = Alloca.getPointer();
83  // Alloca always returns a pointer in alloca address space, which may
84  // be different from the type defined by the language. For example,
85  // in C++ the auto variables are in the default address space. Therefore
86  // cast alloca to the default address space when necessary.
87  if (getASTAllocaAddressSpace() != LangAS::Default) {
88    auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89    llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90    // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91    // otherwise alloca is inserted at the current insertion point of the
92    // builder.
93    if (!ArraySize)
94      Builder.SetInsertPoint(AllocaInsertPt);
95    V = getTargetHooks().performAddrSpaceCast(
96        *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97        Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98  }
99
100  return Address(V, Align);
101}
102
103/// CreateTempAlloca - This creates an alloca and inserts it into the entry
104/// block if \p ArraySize is nullptr, otherwise inserts it at the current
105/// insertion point of the builder.
106llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                    const Twine &Name,
108                                                    llvm::Value *ArraySize) {
109  if (ArraySize)
110    return Builder.CreateAlloca(Ty, ArraySize, Name);
111  return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                              ArraySize, Name, AllocaInsertPt);
113}
114
115/// CreateDefaultAlignTempAlloca - This creates an alloca with the
116/// default alignment of the corresponding LLVM type, which is *not*
117/// guaranteed to be related in any way to the expected alignment of
118/// an AST type that might have been lowered to Ty.
119Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                      const Twine &Name) {
121  CharUnits Align =
122    CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123  return CreateTempAlloca(Ty, Align, Name);
124}
125
126void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127  assert(isa<llvm::AllocaInst>(Var.getPointer()));
128  auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129  Store->setAlignment(Var.getAlignment().getAsAlign());
130  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131  Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132}
133
134Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135  CharUnits Align = getContext().getTypeAlignInChars(Ty);
136  return CreateTempAlloca(ConvertType(Ty), Align, Name);
137}
138
139Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                       Address *Alloca) {
141  // FIXME: Should we prefer the preferred type alignment here?
142  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143}
144
145Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                       const Twine &Name, Address *Alloca) {
147  return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                          /*ArraySize=*/nullptr, Alloca);
149}
150
151Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                  const Twine &Name) {
153  return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154}
155
156Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                  const Twine &Name) {
158  return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                  Name);
160}
161
162/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163/// expression and compare the result against zero, returning an Int1Ty value.
164llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165  PGO.setCurrentStmt(E);
166  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167    llvm::Value *MemPtr = EmitScalarExpr(E);
168    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169  }
170
171  QualType BoolTy = getContext().BoolTy;
172  SourceLocation Loc = E->getExprLoc();
173  if (!E->getType()->isAnyComplexType())
174    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175
176  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                       Loc);
178}
179
180/// EmitIgnoredExpr - Emit code to compute the specified expression,
181/// ignoring the result.
182void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183  if (E->isRValue())
184    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185
186  // Just emit it as an l-value and drop the result.
187  EmitLValue(E);
188}
189
190/// EmitAnyExpr - Emit code to compute the specified expression which
191/// can have any type.  The result is returned as an RValue struct.
192/// If this is an aggregate expression, AggSlot indicates where the
193/// result should be returned.
194RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                    AggValueSlot aggSlot,
196                                    bool ignoreResult) {
197  switch (getEvaluationKind(E->getType())) {
198  case TEK_Scalar:
199    return RValue::get(EmitScalarExpr(E, ignoreResult));
200  case TEK_Complex:
201    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202  case TEK_Aggregate:
203    if (!ignoreResult && aggSlot.isIgnored())
204      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205    EmitAggExpr(E, aggSlot);
206    return aggSlot.asRValue();
207  }
208  llvm_unreachable("bad evaluation kind");
209}
210
211/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212/// always be accessible even if no aggregate location is provided.
213RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214  AggValueSlot AggSlot = AggValueSlot::ignored();
215
216  if (hasAggregateEvaluationKind(E->getType()))
217    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218  return EmitAnyExpr(E, AggSlot);
219}
220
221/// EmitAnyExprToMem - Evaluate an expression into a given memory
222/// location.
223void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                       Address Location,
225                                       Qualifiers Quals,
226                                       bool IsInit) {
227  // FIXME: This function should take an LValue as an argument.
228  switch (getEvaluationKind(E->getType())) {
229  case TEK_Complex:
230    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                              /*isInit*/ false);
232    return;
233
234  case TEK_Aggregate: {
235    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                         AggValueSlot::IsDestructed_t(IsInit),
237                                         AggValueSlot::DoesNotNeedGCBarriers,
238                                         AggValueSlot::IsAliased_t(!IsInit),
239                                         AggValueSlot::MayOverlap));
240    return;
241  }
242
243  case TEK_Scalar: {
244    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245    LValue LV = MakeAddrLValue(Location, E->getType());
246    EmitStoreThroughLValue(RV, LV);
247    return;
248  }
249  }
250  llvm_unreachable("bad evaluation kind");
251}
252
253static void
254pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                     const Expr *E, Address ReferenceTemporary) {
256  // Objective-C++ ARC:
257  //   If we are binding a reference to a temporary that has ownership, we
258  //   need to perform retain/release operations on the temporary.
259  //
260  // FIXME: This should be looking at E, not M.
261  if (auto Lifetime = M->getType().getObjCLifetime()) {
262    switch (Lifetime) {
263    case Qualifiers::OCL_None:
264    case Qualifiers::OCL_ExplicitNone:
265      // Carry on to normal cleanup handling.
266      break;
267
268    case Qualifiers::OCL_Autoreleasing:
269      // Nothing to do; cleaned up by an autorelease pool.
270      return;
271
272    case Qualifiers::OCL_Strong:
273    case Qualifiers::OCL_Weak:
274      switch (StorageDuration Duration = M->getStorageDuration()) {
275      case SD_Static:
276        // Note: we intentionally do not register a cleanup to release
277        // the object on program termination.
278        return;
279
280      case SD_Thread:
281        // FIXME: We should probably register a cleanup in this case.
282        return;
283
284      case SD_Automatic:
285      case SD_FullExpression:
286        CodeGenFunction::Destroyer *Destroy;
287        CleanupKind CleanupKind;
288        if (Lifetime == Qualifiers::OCL_Strong) {
289          const ValueDecl *VD = M->getExtendingDecl();
290          bool Precise =
291              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292          CleanupKind = CGF.getARCCleanupKind();
293          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                            : &CodeGenFunction::destroyARCStrongImprecise;
295        } else {
296          // __weak objects always get EH cleanups; otherwise, exceptions
297          // could cause really nasty crashes instead of mere leaks.
298          CleanupKind = NormalAndEHCleanup;
299          Destroy = &CodeGenFunction::destroyARCWeak;
300        }
301        if (Duration == SD_FullExpression)
302          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                          M->getType(), *Destroy,
304                          CleanupKind & EHCleanup);
305        else
306          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                          M->getType(),
308                                          *Destroy, CleanupKind & EHCleanup);
309        return;
310
311      case SD_Dynamic:
312        llvm_unreachable("temporary cannot have dynamic storage duration");
313      }
314      llvm_unreachable("unknown storage duration");
315    }
316  }
317
318  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319  if (const RecordType *RT =
320          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321    // Get the destructor for the reference temporary.
322    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323    if (!ClassDecl->hasTrivialDestructor())
324      ReferenceTemporaryDtor = ClassDecl->getDestructor();
325  }
326
327  if (!ReferenceTemporaryDtor)
328    return;
329
330  // Call the destructor for the temporary.
331  switch (M->getStorageDuration()) {
332  case SD_Static:
333  case SD_Thread: {
334    llvm::FunctionCallee CleanupFn;
335    llvm::Constant *CleanupArg;
336    if (E->getType()->isArrayType()) {
337      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338          ReferenceTemporary, E->getType(),
339          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342    } else {
343      CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344          GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346    }
347    CGF.CGM.getCXXABI().registerGlobalDtor(
348        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349    break;
350  }
351
352  case SD_FullExpression:
353    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                    CodeGenFunction::destroyCXXObject,
355                    CGF.getLangOpts().Exceptions);
356    break;
357
358  case SD_Automatic:
359    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                    ReferenceTemporary, E->getType(),
361                                    CodeGenFunction::destroyCXXObject,
362                                    CGF.getLangOpts().Exceptions);
363    break;
364
365  case SD_Dynamic:
366    llvm_unreachable("temporary cannot have dynamic storage duration");
367  }
368}
369
370static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                        const MaterializeTemporaryExpr *M,
372                                        const Expr *Inner,
373                                        Address *Alloca = nullptr) {
374  auto &TCG = CGF.getTargetHooks();
375  switch (M->getStorageDuration()) {
376  case SD_FullExpression:
377  case SD_Automatic: {
378    // If we have a constant temporary array or record try to promote it into a
379    // constant global under the same rules a normal constant would've been
380    // promoted. This is easier on the optimizer and generally emits fewer
381    // instructions.
382    QualType Ty = Inner->getType();
383    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384        (Ty->isArrayType() || Ty->isRecordType()) &&
385        CGF.CGM.isTypeConstant(Ty, true))
386      if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387        if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388          auto AS = AddrSpace.getValue();
389          auto *GV = new llvm::GlobalVariable(
390              CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391              llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392              llvm::GlobalValue::NotThreadLocal,
393              CGF.getContext().getTargetAddressSpace(AS));
394          CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395          GV->setAlignment(alignment.getAsAlign());
396          llvm::Constant *C = GV;
397          if (AS != LangAS::Default)
398            C = TCG.performAddrSpaceCast(
399                CGF.CGM, GV, AS, LangAS::Default,
400                GV->getValueType()->getPointerTo(
401                    CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402          // FIXME: Should we put the new global into a COMDAT?
403          return Address(C, alignment);
404        }
405      }
406    return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407  }
408  case SD_Thread:
409  case SD_Static:
410    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411
412  case SD_Dynamic:
413    llvm_unreachable("temporary can't have dynamic storage duration");
414  }
415  llvm_unreachable("unknown storage duration");
416}
417
418LValue CodeGenFunction::
419EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420  const Expr *E = M->getSubExpr();
421
422  assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423          !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424         "Reference should never be pseudo-strong!");
425
426  // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427  // as that will cause the lifetime adjustment to be lost for ARC
428  auto ownership = M->getType().getObjCLifetime();
429  if (ownership != Qualifiers::OCL_None &&
430      ownership != Qualifiers::OCL_ExplicitNone) {
431    Address Object = createReferenceTemporary(*this, M, E);
432    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433      Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                           ConvertTypeForMem(E->getType())
435                             ->getPointerTo(Object.getAddressSpace())),
436                       Object.getAlignment());
437
438      // createReferenceTemporary will promote the temporary to a global with a
439      // constant initializer if it can.  It can only do this to a value of
440      // ARC-manageable type if the value is global and therefore "immune" to
441      // ref-counting operations.  Therefore we have no need to emit either a
442      // dynamic initialization or a cleanup and we can just return the address
443      // of the temporary.
444      if (Var->hasInitializer())
445        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446
447      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448    }
449    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                       AlignmentSource::Decl);
451
452    switch (getEvaluationKind(E->getType())) {
453    default: llvm_unreachable("expected scalar or aggregate expression");
454    case TEK_Scalar:
455      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456      break;
457    case TEK_Aggregate: {
458      EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                           E->getType().getQualifiers(),
460                                           AggValueSlot::IsDestructed,
461                                           AggValueSlot::DoesNotNeedGCBarriers,
462                                           AggValueSlot::IsNotAliased,
463                                           AggValueSlot::DoesNotOverlap));
464      break;
465    }
466    }
467
468    pushTemporaryCleanup(*this, M, E, Object);
469    return RefTempDst;
470  }
471
472  SmallVector<const Expr *, 2> CommaLHSs;
473  SmallVector<SubobjectAdjustment, 2> Adjustments;
474  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475
476  for (const auto &Ignored : CommaLHSs)
477    EmitIgnoredExpr(Ignored);
478
479  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480    if (opaque->getType()->isRecordType()) {
481      assert(Adjustments.empty());
482      return EmitOpaqueValueLValue(opaque);
483    }
484  }
485
486  // Create and initialize the reference temporary.
487  Address Alloca = Address::invalid();
488  Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489  if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490          Object.getPointer()->stripPointerCasts())) {
491    Object = Address(llvm::ConstantExpr::getBitCast(
492                         cast<llvm::Constant>(Object.getPointer()),
493                         ConvertTypeForMem(E->getType())->getPointerTo()),
494                     Object.getAlignment());
495    // If the temporary is a global and has a constant initializer or is a
496    // constant temporary that we promoted to a global, we may have already
497    // initialized it.
498    if (!Var->hasInitializer()) {
499      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501    }
502  } else {
503    switch (M->getStorageDuration()) {
504    case SD_Automatic:
505      if (auto *Size = EmitLifetimeStart(
506              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507              Alloca.getPointer())) {
508        pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                  Alloca, Size);
510      }
511      break;
512
513    case SD_FullExpression: {
514      if (!ShouldEmitLifetimeMarkers)
515        break;
516
517      // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518      // marker. Instead, start the lifetime of a conditional temporary earlier
519      // so that it's unconditional. Don't do this with sanitizers which need
520      // more precise lifetime marks.
521      ConditionalEvaluation *OldConditional = nullptr;
522      CGBuilderTy::InsertPoint OldIP;
523      if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524          !SanOpts.has(SanitizerKind::HWAddress) &&
525          !SanOpts.has(SanitizerKind::Memory) &&
526          !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527        OldConditional = OutermostConditional;
528        OutermostConditional = nullptr;
529
530        OldIP = Builder.saveIP();
531        llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532        Builder.restoreIP(CGBuilderTy::InsertPoint(
533            Block, llvm::BasicBlock::iterator(Block->back())));
534      }
535
536      if (auto *Size = EmitLifetimeStart(
537              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538              Alloca.getPointer())) {
539        pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                             Size);
541      }
542
543      if (OldConditional) {
544        OutermostConditional = OldConditional;
545        Builder.restoreIP(OldIP);
546      }
547      break;
548    }
549
550    default:
551      break;
552    }
553    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554  }
555  pushTemporaryCleanup(*this, M, E, Object);
556
557  // Perform derived-to-base casts and/or field accesses, to get from the
558  // temporary object we created (and, potentially, for which we extended
559  // the lifetime) to the subobject we're binding the reference to.
560  for (unsigned I = Adjustments.size(); I != 0; --I) {
561    SubobjectAdjustment &Adjustment = Adjustments[I-1];
562    switch (Adjustment.Kind) {
563    case SubobjectAdjustment::DerivedToBaseAdjustment:
564      Object =
565          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                Adjustment.DerivedToBase.BasePath->path_begin(),
567                                Adjustment.DerivedToBase.BasePath->path_end(),
568                                /*NullCheckValue=*/ false, E->getExprLoc());
569      break;
570
571    case SubobjectAdjustment::FieldAdjustment: {
572      LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573      LV = EmitLValueForField(LV, Adjustment.Field);
574      assert(LV.isSimple() &&
575             "materialized temporary field is not a simple lvalue");
576      Object = LV.getAddress(*this);
577      break;
578    }
579
580    case SubobjectAdjustment::MemberPointerAdjustment: {
581      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                               Adjustment.Ptr.MPT);
584      break;
585    }
586    }
587  }
588
589  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590}
591
592RValue
593CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594  // Emit the expression as an lvalue.
595  LValue LV = EmitLValue(E);
596  assert(LV.isSimple());
597  llvm::Value *Value = LV.getPointer(*this);
598
599  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600    // C++11 [dcl.ref]p5 (as amended by core issue 453):
601    //   If a glvalue to which a reference is directly bound designates neither
602    //   an existing object or function of an appropriate type nor a region of
603    //   storage of suitable size and alignment to contain an object of the
604    //   reference's type, the behavior is undefined.
605    QualType Ty = E->getType();
606    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607  }
608
609  return RValue::get(Value);
610}
611
612
613/// getAccessedFieldNo - Given an encoded value and a result number, return the
614/// input field number being accessed.
615unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                             const llvm::Constant *Elts) {
617  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618      ->getZExtValue();
619}
620
621/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                    llvm::Value *High) {
624  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625  llvm::Value *K47 = Builder.getInt64(47);
626  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630  return Builder.CreateMul(B1, KMul);
631}
632
633bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634  return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635         TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636}
637
638bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640  return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641         (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642          TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644}
645
646bool CodeGenFunction::sanitizePerformTypeCheck() const {
647  return SanOpts.has(SanitizerKind::Null) |
648         SanOpts.has(SanitizerKind::Alignment) |
649         SanOpts.has(SanitizerKind::ObjectSize) |
650         SanOpts.has(SanitizerKind::Vptr);
651}
652
653void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                    llvm::Value *Ptr, QualType Ty,
655                                    CharUnits Alignment,
656                                    SanitizerSet SkippedChecks,
657                                    llvm::Value *ArraySize) {
658  if (!sanitizePerformTypeCheck())
659    return;
660
661  // Don't check pointers outside the default address space. The null check
662  // isn't correct, the object-size check isn't supported by LLVM, and we can't
663  // communicate the addresses to the runtime handler for the vptr check.
664  if (Ptr->getType()->getPointerAddressSpace())
665    return;
666
667  // Don't check pointers to volatile data. The behavior here is implementation-
668  // defined.
669  if (Ty.isVolatileQualified())
670    return;
671
672  SanitizerScope SanScope(this);
673
674  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675  llvm::BasicBlock *Done = nullptr;
676
677  // Quickly determine whether we have a pointer to an alloca. It's possible
678  // to skip null checks, and some alignment checks, for these pointers. This
679  // can reduce compile-time significantly.
680  auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681
682  llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683  llvm::Value *IsNonNull = nullptr;
684  bool IsGuaranteedNonNull =
685      SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686  bool AllowNullPointers = isNullPointerAllowed(TCK);
687  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688      !IsGuaranteedNonNull) {
689    // The glvalue must not be an empty glvalue.
690    IsNonNull = Builder.CreateIsNotNull(Ptr);
691
692    // The IR builder can constant-fold the null check if the pointer points to
693    // a constant.
694    IsGuaranteedNonNull = IsNonNull == True;
695
696    // Skip the null check if the pointer is known to be non-null.
697    if (!IsGuaranteedNonNull) {
698      if (AllowNullPointers) {
699        // When performing pointer casts, it's OK if the value is null.
700        // Skip the remaining checks in that case.
701        Done = createBasicBlock("null");
702        llvm::BasicBlock *Rest = createBasicBlock("not.null");
703        Builder.CreateCondBr(IsNonNull, Rest, Done);
704        EmitBlock(Rest);
705      } else {
706        Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707      }
708    }
709  }
710
711  if (SanOpts.has(SanitizerKind::ObjectSize) &&
712      !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713      !Ty->isIncompleteType()) {
714    uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715    llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716    if (ArraySize)
717      Size = Builder.CreateMul(Size, ArraySize);
718
719    // Degenerate case: new X[0] does not need an objectsize check.
720    llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721    if (!ConstantSize || !ConstantSize->isNullValue()) {
722      // The glvalue must refer to a large enough storage region.
723      // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724      //        to check this.
725      // FIXME: Get object address space
726      llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728      llvm::Value *Min = Builder.getFalse();
729      llvm::Value *NullIsUnknown = Builder.getFalse();
730      llvm::Value *Dynamic = Builder.getFalse();
731      llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732      llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733          Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734      Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735    }
736  }
737
738  uint64_t AlignVal = 0;
739  llvm::Value *PtrAsInt = nullptr;
740
741  if (SanOpts.has(SanitizerKind::Alignment) &&
742      !SkippedChecks.has(SanitizerKind::Alignment)) {
743    AlignVal = Alignment.getQuantity();
744    if (!Ty->isIncompleteType() && !AlignVal)
745      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746
747    // The glvalue must be suitably aligned.
748    if (AlignVal > 1 &&
749        (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750      PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751      llvm::Value *Align = Builder.CreateAnd(
752          PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753      llvm::Value *Aligned =
754          Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755      if (Aligned != True)
756        Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757    }
758  }
759
760  if (Checks.size() > 0) {
761    // Make sure we're not losing information. Alignment needs to be a power of
762    // 2
763    assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764    llvm::Constant *StaticData[] = {
765        EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766        llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767        llvm::ConstantInt::get(Int8Ty, TCK)};
768    EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769              PtrAsInt ? PtrAsInt : Ptr);
770  }
771
772  // If possible, check that the vptr indicates that there is a subobject of
773  // type Ty at offset zero within this object.
774  //
775  // C++11 [basic.life]p5,6:
776  //   [For storage which does not refer to an object within its lifetime]
777  //   The program has undefined behavior if:
778  //    -- the [pointer or glvalue] is used to access a non-static data member
779  //       or call a non-static member function
780  if (SanOpts.has(SanitizerKind::Vptr) &&
781      !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782    // Ensure that the pointer is non-null before loading it. If there is no
783    // compile-time guarantee, reuse the run-time null check or emit a new one.
784    if (!IsGuaranteedNonNull) {
785      if (!IsNonNull)
786        IsNonNull = Builder.CreateIsNotNull(Ptr);
787      if (!Done)
788        Done = createBasicBlock("vptr.null");
789      llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790      Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791      EmitBlock(VptrNotNull);
792    }
793
794    // Compute a hash of the mangled name of the type.
795    //
796    // FIXME: This is not guaranteed to be deterministic! Move to a
797    //        fingerprinting mechanism once LLVM provides one. For the time
798    //        being the implementation happens to be deterministic.
799    SmallString<64> MangledName;
800    llvm::raw_svector_ostream Out(MangledName);
801    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                     Out);
803
804    // Blacklist based on the mangled type.
805    if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806            SanitizerKind::Vptr, Out.str())) {
807      llvm::hash_code TypeHash = hash_value(Out.str());
808
809      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811      llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812      Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815
816      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818
819      // Look the hash up in our cache.
820      const int CacheSize = 128;
821      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                     "__ubsan_vptr_type_cache");
824      llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                            llvm::ConstantInt::get(IntPtrTy,
826                                                                   CacheSize-1));
827      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828      llvm::Value *CacheVal =
829        Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                  getPointerAlign());
831
832      // If the hash isn't in the cache, call a runtime handler to perform the
833      // hard work of checking whether the vptr is for an object of the right
834      // type. This will either fill in the cache and return, or produce a
835      // diagnostic.
836      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837      llvm::Constant *StaticData[] = {
838        EmitCheckSourceLocation(Loc),
839        EmitCheckTypeDescriptor(Ty),
840        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841        llvm::ConstantInt::get(Int8Ty, TCK)
842      };
843      llvm::Value *DynamicData[] = { Ptr, Hash };
844      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                DynamicData);
847    }
848  }
849
850  if (Done) {
851    Builder.CreateBr(Done);
852    EmitBlock(Done);
853  }
854}
855
856/// Determine whether this expression refers to a flexible array member in a
857/// struct. We disable array bounds checks for such members.
858static bool isFlexibleArrayMemberExpr(const Expr *E) {
859  // For compatibility with existing code, we treat arrays of length 0 or
860  // 1 as flexible array members.
861  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863    if (CAT->getSize().ugt(1))
864      return false;
865  } else if (!isa<IncompleteArrayType>(AT))
866    return false;
867
868  E = E->IgnoreParens();
869
870  // A flexible array member must be the last member in the class.
871  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872    // FIXME: If the base type of the member expr is not FD->getParent(),
873    // this should not be treated as a flexible array member access.
874    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875      RecordDecl::field_iterator FI(
876          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877      return ++FI == FD->getParent()->field_end();
878    }
879  } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880    return IRE->getDecl()->getNextIvar() == nullptr;
881  }
882
883  return false;
884}
885
886llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                   QualType EltTy) {
888  ASTContext &C = getContext();
889  uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890  if (!EltSize)
891    return nullptr;
892
893  auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894  if (!ArrayDeclRef)
895    return nullptr;
896
897  auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898  if (!ParamDecl)
899    return nullptr;
900
901  auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902  if (!POSAttr)
903    return nullptr;
904
905  // Don't load the size if it's a lower bound.
906  int POSType = POSAttr->getType();
907  if (POSType != 0 && POSType != 1)
908    return nullptr;
909
910  // Find the implicit size parameter.
911  auto PassedSizeIt = SizeArguments.find(ParamDecl);
912  if (PassedSizeIt == SizeArguments.end())
913    return nullptr;
914
915  const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916  assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917  Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918  llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                              C.getSizeType(), E->getExprLoc());
920  llvm::Value *SizeOfElement =
921      llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922  return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923}
924
925/// If Base is known to point to the start of an array, return the length of
926/// that array. Return 0 if the length cannot be determined.
927static llvm::Value *getArrayIndexingBound(
928    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929  // For the vector indexing extension, the bound is the number of elements.
930  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931    IndexedType = Base->getType();
932    return CGF.Builder.getInt32(VT->getNumElements());
933  }
934
935  Base = Base->IgnoreParens();
936
937  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940      IndexedType = CE->getSubExpr()->getType();
941      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943        return CGF.Builder.getInt(CAT->getSize());
944      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945        return CGF.getVLASize(VAT).NumElts;
946      // Ignore pass_object_size here. It's not applicable on decayed pointers.
947    }
948  }
949
950  QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951  if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952    IndexedType = Base->getType();
953    return POS;
954  }
955
956  return nullptr;
957}
958
959void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                      llvm::Value *Index, QualType IndexType,
961                                      bool Accessed) {
962  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963         "should not be called unless adding bounds checks");
964  SanitizerScope SanScope(this);
965
966  QualType IndexedType;
967  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968  if (!Bound)
969    return;
970
971  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974
975  llvm::Constant *StaticData[] = {
976    EmitCheckSourceLocation(E->getExprLoc()),
977    EmitCheckTypeDescriptor(IndexedType),
978    EmitCheckTypeDescriptor(IndexType)
979  };
980  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                : Builder.CreateICmpULE(IndexVal, BoundVal);
982  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983            SanitizerHandler::OutOfBounds, StaticData, Index);
984}
985
986
987CodeGenFunction::ComplexPairTy CodeGenFunction::
988EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                         bool isInc, bool isPre) {
990  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991
992  llvm::Value *NextVal;
993  if (isa<llvm::IntegerType>(InVal.first->getType())) {
994    uint64_t AmountVal = isInc ? 1 : -1;
995    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996
997    // Add the inc/dec to the real part.
998    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999  } else {
1000    QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1001    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002    if (!isInc)
1003      FVal.changeSign();
1004    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005
1006    // Add the inc/dec to the real part.
1007    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008  }
1009
1010  ComplexPairTy IncVal(NextVal, InVal.second);
1011
1012  // Store the updated result through the lvalue.
1013  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014  if (getLangOpts().OpenMP)
1015    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1016                                                              E->getSubExpr());
1017
1018  // If this is a postinc, return the value read from memory, otherwise use the
1019  // updated value.
1020  return isPre ? IncVal : InVal;
1021}
1022
1023void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1024                                             CodeGenFunction *CGF) {
1025  // Bind VLAs in the cast type.
1026  if (CGF && E->getType()->isVariablyModifiedType())
1027    CGF->EmitVariablyModifiedType(E->getType());
1028
1029  if (CGDebugInfo *DI = getModuleDebugInfo())
1030    DI->EmitExplicitCastType(E->getType());
1031}
1032
1033//===----------------------------------------------------------------------===//
1034//                         LValue Expression Emission
1035//===----------------------------------------------------------------------===//
1036
1037/// EmitPointerWithAlignment - Given an expression of pointer type, try to
1038/// derive a more accurate bound on the alignment of the pointer.
1039Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1040                                                  LValueBaseInfo *BaseInfo,
1041                                                  TBAAAccessInfo *TBAAInfo) {
1042  // We allow this with ObjC object pointers because of fragile ABIs.
1043  assert(E->getType()->isPointerType() ||
1044         E->getType()->isObjCObjectPointerType());
1045  E = E->IgnoreParens();
1046
1047  // Casts:
1048  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1049    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1050      CGM.EmitExplicitCastExprType(ECE, this);
1051
1052    switch (CE->getCastKind()) {
1053    // Non-converting casts (but not C's implicit conversion from void*).
1054    case CK_BitCast:
1055    case CK_NoOp:
1056    case CK_AddressSpaceConversion:
1057      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1058        if (PtrTy->getPointeeType()->isVoidType())
1059          break;
1060
1061        LValueBaseInfo InnerBaseInfo;
1062        TBAAAccessInfo InnerTBAAInfo;
1063        Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1064                                                &InnerBaseInfo,
1065                                                &InnerTBAAInfo);
1066        if (BaseInfo) *BaseInfo = InnerBaseInfo;
1067        if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1068
1069        if (isa<ExplicitCastExpr>(CE)) {
1070          LValueBaseInfo TargetTypeBaseInfo;
1071          TBAAAccessInfo TargetTypeTBAAInfo;
1072          CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1073                                                           &TargetTypeBaseInfo,
1074                                                           &TargetTypeTBAAInfo);
1075          if (TBAAInfo)
1076            *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1077                                                 TargetTypeTBAAInfo);
1078          // If the source l-value is opaque, honor the alignment of the
1079          // casted-to type.
1080          if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1081            if (BaseInfo)
1082              BaseInfo->mergeForCast(TargetTypeBaseInfo);
1083            Addr = Address(Addr.getPointer(), Align);
1084          }
1085        }
1086
1087        if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1088            CE->getCastKind() == CK_BitCast) {
1089          if (auto PT = E->getType()->getAs<PointerType>())
1090            EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1091                                      /*MayBeNull=*/true,
1092                                      CodeGenFunction::CFITCK_UnrelatedCast,
1093                                      CE->getBeginLoc());
1094        }
1095        return CE->getCastKind() != CK_AddressSpaceConversion
1096                   ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1097                   : Builder.CreateAddrSpaceCast(Addr,
1098                                                 ConvertType(E->getType()));
1099      }
1100      break;
1101
1102    // Array-to-pointer decay.
1103    case CK_ArrayToPointerDecay:
1104      return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1105
1106    // Derived-to-base conversions.
1107    case CK_UncheckedDerivedToBase:
1108    case CK_DerivedToBase: {
1109      // TODO: Support accesses to members of base classes in TBAA. For now, we
1110      // conservatively pretend that the complete object is of the base class
1111      // type.
1112      if (TBAAInfo)
1113        *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1114      Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1115      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1116      return GetAddressOfBaseClass(Addr, Derived,
1117                                   CE->path_begin(), CE->path_end(),
1118                                   ShouldNullCheckClassCastValue(CE),
1119                                   CE->getExprLoc());
1120    }
1121
1122    // TODO: Is there any reason to treat base-to-derived conversions
1123    // specially?
1124    default:
1125      break;
1126    }
1127  }
1128
1129  // Unary &.
1130  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1131    if (UO->getOpcode() == UO_AddrOf) {
1132      LValue LV = EmitLValue(UO->getSubExpr());
1133      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1134      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1135      return LV.getAddress(*this);
1136    }
1137  }
1138
1139  // TODO: conditional operators, comma.
1140
1141  // Otherwise, use the alignment of the type.
1142  CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1143                                                   TBAAInfo);
1144  return Address(EmitScalarExpr(E), Align);
1145}
1146
1147RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1148  if (Ty->isVoidType())
1149    return RValue::get(nullptr);
1150
1151  switch (getEvaluationKind(Ty)) {
1152  case TEK_Complex: {
1153    llvm::Type *EltTy =
1154      ConvertType(Ty->castAs<ComplexType>()->getElementType());
1155    llvm::Value *U = llvm::UndefValue::get(EltTy);
1156    return RValue::getComplex(std::make_pair(U, U));
1157  }
1158
1159  // If this is a use of an undefined aggregate type, the aggregate must have an
1160  // identifiable address.  Just because the contents of the value are undefined
1161  // doesn't mean that the address can't be taken and compared.
1162  case TEK_Aggregate: {
1163    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1164    return RValue::getAggregate(DestPtr);
1165  }
1166
1167  case TEK_Scalar:
1168    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1169  }
1170  llvm_unreachable("bad evaluation kind");
1171}
1172
1173RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1174                                              const char *Name) {
1175  ErrorUnsupported(E, Name);
1176  return GetUndefRValue(E->getType());
1177}
1178
1179LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1180                                              const char *Name) {
1181  ErrorUnsupported(E, Name);
1182  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1183  return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1184                        E->getType());
1185}
1186
1187bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1188  const Expr *Base = Obj;
1189  while (!isa<CXXThisExpr>(Base)) {
1190    // The result of a dynamic_cast can be null.
1191    if (isa<CXXDynamicCastExpr>(Base))
1192      return false;
1193
1194    if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1195      Base = CE->getSubExpr();
1196    } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1197      Base = PE->getSubExpr();
1198    } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1199      if (UO->getOpcode() == UO_Extension)
1200        Base = UO->getSubExpr();
1201      else
1202        return false;
1203    } else {
1204      return false;
1205    }
1206  }
1207  return true;
1208}
1209
1210LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1211  LValue LV;
1212  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1213    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1214  else
1215    LV = EmitLValue(E);
1216  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1217    SanitizerSet SkippedChecks;
1218    if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1219      bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1220      if (IsBaseCXXThis)
1221        SkippedChecks.set(SanitizerKind::Alignment, true);
1222      if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1223        SkippedChecks.set(SanitizerKind::Null, true);
1224    }
1225    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1226                  LV.getAlignment(), SkippedChecks);
1227  }
1228  return LV;
1229}
1230
1231/// EmitLValue - Emit code to compute a designator that specifies the location
1232/// of the expression.
1233///
1234/// This can return one of two things: a simple address or a bitfield reference.
1235/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1236/// an LLVM pointer type.
1237///
1238/// If this returns a bitfield reference, nothing about the pointee type of the
1239/// LLVM value is known: For example, it may not be a pointer to an integer.
1240///
1241/// If this returns a normal address, and if the lvalue's C type is fixed size,
1242/// this method guarantees that the returned pointer type will point to an LLVM
1243/// type of the same size of the lvalue's type.  If the lvalue has a variable
1244/// length type, this is not possible.
1245///
1246LValue CodeGenFunction::EmitLValue(const Expr *E) {
1247  ApplyDebugLocation DL(*this, E);
1248  switch (E->getStmtClass()) {
1249  default: return EmitUnsupportedLValue(E, "l-value expression");
1250
1251  case Expr::ObjCPropertyRefExprClass:
1252    llvm_unreachable("cannot emit a property reference directly");
1253
1254  case Expr::ObjCSelectorExprClass:
1255    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1256  case Expr::ObjCIsaExprClass:
1257    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1258  case Expr::BinaryOperatorClass:
1259    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1260  case Expr::CompoundAssignOperatorClass: {
1261    QualType Ty = E->getType();
1262    if (const AtomicType *AT = Ty->getAs<AtomicType>())
1263      Ty = AT->getValueType();
1264    if (!Ty->isAnyComplexType())
1265      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1266    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1267  }
1268  case Expr::CallExprClass:
1269  case Expr::CXXMemberCallExprClass:
1270  case Expr::CXXOperatorCallExprClass:
1271  case Expr::UserDefinedLiteralClass:
1272    return EmitCallExprLValue(cast<CallExpr>(E));
1273  case Expr::CXXRewrittenBinaryOperatorClass:
1274    return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1275  case Expr::VAArgExprClass:
1276    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1277  case Expr::DeclRefExprClass:
1278    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1279  case Expr::ConstantExprClass:
1280    return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1281  case Expr::ParenExprClass:
1282    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1283  case Expr::GenericSelectionExprClass:
1284    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1285  case Expr::PredefinedExprClass:
1286    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1287  case Expr::StringLiteralClass:
1288    return EmitStringLiteralLValue(cast<StringLiteral>(E));
1289  case Expr::ObjCEncodeExprClass:
1290    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1291  case Expr::PseudoObjectExprClass:
1292    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1293  case Expr::InitListExprClass:
1294    return EmitInitListLValue(cast<InitListExpr>(E));
1295  case Expr::CXXTemporaryObjectExprClass:
1296  case Expr::CXXConstructExprClass:
1297    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1298  case Expr::CXXBindTemporaryExprClass:
1299    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1300  case Expr::CXXUuidofExprClass:
1301    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1302  case Expr::LambdaExprClass:
1303    return EmitAggExprToLValue(E);
1304
1305  case Expr::ExprWithCleanupsClass: {
1306    const auto *cleanups = cast<ExprWithCleanups>(E);
1307    enterFullExpression(cleanups);
1308    RunCleanupsScope Scope(*this);
1309    LValue LV = EmitLValue(cleanups->getSubExpr());
1310    if (LV.isSimple()) {
1311      // Defend against branches out of gnu statement expressions surrounded by
1312      // cleanups.
1313      llvm::Value *V = LV.getPointer(*this);
1314      Scope.ForceCleanup({&V});
1315      return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1316                              getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1317    }
1318    // FIXME: Is it possible to create an ExprWithCleanups that produces a
1319    // bitfield lvalue or some other non-simple lvalue?
1320    return LV;
1321  }
1322
1323  case Expr::CXXDefaultArgExprClass: {
1324    auto *DAE = cast<CXXDefaultArgExpr>(E);
1325    CXXDefaultArgExprScope Scope(*this, DAE);
1326    return EmitLValue(DAE->getExpr());
1327  }
1328  case Expr::CXXDefaultInitExprClass: {
1329    auto *DIE = cast<CXXDefaultInitExpr>(E);
1330    CXXDefaultInitExprScope Scope(*this, DIE);
1331    return EmitLValue(DIE->getExpr());
1332  }
1333  case Expr::CXXTypeidExprClass:
1334    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1335
1336  case Expr::ObjCMessageExprClass:
1337    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1338  case Expr::ObjCIvarRefExprClass:
1339    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1340  case Expr::StmtExprClass:
1341    return EmitStmtExprLValue(cast<StmtExpr>(E));
1342  case Expr::UnaryOperatorClass:
1343    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1344  case Expr::ArraySubscriptExprClass:
1345    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1346  case Expr::OMPArraySectionExprClass:
1347    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1348  case Expr::ExtVectorElementExprClass:
1349    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1350  case Expr::MemberExprClass:
1351    return EmitMemberExpr(cast<MemberExpr>(E));
1352  case Expr::CompoundLiteralExprClass:
1353    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1354  case Expr::ConditionalOperatorClass:
1355    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1356  case Expr::BinaryConditionalOperatorClass:
1357    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1358  case Expr::ChooseExprClass:
1359    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1360  case Expr::OpaqueValueExprClass:
1361    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1362  case Expr::SubstNonTypeTemplateParmExprClass:
1363    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1364  case Expr::ImplicitCastExprClass:
1365  case Expr::CStyleCastExprClass:
1366  case Expr::CXXFunctionalCastExprClass:
1367  case Expr::CXXStaticCastExprClass:
1368  case Expr::CXXDynamicCastExprClass:
1369  case Expr::CXXReinterpretCastExprClass:
1370  case Expr::CXXConstCastExprClass:
1371  case Expr::ObjCBridgedCastExprClass:
1372    return EmitCastLValue(cast<CastExpr>(E));
1373
1374  case Expr::MaterializeTemporaryExprClass:
1375    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1376
1377  case Expr::CoawaitExprClass:
1378    return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1379  case Expr::CoyieldExprClass:
1380    return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1381  }
1382}
1383
1384/// Given an object of the given canonical type, can we safely copy a
1385/// value out of it based on its initializer?
1386static bool isConstantEmittableObjectType(QualType type) {
1387  assert(type.isCanonical());
1388  assert(!type->isReferenceType());
1389
1390  // Must be const-qualified but non-volatile.
1391  Qualifiers qs = type.getLocalQualifiers();
1392  if (!qs.hasConst() || qs.hasVolatile()) return false;
1393
1394  // Otherwise, all object types satisfy this except C++ classes with
1395  // mutable subobjects or non-trivial copy/destroy behavior.
1396  if (const auto *RT = dyn_cast<RecordType>(type))
1397    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1398      if (RD->hasMutableFields() || !RD->isTrivial())
1399        return false;
1400
1401  return true;
1402}
1403
1404/// Can we constant-emit a load of a reference to a variable of the
1405/// given type?  This is different from predicates like
1406/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1407/// in situations that don't necessarily satisfy the language's rules
1408/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1409/// to do this with const float variables even if those variables
1410/// aren't marked 'constexpr'.
1411enum ConstantEmissionKind {
1412  CEK_None,
1413  CEK_AsReferenceOnly,
1414  CEK_AsValueOrReference,
1415  CEK_AsValueOnly
1416};
1417static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1418  type = type.getCanonicalType();
1419  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1420    if (isConstantEmittableObjectType(ref->getPointeeType()))
1421      return CEK_AsValueOrReference;
1422    return CEK_AsReferenceOnly;
1423  }
1424  if (isConstantEmittableObjectType(type))
1425    return CEK_AsValueOnly;
1426  return CEK_None;
1427}
1428
1429/// Try to emit a reference to the given value without producing it as
1430/// an l-value.  This is just an optimization, but it avoids us needing
1431/// to emit global copies of variables if they're named without triggering
1432/// a formal use in a context where we can't emit a direct reference to them,
1433/// for instance if a block or lambda or a member of a local class uses a
1434/// const int variable or constexpr variable from an enclosing function.
1435CodeGenFunction::ConstantEmission
1436CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1437  ValueDecl *value = refExpr->getDecl();
1438
1439  // The value needs to be an enum constant or a constant variable.
1440  ConstantEmissionKind CEK;
1441  if (isa<ParmVarDecl>(value)) {
1442    CEK = CEK_None;
1443  } else if (auto *var = dyn_cast<VarDecl>(value)) {
1444    CEK = checkVarTypeForConstantEmission(var->getType());
1445  } else if (isa<EnumConstantDecl>(value)) {
1446    CEK = CEK_AsValueOnly;
1447  } else {
1448    CEK = CEK_None;
1449  }
1450  if (CEK == CEK_None) return ConstantEmission();
1451
1452  Expr::EvalResult result;
1453  bool resultIsReference;
1454  QualType resultType;
1455
1456  // It's best to evaluate all the way as an r-value if that's permitted.
1457  if (CEK != CEK_AsReferenceOnly &&
1458      refExpr->EvaluateAsRValue(result, getContext())) {
1459    resultIsReference = false;
1460    resultType = refExpr->getType();
1461
1462  // Otherwise, try to evaluate as an l-value.
1463  } else if (CEK != CEK_AsValueOnly &&
1464             refExpr->EvaluateAsLValue(result, getContext())) {
1465    resultIsReference = true;
1466    resultType = value->getType();
1467
1468  // Failure.
1469  } else {
1470    return ConstantEmission();
1471  }
1472
1473  // In any case, if the initializer has side-effects, abandon ship.
1474  if (result.HasSideEffects)
1475    return ConstantEmission();
1476
1477  // Emit as a constant.
1478  auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1479                                               result.Val, resultType);
1480
1481  // Make sure we emit a debug reference to the global variable.
1482  // This should probably fire even for
1483  if (isa<VarDecl>(value)) {
1484    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1485      EmitDeclRefExprDbgValue(refExpr, result.Val);
1486  } else {
1487    assert(isa<EnumConstantDecl>(value));
1488    EmitDeclRefExprDbgValue(refExpr, result.Val);
1489  }
1490
1491  // If we emitted a reference constant, we need to dereference that.
1492  if (resultIsReference)
1493    return ConstantEmission::forReference(C);
1494
1495  return ConstantEmission::forValue(C);
1496}
1497
1498static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1499                                                        const MemberExpr *ME) {
1500  if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1501    // Try to emit static variable member expressions as DREs.
1502    return DeclRefExpr::Create(
1503        CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1504        /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1505        ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1506  }
1507  return nullptr;
1508}
1509
1510CodeGenFunction::ConstantEmission
1511CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1512  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1513    return tryEmitAsConstant(DRE);
1514  return ConstantEmission();
1515}
1516
1517llvm::Value *CodeGenFunction::emitScalarConstant(
1518    const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1519  assert(Constant && "not a constant");
1520  if (Constant.isReference())
1521    return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1522                            E->getExprLoc())
1523        .getScalarVal();
1524  return Constant.getValue();
1525}
1526
1527llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1528                                               SourceLocation Loc) {
1529  return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1530                          lvalue.getType(), Loc, lvalue.getBaseInfo(),
1531                          lvalue.getTBAAInfo(), lvalue.isNontemporal());
1532}
1533
1534static bool hasBooleanRepresentation(QualType Ty) {
1535  if (Ty->isBooleanType())
1536    return true;
1537
1538  if (const EnumType *ET = Ty->getAs<EnumType>())
1539    return ET->getDecl()->getIntegerType()->isBooleanType();
1540
1541  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1542    return hasBooleanRepresentation(AT->getValueType());
1543
1544  return false;
1545}
1546
1547static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1548                            llvm::APInt &Min, llvm::APInt &End,
1549                            bool StrictEnums, bool IsBool) {
1550  const EnumType *ET = Ty->getAs<EnumType>();
1551  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1552                                ET && !ET->getDecl()->isFixed();
1553  if (!IsBool && !IsRegularCPlusPlusEnum)
1554    return false;
1555
1556  if (IsBool) {
1557    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1558    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1559  } else {
1560    const EnumDecl *ED = ET->getDecl();
1561    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1562    unsigned Bitwidth = LTy->getScalarSizeInBits();
1563    unsigned NumNegativeBits = ED->getNumNegativeBits();
1564    unsigned NumPositiveBits = ED->getNumPositiveBits();
1565
1566    if (NumNegativeBits) {
1567      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1568      assert(NumBits <= Bitwidth);
1569      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1570      Min = -End;
1571    } else {
1572      assert(NumPositiveBits <= Bitwidth);
1573      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1574      Min = llvm::APInt(Bitwidth, 0);
1575    }
1576  }
1577  return true;
1578}
1579
1580llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1581  llvm::APInt Min, End;
1582  if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1583                       hasBooleanRepresentation(Ty)))
1584    return nullptr;
1585
1586  llvm::MDBuilder MDHelper(getLLVMContext());
1587  return MDHelper.createRange(Min, End);
1588}
1589
1590bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1591                                           SourceLocation Loc) {
1592  bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1593  bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1594  if (!HasBoolCheck && !HasEnumCheck)
1595    return false;
1596
1597  bool IsBool = hasBooleanRepresentation(Ty) ||
1598                NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1599  bool NeedsBoolCheck = HasBoolCheck && IsBool;
1600  bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1601  if (!NeedsBoolCheck && !NeedsEnumCheck)
1602    return false;
1603
1604  // Single-bit booleans don't need to be checked. Special-case this to avoid
1605  // a bit width mismatch when handling bitfield values. This is handled by
1606  // EmitFromMemory for the non-bitfield case.
1607  if (IsBool &&
1608      cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1609    return false;
1610
1611  llvm::APInt Min, End;
1612  if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1613    return true;
1614
1615  auto &Ctx = getLLVMContext();
1616  SanitizerScope SanScope(this);
1617  llvm::Value *Check;
1618  --End;
1619  if (!Min) {
1620    Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1621  } else {
1622    llvm::Value *Upper =
1623        Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1624    llvm::Value *Lower =
1625        Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1626    Check = Builder.CreateAnd(Upper, Lower);
1627  }
1628  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1629                                  EmitCheckTypeDescriptor(Ty)};
1630  SanitizerMask Kind =
1631      NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1632  EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1633            StaticArgs, EmitCheckValue(Value));
1634  return true;
1635}
1636
1637llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1638                                               QualType Ty,
1639                                               SourceLocation Loc,
1640                                               LValueBaseInfo BaseInfo,
1641                                               TBAAAccessInfo TBAAInfo,
1642                                               bool isNontemporal) {
1643  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1644    // For better performance, handle vector loads differently.
1645    if (Ty->isVectorType()) {
1646      const llvm::Type *EltTy = Addr.getElementType();
1647
1648      const auto *VTy = cast<llvm::VectorType>(EltTy);
1649
1650      // Handle vectors of size 3 like size 4 for better performance.
1651      if (VTy->getNumElements() == 3) {
1652
1653        // Bitcast to vec4 type.
1654        llvm::VectorType *vec4Ty =
1655            llvm::VectorType::get(VTy->getElementType(), 4);
1656        Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1657        // Now load value.
1658        llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1659
1660        // Shuffle vector to get vec3.
1661        V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1662                                        {0, 1, 2}, "extractVec");
1663        return EmitFromMemory(V, Ty);
1664      }
1665    }
1666  }
1667
1668  // Atomic operations have to be done on integral types.
1669  LValue AtomicLValue =
1670      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1671  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1672    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1673  }
1674
1675  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1676  if (isNontemporal) {
1677    llvm::MDNode *Node = llvm::MDNode::get(
1678        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1679    Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1680  }
1681
1682  CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1683
1684  if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1685    // In order to prevent the optimizer from throwing away the check, don't
1686    // attach range metadata to the load.
1687  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1688    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1689      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1690
1691  return EmitFromMemory(Load, Ty);
1692}
1693
1694llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1695  // Bool has a different representation in memory than in registers.
1696  if (hasBooleanRepresentation(Ty)) {
1697    // This should really always be an i1, but sometimes it's already
1698    // an i8, and it's awkward to track those cases down.
1699    if (Value->getType()->isIntegerTy(1))
1700      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1701    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1702           "wrong value rep of bool");
1703  }
1704
1705  return Value;
1706}
1707
1708llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1709  // Bool has a different representation in memory than in registers.
1710  if (hasBooleanRepresentation(Ty)) {
1711    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1712           "wrong value rep of bool");
1713    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1714  }
1715
1716  return Value;
1717}
1718
1719void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1720                                        bool Volatile, QualType Ty,
1721                                        LValueBaseInfo BaseInfo,
1722                                        TBAAAccessInfo TBAAInfo,
1723                                        bool isInit, bool isNontemporal) {
1724  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1725    // Handle vectors differently to get better performance.
1726    if (Ty->isVectorType()) {
1727      llvm::Type *SrcTy = Value->getType();
1728      auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1729      // Handle vec3 special.
1730      if (VecTy && VecTy->getNumElements() == 3) {
1731        // Our source is a vec3, do a shuffle vector to make it a vec4.
1732        llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1733                                  Builder.getInt32(2),
1734                                  llvm::UndefValue::get(Builder.getInt32Ty())};
1735        llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1736        Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1737                                            MaskV, "extractVec");
1738        SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1739      }
1740      if (Addr.getElementType() != SrcTy) {
1741        Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1742      }
1743    }
1744  }
1745
1746  Value = EmitToMemory(Value, Ty);
1747
1748  LValue AtomicLValue =
1749      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1750  if (Ty->isAtomicType() ||
1751      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1752    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1753    return;
1754  }
1755
1756  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1757  if (isNontemporal) {
1758    llvm::MDNode *Node =
1759        llvm::MDNode::get(Store->getContext(),
1760                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1761    Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1762  }
1763
1764  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1765}
1766
1767void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1768                                        bool isInit) {
1769  EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1770                    lvalue.getType(), lvalue.getBaseInfo(),
1771                    lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1772}
1773
1774/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1775/// method emits the address of the lvalue, then loads the result as an rvalue,
1776/// returning the rvalue.
1777RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1778  if (LV.isObjCWeak()) {
1779    // load of a __weak object.
1780    Address AddrWeakObj = LV.getAddress(*this);
1781    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1782                                                             AddrWeakObj));
1783  }
1784  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1785    // In MRC mode, we do a load+autorelease.
1786    if (!getLangOpts().ObjCAutoRefCount) {
1787      return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1788    }
1789
1790    // In ARC mode, we load retained and then consume the value.
1791    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1792    Object = EmitObjCConsumeObject(LV.getType(), Object);
1793    return RValue::get(Object);
1794  }
1795
1796  if (LV.isSimple()) {
1797    assert(!LV.getType()->isFunctionType());
1798
1799    // Everything needs a load.
1800    return RValue::get(EmitLoadOfScalar(LV, Loc));
1801  }
1802
1803  if (LV.isVectorElt()) {
1804    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1805                                              LV.isVolatileQualified());
1806    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1807                                                    "vecext"));
1808  }
1809
1810  // If this is a reference to a subset of the elements of a vector, either
1811  // shuffle the input or extract/insert them as appropriate.
1812  if (LV.isExtVectorElt())
1813    return EmitLoadOfExtVectorElementLValue(LV);
1814
1815  // Global Register variables always invoke intrinsics
1816  if (LV.isGlobalReg())
1817    return EmitLoadOfGlobalRegLValue(LV);
1818
1819  assert(LV.isBitField() && "Unknown LValue type!");
1820  return EmitLoadOfBitfieldLValue(LV, Loc);
1821}
1822
1823RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1824                                                 SourceLocation Loc) {
1825  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1826
1827  // Get the output type.
1828  llvm::Type *ResLTy = ConvertType(LV.getType());
1829
1830  Address Ptr = LV.getBitFieldAddress();
1831  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1832
1833  if (Info.IsSigned) {
1834    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1835    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1836    if (HighBits)
1837      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1838    if (Info.Offset + HighBits)
1839      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1840  } else {
1841    if (Info.Offset)
1842      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1843    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1844      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1845                                                              Info.Size),
1846                              "bf.clear");
1847  }
1848  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1849  EmitScalarRangeCheck(Val, LV.getType(), Loc);
1850  return RValue::get(Val);
1851}
1852
1853// If this is a reference to a subset of the elements of a vector, create an
1854// appropriate shufflevector.
1855RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1856  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1857                                        LV.isVolatileQualified());
1858
1859  const llvm::Constant *Elts = LV.getExtVectorElts();
1860
1861  // If the result of the expression is a non-vector type, we must be extracting
1862  // a single element.  Just codegen as an extractelement.
1863  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1864  if (!ExprVT) {
1865    unsigned InIdx = getAccessedFieldNo(0, Elts);
1866    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1867    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1868  }
1869
1870  // Always use shuffle vector to try to retain the original program structure
1871  unsigned NumResultElts = ExprVT->getNumElements();
1872
1873  SmallVector<llvm::Constant*, 4> Mask;
1874  for (unsigned i = 0; i != NumResultElts; ++i)
1875    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1876
1877  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1878  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1879                                    MaskV);
1880  return RValue::get(Vec);
1881}
1882
1883/// Generates lvalue for partial ext_vector access.
1884Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1885  Address VectorAddress = LV.getExtVectorAddress();
1886  QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1887  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1888
1889  Address CastToPointerElement =
1890    Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1891                                 "conv.ptr.element");
1892
1893  const llvm::Constant *Elts = LV.getExtVectorElts();
1894  unsigned ix = getAccessedFieldNo(0, Elts);
1895
1896  Address VectorBasePtrPlusIx =
1897    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1898                                   "vector.elt");
1899
1900  return VectorBasePtrPlusIx;
1901}
1902
1903/// Load of global gamed gegisters are always calls to intrinsics.
1904RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1905  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1906         "Bad type for register variable");
1907  llvm::MDNode *RegName = cast<llvm::MDNode>(
1908      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1909
1910  // We accept integer and pointer types only
1911  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1912  llvm::Type *Ty = OrigTy;
1913  if (OrigTy->isPointerTy())
1914    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1915  llvm::Type *Types[] = { Ty };
1916
1917  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1918  llvm::Value *Call = Builder.CreateCall(
1919      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1920  if (OrigTy->isPointerTy())
1921    Call = Builder.CreateIntToPtr(Call, OrigTy);
1922  return RValue::get(Call);
1923}
1924
1925
1926/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1927/// lvalue, where both are guaranteed to the have the same type, and that type
1928/// is 'Ty'.
1929void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1930                                             bool isInit) {
1931  if (!Dst.isSimple()) {
1932    if (Dst.isVectorElt()) {
1933      // Read/modify/write the vector, inserting the new element.
1934      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1935                                            Dst.isVolatileQualified());
1936      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1937                                        Dst.getVectorIdx(), "vecins");
1938      Builder.CreateStore(Vec, Dst.getVectorAddress(),
1939                          Dst.isVolatileQualified());
1940      return;
1941    }
1942
1943    // If this is an update of extended vector elements, insert them as
1944    // appropriate.
1945    if (Dst.isExtVectorElt())
1946      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1947
1948    if (Dst.isGlobalReg())
1949      return EmitStoreThroughGlobalRegLValue(Src, Dst);
1950
1951    assert(Dst.isBitField() && "Unknown LValue type");
1952    return EmitStoreThroughBitfieldLValue(Src, Dst);
1953  }
1954
1955  // There's special magic for assigning into an ARC-qualified l-value.
1956  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1957    switch (Lifetime) {
1958    case Qualifiers::OCL_None:
1959      llvm_unreachable("present but none");
1960
1961    case Qualifiers::OCL_ExplicitNone:
1962      // nothing special
1963      break;
1964
1965    case Qualifiers::OCL_Strong:
1966      if (isInit) {
1967        Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1968        break;
1969      }
1970      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1971      return;
1972
1973    case Qualifiers::OCL_Weak:
1974      if (isInit)
1975        // Initialize and then skip the primitive store.
1976        EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1977      else
1978        EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1979                         /*ignore*/ true);
1980      return;
1981
1982    case Qualifiers::OCL_Autoreleasing:
1983      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1984                                                     Src.getScalarVal()));
1985      // fall into the normal path
1986      break;
1987    }
1988  }
1989
1990  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1991    // load of a __weak object.
1992    Address LvalueDst = Dst.getAddress(*this);
1993    llvm::Value *src = Src.getScalarVal();
1994     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1995    return;
1996  }
1997
1998  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1999    // load of a __strong object.
2000    Address LvalueDst = Dst.getAddress(*this);
2001    llvm::Value *src = Src.getScalarVal();
2002    if (Dst.isObjCIvar()) {
2003      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2004      llvm::Type *ResultType = IntPtrTy;
2005      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2006      llvm::Value *RHS = dst.getPointer();
2007      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2008      llvm::Value *LHS =
2009        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2010                               "sub.ptr.lhs.cast");
2011      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2012      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2013                                              BytesBetween);
2014    } else if (Dst.isGlobalObjCRef()) {
2015      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2016                                                Dst.isThreadLocalRef());
2017    }
2018    else
2019      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2020    return;
2021  }
2022
2023  assert(Src.isScalar() && "Can't emit an agg store with this method");
2024  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2025}
2026
2027void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2028                                                     llvm::Value **Result) {
2029  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2030  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2031  Address Ptr = Dst.getBitFieldAddress();
2032
2033  // Get the source value, truncated to the width of the bit-field.
2034  llvm::Value *SrcVal = Src.getScalarVal();
2035
2036  // Cast the source to the storage type and shift it into place.
2037  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2038                                 /*isSigned=*/false);
2039  llvm::Value *MaskedVal = SrcVal;
2040
2041  // See if there are other bits in the bitfield's storage we'll need to load
2042  // and mask together with source before storing.
2043  if (Info.StorageSize != Info.Size) {
2044    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2045    llvm::Value *Val =
2046      Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2047
2048    // Mask the source value as needed.
2049    if (!hasBooleanRepresentation(Dst.getType()))
2050      SrcVal = Builder.CreateAnd(SrcVal,
2051                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
2052                                                            Info.Size),
2053                                 "bf.value");
2054    MaskedVal = SrcVal;
2055    if (Info.Offset)
2056      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2057
2058    // Mask out the original value.
2059    Val = Builder.CreateAnd(Val,
2060                            ~llvm::APInt::getBitsSet(Info.StorageSize,
2061                                                     Info.Offset,
2062                                                     Info.Offset + Info.Size),
2063                            "bf.clear");
2064
2065    // Or together the unchanged values and the source value.
2066    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2067  } else {
2068    assert(Info.Offset == 0);
2069  }
2070
2071  // Write the new value back out.
2072  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2073
2074  // Return the new value of the bit-field, if requested.
2075  if (Result) {
2076    llvm::Value *ResultVal = MaskedVal;
2077
2078    // Sign extend the value if needed.
2079    if (Info.IsSigned) {
2080      assert(Info.Size <= Info.StorageSize);
2081      unsigned HighBits = Info.StorageSize - Info.Size;
2082      if (HighBits) {
2083        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2084        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2085      }
2086    }
2087
2088    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2089                                      "bf.result.cast");
2090    *Result = EmitFromMemory(ResultVal, Dst.getType());
2091  }
2092}
2093
2094void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2095                                                               LValue Dst) {
2096  // This access turns into a read/modify/write of the vector.  Load the input
2097  // value now.
2098  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2099                                        Dst.isVolatileQualified());
2100  const llvm::Constant *Elts = Dst.getExtVectorElts();
2101
2102  llvm::Value *SrcVal = Src.getScalarVal();
2103
2104  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2105    unsigned NumSrcElts = VTy->getNumElements();
2106    unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2107    if (NumDstElts == NumSrcElts) {
2108      // Use shuffle vector is the src and destination are the same number of
2109      // elements and restore the vector mask since it is on the side it will be
2110      // stored.
2111      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2112      for (unsigned i = 0; i != NumSrcElts; ++i)
2113        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2114
2115      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2116      Vec = Builder.CreateShuffleVector(SrcVal,
2117                                        llvm::UndefValue::get(Vec->getType()),
2118                                        MaskV);
2119    } else if (NumDstElts > NumSrcElts) {
2120      // Extended the source vector to the same length and then shuffle it
2121      // into the destination.
2122      // FIXME: since we're shuffling with undef, can we just use the indices
2123      //        into that?  This could be simpler.
2124      SmallVector<llvm::Constant*, 4> ExtMask;
2125      for (unsigned i = 0; i != NumSrcElts; ++i)
2126        ExtMask.push_back(Builder.getInt32(i));
2127      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2128      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2129      llvm::Value *ExtSrcVal =
2130        Builder.CreateShuffleVector(SrcVal,
2131                                    llvm::UndefValue::get(SrcVal->getType()),
2132                                    ExtMaskV);
2133      // build identity
2134      SmallVector<llvm::Constant*, 4> Mask;
2135      for (unsigned i = 0; i != NumDstElts; ++i)
2136        Mask.push_back(Builder.getInt32(i));
2137
2138      // When the vector size is odd and .odd or .hi is used, the last element
2139      // of the Elts constant array will be one past the size of the vector.
2140      // Ignore the last element here, if it is greater than the mask size.
2141      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2142        NumSrcElts--;
2143
2144      // modify when what gets shuffled in
2145      for (unsigned i = 0; i != NumSrcElts; ++i)
2146        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2147      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2148      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2149    } else {
2150      // We should never shorten the vector
2151      llvm_unreachable("unexpected shorten vector length");
2152    }
2153  } else {
2154    // If the Src is a scalar (not a vector) it must be updating one element.
2155    unsigned InIdx = getAccessedFieldNo(0, Elts);
2156    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2157    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2158  }
2159
2160  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2161                      Dst.isVolatileQualified());
2162}
2163
2164/// Store of global named registers are always calls to intrinsics.
2165void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2166  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2167         "Bad type for register variable");
2168  llvm::MDNode *RegName = cast<llvm::MDNode>(
2169      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2170  assert(RegName && "Register LValue is not metadata");
2171
2172  // We accept integer and pointer types only
2173  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2174  llvm::Type *Ty = OrigTy;
2175  if (OrigTy->isPointerTy())
2176    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2177  llvm::Type *Types[] = { Ty };
2178
2179  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2180  llvm::Value *Value = Src.getScalarVal();
2181  if (OrigTy->isPointerTy())
2182    Value = Builder.CreatePtrToInt(Value, Ty);
2183  Builder.CreateCall(
2184      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2185}
2186
2187// setObjCGCLValueClass - sets class of the lvalue for the purpose of
2188// generating write-barries API. It is currently a global, ivar,
2189// or neither.
2190static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2191                                 LValue &LV,
2192                                 bool IsMemberAccess=false) {
2193  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2194    return;
2195
2196  if (isa<ObjCIvarRefExpr>(E)) {
2197    QualType ExpTy = E->getType();
2198    if (IsMemberAccess && ExpTy->isPointerType()) {
2199      // If ivar is a structure pointer, assigning to field of
2200      // this struct follows gcc's behavior and makes it a non-ivar
2201      // writer-barrier conservatively.
2202      ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2203      if (ExpTy->isRecordType()) {
2204        LV.setObjCIvar(false);
2205        return;
2206      }
2207    }
2208    LV.setObjCIvar(true);
2209    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2210    LV.setBaseIvarExp(Exp->getBase());
2211    LV.setObjCArray(E->getType()->isArrayType());
2212    return;
2213  }
2214
2215  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2216    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2217      if (VD->hasGlobalStorage()) {
2218        LV.setGlobalObjCRef(true);
2219        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2220      }
2221    }
2222    LV.setObjCArray(E->getType()->isArrayType());
2223    return;
2224  }
2225
2226  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2227    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2228    return;
2229  }
2230
2231  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2232    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2233    if (LV.isObjCIvar()) {
2234      // If cast is to a structure pointer, follow gcc's behavior and make it
2235      // a non-ivar write-barrier.
2236      QualType ExpTy = E->getType();
2237      if (ExpTy->isPointerType())
2238        ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2239      if (ExpTy->isRecordType())
2240        LV.setObjCIvar(false);
2241    }
2242    return;
2243  }
2244
2245  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2246    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2247    return;
2248  }
2249
2250  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2251    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2252    return;
2253  }
2254
2255  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2256    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2257    return;
2258  }
2259
2260  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2261    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2262    return;
2263  }
2264
2265  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2266    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2267    if (LV.isObjCIvar() && !LV.isObjCArray())
2268      // Using array syntax to assigning to what an ivar points to is not
2269      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2270      LV.setObjCIvar(false);
2271    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2272      // Using array syntax to assigning to what global points to is not
2273      // same as assigning to the global itself. {id *G;} G[i] = 0;
2274      LV.setGlobalObjCRef(false);
2275    return;
2276  }
2277
2278  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2279    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2280    // We don't know if member is an 'ivar', but this flag is looked at
2281    // only in the context of LV.isObjCIvar().
2282    LV.setObjCArray(E->getType()->isArrayType());
2283    return;
2284  }
2285}
2286
2287static llvm::Value *
2288EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2289                                llvm::Value *V, llvm::Type *IRType,
2290                                StringRef Name = StringRef()) {
2291  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2292  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2293}
2294
2295static LValue EmitThreadPrivateVarDeclLValue(
2296    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2297    llvm::Type *RealVarTy, SourceLocation Loc) {
2298  Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2299  Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2300  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2301}
2302
2303static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2304                                           const VarDecl *VD, QualType T) {
2305  llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2306      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2307  // Return an invalid address if variable is MT_To and unified
2308  // memory is not enabled. For all other cases: MT_Link and
2309  // MT_To with unified memory, return a valid address.
2310  if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2311               !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2312    return Address::invalid();
2313  assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2314          (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2315           CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2316         "Expected link clause OR to clause with unified memory enabled.");
2317  QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2318  Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2319  return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2320}
2321
2322Address
2323CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2324                                     LValueBaseInfo *PointeeBaseInfo,
2325                                     TBAAAccessInfo *PointeeTBAAInfo) {
2326  llvm::LoadInst *Load =
2327      Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2328  CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2329
2330  CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2331                                            PointeeBaseInfo, PointeeTBAAInfo,
2332                                            /* forPointeeType= */ true);
2333  return Address(Load, Align);
2334}
2335
2336LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2337  LValueBaseInfo PointeeBaseInfo;
2338  TBAAAccessInfo PointeeTBAAInfo;
2339  Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2340                                            &PointeeTBAAInfo);
2341  return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2342                        PointeeBaseInfo, PointeeTBAAInfo);
2343}
2344
2345Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2346                                           const PointerType *PtrTy,
2347                                           LValueBaseInfo *BaseInfo,
2348                                           TBAAAccessInfo *TBAAInfo) {
2349  llvm::Value *Addr = Builder.CreateLoad(Ptr);
2350  return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2351                                               BaseInfo, TBAAInfo,
2352                                               /*forPointeeType=*/true));
2353}
2354
2355LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2356                                                const PointerType *PtrTy) {
2357  LValueBaseInfo BaseInfo;
2358  TBAAAccessInfo TBAAInfo;
2359  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2360  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2361}
2362
2363static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2364                                      const Expr *E, const VarDecl *VD) {
2365  QualType T = E->getType();
2366
2367  // If it's thread_local, emit a call to its wrapper function instead.
2368  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2369      CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2370    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2371  // Check if the variable is marked as declare target with link clause in
2372  // device codegen.
2373  if (CGF.getLangOpts().OpenMPIsDevice) {
2374    Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2375    if (Addr.isValid())
2376      return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2377  }
2378
2379  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2380  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2381  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2382  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2383  Address Addr(V, Alignment);
2384  // Emit reference to the private copy of the variable if it is an OpenMP
2385  // threadprivate variable.
2386  if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2387      VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2388    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2389                                          E->getExprLoc());
2390  }
2391  LValue LV = VD->getType()->isReferenceType() ?
2392      CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2393                                    AlignmentSource::Decl) :
2394      CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2395  setObjCGCLValueClass(CGF.getContext(), E, LV);
2396  return LV;
2397}
2398
2399static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2400                                               const FunctionDecl *FD) {
2401  if (FD->hasAttr<WeakRefAttr>()) {
2402    ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2403    return aliasee.getPointer();
2404  }
2405
2406  llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2407  if (!FD->hasPrototype()) {
2408    if (const FunctionProtoType *Proto =
2409            FD->getType()->getAs<FunctionProtoType>()) {
2410      // Ugly case: for a K&R-style definition, the type of the definition
2411      // isn't the same as the type of a use.  Correct for this with a
2412      // bitcast.
2413      QualType NoProtoType =
2414          CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2415      NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2416      V = llvm::ConstantExpr::getBitCast(V,
2417                                      CGM.getTypes().ConvertType(NoProtoType));
2418    }
2419  }
2420  return V;
2421}
2422
2423static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2424                                     const Expr *E, const FunctionDecl *FD) {
2425  llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2426  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2427  return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2428                            AlignmentSource::Decl);
2429}
2430
2431static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2432                                      llvm::Value *ThisValue) {
2433  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2434  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2435  return CGF.EmitLValueForField(LV, FD);
2436}
2437
2438/// Named Registers are named metadata pointing to the register name
2439/// which will be read from/written to as an argument to the intrinsic
2440/// @llvm.read/write_register.
2441/// So far, only the name is being passed down, but other options such as
2442/// register type, allocation type or even optimization options could be
2443/// passed down via the metadata node.
2444static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2445  SmallString<64> Name("llvm.named.register.");
2446  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2447  assert(Asm->getLabel().size() < 64-Name.size() &&
2448      "Register name too big");
2449  Name.append(Asm->getLabel());
2450  llvm::NamedMDNode *M =
2451    CGM.getModule().getOrInsertNamedMetadata(Name);
2452  if (M->getNumOperands() == 0) {
2453    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2454                                              Asm->getLabel());
2455    llvm::Metadata *Ops[] = {Str};
2456    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2457  }
2458
2459  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2460
2461  llvm::Value *Ptr =
2462    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2463  return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2464}
2465
2466/// Determine whether we can emit a reference to \p VD from the current
2467/// context, despite not necessarily having seen an odr-use of the variable in
2468/// this context.
2469static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2470                                               const DeclRefExpr *E,
2471                                               const VarDecl *VD,
2472                                               bool IsConstant) {
2473  // For a variable declared in an enclosing scope, do not emit a spurious
2474  // reference even if we have a capture, as that will emit an unwarranted
2475  // reference to our capture state, and will likely generate worse code than
2476  // emitting a local copy.
2477  if (E->refersToEnclosingVariableOrCapture())
2478    return false;
2479
2480  // For a local declaration declared in this function, we can always reference
2481  // it even if we don't have an odr-use.
2482  if (VD->hasLocalStorage()) {
2483    return VD->getDeclContext() ==
2484           dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2485  }
2486
2487  // For a global declaration, we can emit a reference to it if we know
2488  // for sure that we are able to emit a definition of it.
2489  VD = VD->getDefinition(CGF.getContext());
2490  if (!VD)
2491    return false;
2492
2493  // Don't emit a spurious reference if it might be to a variable that only
2494  // exists on a different device / target.
2495  // FIXME: This is unnecessarily broad. Check whether this would actually be a
2496  // cross-target reference.
2497  if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2498      CGF.getLangOpts().OpenCL) {
2499    return false;
2500  }
2501
2502  // We can emit a spurious reference only if the linkage implies that we'll
2503  // be emitting a non-interposable symbol that will be retained until link
2504  // time.
2505  switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2506  case llvm::GlobalValue::ExternalLinkage:
2507  case llvm::GlobalValue::LinkOnceODRLinkage:
2508  case llvm::GlobalValue::WeakODRLinkage:
2509  case llvm::GlobalValue::InternalLinkage:
2510  case llvm::GlobalValue::PrivateLinkage:
2511    return true;
2512  default:
2513    return false;
2514  }
2515}
2516
2517LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2518  const NamedDecl *ND = E->getDecl();
2519  QualType T = E->getType();
2520
2521  assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2522         "should not emit an unevaluated operand");
2523
2524  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2525    // Global Named registers access via intrinsics only
2526    if (VD->getStorageClass() == SC_Register &&
2527        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2528      return EmitGlobalNamedRegister(VD, CGM);
2529
2530    // If this DeclRefExpr does not constitute an odr-use of the variable,
2531    // we're not permitted to emit a reference to it in general, and it might
2532    // not be captured if capture would be necessary for a use. Emit the
2533    // constant value directly instead.
2534    if (E->isNonOdrUse() == NOUR_Constant &&
2535        (VD->getType()->isReferenceType() ||
2536         !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2537      VD->getAnyInitializer(VD);
2538      llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2539          E->getLocation(), *VD->evaluateValue(), VD->getType());
2540      assert(Val && "failed to emit constant expression");
2541
2542      Address Addr = Address::invalid();
2543      if (!VD->getType()->isReferenceType()) {
2544        // Spill the constant value to a global.
2545        Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2546                                           getContext().getDeclAlign(VD));
2547        llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2548        auto *PTy = llvm::PointerType::get(
2549            VarTy, getContext().getTargetAddressSpace(VD->getType()));
2550        if (PTy != Addr.getType())
2551          Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2552      } else {
2553        // Should we be using the alignment of the constant pointer we emitted?
2554        CharUnits Alignment =
2555            getNaturalTypeAlignment(E->getType(),
2556                                    /* BaseInfo= */ nullptr,
2557                                    /* TBAAInfo= */ nullptr,
2558                                    /* forPointeeType= */ true);
2559        Addr = Address(Val, Alignment);
2560      }
2561      return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2562    }
2563
2564    // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2565
2566    // Check for captured variables.
2567    if (E->refersToEnclosingVariableOrCapture()) {
2568      VD = VD->getCanonicalDecl();
2569      if (auto *FD = LambdaCaptureFields.lookup(VD))
2570        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2571      if (CapturedStmtInfo) {
2572        auto I = LocalDeclMap.find(VD);
2573        if (I != LocalDeclMap.end()) {
2574          LValue CapLVal;
2575          if (VD->getType()->isReferenceType())
2576            CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2577                                                AlignmentSource::Decl);
2578          else
2579            CapLVal = MakeAddrLValue(I->second, T);
2580          // Mark lvalue as nontemporal if the variable is marked as nontemporal
2581          // in simd context.
2582          if (getLangOpts().OpenMP &&
2583              CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2584            CapLVal.setNontemporal(/*Value=*/true);
2585          return CapLVal;
2586        }
2587        LValue CapLVal =
2588            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2589                                    CapturedStmtInfo->getContextValue());
2590        CapLVal = MakeAddrLValue(
2591            Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2592            CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2593            CapLVal.getTBAAInfo());
2594        // Mark lvalue as nontemporal if the variable is marked as nontemporal
2595        // in simd context.
2596        if (getLangOpts().OpenMP &&
2597            CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2598          CapLVal.setNontemporal(/*Value=*/true);
2599        return CapLVal;
2600      }
2601
2602      assert(isa<BlockDecl>(CurCodeDecl));
2603      Address addr = GetAddrOfBlockDecl(VD);
2604      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2605    }
2606  }
2607
2608  // FIXME: We should be able to assert this for FunctionDecls as well!
2609  // FIXME: We should be able to assert this for all DeclRefExprs, not just
2610  // those with a valid source location.
2611  assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2612          !E->getLocation().isValid()) &&
2613         "Should not use decl without marking it used!");
2614
2615  if (ND->hasAttr<WeakRefAttr>()) {
2616    const auto *VD = cast<ValueDecl>(ND);
2617    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2618    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2619  }
2620
2621  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2622    // Check if this is a global variable.
2623    if (VD->hasLinkage() || VD->isStaticDataMember())
2624      return EmitGlobalVarDeclLValue(*this, E, VD);
2625
2626    Address addr = Address::invalid();
2627
2628    // The variable should generally be present in the local decl map.
2629    auto iter = LocalDeclMap.find(VD);
2630    if (iter != LocalDeclMap.end()) {
2631      addr = iter->second;
2632
2633    // Otherwise, it might be static local we haven't emitted yet for
2634    // some reason; most likely, because it's in an outer function.
2635    } else if (VD->isStaticLocal()) {
2636      addr = Address(CGM.getOrCreateStaticVarDecl(
2637          *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2638                     getContext().getDeclAlign(VD));
2639
2640    // No other cases for now.
2641    } else {
2642      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2643    }
2644
2645
2646    // Check for OpenMP threadprivate variables.
2647    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2648        VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2649      return EmitThreadPrivateVarDeclLValue(
2650          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2651          E->getExprLoc());
2652    }
2653
2654    // Drill into block byref variables.
2655    bool isBlockByref = VD->isEscapingByref();
2656    if (isBlockByref) {
2657      addr = emitBlockByrefAddress(addr, VD);
2658    }
2659
2660    // Drill into reference types.
2661    LValue LV = VD->getType()->isReferenceType() ?
2662        EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2663        MakeAddrLValue(addr, T, AlignmentSource::Decl);
2664
2665    bool isLocalStorage = VD->hasLocalStorage();
2666
2667    bool NonGCable = isLocalStorage &&
2668                     !VD->getType()->isReferenceType() &&
2669                     !isBlockByref;
2670    if (NonGCable) {
2671      LV.getQuals().removeObjCGCAttr();
2672      LV.setNonGC(true);
2673    }
2674
2675    bool isImpreciseLifetime =
2676      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2677    if (isImpreciseLifetime)
2678      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2679    setObjCGCLValueClass(getContext(), E, LV);
2680    return LV;
2681  }
2682
2683  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2684    return EmitFunctionDeclLValue(*this, E, FD);
2685
2686  // FIXME: While we're emitting a binding from an enclosing scope, all other
2687  // DeclRefExprs we see should be implicitly treated as if they also refer to
2688  // an enclosing scope.
2689  if (const auto *BD = dyn_cast<BindingDecl>(ND))
2690    return EmitLValue(BD->getBinding());
2691
2692  llvm_unreachable("Unhandled DeclRefExpr");
2693}
2694
2695LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2696  // __extension__ doesn't affect lvalue-ness.
2697  if (E->getOpcode() == UO_Extension)
2698    return EmitLValue(E->getSubExpr());
2699
2700  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2701  switch (E->getOpcode()) {
2702  default: llvm_unreachable("Unknown unary operator lvalue!");
2703  case UO_Deref: {
2704    QualType T = E->getSubExpr()->getType()->getPointeeType();
2705    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2706
2707    LValueBaseInfo BaseInfo;
2708    TBAAAccessInfo TBAAInfo;
2709    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2710                                            &TBAAInfo);
2711    LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2712    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2713
2714    // We should not generate __weak write barrier on indirect reference
2715    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2716    // But, we continue to generate __strong write barrier on indirect write
2717    // into a pointer to object.
2718    if (getLangOpts().ObjC &&
2719        getLangOpts().getGC() != LangOptions::NonGC &&
2720        LV.isObjCWeak())
2721      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2722    return LV;
2723  }
2724  case UO_Real:
2725  case UO_Imag: {
2726    LValue LV = EmitLValue(E->getSubExpr());
2727    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2728
2729    // __real is valid on scalars.  This is a faster way of testing that.
2730    // __imag can only produce an rvalue on scalars.
2731    if (E->getOpcode() == UO_Real &&
2732        !LV.getAddress(*this).getElementType()->isStructTy()) {
2733      assert(E->getSubExpr()->getType()->isArithmeticType());
2734      return LV;
2735    }
2736
2737    QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2738
2739    Address Component =
2740        (E->getOpcode() == UO_Real
2741             ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2742             : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2743    LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2744                                   CGM.getTBAAInfoForSubobject(LV, T));
2745    ElemLV.getQuals().addQualifiers(LV.getQuals());
2746    return ElemLV;
2747  }
2748  case UO_PreInc:
2749  case UO_PreDec: {
2750    LValue LV = EmitLValue(E->getSubExpr());
2751    bool isInc = E->getOpcode() == UO_PreInc;
2752
2753    if (E->getType()->isAnyComplexType())
2754      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2755    else
2756      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2757    return LV;
2758  }
2759  }
2760}
2761
2762LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2763  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2764                        E->getType(), AlignmentSource::Decl);
2765}
2766
2767LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2768  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2769                        E->getType(), AlignmentSource::Decl);
2770}
2771
2772LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2773  auto SL = E->getFunctionName();
2774  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2775  StringRef FnName = CurFn->getName();
2776  if (FnName.startswith("\01"))
2777    FnName = FnName.substr(1);
2778  StringRef NameItems[] = {
2779      PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2780  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2781  if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2782    std::string Name = SL->getString();
2783    if (!Name.empty()) {
2784      unsigned Discriminator =
2785          CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2786      if (Discriminator)
2787        Name += "_" + Twine(Discriminator + 1).str();
2788      auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2789      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2790    } else {
2791      auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2792      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2793    }
2794  }
2795  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2796  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2797}
2798
2799/// Emit a type description suitable for use by a runtime sanitizer library. The
2800/// format of a type descriptor is
2801///
2802/// \code
2803///   { i16 TypeKind, i16 TypeInfo }
2804/// \endcode
2805///
2806/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2807/// integer, 1 for a floating point value, and -1 for anything else.
2808llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2809  // Only emit each type's descriptor once.
2810  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2811    return C;
2812
2813  uint16_t TypeKind = -1;
2814  uint16_t TypeInfo = 0;
2815
2816  if (T->isIntegerType()) {
2817    TypeKind = 0;
2818    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2819               (T->isSignedIntegerType() ? 1 : 0);
2820  } else if (T->isFloatingType()) {
2821    TypeKind = 1;
2822    TypeInfo = getContext().getTypeSize(T);
2823  }
2824
2825  // Format the type name as if for a diagnostic, including quotes and
2826  // optionally an 'aka'.
2827  SmallString<32> Buffer;
2828  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2829                                    (intptr_t)T.getAsOpaquePtr(),
2830                                    StringRef(), StringRef(), None, Buffer,
2831                                    None);
2832
2833  llvm::Constant *Components[] = {
2834    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2835    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2836  };
2837  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2838
2839  auto *GV = new llvm::GlobalVariable(
2840      CGM.getModule(), Descriptor->getType(),
2841      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2842  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2843  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2844
2845  // Remember the descriptor for this type.
2846  CGM.setTypeDescriptorInMap(T, GV);
2847
2848  return GV;
2849}
2850
2851llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2852  llvm::Type *TargetTy = IntPtrTy;
2853
2854  if (V->getType() == TargetTy)
2855    return V;
2856
2857  // Floating-point types which fit into intptr_t are bitcast to integers
2858  // and then passed directly (after zero-extension, if necessary).
2859  if (V->getType()->isFloatingPointTy()) {
2860    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2861    if (Bits <= TargetTy->getIntegerBitWidth())
2862      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2863                                                         Bits));
2864  }
2865
2866  // Integers which fit in intptr_t are zero-extended and passed directly.
2867  if (V->getType()->isIntegerTy() &&
2868      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2869    return Builder.CreateZExt(V, TargetTy);
2870
2871  // Pointers are passed directly, everything else is passed by address.
2872  if (!V->getType()->isPointerTy()) {
2873    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2874    Builder.CreateStore(V, Ptr);
2875    V = Ptr.getPointer();
2876  }
2877  return Builder.CreatePtrToInt(V, TargetTy);
2878}
2879
2880/// Emit a representation of a SourceLocation for passing to a handler
2881/// in a sanitizer runtime library. The format for this data is:
2882/// \code
2883///   struct SourceLocation {
2884///     const char *Filename;
2885///     int32_t Line, Column;
2886///   };
2887/// \endcode
2888/// For an invalid SourceLocation, the Filename pointer is null.
2889llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2890  llvm::Constant *Filename;
2891  int Line, Column;
2892
2893  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2894  if (PLoc.isValid()) {
2895    StringRef FilenameString = PLoc.getFilename();
2896
2897    int PathComponentsToStrip =
2898        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2899    if (PathComponentsToStrip < 0) {
2900      assert(PathComponentsToStrip != INT_MIN);
2901      int PathComponentsToKeep = -PathComponentsToStrip;
2902      auto I = llvm::sys::path::rbegin(FilenameString);
2903      auto E = llvm::sys::path::rend(FilenameString);
2904      while (I != E && --PathComponentsToKeep)
2905        ++I;
2906
2907      FilenameString = FilenameString.substr(I - E);
2908    } else if (PathComponentsToStrip > 0) {
2909      auto I = llvm::sys::path::begin(FilenameString);
2910      auto E = llvm::sys::path::end(FilenameString);
2911      while (I != E && PathComponentsToStrip--)
2912        ++I;
2913
2914      if (I != E)
2915        FilenameString =
2916            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2917      else
2918        FilenameString = llvm::sys::path::filename(FilenameString);
2919    }
2920
2921    auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2922    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2923                          cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2924    Filename = FilenameGV.getPointer();
2925    Line = PLoc.getLine();
2926    Column = PLoc.getColumn();
2927  } else {
2928    Filename = llvm::Constant::getNullValue(Int8PtrTy);
2929    Line = Column = 0;
2930  }
2931
2932  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2933                            Builder.getInt32(Column)};
2934
2935  return llvm::ConstantStruct::getAnon(Data);
2936}
2937
2938namespace {
2939/// Specify under what conditions this check can be recovered
2940enum class CheckRecoverableKind {
2941  /// Always terminate program execution if this check fails.
2942  Unrecoverable,
2943  /// Check supports recovering, runtime has both fatal (noreturn) and
2944  /// non-fatal handlers for this check.
2945  Recoverable,
2946  /// Runtime conditionally aborts, always need to support recovery.
2947  AlwaysRecoverable
2948};
2949}
2950
2951static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2952  assert(Kind.countPopulation() == 1);
2953  if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2954    return CheckRecoverableKind::AlwaysRecoverable;
2955  else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2956    return CheckRecoverableKind::Unrecoverable;
2957  else
2958    return CheckRecoverableKind::Recoverable;
2959}
2960
2961namespace {
2962struct SanitizerHandlerInfo {
2963  char const *const Name;
2964  unsigned Version;
2965};
2966}
2967
2968const SanitizerHandlerInfo SanitizerHandlers[] = {
2969#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2970    LIST_SANITIZER_CHECKS
2971#undef SANITIZER_CHECK
2972};
2973
2974static void emitCheckHandlerCall(CodeGenFunction &CGF,
2975                                 llvm::FunctionType *FnType,
2976                                 ArrayRef<llvm::Value *> FnArgs,
2977                                 SanitizerHandler CheckHandler,
2978                                 CheckRecoverableKind RecoverKind, bool IsFatal,
2979                                 llvm::BasicBlock *ContBB) {
2980  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2981  Optional<ApplyDebugLocation> DL;
2982  if (!CGF.Builder.getCurrentDebugLocation()) {
2983    // Ensure that the call has at least an artificial debug location.
2984    DL.emplace(CGF, SourceLocation());
2985  }
2986  bool NeedsAbortSuffix =
2987      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2988  bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2989  const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2990  const StringRef CheckName = CheckInfo.Name;
2991  std::string FnName = "__ubsan_handle_" + CheckName.str();
2992  if (CheckInfo.Version && !MinimalRuntime)
2993    FnName += "_v" + llvm::utostr(CheckInfo.Version);
2994  if (MinimalRuntime)
2995    FnName += "_minimal";
2996  if (NeedsAbortSuffix)
2997    FnName += "_abort";
2998  bool MayReturn =
2999      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3000
3001  llvm::AttrBuilder B;
3002  if (!MayReturn) {
3003    B.addAttribute(llvm::Attribute::NoReturn)
3004        .addAttribute(llvm::Attribute::NoUnwind);
3005  }
3006  B.addAttribute(llvm::Attribute::UWTable);
3007
3008  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3009      FnType, FnName,
3010      llvm::AttributeList::get(CGF.getLLVMContext(),
3011                               llvm::AttributeList::FunctionIndex, B),
3012      /*Local=*/true);
3013  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3014  if (!MayReturn) {
3015    HandlerCall->setDoesNotReturn();
3016    CGF.Builder.CreateUnreachable();
3017  } else {
3018    CGF.Builder.CreateBr(ContBB);
3019  }
3020}
3021
3022void CodeGenFunction::EmitCheck(
3023    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3024    SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3025    ArrayRef<llvm::Value *> DynamicArgs) {
3026  assert(IsSanitizerScope);
3027  assert(Checked.size() > 0);
3028  assert(CheckHandler >= 0 &&
3029         size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3030  const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3031
3032  llvm::Value *FatalCond = nullptr;
3033  llvm::Value *RecoverableCond = nullptr;
3034  llvm::Value *TrapCond = nullptr;
3035  for (int i = 0, n = Checked.size(); i < n; ++i) {
3036    llvm::Value *Check = Checked[i].first;
3037    // -fsanitize-trap= overrides -fsanitize-recover=.
3038    llvm::Value *&Cond =
3039        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3040            ? TrapCond
3041            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3042                  ? RecoverableCond
3043                  : FatalCond;
3044    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3045  }
3046
3047  if (TrapCond)
3048    EmitTrapCheck(TrapCond);
3049  if (!FatalCond && !RecoverableCond)
3050    return;
3051
3052  llvm::Value *JointCond;
3053  if (FatalCond && RecoverableCond)
3054    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3055  else
3056    JointCond = FatalCond ? FatalCond : RecoverableCond;
3057  assert(JointCond);
3058
3059  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3060  assert(SanOpts.has(Checked[0].second));
3061#ifndef NDEBUG
3062  for (int i = 1, n = Checked.size(); i < n; ++i) {
3063    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3064           "All recoverable kinds in a single check must be same!");
3065    assert(SanOpts.has(Checked[i].second));
3066  }
3067#endif
3068
3069  llvm::BasicBlock *Cont = createBasicBlock("cont");
3070  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3071  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3072  // Give hint that we very much don't expect to execute the handler
3073  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3074  llvm::MDBuilder MDHelper(getLLVMContext());
3075  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3076  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3077  EmitBlock(Handlers);
3078
3079  // Handler functions take an i8* pointing to the (handler-specific) static
3080  // information block, followed by a sequence of intptr_t arguments
3081  // representing operand values.
3082  SmallVector<llvm::Value *, 4> Args;
3083  SmallVector<llvm::Type *, 4> ArgTypes;
3084  if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3085    Args.reserve(DynamicArgs.size() + 1);
3086    ArgTypes.reserve(DynamicArgs.size() + 1);
3087
3088    // Emit handler arguments and create handler function type.
3089    if (!StaticArgs.empty()) {
3090      llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3091      auto *InfoPtr =
3092          new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3093                                   llvm::GlobalVariable::PrivateLinkage, Info);
3094      InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3095      CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3096      Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3097      ArgTypes.push_back(Int8PtrTy);
3098    }
3099
3100    for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3101      Args.push_back(EmitCheckValue(DynamicArgs[i]));
3102      ArgTypes.push_back(IntPtrTy);
3103    }
3104  }
3105
3106  llvm::FunctionType *FnType =
3107    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3108
3109  if (!FatalCond || !RecoverableCond) {
3110    // Simple case: we need to generate a single handler call, either
3111    // fatal, or non-fatal.
3112    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3113                         (FatalCond != nullptr), Cont);
3114  } else {
3115    // Emit two handler calls: first one for set of unrecoverable checks,
3116    // another one for recoverable.
3117    llvm::BasicBlock *NonFatalHandlerBB =
3118        createBasicBlock("non_fatal." + CheckName);
3119    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3120    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3121    EmitBlock(FatalHandlerBB);
3122    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3123                         NonFatalHandlerBB);
3124    EmitBlock(NonFatalHandlerBB);
3125    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3126                         Cont);
3127  }
3128
3129  EmitBlock(Cont);
3130}
3131
3132void CodeGenFunction::EmitCfiSlowPathCheck(
3133    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3134    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3135  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3136
3137  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3138  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3139
3140  llvm::MDBuilder MDHelper(getLLVMContext());
3141  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3142  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3143
3144  EmitBlock(CheckBB);
3145
3146  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3147
3148  llvm::CallInst *CheckCall;
3149  llvm::FunctionCallee SlowPathFn;
3150  if (WithDiag) {
3151    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3152    auto *InfoPtr =
3153        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3154                                 llvm::GlobalVariable::PrivateLinkage, Info);
3155    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3156    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3157
3158    SlowPathFn = CGM.getModule().getOrInsertFunction(
3159        "__cfi_slowpath_diag",
3160        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3161                                false));
3162    CheckCall = Builder.CreateCall(
3163        SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3164  } else {
3165    SlowPathFn = CGM.getModule().getOrInsertFunction(
3166        "__cfi_slowpath",
3167        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3168    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3169  }
3170
3171  CGM.setDSOLocal(
3172      cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3173  CheckCall->setDoesNotThrow();
3174
3175  EmitBlock(Cont);
3176}
3177
3178// Emit a stub for __cfi_check function so that the linker knows about this
3179// symbol in LTO mode.
3180void CodeGenFunction::EmitCfiCheckStub() {
3181  llvm::Module *M = &CGM.getModule();
3182  auto &Ctx = M->getContext();
3183  llvm::Function *F = llvm::Function::Create(
3184      llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3185      llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3186  CGM.setDSOLocal(F);
3187  llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3188  // FIXME: consider emitting an intrinsic call like
3189  // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3190  // which can be lowered in CrossDSOCFI pass to the actual contents of
3191  // __cfi_check. This would allow inlining of __cfi_check calls.
3192  llvm::CallInst::Create(
3193      llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3194  llvm::ReturnInst::Create(Ctx, nullptr, BB);
3195}
3196
3197// This function is basically a switch over the CFI failure kind, which is
3198// extracted from CFICheckFailData (1st function argument). Each case is either
3199// llvm.trap or a call to one of the two runtime handlers, based on
3200// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3201// failure kind) traps, but this should really never happen.  CFICheckFailData
3202// can be nullptr if the calling module has -fsanitize-trap behavior for this
3203// check kind; in this case __cfi_check_fail traps as well.
3204void CodeGenFunction::EmitCfiCheckFail() {
3205  SanitizerScope SanScope(this);
3206  FunctionArgList Args;
3207  ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3208                            ImplicitParamDecl::Other);
3209  ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3210                            ImplicitParamDecl::Other);
3211  Args.push_back(&ArgData);
3212  Args.push_back(&ArgAddr);
3213
3214  const CGFunctionInfo &FI =
3215    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3216
3217  llvm::Function *F = llvm::Function::Create(
3218      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3219      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3220
3221  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3222  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3223  F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3224
3225  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3226                SourceLocation());
3227
3228  // This function should not be affected by blacklist. This function does
3229  // not have a source location, but "src:*" would still apply. Revert any
3230  // changes to SanOpts made in StartFunction.
3231  SanOpts = CGM.getLangOpts().Sanitize;
3232
3233  llvm::Value *Data =
3234      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3235                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
3236  llvm::Value *Addr =
3237      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3238                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3239
3240  // Data == nullptr means the calling module has trap behaviour for this check.
3241  llvm::Value *DataIsNotNullPtr =
3242      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3243  EmitTrapCheck(DataIsNotNullPtr);
3244
3245  llvm::StructType *SourceLocationTy =
3246      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3247  llvm::StructType *CfiCheckFailDataTy =
3248      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3249
3250  llvm::Value *V = Builder.CreateConstGEP2_32(
3251      CfiCheckFailDataTy,
3252      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3253      0);
3254  Address CheckKindAddr(V, getIntAlign());
3255  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3256
3257  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3258      CGM.getLLVMContext(),
3259      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3260  llvm::Value *ValidVtable = Builder.CreateZExt(
3261      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3262                         {Addr, AllVtables}),
3263      IntPtrTy);
3264
3265  const std::pair<int, SanitizerMask> CheckKinds[] = {
3266      {CFITCK_VCall, SanitizerKind::CFIVCall},
3267      {CFITCK_NVCall, SanitizerKind::CFINVCall},
3268      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3269      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3270      {CFITCK_ICall, SanitizerKind::CFIICall}};
3271
3272  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3273  for (auto CheckKindMaskPair : CheckKinds) {
3274    int Kind = CheckKindMaskPair.first;
3275    SanitizerMask Mask = CheckKindMaskPair.second;
3276    llvm::Value *Cond =
3277        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3278    if (CGM.getLangOpts().Sanitize.has(Mask))
3279      EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3280                {Data, Addr, ValidVtable});
3281    else
3282      EmitTrapCheck(Cond);
3283  }
3284
3285  FinishFunction();
3286  // The only reference to this function will be created during LTO link.
3287  // Make sure it survives until then.
3288  CGM.addUsedGlobal(F);
3289}
3290
3291void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3292  if (SanOpts.has(SanitizerKind::Unreachable)) {
3293    SanitizerScope SanScope(this);
3294    EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3295                             SanitizerKind::Unreachable),
3296              SanitizerHandler::BuiltinUnreachable,
3297              EmitCheckSourceLocation(Loc), None);
3298  }
3299  Builder.CreateUnreachable();
3300}
3301
3302void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3303  llvm::BasicBlock *Cont = createBasicBlock("cont");
3304
3305  // If we're optimizing, collapse all calls to trap down to just one per
3306  // function to save on code size.
3307  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3308    TrapBB = createBasicBlock("trap");
3309    Builder.CreateCondBr(Checked, Cont, TrapBB);
3310    EmitBlock(TrapBB);
3311    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3312    TrapCall->setDoesNotReturn();
3313    TrapCall->setDoesNotThrow();
3314    Builder.CreateUnreachable();
3315  } else {
3316    Builder.CreateCondBr(Checked, Cont, TrapBB);
3317  }
3318
3319  EmitBlock(Cont);
3320}
3321
3322llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3323  llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3324
3325  if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3326    auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3327                                  CGM.getCodeGenOpts().TrapFuncName);
3328    TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3329  }
3330
3331  return TrapCall;
3332}
3333
3334Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3335                                                 LValueBaseInfo *BaseInfo,
3336                                                 TBAAAccessInfo *TBAAInfo) {
3337  assert(E->getType()->isArrayType() &&
3338         "Array to pointer decay must have array source type!");
3339
3340  // Expressions of array type can't be bitfields or vector elements.
3341  LValue LV = EmitLValue(E);
3342  Address Addr = LV.getAddress(*this);
3343
3344  // If the array type was an incomplete type, we need to make sure
3345  // the decay ends up being the right type.
3346  llvm::Type *NewTy = ConvertType(E->getType());
3347  Addr = Builder.CreateElementBitCast(Addr, NewTy);
3348
3349  // Note that VLA pointers are always decayed, so we don't need to do
3350  // anything here.
3351  if (!E->getType()->isVariableArrayType()) {
3352    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3353           "Expected pointer to array");
3354    Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3355  }
3356
3357  // The result of this decay conversion points to an array element within the
3358  // base lvalue. However, since TBAA currently does not support representing
3359  // accesses to elements of member arrays, we conservatively represent accesses
3360  // to the pointee object as if it had no any base lvalue specified.
3361  // TODO: Support TBAA for member arrays.
3362  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3363  if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3364  if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3365
3366  return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3367}
3368
3369/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3370/// array to pointer, return the array subexpression.
3371static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3372  // If this isn't just an array->pointer decay, bail out.
3373  const auto *CE = dyn_cast<CastExpr>(E);
3374  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3375    return nullptr;
3376
3377  // If this is a decay from variable width array, bail out.
3378  const Expr *SubExpr = CE->getSubExpr();
3379  if (SubExpr->getType()->isVariableArrayType())
3380    return nullptr;
3381
3382  return SubExpr;
3383}
3384
3385static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3386                                          llvm::Value *ptr,
3387                                          ArrayRef<llvm::Value*> indices,
3388                                          bool inbounds,
3389                                          bool signedIndices,
3390                                          SourceLocation loc,
3391                                    const llvm::Twine &name = "arrayidx") {
3392  if (inbounds) {
3393    return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3394                                      CodeGenFunction::NotSubtraction, loc,
3395                                      name);
3396  } else {
3397    return CGF.Builder.CreateGEP(ptr, indices, name);
3398  }
3399}
3400
3401static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3402                                      llvm::Value *idx,
3403                                      CharUnits eltSize) {
3404  // If we have a constant index, we can use the exact offset of the
3405  // element we're accessing.
3406  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3407    CharUnits offset = constantIdx->getZExtValue() * eltSize;
3408    return arrayAlign.alignmentAtOffset(offset);
3409
3410  // Otherwise, use the worst-case alignment for any element.
3411  } else {
3412    return arrayAlign.alignmentOfArrayElement(eltSize);
3413  }
3414}
3415
3416static QualType getFixedSizeElementType(const ASTContext &ctx,
3417                                        const VariableArrayType *vla) {
3418  QualType eltType;
3419  do {
3420    eltType = vla->getElementType();
3421  } while ((vla = ctx.getAsVariableArrayType(eltType)));
3422  return eltType;
3423}
3424
3425/// Given an array base, check whether its member access belongs to a record
3426/// with preserve_access_index attribute or not.
3427static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3428  if (!ArrayBase || !CGF.getDebugInfo())
3429    return false;
3430
3431  // Only support base as either a MemberExpr or DeclRefExpr.
3432  // DeclRefExpr to cover cases like:
3433  //    struct s { int a; int b[10]; };
3434  //    struct s *p;
3435  //    p[1].a
3436  // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3437  // p->b[5] is a MemberExpr example.
3438  const Expr *E = ArrayBase->IgnoreImpCasts();
3439  if (const auto *ME = dyn_cast<MemberExpr>(E))
3440    return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3441
3442  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3443    const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3444    if (!VarDef)
3445      return false;
3446
3447    const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3448    if (!PtrT)
3449      return false;
3450
3451    const auto *PointeeT = PtrT->getPointeeType()
3452                             ->getUnqualifiedDesugaredType();
3453    if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3454      return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3455    return false;
3456  }
3457
3458  return false;
3459}
3460
3461static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3462                                     ArrayRef<llvm::Value *> indices,
3463                                     QualType eltType, bool inbounds,
3464                                     bool signedIndices, SourceLocation loc,
3465                                     QualType *arrayType = nullptr,
3466                                     const Expr *Base = nullptr,
3467                                     const llvm::Twine &name = "arrayidx") {
3468  // All the indices except that last must be zero.
3469#ifndef NDEBUG
3470  for (auto idx : indices.drop_back())
3471    assert(isa<llvm::ConstantInt>(idx) &&
3472           cast<llvm::ConstantInt>(idx)->isZero());
3473#endif
3474
3475  // Determine the element size of the statically-sized base.  This is
3476  // the thing that the indices are expressed in terms of.
3477  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3478    eltType = getFixedSizeElementType(CGF.getContext(), vla);
3479  }
3480
3481  // We can use that to compute the best alignment of the element.
3482  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3483  CharUnits eltAlign =
3484    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3485
3486  llvm::Value *eltPtr;
3487  auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3488  if (!LastIndex ||
3489      (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3490    eltPtr = emitArraySubscriptGEP(
3491        CGF, addr.getPointer(), indices, inbounds, signedIndices,
3492        loc, name);
3493  } else {
3494    // Remember the original array subscript for bpf target
3495    unsigned idx = LastIndex->getZExtValue();
3496    llvm::DIType *DbgInfo = nullptr;
3497    if (arrayType)
3498      DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3499    eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3500                                                        addr.getPointer(),
3501                                                        indices.size() - 1,
3502                                                        idx, DbgInfo);
3503  }
3504
3505  return Address(eltPtr, eltAlign);
3506}
3507
3508LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3509                                               bool Accessed) {
3510  // The index must always be an integer, which is not an aggregate.  Emit it
3511  // in lexical order (this complexity is, sadly, required by C++17).
3512  llvm::Value *IdxPre =
3513      (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3514  bool SignedIndices = false;
3515  auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3516    auto *Idx = IdxPre;
3517    if (E->getLHS() != E->getIdx()) {
3518      assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3519      Idx = EmitScalarExpr(E->getIdx());
3520    }
3521
3522    QualType IdxTy = E->getIdx()->getType();
3523    bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3524    SignedIndices |= IdxSigned;
3525
3526    if (SanOpts.has(SanitizerKind::ArrayBounds))
3527      EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3528
3529    // Extend or truncate the index type to 32 or 64-bits.
3530    if (Promote && Idx->getType() != IntPtrTy)
3531      Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3532
3533    return Idx;
3534  };
3535  IdxPre = nullptr;
3536
3537  // If the base is a vector type, then we are forming a vector element lvalue
3538  // with this subscript.
3539  if (E->getBase()->getType()->isVectorType() &&
3540      !isa<ExtVectorElementExpr>(E->getBase())) {
3541    // Emit the vector as an lvalue to get its address.
3542    LValue LHS = EmitLValue(E->getBase());
3543    auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3544    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3545    return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3546                                 E->getBase()->getType(), LHS.getBaseInfo(),
3547                                 TBAAAccessInfo());
3548  }
3549
3550  // All the other cases basically behave like simple offsetting.
3551
3552  // Handle the extvector case we ignored above.
3553  if (isa<ExtVectorElementExpr>(E->getBase())) {
3554    LValue LV = EmitLValue(E->getBase());
3555    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3556    Address Addr = EmitExtVectorElementLValue(LV);
3557
3558    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3559    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3560                                 SignedIndices, E->getExprLoc());
3561    return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3562                          CGM.getTBAAInfoForSubobject(LV, EltType));
3563  }
3564
3565  LValueBaseInfo EltBaseInfo;
3566  TBAAAccessInfo EltTBAAInfo;
3567  Address Addr = Address::invalid();
3568  if (const VariableArrayType *vla =
3569           getContext().getAsVariableArrayType(E->getType())) {
3570    // The base must be a pointer, which is not an aggregate.  Emit
3571    // it.  It needs to be emitted first in case it's what captures
3572    // the VLA bounds.
3573    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3574    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3575
3576    // The element count here is the total number of non-VLA elements.
3577    llvm::Value *numElements = getVLASize(vla).NumElts;
3578
3579    // Effectively, the multiply by the VLA size is part of the GEP.
3580    // GEP indexes are signed, and scaling an index isn't permitted to
3581    // signed-overflow, so we use the same semantics for our explicit
3582    // multiply.  We suppress this if overflow is not undefined behavior.
3583    if (getLangOpts().isSignedOverflowDefined()) {
3584      Idx = Builder.CreateMul(Idx, numElements);
3585    } else {
3586      Idx = Builder.CreateNSWMul(Idx, numElements);
3587    }
3588
3589    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3590                                 !getLangOpts().isSignedOverflowDefined(),
3591                                 SignedIndices, E->getExprLoc());
3592
3593  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3594    // Indexing over an interface, as in "NSString *P; P[4];"
3595
3596    // Emit the base pointer.
3597    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3598    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3599
3600    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3601    llvm::Value *InterfaceSizeVal =
3602        llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3603
3604    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3605
3606    // We don't necessarily build correct LLVM struct types for ObjC
3607    // interfaces, so we can't rely on GEP to do this scaling
3608    // correctly, so we need to cast to i8*.  FIXME: is this actually
3609    // true?  A lot of other things in the fragile ABI would break...
3610    llvm::Type *OrigBaseTy = Addr.getType();
3611    Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3612
3613    // Do the GEP.
3614    CharUnits EltAlign =
3615      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3616    llvm::Value *EltPtr =
3617        emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3618                              SignedIndices, E->getExprLoc());
3619    Addr = Address(EltPtr, EltAlign);
3620
3621    // Cast back.
3622    Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3623  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3624    // If this is A[i] where A is an array, the frontend will have decayed the
3625    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3626    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3627    // "gep x, i" here.  Emit one "gep A, 0, i".
3628    assert(Array->getType()->isArrayType() &&
3629           "Array to pointer decay must have array source type!");
3630    LValue ArrayLV;
3631    // For simple multidimensional array indexing, set the 'accessed' flag for
3632    // better bounds-checking of the base expression.
3633    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3634      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3635    else
3636      ArrayLV = EmitLValue(Array);
3637    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3638
3639    // Propagate the alignment from the array itself to the result.
3640    QualType arrayType = Array->getType();
3641    Addr = emitArraySubscriptGEP(
3642        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3643        E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3644        E->getExprLoc(), &arrayType, E->getBase());
3645    EltBaseInfo = ArrayLV.getBaseInfo();
3646    EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3647  } else {
3648    // The base must be a pointer; emit it with an estimate of its alignment.
3649    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3650    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3651    QualType ptrType = E->getBase()->getType();
3652    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3653                                 !getLangOpts().isSignedOverflowDefined(),
3654                                 SignedIndices, E->getExprLoc(), &ptrType,
3655                                 E->getBase());
3656  }
3657
3658  LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3659
3660  if (getLangOpts().ObjC &&
3661      getLangOpts().getGC() != LangOptions::NonGC) {
3662    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3663    setObjCGCLValueClass(getContext(), E, LV);
3664  }
3665  return LV;
3666}
3667
3668static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3669                                       LValueBaseInfo &BaseInfo,
3670                                       TBAAAccessInfo &TBAAInfo,
3671                                       QualType BaseTy, QualType ElTy,
3672                                       bool IsLowerBound) {
3673  LValue BaseLVal;
3674  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3675    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3676    if (BaseTy->isArrayType()) {
3677      Address Addr = BaseLVal.getAddress(CGF);
3678      BaseInfo = BaseLVal.getBaseInfo();
3679
3680      // If the array type was an incomplete type, we need to make sure
3681      // the decay ends up being the right type.
3682      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3683      Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3684
3685      // Note that VLA pointers are always decayed, so we don't need to do
3686      // anything here.
3687      if (!BaseTy->isVariableArrayType()) {
3688        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3689               "Expected pointer to array");
3690        Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3691      }
3692
3693      return CGF.Builder.CreateElementBitCast(Addr,
3694                                              CGF.ConvertTypeForMem(ElTy));
3695    }
3696    LValueBaseInfo TypeBaseInfo;
3697    TBAAAccessInfo TypeTBAAInfo;
3698    CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3699                                                  &TypeTBAAInfo);
3700    BaseInfo.mergeForCast(TypeBaseInfo);
3701    TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3702    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3703  }
3704  return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3705}
3706
3707LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3708                                                bool IsLowerBound) {
3709  QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3710  QualType ResultExprTy;
3711  if (auto *AT = getContext().getAsArrayType(BaseTy))
3712    ResultExprTy = AT->getElementType();
3713  else
3714    ResultExprTy = BaseTy->getPointeeType();
3715  llvm::Value *Idx = nullptr;
3716  if (IsLowerBound || E->getColonLoc().isInvalid()) {
3717    // Requesting lower bound or upper bound, but without provided length and
3718    // without ':' symbol for the default length -> length = 1.
3719    // Idx = LowerBound ?: 0;
3720    if (auto *LowerBound = E->getLowerBound()) {
3721      Idx = Builder.CreateIntCast(
3722          EmitScalarExpr(LowerBound), IntPtrTy,
3723          LowerBound->getType()->hasSignedIntegerRepresentation());
3724    } else
3725      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3726  } else {
3727    // Try to emit length or lower bound as constant. If this is possible, 1
3728    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3729    // IR (LB + Len) - 1.
3730    auto &C = CGM.getContext();
3731    auto *Length = E->getLength();
3732    llvm::APSInt ConstLength;
3733    if (Length) {
3734      // Idx = LowerBound + Length - 1;
3735      if (Length->isIntegerConstantExpr(ConstLength, C)) {
3736        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3737        Length = nullptr;
3738      }
3739      auto *LowerBound = E->getLowerBound();
3740      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3741      if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3742        ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3743        LowerBound = nullptr;
3744      }
3745      if (!Length)
3746        --ConstLength;
3747      else if (!LowerBound)
3748        --ConstLowerBound;
3749
3750      if (Length || LowerBound) {
3751        auto *LowerBoundVal =
3752            LowerBound
3753                ? Builder.CreateIntCast(
3754                      EmitScalarExpr(LowerBound), IntPtrTy,
3755                      LowerBound->getType()->hasSignedIntegerRepresentation())
3756                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3757        auto *LengthVal =
3758            Length
3759                ? Builder.CreateIntCast(
3760                      EmitScalarExpr(Length), IntPtrTy,
3761                      Length->getType()->hasSignedIntegerRepresentation())
3762                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3763        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3764                                /*HasNUW=*/false,
3765                                !getLangOpts().isSignedOverflowDefined());
3766        if (Length && LowerBound) {
3767          Idx = Builder.CreateSub(
3768              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3769              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3770        }
3771      } else
3772        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3773    } else {
3774      // Idx = ArraySize - 1;
3775      QualType ArrayTy = BaseTy->isPointerType()
3776                             ? E->getBase()->IgnoreParenImpCasts()->getType()
3777                             : BaseTy;
3778      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3779        Length = VAT->getSizeExpr();
3780        if (Length->isIntegerConstantExpr(ConstLength, C))
3781          Length = nullptr;
3782      } else {
3783        auto *CAT = C.getAsConstantArrayType(ArrayTy);
3784        ConstLength = CAT->getSize();
3785      }
3786      if (Length) {
3787        auto *LengthVal = Builder.CreateIntCast(
3788            EmitScalarExpr(Length), IntPtrTy,
3789            Length->getType()->hasSignedIntegerRepresentation());
3790        Idx = Builder.CreateSub(
3791            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3792            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3793      } else {
3794        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3795        --ConstLength;
3796        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3797      }
3798    }
3799  }
3800  assert(Idx);
3801
3802  Address EltPtr = Address::invalid();
3803  LValueBaseInfo BaseInfo;
3804  TBAAAccessInfo TBAAInfo;
3805  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3806    // The base must be a pointer, which is not an aggregate.  Emit
3807    // it.  It needs to be emitted first in case it's what captures
3808    // the VLA bounds.
3809    Address Base =
3810        emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3811                                BaseTy, VLA->getElementType(), IsLowerBound);
3812    // The element count here is the total number of non-VLA elements.
3813    llvm::Value *NumElements = getVLASize(VLA).NumElts;
3814
3815    // Effectively, the multiply by the VLA size is part of the GEP.
3816    // GEP indexes are signed, and scaling an index isn't permitted to
3817    // signed-overflow, so we use the same semantics for our explicit
3818    // multiply.  We suppress this if overflow is not undefined behavior.
3819    if (getLangOpts().isSignedOverflowDefined())
3820      Idx = Builder.CreateMul(Idx, NumElements);
3821    else
3822      Idx = Builder.CreateNSWMul(Idx, NumElements);
3823    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3824                                   !getLangOpts().isSignedOverflowDefined(),
3825                                   /*signedIndices=*/false, E->getExprLoc());
3826  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3827    // If this is A[i] where A is an array, the frontend will have decayed the
3828    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3829    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3830    // "gep x, i" here.  Emit one "gep A, 0, i".
3831    assert(Array->getType()->isArrayType() &&
3832           "Array to pointer decay must have array source type!");
3833    LValue ArrayLV;
3834    // For simple multidimensional array indexing, set the 'accessed' flag for
3835    // better bounds-checking of the base expression.
3836    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3837      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3838    else
3839      ArrayLV = EmitLValue(Array);
3840
3841    // Propagate the alignment from the array itself to the result.
3842    EltPtr = emitArraySubscriptGEP(
3843        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3844        ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3845        /*signedIndices=*/false, E->getExprLoc());
3846    BaseInfo = ArrayLV.getBaseInfo();
3847    TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3848  } else {
3849    Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3850                                           TBAAInfo, BaseTy, ResultExprTy,
3851                                           IsLowerBound);
3852    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3853                                   !getLangOpts().isSignedOverflowDefined(),
3854                                   /*signedIndices=*/false, E->getExprLoc());
3855  }
3856
3857  return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3858}
3859
3860LValue CodeGenFunction::
3861EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3862  // Emit the base vector as an l-value.
3863  LValue Base;
3864
3865  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3866  if (E->isArrow()) {
3867    // If it is a pointer to a vector, emit the address and form an lvalue with
3868    // it.
3869    LValueBaseInfo BaseInfo;
3870    TBAAAccessInfo TBAAInfo;
3871    Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3872    const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3873    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3874    Base.getQuals().removeObjCGCAttr();
3875  } else if (E->getBase()->isGLValue()) {
3876    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3877    // emit the base as an lvalue.
3878    assert(E->getBase()->getType()->isVectorType());
3879    Base = EmitLValue(E->getBase());
3880  } else {
3881    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3882    assert(E->getBase()->getType()->isVectorType() &&
3883           "Result must be a vector");
3884    llvm::Value *Vec = EmitScalarExpr(E->getBase());
3885
3886    // Store the vector to memory (because LValue wants an address).
3887    Address VecMem = CreateMemTemp(E->getBase()->getType());
3888    Builder.CreateStore(Vec, VecMem);
3889    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3890                          AlignmentSource::Decl);
3891  }
3892
3893  QualType type =
3894    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3895
3896  // Encode the element access list into a vector of unsigned indices.
3897  SmallVector<uint32_t, 4> Indices;
3898  E->getEncodedElementAccess(Indices);
3899
3900  if (Base.isSimple()) {
3901    llvm::Constant *CV =
3902        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3903    return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3904                                    Base.getBaseInfo(), TBAAAccessInfo());
3905  }
3906  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3907
3908  llvm::Constant *BaseElts = Base.getExtVectorElts();
3909  SmallVector<llvm::Constant *, 4> CElts;
3910
3911  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3912    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3913  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3914  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3915                                  Base.getBaseInfo(), TBAAAccessInfo());
3916}
3917
3918LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3919  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3920    EmitIgnoredExpr(E->getBase());
3921    return EmitDeclRefLValue(DRE);
3922  }
3923
3924  Expr *BaseExpr = E->getBase();
3925  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3926  LValue BaseLV;
3927  if (E->isArrow()) {
3928    LValueBaseInfo BaseInfo;
3929    TBAAAccessInfo TBAAInfo;
3930    Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3931    QualType PtrTy = BaseExpr->getType()->getPointeeType();
3932    SanitizerSet SkippedChecks;
3933    bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3934    if (IsBaseCXXThis)
3935      SkippedChecks.set(SanitizerKind::Alignment, true);
3936    if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3937      SkippedChecks.set(SanitizerKind::Null, true);
3938    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3939                  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3940    BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3941  } else
3942    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3943
3944  NamedDecl *ND = E->getMemberDecl();
3945  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3946    LValue LV = EmitLValueForField(BaseLV, Field);
3947    setObjCGCLValueClass(getContext(), E, LV);
3948    if (getLangOpts().OpenMP) {
3949      // If the member was explicitly marked as nontemporal, mark it as
3950      // nontemporal. If the base lvalue is marked as nontemporal, mark access
3951      // to children as nontemporal too.
3952      if ((IsWrappedCXXThis(BaseExpr) &&
3953           CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3954          BaseLV.isNontemporal())
3955        LV.setNontemporal(/*Value=*/true);
3956    }
3957    return LV;
3958  }
3959
3960  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3961    return EmitFunctionDeclLValue(*this, E, FD);
3962
3963  llvm_unreachable("Unhandled member declaration!");
3964}
3965
3966/// Given that we are currently emitting a lambda, emit an l-value for
3967/// one of its members.
3968LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3969  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3970  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3971  QualType LambdaTagType =
3972    getContext().getTagDeclType(Field->getParent());
3973  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3974  return EmitLValueForField(LambdaLV, Field);
3975}
3976
3977/// Get the field index in the debug info. The debug info structure/union
3978/// will ignore the unnamed bitfields.
3979unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3980                                             unsigned FieldIndex) {
3981  unsigned I = 0, Skipped = 0;
3982
3983  for (auto F : Rec->getDefinition()->fields()) {
3984    if (I == FieldIndex)
3985      break;
3986    if (F->isUnnamedBitfield())
3987      Skipped++;
3988    I++;
3989  }
3990
3991  return FieldIndex - Skipped;
3992}
3993
3994/// Get the address of a zero-sized field within a record. The resulting
3995/// address doesn't necessarily have the right type.
3996static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3997                                       const FieldDecl *Field) {
3998  CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3999      CGF.getContext().getFieldOffset(Field));
4000  if (Offset.isZero())
4001    return Base;
4002  Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4003  return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4004}
4005
4006/// Drill down to the storage of a field without walking into
4007/// reference types.
4008///
4009/// The resulting address doesn't necessarily have the right type.
4010static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4011                                      const FieldDecl *field) {
4012  if (field->isZeroSize(CGF.getContext()))
4013    return emitAddrOfZeroSizeField(CGF, base, field);
4014
4015  const RecordDecl *rec = field->getParent();
4016
4017  unsigned idx =
4018    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4019
4020  return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4021}
4022
4023static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
4024                                        const FieldDecl *field) {
4025  const RecordDecl *rec = field->getParent();
4026  llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
4027      CGF.getContext().getRecordType(rec), rec->getLocation());
4028
4029  unsigned idx =
4030      CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4031
4032  return CGF.Builder.CreatePreserveStructAccessIndex(
4033      base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4034}
4035
4036static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4037  const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4038  if (!RD)
4039    return false;
4040
4041  if (RD->isDynamicClass())
4042    return true;
4043
4044  for (const auto &Base : RD->bases())
4045    if (hasAnyVptr(Base.getType(), Context))
4046      return true;
4047
4048  for (const FieldDecl *Field : RD->fields())
4049    if (hasAnyVptr(Field->getType(), Context))
4050      return true;
4051
4052  return false;
4053}
4054
4055LValue CodeGenFunction::EmitLValueForField(LValue base,
4056                                           const FieldDecl *field) {
4057  LValueBaseInfo BaseInfo = base.getBaseInfo();
4058
4059  if (field->isBitField()) {
4060    const CGRecordLayout &RL =
4061      CGM.getTypes().getCGRecordLayout(field->getParent());
4062    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4063    Address Addr = base.getAddress(*this);
4064    unsigned Idx = RL.getLLVMFieldNo(field);
4065    const RecordDecl *rec = field->getParent();
4066    if (!IsInPreservedAIRegion &&
4067        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4068      if (Idx != 0)
4069        // For structs, we GEP to the field that the record layout suggests.
4070        Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4071    } else {
4072      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4073          getContext().getRecordType(rec), rec->getLocation());
4074      Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4075          getDebugInfoFIndex(rec, field->getFieldIndex()),
4076          DbgInfo);
4077    }
4078
4079    // Get the access type.
4080    llvm::Type *FieldIntTy =
4081      llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4082    if (Addr.getElementType() != FieldIntTy)
4083      Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4084
4085    QualType fieldType =
4086      field->getType().withCVRQualifiers(base.getVRQualifiers());
4087    // TODO: Support TBAA for bit fields.
4088    LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4089    return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4090                                TBAAAccessInfo());
4091  }
4092
4093  // Fields of may-alias structures are may-alias themselves.
4094  // FIXME: this should get propagated down through anonymous structs
4095  // and unions.
4096  QualType FieldType = field->getType();
4097  const RecordDecl *rec = field->getParent();
4098  AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4099  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4100  TBAAAccessInfo FieldTBAAInfo;
4101  if (base.getTBAAInfo().isMayAlias() ||
4102          rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4103    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4104  } else if (rec->isUnion()) {
4105    // TODO: Support TBAA for unions.
4106    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4107  } else {
4108    // If no base type been assigned for the base access, then try to generate
4109    // one for this base lvalue.
4110    FieldTBAAInfo = base.getTBAAInfo();
4111    if (!FieldTBAAInfo.BaseType) {
4112        FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4113        assert(!FieldTBAAInfo.Offset &&
4114               "Nonzero offset for an access with no base type!");
4115    }
4116
4117    // Adjust offset to be relative to the base type.
4118    const ASTRecordLayout &Layout =
4119        getContext().getASTRecordLayout(field->getParent());
4120    unsigned CharWidth = getContext().getCharWidth();
4121    if (FieldTBAAInfo.BaseType)
4122      FieldTBAAInfo.Offset +=
4123          Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4124
4125    // Update the final access type and size.
4126    FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4127    FieldTBAAInfo.Size =
4128        getContext().getTypeSizeInChars(FieldType).getQuantity();
4129  }
4130
4131  Address addr = base.getAddress(*this);
4132  if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4133    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4134        ClassDef->isDynamicClass()) {
4135      // Getting to any field of dynamic object requires stripping dynamic
4136      // information provided by invariant.group.  This is because accessing
4137      // fields may leak the real address of dynamic object, which could result
4138      // in miscompilation when leaked pointer would be compared.
4139      auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4140      addr = Address(stripped, addr.getAlignment());
4141    }
4142  }
4143
4144  unsigned RecordCVR = base.getVRQualifiers();
4145  if (rec->isUnion()) {
4146    // For unions, there is no pointer adjustment.
4147    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4148        hasAnyVptr(FieldType, getContext()))
4149      // Because unions can easily skip invariant.barriers, we need to add
4150      // a barrier every time CXXRecord field with vptr is referenced.
4151      addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4152                     addr.getAlignment());
4153
4154    if (IsInPreservedAIRegion ||
4155        (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4156      // Remember the original union field index
4157      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4158          getContext().getRecordType(rec), rec->getLocation());
4159      addr = Address(
4160          Builder.CreatePreserveUnionAccessIndex(
4161              addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4162          addr.getAlignment());
4163    }
4164
4165    if (FieldType->isReferenceType())
4166      addr = Builder.CreateElementBitCast(
4167          addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4168  } else {
4169    if (!IsInPreservedAIRegion &&
4170        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4171      // For structs, we GEP to the field that the record layout suggests.
4172      addr = emitAddrOfFieldStorage(*this, addr, field);
4173    else
4174      // Remember the original struct field index
4175      addr = emitPreserveStructAccess(*this, addr, field);
4176  }
4177
4178  // If this is a reference field, load the reference right now.
4179  if (FieldType->isReferenceType()) {
4180    LValue RefLVal =
4181        MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4182    if (RecordCVR & Qualifiers::Volatile)
4183      RefLVal.getQuals().addVolatile();
4184    addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4185
4186    // Qualifiers on the struct don't apply to the referencee.
4187    RecordCVR = 0;
4188    FieldType = FieldType->getPointeeType();
4189  }
4190
4191  // Make sure that the address is pointing to the right type.  This is critical
4192  // for both unions and structs.  A union needs a bitcast, a struct element
4193  // will need a bitcast if the LLVM type laid out doesn't match the desired
4194  // type.
4195  addr = Builder.CreateElementBitCast(
4196      addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4197
4198  if (field->hasAttr<AnnotateAttr>())
4199    addr = EmitFieldAnnotations(field, addr);
4200
4201  LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4202  LV.getQuals().addCVRQualifiers(RecordCVR);
4203
4204  // __weak attribute on a field is ignored.
4205  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4206    LV.getQuals().removeObjCGCAttr();
4207
4208  return LV;
4209}
4210
4211LValue
4212CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4213                                                  const FieldDecl *Field) {
4214  QualType FieldType = Field->getType();
4215
4216  if (!FieldType->isReferenceType())
4217    return EmitLValueForField(Base, Field);
4218
4219  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4220
4221  // Make sure that the address is pointing to the right type.
4222  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4223  V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4224
4225  // TODO: Generate TBAA information that describes this access as a structure
4226  // member access and not just an access to an object of the field's type. This
4227  // should be similar to what we do in EmitLValueForField().
4228  LValueBaseInfo BaseInfo = Base.getBaseInfo();
4229  AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4230  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4231  return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4232                        CGM.getTBAAInfoForSubobject(Base, FieldType));
4233}
4234
4235LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4236  if (E->isFileScope()) {
4237    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4238    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4239  }
4240  if (E->getType()->isVariablyModifiedType())
4241    // make sure to emit the VLA size.
4242    EmitVariablyModifiedType(E->getType());
4243
4244  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4245  const Expr *InitExpr = E->getInitializer();
4246  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4247
4248  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4249                   /*Init*/ true);
4250
4251  return Result;
4252}
4253
4254LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4255  if (!E->isGLValue())
4256    // Initializing an aggregate temporary in C++11: T{...}.
4257    return EmitAggExprToLValue(E);
4258
4259  // An lvalue initializer list must be initializing a reference.
4260  assert(E->isTransparent() && "non-transparent glvalue init list");
4261  return EmitLValue(E->getInit(0));
4262}
4263
4264/// Emit the operand of a glvalue conditional operator. This is either a glvalue
4265/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4266/// LValue is returned and the current block has been terminated.
4267static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4268                                                    const Expr *Operand) {
4269  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4270    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4271    return None;
4272  }
4273
4274  return CGF.EmitLValue(Operand);
4275}
4276
4277LValue CodeGenFunction::
4278EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4279  if (!expr->isGLValue()) {
4280    // ?: here should be an aggregate.
4281    assert(hasAggregateEvaluationKind(expr->getType()) &&
4282           "Unexpected conditional operator!");
4283    return EmitAggExprToLValue(expr);
4284  }
4285
4286  OpaqueValueMapping binding(*this, expr);
4287
4288  const Expr *condExpr = expr->getCond();
4289  bool CondExprBool;
4290  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4291    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4292    if (!CondExprBool) std::swap(live, dead);
4293
4294    if (!ContainsLabel(dead)) {
4295      // If the true case is live, we need to track its region.
4296      if (CondExprBool)
4297        incrementProfileCounter(expr);
4298      return EmitLValue(live);
4299    }
4300  }
4301
4302  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4303  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4304  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4305
4306  ConditionalEvaluation eval(*this);
4307  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4308
4309  // Any temporaries created here are conditional.
4310  EmitBlock(lhsBlock);
4311  incrementProfileCounter(expr);
4312  eval.begin(*this);
4313  Optional<LValue> lhs =
4314      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4315  eval.end(*this);
4316
4317  if (lhs && !lhs->isSimple())
4318    return EmitUnsupportedLValue(expr, "conditional operator");
4319
4320  lhsBlock = Builder.GetInsertBlock();
4321  if (lhs)
4322    Builder.CreateBr(contBlock);
4323
4324  // Any temporaries created here are conditional.
4325  EmitBlock(rhsBlock);
4326  eval.begin(*this);
4327  Optional<LValue> rhs =
4328      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4329  eval.end(*this);
4330  if (rhs && !rhs->isSimple())
4331    return EmitUnsupportedLValue(expr, "conditional operator");
4332  rhsBlock = Builder.GetInsertBlock();
4333
4334  EmitBlock(contBlock);
4335
4336  if (lhs && rhs) {
4337    llvm::PHINode *phi =
4338        Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4339    phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4340    phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4341    Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4342    AlignmentSource alignSource =
4343      std::max(lhs->getBaseInfo().getAlignmentSource(),
4344               rhs->getBaseInfo().getAlignmentSource());
4345    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4346        lhs->getTBAAInfo(), rhs->getTBAAInfo());
4347    return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4348                          TBAAInfo);
4349  } else {
4350    assert((lhs || rhs) &&
4351           "both operands of glvalue conditional are throw-expressions?");
4352    return lhs ? *lhs : *rhs;
4353  }
4354}
4355
4356/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4357/// type. If the cast is to a reference, we can have the usual lvalue result,
4358/// otherwise if a cast is needed by the code generator in an lvalue context,
4359/// then it must mean that we need the address of an aggregate in order to
4360/// access one of its members.  This can happen for all the reasons that casts
4361/// are permitted with aggregate result, including noop aggregate casts, and
4362/// cast from scalar to union.
4363LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4364  switch (E->getCastKind()) {
4365  case CK_ToVoid:
4366  case CK_BitCast:
4367  case CK_LValueToRValueBitCast:
4368  case CK_ArrayToPointerDecay:
4369  case CK_FunctionToPointerDecay:
4370  case CK_NullToMemberPointer:
4371  case CK_NullToPointer:
4372  case CK_IntegralToPointer:
4373  case CK_PointerToIntegral:
4374  case CK_PointerToBoolean:
4375  case CK_VectorSplat:
4376  case CK_IntegralCast:
4377  case CK_BooleanToSignedIntegral:
4378  case CK_IntegralToBoolean:
4379  case CK_IntegralToFloating:
4380  case CK_FloatingToIntegral:
4381  case CK_FloatingToBoolean:
4382  case CK_FloatingCast:
4383  case CK_FloatingRealToComplex:
4384  case CK_FloatingComplexToReal:
4385  case CK_FloatingComplexToBoolean:
4386  case CK_FloatingComplexCast:
4387  case CK_FloatingComplexToIntegralComplex:
4388  case CK_IntegralRealToComplex:
4389  case CK_IntegralComplexToReal:
4390  case CK_IntegralComplexToBoolean:
4391  case CK_IntegralComplexCast:
4392  case CK_IntegralComplexToFloatingComplex:
4393  case CK_DerivedToBaseMemberPointer:
4394  case CK_BaseToDerivedMemberPointer:
4395  case CK_MemberPointerToBoolean:
4396  case CK_ReinterpretMemberPointer:
4397  case CK_AnyPointerToBlockPointerCast:
4398  case CK_ARCProduceObject:
4399  case CK_ARCConsumeObject:
4400  case CK_ARCReclaimReturnedObject:
4401  case CK_ARCExtendBlockObject:
4402  case CK_CopyAndAutoreleaseBlockObject:
4403  case CK_IntToOCLSampler:
4404  case CK_FixedPointCast:
4405  case CK_FixedPointToBoolean:
4406  case CK_FixedPointToIntegral:
4407  case CK_IntegralToFixedPoint:
4408    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4409
4410  case CK_Dependent:
4411    llvm_unreachable("dependent cast kind in IR gen!");
4412
4413  case CK_BuiltinFnToFnPtr:
4414    llvm_unreachable("builtin functions are handled elsewhere");
4415
4416  // These are never l-values; just use the aggregate emission code.
4417  case CK_NonAtomicToAtomic:
4418  case CK_AtomicToNonAtomic:
4419    return EmitAggExprToLValue(E);
4420
4421  case CK_Dynamic: {
4422    LValue LV = EmitLValue(E->getSubExpr());
4423    Address V = LV.getAddress(*this);
4424    const auto *DCE = cast<CXXDynamicCastExpr>(E);
4425    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4426  }
4427
4428  case CK_ConstructorConversion:
4429  case CK_UserDefinedConversion:
4430  case CK_CPointerToObjCPointerCast:
4431  case CK_BlockPointerToObjCPointerCast:
4432  case CK_NoOp:
4433  case CK_LValueToRValue:
4434    return EmitLValue(E->getSubExpr());
4435
4436  case CK_UncheckedDerivedToBase:
4437  case CK_DerivedToBase: {
4438    const auto *DerivedClassTy =
4439        E->getSubExpr()->getType()->castAs<RecordType>();
4440    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4441
4442    LValue LV = EmitLValue(E->getSubExpr());
4443    Address This = LV.getAddress(*this);
4444
4445    // Perform the derived-to-base conversion
4446    Address Base = GetAddressOfBaseClass(
4447        This, DerivedClassDecl, E->path_begin(), E->path_end(),
4448        /*NullCheckValue=*/false, E->getExprLoc());
4449
4450    // TODO: Support accesses to members of base classes in TBAA. For now, we
4451    // conservatively pretend that the complete object is of the base class
4452    // type.
4453    return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4454                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4455  }
4456  case CK_ToUnion:
4457    return EmitAggExprToLValue(E);
4458  case CK_BaseToDerived: {
4459    const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4460    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4461
4462    LValue LV = EmitLValue(E->getSubExpr());
4463
4464    // Perform the base-to-derived conversion
4465    Address Derived = GetAddressOfDerivedClass(
4466        LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4467        /*NullCheckValue=*/false);
4468
4469    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4470    // performed and the object is not of the derived type.
4471    if (sanitizePerformTypeCheck())
4472      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4473                    Derived.getPointer(), E->getType());
4474
4475    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4476      EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4477                                /*MayBeNull=*/false, CFITCK_DerivedCast,
4478                                E->getBeginLoc());
4479
4480    return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4481                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4482  }
4483  case CK_LValueBitCast: {
4484    // This must be a reinterpret_cast (or c-style equivalent).
4485    const auto *CE = cast<ExplicitCastExpr>(E);
4486
4487    CGM.EmitExplicitCastExprType(CE, this);
4488    LValue LV = EmitLValue(E->getSubExpr());
4489    Address V = Builder.CreateBitCast(LV.getAddress(*this),
4490                                      ConvertType(CE->getTypeAsWritten()));
4491
4492    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4493      EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4494                                /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4495                                E->getBeginLoc());
4496
4497    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4498                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4499  }
4500  case CK_AddressSpaceConversion: {
4501    LValue LV = EmitLValue(E->getSubExpr());
4502    QualType DestTy = getContext().getPointerType(E->getType());
4503    llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4504        *this, LV.getPointer(*this),
4505        E->getSubExpr()->getType().getAddressSpace(),
4506        E->getType().getAddressSpace(), ConvertType(DestTy));
4507    return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4508                          E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4509  }
4510  case CK_ObjCObjectLValueCast: {
4511    LValue LV = EmitLValue(E->getSubExpr());
4512    Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4513                                             ConvertType(E->getType()));
4514    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4515                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4516  }
4517  case CK_ZeroToOCLOpaqueType:
4518    llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4519  }
4520
4521  llvm_unreachable("Unhandled lvalue cast kind?");
4522}
4523
4524LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4525  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4526  return getOrCreateOpaqueLValueMapping(e);
4527}
4528
4529LValue
4530CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4531  assert(OpaqueValueMapping::shouldBindAsLValue(e));
4532
4533  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4534      it = OpaqueLValues.find(e);
4535
4536  if (it != OpaqueLValues.end())
4537    return it->second;
4538
4539  assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4540  return EmitLValue(e->getSourceExpr());
4541}
4542
4543RValue
4544CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4545  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4546
4547  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4548      it = OpaqueRValues.find(e);
4549
4550  if (it != OpaqueRValues.end())
4551    return it->second;
4552
4553  assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4554  return EmitAnyExpr(e->getSourceExpr());
4555}
4556
4557RValue CodeGenFunction::EmitRValueForField(LValue LV,
4558                                           const FieldDecl *FD,
4559                                           SourceLocation Loc) {
4560  QualType FT = FD->getType();
4561  LValue FieldLV = EmitLValueForField(LV, FD);
4562  switch (getEvaluationKind(FT)) {
4563  case TEK_Complex:
4564    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4565  case TEK_Aggregate:
4566    return FieldLV.asAggregateRValue(*this);
4567  case TEK_Scalar:
4568    // This routine is used to load fields one-by-one to perform a copy, so
4569    // don't load reference fields.
4570    if (FD->getType()->isReferenceType())
4571      return RValue::get(FieldLV.getPointer(*this));
4572    // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4573    // primitive load.
4574    if (FieldLV.isBitField())
4575      return EmitLoadOfLValue(FieldLV, Loc);
4576    return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4577  }
4578  llvm_unreachable("bad evaluation kind");
4579}
4580
4581//===--------------------------------------------------------------------===//
4582//                             Expression Emission
4583//===--------------------------------------------------------------------===//
4584
4585RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4586                                     ReturnValueSlot ReturnValue) {
4587  // Builtins never have block type.
4588  if (E->getCallee()->getType()->isBlockPointerType())
4589    return EmitBlockCallExpr(E, ReturnValue);
4590
4591  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4592    return EmitCXXMemberCallExpr(CE, ReturnValue);
4593
4594  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4595    return EmitCUDAKernelCallExpr(CE, ReturnValue);
4596
4597  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4598    if (const CXXMethodDecl *MD =
4599          dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4600      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4601
4602  CGCallee callee = EmitCallee(E->getCallee());
4603
4604  if (callee.isBuiltin()) {
4605    return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4606                           E, ReturnValue);
4607  }
4608
4609  if (callee.isPseudoDestructor()) {
4610    return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4611  }
4612
4613  return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4614}
4615
4616/// Emit a CallExpr without considering whether it might be a subclass.
4617RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4618                                           ReturnValueSlot ReturnValue) {
4619  CGCallee Callee = EmitCallee(E->getCallee());
4620  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4621}
4622
4623static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4624
4625  if (auto builtinID = FD->getBuiltinID()) {
4626    // Replaceable builtin provide their own implementation of a builtin. Unless
4627    // we are in the builtin implementation itself, don't call the actual
4628    // builtin. If we are in the builtin implementation, avoid trivial infinite
4629    // recursion.
4630    if (!FD->isInlineBuiltinDeclaration() ||
4631        CGF.CurFn->getName() == FD->getName())
4632      return CGCallee::forBuiltin(builtinID, FD);
4633  }
4634
4635  llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4636  return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4637}
4638
4639CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4640  E = E->IgnoreParens();
4641
4642  // Look through function-to-pointer decay.
4643  if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4644    if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4645        ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4646      return EmitCallee(ICE->getSubExpr());
4647    }
4648
4649  // Resolve direct calls.
4650  } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4651    if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4652      return EmitDirectCallee(*this, FD);
4653    }
4654  } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4655    if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4656      EmitIgnoredExpr(ME->getBase());
4657      return EmitDirectCallee(*this, FD);
4658    }
4659
4660  // Look through template substitutions.
4661  } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4662    return EmitCallee(NTTP->getReplacement());
4663
4664  // Treat pseudo-destructor calls differently.
4665  } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4666    return CGCallee::forPseudoDestructor(PDE);
4667  }
4668
4669  // Otherwise, we have an indirect reference.
4670  llvm::Value *calleePtr;
4671  QualType functionType;
4672  if (auto ptrType = E->getType()->getAs<PointerType>()) {
4673    calleePtr = EmitScalarExpr(E);
4674    functionType = ptrType->getPointeeType();
4675  } else {
4676    functionType = E->getType();
4677    calleePtr = EmitLValue(E).getPointer(*this);
4678  }
4679  assert(functionType->isFunctionType());
4680
4681  GlobalDecl GD;
4682  if (const auto *VD =
4683          dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4684    GD = GlobalDecl(VD);
4685
4686  CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4687  CGCallee callee(calleeInfo, calleePtr);
4688  return callee;
4689}
4690
4691LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4692  // Comma expressions just emit their LHS then their RHS as an l-value.
4693  if (E->getOpcode() == BO_Comma) {
4694    EmitIgnoredExpr(E->getLHS());
4695    EnsureInsertPoint();
4696    return EmitLValue(E->getRHS());
4697  }
4698
4699  if (E->getOpcode() == BO_PtrMemD ||
4700      E->getOpcode() == BO_PtrMemI)
4701    return EmitPointerToDataMemberBinaryExpr(E);
4702
4703  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4704
4705  // Note that in all of these cases, __block variables need the RHS
4706  // evaluated first just in case the variable gets moved by the RHS.
4707
4708  switch (getEvaluationKind(E->getType())) {
4709  case TEK_Scalar: {
4710    switch (E->getLHS()->getType().getObjCLifetime()) {
4711    case Qualifiers::OCL_Strong:
4712      return EmitARCStoreStrong(E, /*ignored*/ false).first;
4713
4714    case Qualifiers::OCL_Autoreleasing:
4715      return EmitARCStoreAutoreleasing(E).first;
4716
4717    // No reason to do any of these differently.
4718    case Qualifiers::OCL_None:
4719    case Qualifiers::OCL_ExplicitNone:
4720    case Qualifiers::OCL_Weak:
4721      break;
4722    }
4723
4724    RValue RV = EmitAnyExpr(E->getRHS());
4725    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4726    if (RV.isScalar())
4727      EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4728    EmitStoreThroughLValue(RV, LV);
4729    if (getLangOpts().OpenMP)
4730      CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4731                                                                E->getLHS());
4732    return LV;
4733  }
4734
4735  case TEK_Complex:
4736    return EmitComplexAssignmentLValue(E);
4737
4738  case TEK_Aggregate:
4739    return EmitAggExprToLValue(E);
4740  }
4741  llvm_unreachable("bad evaluation kind");
4742}
4743
4744LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4745  RValue RV = EmitCallExpr(E);
4746
4747  if (!RV.isScalar())
4748    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4749                          AlignmentSource::Decl);
4750
4751  assert(E->getCallReturnType(getContext())->isReferenceType() &&
4752         "Can't have a scalar return unless the return type is a "
4753         "reference type!");
4754
4755  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4756}
4757
4758LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4759  // FIXME: This shouldn't require another copy.
4760  return EmitAggExprToLValue(E);
4761}
4762
4763LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4764  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4765         && "binding l-value to type which needs a temporary");
4766  AggValueSlot Slot = CreateAggTemp(E->getType());
4767  EmitCXXConstructExpr(E, Slot);
4768  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4769}
4770
4771LValue
4772CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4773  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4774}
4775
4776Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4777  return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4778                                      ConvertType(E->getType()));
4779}
4780
4781LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4782  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4783                        AlignmentSource::Decl);
4784}
4785
4786LValue
4787CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4788  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4789  Slot.setExternallyDestructed();
4790  EmitAggExpr(E->getSubExpr(), Slot);
4791  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4792  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4793}
4794
4795LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4796  RValue RV = EmitObjCMessageExpr(E);
4797
4798  if (!RV.isScalar())
4799    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4800                          AlignmentSource::Decl);
4801
4802  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4803         "Can't have a scalar return unless the return type is a "
4804         "reference type!");
4805
4806  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4807}
4808
4809LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4810  Address V =
4811    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4812  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4813}
4814
4815llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4816                                             const ObjCIvarDecl *Ivar) {
4817  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4818}
4819
4820LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4821                                          llvm::Value *BaseValue,
4822                                          const ObjCIvarDecl *Ivar,
4823                                          unsigned CVRQualifiers) {
4824  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4825                                                   Ivar, CVRQualifiers);
4826}
4827
4828LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4829  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4830  llvm::Value *BaseValue = nullptr;
4831  const Expr *BaseExpr = E->getBase();
4832  Qualifiers BaseQuals;
4833  QualType ObjectTy;
4834  if (E->isArrow()) {
4835    BaseValue = EmitScalarExpr(BaseExpr);
4836    ObjectTy = BaseExpr->getType()->getPointeeType();
4837    BaseQuals = ObjectTy.getQualifiers();
4838  } else {
4839    LValue BaseLV = EmitLValue(BaseExpr);
4840    BaseValue = BaseLV.getPointer(*this);
4841    ObjectTy = BaseExpr->getType();
4842    BaseQuals = ObjectTy.getQualifiers();
4843  }
4844
4845  LValue LV =
4846    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4847                      BaseQuals.getCVRQualifiers());
4848  setObjCGCLValueClass(getContext(), E, LV);
4849  return LV;
4850}
4851
4852LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4853  // Can only get l-value for message expression returning aggregate type
4854  RValue RV = EmitAnyExprToTemp(E);
4855  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4856                        AlignmentSource::Decl);
4857}
4858
4859RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4860                                 const CallExpr *E, ReturnValueSlot ReturnValue,
4861                                 llvm::Value *Chain) {
4862  // Get the actual function type. The callee type will always be a pointer to
4863  // function type or a block pointer type.
4864  assert(CalleeType->isFunctionPointerType() &&
4865         "Call must have function pointer type!");
4866
4867  const Decl *TargetDecl =
4868      OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4869
4870  CalleeType = getContext().getCanonicalType(CalleeType);
4871
4872  auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4873
4874  CGCallee Callee = OrigCallee;
4875
4876  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4877      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4878    if (llvm::Constant *PrefixSig =
4879            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4880      SanitizerScope SanScope(this);
4881      // Remove any (C++17) exception specifications, to allow calling e.g. a
4882      // noexcept function through a non-noexcept pointer.
4883      auto ProtoTy =
4884        getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4885      llvm::Constant *FTRTTIConst =
4886          CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4887      llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4888      llvm::StructType *PrefixStructTy = llvm::StructType::get(
4889          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4890
4891      llvm::Value *CalleePtr = Callee.getFunctionPointer();
4892
4893      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4894          CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4895      llvm::Value *CalleeSigPtr =
4896          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4897      llvm::Value *CalleeSig =
4898          Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4899      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4900
4901      llvm::BasicBlock *Cont = createBasicBlock("cont");
4902      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4903      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4904
4905      EmitBlock(TypeCheck);
4906      llvm::Value *CalleeRTTIPtr =
4907          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4908      llvm::Value *CalleeRTTIEncoded =
4909          Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4910      llvm::Value *CalleeRTTI =
4911          DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4912      llvm::Value *CalleeRTTIMatch =
4913          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4914      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4915                                      EmitCheckTypeDescriptor(CalleeType)};
4916      EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4917                SanitizerHandler::FunctionTypeMismatch, StaticData,
4918                {CalleePtr, CalleeRTTI, FTRTTIConst});
4919
4920      Builder.CreateBr(Cont);
4921      EmitBlock(Cont);
4922    }
4923  }
4924
4925  const auto *FnType = cast<FunctionType>(PointeeType);
4926
4927  // If we are checking indirect calls and this call is indirect, check that the
4928  // function pointer is a member of the bit set for the function type.
4929  if (SanOpts.has(SanitizerKind::CFIICall) &&
4930      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4931    SanitizerScope SanScope(this);
4932    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4933
4934    llvm::Metadata *MD;
4935    if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4936      MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4937    else
4938      MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4939
4940    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4941
4942    llvm::Value *CalleePtr = Callee.getFunctionPointer();
4943    llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4944    llvm::Value *TypeTest = Builder.CreateCall(
4945        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4946
4947    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4948    llvm::Constant *StaticData[] = {
4949        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4950        EmitCheckSourceLocation(E->getBeginLoc()),
4951        EmitCheckTypeDescriptor(QualType(FnType, 0)),
4952    };
4953    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4954      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4955                           CastedCallee, StaticData);
4956    } else {
4957      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4958                SanitizerHandler::CFICheckFail, StaticData,
4959                {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4960    }
4961  }
4962
4963  CallArgList Args;
4964  if (Chain)
4965    Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4966             CGM.getContext().VoidPtrTy);
4967
4968  // C++17 requires that we evaluate arguments to a call using assignment syntax
4969  // right-to-left, and that we evaluate arguments to certain other operators
4970  // left-to-right. Note that we allow this to override the order dictated by
4971  // the calling convention on the MS ABI, which means that parameter
4972  // destruction order is not necessarily reverse construction order.
4973  // FIXME: Revisit this based on C++ committee response to unimplementability.
4974  EvaluationOrder Order = EvaluationOrder::Default;
4975  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4976    if (OCE->isAssignmentOp())
4977      Order = EvaluationOrder::ForceRightToLeft;
4978    else {
4979      switch (OCE->getOperator()) {
4980      case OO_LessLess:
4981      case OO_GreaterGreater:
4982      case OO_AmpAmp:
4983      case OO_PipePipe:
4984      case OO_Comma:
4985      case OO_ArrowStar:
4986        Order = EvaluationOrder::ForceLeftToRight;
4987        break;
4988      default:
4989        break;
4990      }
4991    }
4992  }
4993
4994  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4995               E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4996
4997  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4998      Args, FnType, /*ChainCall=*/Chain);
4999
5000  // C99 6.5.2.2p6:
5001  //   If the expression that denotes the called function has a type
5002  //   that does not include a prototype, [the default argument
5003  //   promotions are performed]. If the number of arguments does not
5004  //   equal the number of parameters, the behavior is undefined. If
5005  //   the function is defined with a type that includes a prototype,
5006  //   and either the prototype ends with an ellipsis (, ...) or the
5007  //   types of the arguments after promotion are not compatible with
5008  //   the types of the parameters, the behavior is undefined. If the
5009  //   function is defined with a type that does not include a
5010  //   prototype, and the types of the arguments after promotion are
5011  //   not compatible with those of the parameters after promotion,
5012  //   the behavior is undefined [except in some trivial cases].
5013  // That is, in the general case, we should assume that a call
5014  // through an unprototyped function type works like a *non-variadic*
5015  // call.  The way we make this work is to cast to the exact type
5016  // of the promoted arguments.
5017  //
5018  // Chain calls use this same code path to add the invisible chain parameter
5019  // to the function type.
5020  if (isa<FunctionNoProtoType>(FnType) || Chain) {
5021    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5022    CalleeTy = CalleeTy->getPointerTo();
5023
5024    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5025    CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5026    Callee.setFunctionPointer(CalleePtr);
5027  }
5028
5029  llvm::CallBase *CallOrInvoke = nullptr;
5030  RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5031                         E->getExprLoc());
5032
5033  // Generate function declaration DISuprogram in order to be used
5034  // in debug info about call sites.
5035  if (CGDebugInfo *DI = getDebugInfo()) {
5036    if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5037      DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5038                                  CalleeDecl);
5039  }
5040
5041  return Call;
5042}
5043
5044LValue CodeGenFunction::
5045EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5046  Address BaseAddr = Address::invalid();
5047  if (E->getOpcode() == BO_PtrMemI) {
5048    BaseAddr = EmitPointerWithAlignment(E->getLHS());
5049  } else {
5050    BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5051  }
5052
5053  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5054  const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5055
5056  LValueBaseInfo BaseInfo;
5057  TBAAAccessInfo TBAAInfo;
5058  Address MemberAddr =
5059    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5060                                    &TBAAInfo);
5061
5062  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5063}
5064
5065/// Given the address of a temporary variable, produce an r-value of
5066/// its type.
5067RValue CodeGenFunction::convertTempToRValue(Address addr,
5068                                            QualType type,
5069                                            SourceLocation loc) {
5070  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5071  switch (getEvaluationKind(type)) {
5072  case TEK_Complex:
5073    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5074  case TEK_Aggregate:
5075    return lvalue.asAggregateRValue(*this);
5076  case TEK_Scalar:
5077    return RValue::get(EmitLoadOfScalar(lvalue, loc));
5078  }
5079  llvm_unreachable("bad evaluation kind");
5080}
5081
5082void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5083  assert(Val->getType()->isFPOrFPVectorTy());
5084  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5085    return;
5086
5087  llvm::MDBuilder MDHelper(getLLVMContext());
5088  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5089
5090  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5091}
5092
5093namespace {
5094  struct LValueOrRValue {
5095    LValue LV;
5096    RValue RV;
5097  };
5098}
5099
5100static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5101                                           const PseudoObjectExpr *E,
5102                                           bool forLValue,
5103                                           AggValueSlot slot) {
5104  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5105
5106  // Find the result expression, if any.
5107  const Expr *resultExpr = E->getResultExpr();
5108  LValueOrRValue result;
5109
5110  for (PseudoObjectExpr::const_semantics_iterator
5111         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5112    const Expr *semantic = *i;
5113
5114    // If this semantic expression is an opaque value, bind it
5115    // to the result of its source expression.
5116    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5117      // Skip unique OVEs.
5118      if (ov->isUnique()) {
5119        assert(ov != resultExpr &&
5120               "A unique OVE cannot be used as the result expression");
5121        continue;
5122      }
5123
5124      // If this is the result expression, we may need to evaluate
5125      // directly into the slot.
5126      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5127      OVMA opaqueData;
5128      if (ov == resultExpr && ov->isRValue() && !forLValue &&
5129          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5130        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5131        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5132                                       AlignmentSource::Decl);
5133        opaqueData = OVMA::bind(CGF, ov, LV);
5134        result.RV = slot.asRValue();
5135
5136      // Otherwise, emit as normal.
5137      } else {
5138        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5139
5140        // If this is the result, also evaluate the result now.
5141        if (ov == resultExpr) {
5142          if (forLValue)
5143            result.LV = CGF.EmitLValue(ov);
5144          else
5145            result.RV = CGF.EmitAnyExpr(ov, slot);
5146        }
5147      }
5148
5149      opaques.push_back(opaqueData);
5150
5151    // Otherwise, if the expression is the result, evaluate it
5152    // and remember the result.
5153    } else if (semantic == resultExpr) {
5154      if (forLValue)
5155        result.LV = CGF.EmitLValue(semantic);
5156      else
5157        result.RV = CGF.EmitAnyExpr(semantic, slot);
5158
5159    // Otherwise, evaluate the expression in an ignored context.
5160    } else {
5161      CGF.EmitIgnoredExpr(semantic);
5162    }
5163  }
5164
5165  // Unbind all the opaques now.
5166  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5167    opaques[i].unbind(CGF);
5168
5169  return result;
5170}
5171
5172RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5173                                               AggValueSlot slot) {
5174  return emitPseudoObjectExpr(*this, E, false, slot).RV;
5175}
5176
5177LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5178  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5179}
5180