ItaniumMangle.cpp revision 344779
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclOpenMP.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36using namespace clang;
37
38namespace {
39
40/// Retrieve the declaration context that should be used when mangling the given
41/// declaration.
42static const DeclContext *getEffectiveDeclContext(const Decl *D) {
43  // The ABI assumes that lambda closure types that occur within
44  // default arguments live in the context of the function. However, due to
45  // the way in which Clang parses and creates function declarations, this is
46  // not the case: the lambda closure type ends up living in the context
47  // where the function itself resides, because the function declaration itself
48  // had not yet been created. Fix the context here.
49  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
50    if (RD->isLambda())
51      if (ParmVarDecl *ContextParam
52            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
53        return ContextParam->getDeclContext();
54  }
55
56  // Perform the same check for block literals.
57  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
58    if (ParmVarDecl *ContextParam
59          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
60      return ContextParam->getDeclContext();
61  }
62
63  const DeclContext *DC = D->getDeclContext();
64  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
65    return getEffectiveDeclContext(cast<Decl>(DC));
66  }
67
68  if (const auto *VD = dyn_cast<VarDecl>(D))
69    if (VD->isExternC())
70      return VD->getASTContext().getTranslationUnitDecl();
71
72  if (const auto *FD = dyn_cast<FunctionDecl>(D))
73    if (FD->isExternC())
74      return FD->getASTContext().getTranslationUnitDecl();
75
76  return DC->getRedeclContext();
77}
78
79static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
80  return getEffectiveDeclContext(cast<Decl>(DC));
81}
82
83static bool isLocalContainerContext(const DeclContext *DC) {
84  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
85}
86
87static const RecordDecl *GetLocalClassDecl(const Decl *D) {
88  const DeclContext *DC = getEffectiveDeclContext(D);
89  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
90    if (isLocalContainerContext(DC))
91      return dyn_cast<RecordDecl>(D);
92    D = cast<Decl>(DC);
93    DC = getEffectiveDeclContext(D);
94  }
95  return nullptr;
96}
97
98static const FunctionDecl *getStructor(const FunctionDecl *fn) {
99  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
100    return ftd->getTemplatedDecl();
101
102  return fn;
103}
104
105static const NamedDecl *getStructor(const NamedDecl *decl) {
106  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
107  return (fn ? getStructor(fn) : decl);
108}
109
110static bool isLambda(const NamedDecl *ND) {
111  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
112  if (!Record)
113    return false;
114
115  return Record->isLambda();
116}
117
118static const unsigned UnknownArity = ~0U;
119
120class ItaniumMangleContextImpl : public ItaniumMangleContext {
121  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
122  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
123  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
124
125public:
126  explicit ItaniumMangleContextImpl(ASTContext &Context,
127                                    DiagnosticsEngine &Diags)
128      : ItaniumMangleContext(Context, Diags) {}
129
130  /// @name Mangler Entry Points
131  /// @{
132
133  bool shouldMangleCXXName(const NamedDecl *D) override;
134  bool shouldMangleStringLiteral(const StringLiteral *) override {
135    return false;
136  }
137  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
138  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
139                   raw_ostream &) override;
140  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
141                          const ThisAdjustment &ThisAdjustment,
142                          raw_ostream &) override;
143  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
144                                raw_ostream &) override;
145  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
146  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
147  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
148                           const CXXRecordDecl *Type, raw_ostream &) override;
149  void mangleCXXRTTI(QualType T, raw_ostream &) override;
150  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
151  void mangleTypeName(QualType T, raw_ostream &) override;
152  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
153                     raw_ostream &) override;
154  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
155                     raw_ostream &) override;
156
157  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
158  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
159  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
160  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
161  void mangleDynamicAtExitDestructor(const VarDecl *D,
162                                     raw_ostream &Out) override;
163  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
164                                 raw_ostream &Out) override;
165  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
166                             raw_ostream &Out) override;
167  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
168  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
169                                       raw_ostream &) override;
170
171  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
172
173  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
174    // Lambda closure types are already numbered.
175    if (isLambda(ND))
176      return false;
177
178    // Anonymous tags are already numbered.
179    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
180      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
181        return false;
182    }
183
184    // Use the canonical number for externally visible decls.
185    if (ND->isExternallyVisible()) {
186      unsigned discriminator = getASTContext().getManglingNumber(ND);
187      if (discriminator == 1)
188        return false;
189      disc = discriminator - 2;
190      return true;
191    }
192
193    // Make up a reasonable number for internal decls.
194    unsigned &discriminator = Uniquifier[ND];
195    if (!discriminator) {
196      const DeclContext *DC = getEffectiveDeclContext(ND);
197      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
198    }
199    if (discriminator == 1)
200      return false;
201    disc = discriminator-2;
202    return true;
203  }
204  /// @}
205};
206
207/// Manage the mangling of a single name.
208class CXXNameMangler {
209  ItaniumMangleContextImpl &Context;
210  raw_ostream &Out;
211  bool NullOut = false;
212  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
213  /// This mode is used when mangler creates another mangler recursively to
214  /// calculate ABI tags for the function return value or the variable type.
215  /// Also it is required to avoid infinite recursion in some cases.
216  bool DisableDerivedAbiTags = false;
217
218  /// The "structor" is the top-level declaration being mangled, if
219  /// that's not a template specialization; otherwise it's the pattern
220  /// for that specialization.
221  const NamedDecl *Structor;
222  unsigned StructorType;
223
224  /// The next substitution sequence number.
225  unsigned SeqID;
226
227  class FunctionTypeDepthState {
228    unsigned Bits;
229
230    enum { InResultTypeMask = 1 };
231
232  public:
233    FunctionTypeDepthState() : Bits(0) {}
234
235    /// The number of function types we're inside.
236    unsigned getDepth() const {
237      return Bits >> 1;
238    }
239
240    /// True if we're in the return type of the innermost function type.
241    bool isInResultType() const {
242      return Bits & InResultTypeMask;
243    }
244
245    FunctionTypeDepthState push() {
246      FunctionTypeDepthState tmp = *this;
247      Bits = (Bits & ~InResultTypeMask) + 2;
248      return tmp;
249    }
250
251    void enterResultType() {
252      Bits |= InResultTypeMask;
253    }
254
255    void leaveResultType() {
256      Bits &= ~InResultTypeMask;
257    }
258
259    void pop(FunctionTypeDepthState saved) {
260      assert(getDepth() == saved.getDepth() + 1);
261      Bits = saved.Bits;
262    }
263
264  } FunctionTypeDepth;
265
266  // abi_tag is a gcc attribute, taking one or more strings called "tags".
267  // The goal is to annotate against which version of a library an object was
268  // built and to be able to provide backwards compatibility ("dual abi").
269  // For more information see docs/ItaniumMangleAbiTags.rst.
270  typedef SmallVector<StringRef, 4> AbiTagList;
271
272  // State to gather all implicit and explicit tags used in a mangled name.
273  // Must always have an instance of this while emitting any name to keep
274  // track.
275  class AbiTagState final {
276  public:
277    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
278      Parent = LinkHead;
279      LinkHead = this;
280    }
281
282    // No copy, no move.
283    AbiTagState(const AbiTagState &) = delete;
284    AbiTagState &operator=(const AbiTagState &) = delete;
285
286    ~AbiTagState() { pop(); }
287
288    void write(raw_ostream &Out, const NamedDecl *ND,
289               const AbiTagList *AdditionalAbiTags) {
290      ND = cast<NamedDecl>(ND->getCanonicalDecl());
291      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
292        assert(
293            !AdditionalAbiTags &&
294            "only function and variables need a list of additional abi tags");
295        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
296          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
297            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
298                               AbiTag->tags().end());
299          }
300          // Don't emit abi tags for namespaces.
301          return;
302        }
303      }
304
305      AbiTagList TagList;
306      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
307        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
308                           AbiTag->tags().end());
309        TagList.insert(TagList.end(), AbiTag->tags().begin(),
310                       AbiTag->tags().end());
311      }
312
313      if (AdditionalAbiTags) {
314        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
315                           AdditionalAbiTags->end());
316        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
317                       AdditionalAbiTags->end());
318      }
319
320      llvm::sort(TagList);
321      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
322
323      writeSortedUniqueAbiTags(Out, TagList);
324    }
325
326    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
327    void setUsedAbiTags(const AbiTagList &AbiTags) {
328      UsedAbiTags = AbiTags;
329    }
330
331    const AbiTagList &getEmittedAbiTags() const {
332      return EmittedAbiTags;
333    }
334
335    const AbiTagList &getSortedUniqueUsedAbiTags() {
336      llvm::sort(UsedAbiTags);
337      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
338                        UsedAbiTags.end());
339      return UsedAbiTags;
340    }
341
342  private:
343    //! All abi tags used implicitly or explicitly.
344    AbiTagList UsedAbiTags;
345    //! All explicit abi tags (i.e. not from namespace).
346    AbiTagList EmittedAbiTags;
347
348    AbiTagState *&LinkHead;
349    AbiTagState *Parent = nullptr;
350
351    void pop() {
352      assert(LinkHead == this &&
353             "abi tag link head must point to us on destruction");
354      if (Parent) {
355        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
356                                   UsedAbiTags.begin(), UsedAbiTags.end());
357        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
358                                      EmittedAbiTags.begin(),
359                                      EmittedAbiTags.end());
360      }
361      LinkHead = Parent;
362    }
363
364    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
365      for (const auto &Tag : AbiTags) {
366        EmittedAbiTags.push_back(Tag);
367        Out << "B";
368        Out << Tag.size();
369        Out << Tag;
370      }
371    }
372  };
373
374  AbiTagState *AbiTags = nullptr;
375  AbiTagState AbiTagsRoot;
376
377  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
378  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
379
380  ASTContext &getASTContext() const { return Context.getASTContext(); }
381
382public:
383  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
384                 const NamedDecl *D = nullptr, bool NullOut_ = false)
385    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
386      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
387    // These can't be mangled without a ctor type or dtor type.
388    assert(!D || (!isa<CXXDestructorDecl>(D) &&
389                  !isa<CXXConstructorDecl>(D)));
390  }
391  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
392                 const CXXConstructorDecl *D, CXXCtorType Type)
393    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
394      SeqID(0), AbiTagsRoot(AbiTags) { }
395  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
396                 const CXXDestructorDecl *D, CXXDtorType Type)
397    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
398      SeqID(0), AbiTagsRoot(AbiTags) { }
399
400  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
401      : Context(Outer.Context), Out(Out_), NullOut(false),
402        Structor(Outer.Structor), StructorType(Outer.StructorType),
403        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
404        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
405
406  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
407      : Context(Outer.Context), Out(Out_), NullOut(true),
408        Structor(Outer.Structor), StructorType(Outer.StructorType),
409        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
410        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
411
412  raw_ostream &getStream() { return Out; }
413
414  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
415  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
416
417  void mangle(const NamedDecl *D);
418  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
419  void mangleNumber(const llvm::APSInt &I);
420  void mangleNumber(int64_t Number);
421  void mangleFloat(const llvm::APFloat &F);
422  void mangleFunctionEncoding(const FunctionDecl *FD);
423  void mangleSeqID(unsigned SeqID);
424  void mangleName(const NamedDecl *ND);
425  void mangleType(QualType T);
426  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
427
428private:
429
430  bool mangleSubstitution(const NamedDecl *ND);
431  bool mangleSubstitution(QualType T);
432  bool mangleSubstitution(TemplateName Template);
433  bool mangleSubstitution(uintptr_t Ptr);
434
435  void mangleExistingSubstitution(TemplateName name);
436
437  bool mangleStandardSubstitution(const NamedDecl *ND);
438
439  void addSubstitution(const NamedDecl *ND) {
440    ND = cast<NamedDecl>(ND->getCanonicalDecl());
441
442    addSubstitution(reinterpret_cast<uintptr_t>(ND));
443  }
444  void addSubstitution(QualType T);
445  void addSubstitution(TemplateName Template);
446  void addSubstitution(uintptr_t Ptr);
447  // Destructive copy substitutions from other mangler.
448  void extendSubstitutions(CXXNameMangler* Other);
449
450  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
451                              bool recursive = false);
452  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
453                            DeclarationName name,
454                            const TemplateArgumentLoc *TemplateArgs,
455                            unsigned NumTemplateArgs,
456                            unsigned KnownArity = UnknownArity);
457
458  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
459
460  void mangleNameWithAbiTags(const NamedDecl *ND,
461                             const AbiTagList *AdditionalAbiTags);
462  void mangleModuleName(const Module *M);
463  void mangleModuleNamePrefix(StringRef Name);
464  void mangleTemplateName(const TemplateDecl *TD,
465                          const TemplateArgument *TemplateArgs,
466                          unsigned NumTemplateArgs);
467  void mangleUnqualifiedName(const NamedDecl *ND,
468                             const AbiTagList *AdditionalAbiTags) {
469    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
470                          AdditionalAbiTags);
471  }
472  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
473                             unsigned KnownArity,
474                             const AbiTagList *AdditionalAbiTags);
475  void mangleUnscopedName(const NamedDecl *ND,
476                          const AbiTagList *AdditionalAbiTags);
477  void mangleUnscopedTemplateName(const TemplateDecl *ND,
478                                  const AbiTagList *AdditionalAbiTags);
479  void mangleUnscopedTemplateName(TemplateName,
480                                  const AbiTagList *AdditionalAbiTags);
481  void mangleSourceName(const IdentifierInfo *II);
482  void mangleRegCallName(const IdentifierInfo *II);
483  void mangleSourceNameWithAbiTags(
484      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
485  void mangleLocalName(const Decl *D,
486                       const AbiTagList *AdditionalAbiTags);
487  void mangleBlockForPrefix(const BlockDecl *Block);
488  void mangleUnqualifiedBlock(const BlockDecl *Block);
489  void mangleLambda(const CXXRecordDecl *Lambda);
490  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
491                        const AbiTagList *AdditionalAbiTags,
492                        bool NoFunction=false);
493  void mangleNestedName(const TemplateDecl *TD,
494                        const TemplateArgument *TemplateArgs,
495                        unsigned NumTemplateArgs);
496  void manglePrefix(NestedNameSpecifier *qualifier);
497  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
498  void manglePrefix(QualType type);
499  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
500  void mangleTemplatePrefix(TemplateName Template);
501  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
502                                      StringRef Prefix = "");
503  void mangleOperatorName(DeclarationName Name, unsigned Arity);
504  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
505  void mangleVendorQualifier(StringRef qualifier);
506  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
507  void mangleRefQualifier(RefQualifierKind RefQualifier);
508
509  void mangleObjCMethodName(const ObjCMethodDecl *MD);
510
511  // Declare manglers for every type class.
512#define ABSTRACT_TYPE(CLASS, PARENT)
513#define NON_CANONICAL_TYPE(CLASS, PARENT)
514#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
515#include "clang/AST/TypeNodes.def"
516
517  void mangleType(const TagType*);
518  void mangleType(TemplateName);
519  static StringRef getCallingConvQualifierName(CallingConv CC);
520  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
521  void mangleExtFunctionInfo(const FunctionType *T);
522  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
523                              const FunctionDecl *FD = nullptr);
524  void mangleNeonVectorType(const VectorType *T);
525  void mangleNeonVectorType(const DependentVectorType *T);
526  void mangleAArch64NeonVectorType(const VectorType *T);
527  void mangleAArch64NeonVectorType(const DependentVectorType *T);
528
529  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
530  void mangleMemberExprBase(const Expr *base, bool isArrow);
531  void mangleMemberExpr(const Expr *base, bool isArrow,
532                        NestedNameSpecifier *qualifier,
533                        NamedDecl *firstQualifierLookup,
534                        DeclarationName name,
535                        const TemplateArgumentLoc *TemplateArgs,
536                        unsigned NumTemplateArgs,
537                        unsigned knownArity);
538  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
539  void mangleInitListElements(const InitListExpr *InitList);
540  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
541  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
542  void mangleCXXDtorType(CXXDtorType T);
543
544  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
545                          unsigned NumTemplateArgs);
546  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
547                          unsigned NumTemplateArgs);
548  void mangleTemplateArgs(const TemplateArgumentList &AL);
549  void mangleTemplateArg(TemplateArgument A);
550
551  void mangleTemplateParameter(unsigned Index);
552
553  void mangleFunctionParam(const ParmVarDecl *parm);
554
555  void writeAbiTags(const NamedDecl *ND,
556                    const AbiTagList *AdditionalAbiTags);
557
558  // Returns sorted unique list of ABI tags.
559  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
560  // Returns sorted unique list of ABI tags.
561  AbiTagList makeVariableTypeTags(const VarDecl *VD);
562};
563
564}
565
566bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
567  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
568  if (FD) {
569    LanguageLinkage L = FD->getLanguageLinkage();
570    // Overloadable functions need mangling.
571    if (FD->hasAttr<OverloadableAttr>())
572      return true;
573
574    // "main" is not mangled.
575    if (FD->isMain())
576      return false;
577
578    // The Windows ABI expects that we would never mangle "typical"
579    // user-defined entry points regardless of visibility or freestanding-ness.
580    //
581    // N.B. This is distinct from asking about "main".  "main" has a lot of
582    // special rules associated with it in the standard while these
583    // user-defined entry points are outside of the purview of the standard.
584    // For example, there can be only one definition for "main" in a standards
585    // compliant program; however nothing forbids the existence of wmain and
586    // WinMain in the same translation unit.
587    if (FD->isMSVCRTEntryPoint())
588      return false;
589
590    // C++ functions and those whose names are not a simple identifier need
591    // mangling.
592    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
593      return true;
594
595    // C functions are not mangled.
596    if (L == CLanguageLinkage)
597      return false;
598  }
599
600  // Otherwise, no mangling is done outside C++ mode.
601  if (!getASTContext().getLangOpts().CPlusPlus)
602    return false;
603
604  const VarDecl *VD = dyn_cast<VarDecl>(D);
605  if (VD && !isa<DecompositionDecl>(D)) {
606    // C variables are not mangled.
607    if (VD->isExternC())
608      return false;
609
610    // Variables at global scope with non-internal linkage are not mangled
611    const DeclContext *DC = getEffectiveDeclContext(D);
612    // Check for extern variable declared locally.
613    if (DC->isFunctionOrMethod() && D->hasLinkage())
614      while (!DC->isNamespace() && !DC->isTranslationUnit())
615        DC = getEffectiveParentContext(DC);
616    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
617        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
618        !isa<VarTemplateSpecializationDecl>(D))
619      return false;
620  }
621
622  return true;
623}
624
625void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
626                                  const AbiTagList *AdditionalAbiTags) {
627  assert(AbiTags && "require AbiTagState");
628  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
629}
630
631void CXXNameMangler::mangleSourceNameWithAbiTags(
632    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
633  mangleSourceName(ND->getIdentifier());
634  writeAbiTags(ND, AdditionalAbiTags);
635}
636
637void CXXNameMangler::mangle(const NamedDecl *D) {
638  // <mangled-name> ::= _Z <encoding>
639  //            ::= <data name>
640  //            ::= <special-name>
641  Out << "_Z";
642  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
643    mangleFunctionEncoding(FD);
644  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
645    mangleName(VD);
646  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
647    mangleName(IFD->getAnonField());
648  else
649    mangleName(cast<FieldDecl>(D));
650}
651
652void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
653  // <encoding> ::= <function name> <bare-function-type>
654
655  // Don't mangle in the type if this isn't a decl we should typically mangle.
656  if (!Context.shouldMangleDeclName(FD)) {
657    mangleName(FD);
658    return;
659  }
660
661  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
662  if (ReturnTypeAbiTags.empty()) {
663    // There are no tags for return type, the simplest case.
664    mangleName(FD);
665    mangleFunctionEncodingBareType(FD);
666    return;
667  }
668
669  // Mangle function name and encoding to temporary buffer.
670  // We have to output name and encoding to the same mangler to get the same
671  // substitution as it will be in final mangling.
672  SmallString<256> FunctionEncodingBuf;
673  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
674  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
675  // Output name of the function.
676  FunctionEncodingMangler.disableDerivedAbiTags();
677  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
678
679  // Remember length of the function name in the buffer.
680  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
681  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
682
683  // Get tags from return type that are not present in function name or
684  // encoding.
685  const AbiTagList &UsedAbiTags =
686      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
687  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
688  AdditionalAbiTags.erase(
689      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
690                          UsedAbiTags.begin(), UsedAbiTags.end(),
691                          AdditionalAbiTags.begin()),
692      AdditionalAbiTags.end());
693
694  // Output name with implicit tags and function encoding from temporary buffer.
695  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
696  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
697
698  // Function encoding could create new substitutions so we have to add
699  // temp mangled substitutions to main mangler.
700  extendSubstitutions(&FunctionEncodingMangler);
701}
702
703void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
704  if (FD->hasAttr<EnableIfAttr>()) {
705    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
706    Out << "Ua9enable_ifI";
707    for (AttrVec::const_iterator I = FD->getAttrs().begin(),
708                                 E = FD->getAttrs().end();
709         I != E; ++I) {
710      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
711      if (!EIA)
712        continue;
713      Out << 'X';
714      mangleExpression(EIA->getCond());
715      Out << 'E';
716    }
717    Out << 'E';
718    FunctionTypeDepth.pop(Saved);
719  }
720
721  // When mangling an inheriting constructor, the bare function type used is
722  // that of the inherited constructor.
723  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
724    if (auto Inherited = CD->getInheritedConstructor())
725      FD = Inherited.getConstructor();
726
727  // Whether the mangling of a function type includes the return type depends on
728  // the context and the nature of the function. The rules for deciding whether
729  // the return type is included are:
730  //
731  //   1. Template functions (names or types) have return types encoded, with
732  //   the exceptions listed below.
733  //   2. Function types not appearing as part of a function name mangling,
734  //   e.g. parameters, pointer types, etc., have return type encoded, with the
735  //   exceptions listed below.
736  //   3. Non-template function names do not have return types encoded.
737  //
738  // The exceptions mentioned in (1) and (2) above, for which the return type is
739  // never included, are
740  //   1. Constructors.
741  //   2. Destructors.
742  //   3. Conversion operator functions, e.g. operator int.
743  bool MangleReturnType = false;
744  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
745    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
746          isa<CXXConversionDecl>(FD)))
747      MangleReturnType = true;
748
749    // Mangle the type of the primary template.
750    FD = PrimaryTemplate->getTemplatedDecl();
751  }
752
753  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
754                         MangleReturnType, FD);
755}
756
757static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
758  while (isa<LinkageSpecDecl>(DC)) {
759    DC = getEffectiveParentContext(DC);
760  }
761
762  return DC;
763}
764
765/// Return whether a given namespace is the 'std' namespace.
766static bool isStd(const NamespaceDecl *NS) {
767  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
768                                ->isTranslationUnit())
769    return false;
770
771  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
772  return II && II->isStr("std");
773}
774
775// isStdNamespace - Return whether a given decl context is a toplevel 'std'
776// namespace.
777static bool isStdNamespace(const DeclContext *DC) {
778  if (!DC->isNamespace())
779    return false;
780
781  return isStd(cast<NamespaceDecl>(DC));
782}
783
784static const TemplateDecl *
785isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
786  // Check if we have a function template.
787  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
788    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
789      TemplateArgs = FD->getTemplateSpecializationArgs();
790      return TD;
791    }
792  }
793
794  // Check if we have a class template.
795  if (const ClassTemplateSpecializationDecl *Spec =
796        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
797    TemplateArgs = &Spec->getTemplateArgs();
798    return Spec->getSpecializedTemplate();
799  }
800
801  // Check if we have a variable template.
802  if (const VarTemplateSpecializationDecl *Spec =
803          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
804    TemplateArgs = &Spec->getTemplateArgs();
805    return Spec->getSpecializedTemplate();
806  }
807
808  return nullptr;
809}
810
811void CXXNameMangler::mangleName(const NamedDecl *ND) {
812  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
813    // Variables should have implicit tags from its type.
814    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
815    if (VariableTypeAbiTags.empty()) {
816      // Simple case no variable type tags.
817      mangleNameWithAbiTags(VD, nullptr);
818      return;
819    }
820
821    // Mangle variable name to null stream to collect tags.
822    llvm::raw_null_ostream NullOutStream;
823    CXXNameMangler VariableNameMangler(*this, NullOutStream);
824    VariableNameMangler.disableDerivedAbiTags();
825    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
826
827    // Get tags from variable type that are not present in its name.
828    const AbiTagList &UsedAbiTags =
829        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
830    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
831    AdditionalAbiTags.erase(
832        std::set_difference(VariableTypeAbiTags.begin(),
833                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
834                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
835        AdditionalAbiTags.end());
836
837    // Output name with implicit tags.
838    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
839  } else {
840    mangleNameWithAbiTags(ND, nullptr);
841  }
842}
843
844void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
845                                           const AbiTagList *AdditionalAbiTags) {
846  //  <name> ::= [<module-name>] <nested-name>
847  //         ::= [<module-name>] <unscoped-name>
848  //         ::= [<module-name>] <unscoped-template-name> <template-args>
849  //         ::= <local-name>
850  //
851  const DeclContext *DC = getEffectiveDeclContext(ND);
852
853  // If this is an extern variable declared locally, the relevant DeclContext
854  // is that of the containing namespace, or the translation unit.
855  // FIXME: This is a hack; extern variables declared locally should have
856  // a proper semantic declaration context!
857  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
858    while (!DC->isNamespace() && !DC->isTranslationUnit())
859      DC = getEffectiveParentContext(DC);
860  else if (GetLocalClassDecl(ND)) {
861    mangleLocalName(ND, AdditionalAbiTags);
862    return;
863  }
864
865  DC = IgnoreLinkageSpecDecls(DC);
866
867  if (isLocalContainerContext(DC)) {
868    mangleLocalName(ND, AdditionalAbiTags);
869    return;
870  }
871
872  // Do not mangle the owning module for an external linkage declaration.
873  // This enables backwards-compatibility with non-modular code, and is
874  // a valid choice since conflicts are not permitted by C++ Modules TS
875  // [basic.def.odr]/6.2.
876  if (!ND->hasExternalFormalLinkage())
877    if (Module *M = ND->getOwningModuleForLinkage())
878      mangleModuleName(M);
879
880  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
881    // Check if we have a template.
882    const TemplateArgumentList *TemplateArgs = nullptr;
883    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
884      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
885      mangleTemplateArgs(*TemplateArgs);
886      return;
887    }
888
889    mangleUnscopedName(ND, AdditionalAbiTags);
890    return;
891  }
892
893  mangleNestedName(ND, DC, AdditionalAbiTags);
894}
895
896void CXXNameMangler::mangleModuleName(const Module *M) {
897  // Implement the C++ Modules TS name mangling proposal; see
898  //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
899  //
900  //   <module-name> ::= W <unscoped-name>+ E
901  //                 ::= W <module-subst> <unscoped-name>* E
902  Out << 'W';
903  mangleModuleNamePrefix(M->Name);
904  Out << 'E';
905}
906
907void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
908  //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
909  //                 ::= W <seq-id - 10> _   # otherwise
910  auto It = ModuleSubstitutions.find(Name);
911  if (It != ModuleSubstitutions.end()) {
912    if (It->second < 10)
913      Out << '_' << static_cast<char>('0' + It->second);
914    else
915      Out << 'W' << (It->second - 10) << '_';
916    return;
917  }
918
919  // FIXME: Preserve hierarchy in module names rather than flattening
920  // them to strings; use Module*s as substitution keys.
921  auto Parts = Name.rsplit('.');
922  if (Parts.second.empty())
923    Parts.second = Parts.first;
924  else
925    mangleModuleNamePrefix(Parts.first);
926
927  Out << Parts.second.size() << Parts.second;
928  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
929}
930
931void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
932                                        const TemplateArgument *TemplateArgs,
933                                        unsigned NumTemplateArgs) {
934  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
935
936  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
937    mangleUnscopedTemplateName(TD, nullptr);
938    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
939  } else {
940    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
941  }
942}
943
944void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
945                                        const AbiTagList *AdditionalAbiTags) {
946  //  <unscoped-name> ::= <unqualified-name>
947  //                  ::= St <unqualified-name>   # ::std::
948
949  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
950    Out << "St";
951
952  mangleUnqualifiedName(ND, AdditionalAbiTags);
953}
954
955void CXXNameMangler::mangleUnscopedTemplateName(
956    const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
957  //     <unscoped-template-name> ::= <unscoped-name>
958  //                              ::= <substitution>
959  if (mangleSubstitution(ND))
960    return;
961
962  // <template-template-param> ::= <template-param>
963  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
964    assert(!AdditionalAbiTags &&
965           "template template param cannot have abi tags");
966    mangleTemplateParameter(TTP->getIndex());
967  } else if (isa<BuiltinTemplateDecl>(ND)) {
968    mangleUnscopedName(ND, AdditionalAbiTags);
969  } else {
970    mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
971  }
972
973  addSubstitution(ND);
974}
975
976void CXXNameMangler::mangleUnscopedTemplateName(
977    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
978  //     <unscoped-template-name> ::= <unscoped-name>
979  //                              ::= <substitution>
980  if (TemplateDecl *TD = Template.getAsTemplateDecl())
981    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
982
983  if (mangleSubstitution(Template))
984    return;
985
986  assert(!AdditionalAbiTags &&
987         "dependent template name cannot have abi tags");
988
989  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
990  assert(Dependent && "Not a dependent template name?");
991  if (const IdentifierInfo *Id = Dependent->getIdentifier())
992    mangleSourceName(Id);
993  else
994    mangleOperatorName(Dependent->getOperator(), UnknownArity);
995
996  addSubstitution(Template);
997}
998
999void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1000  // ABI:
1001  //   Floating-point literals are encoded using a fixed-length
1002  //   lowercase hexadecimal string corresponding to the internal
1003  //   representation (IEEE on Itanium), high-order bytes first,
1004  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1005  //   on Itanium.
1006  // The 'without leading zeroes' thing seems to be an editorial
1007  // mistake; see the discussion on cxx-abi-dev beginning on
1008  // 2012-01-16.
1009
1010  // Our requirements here are just barely weird enough to justify
1011  // using a custom algorithm instead of post-processing APInt::toString().
1012
1013  llvm::APInt valueBits = f.bitcastToAPInt();
1014  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1015  assert(numCharacters != 0);
1016
1017  // Allocate a buffer of the right number of characters.
1018  SmallVector<char, 20> buffer(numCharacters);
1019
1020  // Fill the buffer left-to-right.
1021  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1022    // The bit-index of the next hex digit.
1023    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1024
1025    // Project out 4 bits starting at 'digitIndex'.
1026    uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1027    hexDigit >>= (digitBitIndex % 64);
1028    hexDigit &= 0xF;
1029
1030    // Map that over to a lowercase hex digit.
1031    static const char charForHex[16] = {
1032      '0', '1', '2', '3', '4', '5', '6', '7',
1033      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1034    };
1035    buffer[stringIndex] = charForHex[hexDigit];
1036  }
1037
1038  Out.write(buffer.data(), numCharacters);
1039}
1040
1041void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1042  if (Value.isSigned() && Value.isNegative()) {
1043    Out << 'n';
1044    Value.abs().print(Out, /*signed*/ false);
1045  } else {
1046    Value.print(Out, /*signed*/ false);
1047  }
1048}
1049
1050void CXXNameMangler::mangleNumber(int64_t Number) {
1051  //  <number> ::= [n] <non-negative decimal integer>
1052  if (Number < 0) {
1053    Out << 'n';
1054    Number = -Number;
1055  }
1056
1057  Out << Number;
1058}
1059
1060void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1061  //  <call-offset>  ::= h <nv-offset> _
1062  //                 ::= v <v-offset> _
1063  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1064  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1065  //                      # virtual base override, with vcall offset
1066  if (!Virtual) {
1067    Out << 'h';
1068    mangleNumber(NonVirtual);
1069    Out << '_';
1070    return;
1071  }
1072
1073  Out << 'v';
1074  mangleNumber(NonVirtual);
1075  Out << '_';
1076  mangleNumber(Virtual);
1077  Out << '_';
1078}
1079
1080void CXXNameMangler::manglePrefix(QualType type) {
1081  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1082    if (!mangleSubstitution(QualType(TST, 0))) {
1083      mangleTemplatePrefix(TST->getTemplateName());
1084
1085      // FIXME: GCC does not appear to mangle the template arguments when
1086      // the template in question is a dependent template name. Should we
1087      // emulate that badness?
1088      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1089      addSubstitution(QualType(TST, 0));
1090    }
1091  } else if (const auto *DTST =
1092                 type->getAs<DependentTemplateSpecializationType>()) {
1093    if (!mangleSubstitution(QualType(DTST, 0))) {
1094      TemplateName Template = getASTContext().getDependentTemplateName(
1095          DTST->getQualifier(), DTST->getIdentifier());
1096      mangleTemplatePrefix(Template);
1097
1098      // FIXME: GCC does not appear to mangle the template arguments when
1099      // the template in question is a dependent template name. Should we
1100      // emulate that badness?
1101      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1102      addSubstitution(QualType(DTST, 0));
1103    }
1104  } else {
1105    // We use the QualType mangle type variant here because it handles
1106    // substitutions.
1107    mangleType(type);
1108  }
1109}
1110
1111/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1112///
1113/// \param recursive - true if this is being called recursively,
1114///   i.e. if there is more prefix "to the right".
1115void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1116                                            bool recursive) {
1117
1118  // x, ::x
1119  // <unresolved-name> ::= [gs] <base-unresolved-name>
1120
1121  // T::x / decltype(p)::x
1122  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1123
1124  // T::N::x /decltype(p)::N::x
1125  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1126  //                       <base-unresolved-name>
1127
1128  // A::x, N::y, A<T>::z; "gs" means leading "::"
1129  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1130  //                       <base-unresolved-name>
1131
1132  switch (qualifier->getKind()) {
1133  case NestedNameSpecifier::Global:
1134    Out << "gs";
1135
1136    // We want an 'sr' unless this is the entire NNS.
1137    if (recursive)
1138      Out << "sr";
1139
1140    // We never want an 'E' here.
1141    return;
1142
1143  case NestedNameSpecifier::Super:
1144    llvm_unreachable("Can't mangle __super specifier");
1145
1146  case NestedNameSpecifier::Namespace:
1147    if (qualifier->getPrefix())
1148      mangleUnresolvedPrefix(qualifier->getPrefix(),
1149                             /*recursive*/ true);
1150    else
1151      Out << "sr";
1152    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1153    break;
1154  case NestedNameSpecifier::NamespaceAlias:
1155    if (qualifier->getPrefix())
1156      mangleUnresolvedPrefix(qualifier->getPrefix(),
1157                             /*recursive*/ true);
1158    else
1159      Out << "sr";
1160    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1161    break;
1162
1163  case NestedNameSpecifier::TypeSpec:
1164  case NestedNameSpecifier::TypeSpecWithTemplate: {
1165    const Type *type = qualifier->getAsType();
1166
1167    // We only want to use an unresolved-type encoding if this is one of:
1168    //   - a decltype
1169    //   - a template type parameter
1170    //   - a template template parameter with arguments
1171    // In all of these cases, we should have no prefix.
1172    if (qualifier->getPrefix()) {
1173      mangleUnresolvedPrefix(qualifier->getPrefix(),
1174                             /*recursive*/ true);
1175    } else {
1176      // Otherwise, all the cases want this.
1177      Out << "sr";
1178    }
1179
1180    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1181      return;
1182
1183    break;
1184  }
1185
1186  case NestedNameSpecifier::Identifier:
1187    // Member expressions can have these without prefixes.
1188    if (qualifier->getPrefix())
1189      mangleUnresolvedPrefix(qualifier->getPrefix(),
1190                             /*recursive*/ true);
1191    else
1192      Out << "sr";
1193
1194    mangleSourceName(qualifier->getAsIdentifier());
1195    // An Identifier has no type information, so we can't emit abi tags for it.
1196    break;
1197  }
1198
1199  // If this was the innermost part of the NNS, and we fell out to
1200  // here, append an 'E'.
1201  if (!recursive)
1202    Out << 'E';
1203}
1204
1205/// Mangle an unresolved-name, which is generally used for names which
1206/// weren't resolved to specific entities.
1207void CXXNameMangler::mangleUnresolvedName(
1208    NestedNameSpecifier *qualifier, DeclarationName name,
1209    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1210    unsigned knownArity) {
1211  if (qualifier) mangleUnresolvedPrefix(qualifier);
1212  switch (name.getNameKind()) {
1213    // <base-unresolved-name> ::= <simple-id>
1214    case DeclarationName::Identifier:
1215      mangleSourceName(name.getAsIdentifierInfo());
1216      break;
1217    // <base-unresolved-name> ::= dn <destructor-name>
1218    case DeclarationName::CXXDestructorName:
1219      Out << "dn";
1220      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1221      break;
1222    // <base-unresolved-name> ::= on <operator-name>
1223    case DeclarationName::CXXConversionFunctionName:
1224    case DeclarationName::CXXLiteralOperatorName:
1225    case DeclarationName::CXXOperatorName:
1226      Out << "on";
1227      mangleOperatorName(name, knownArity);
1228      break;
1229    case DeclarationName::CXXConstructorName:
1230      llvm_unreachable("Can't mangle a constructor name!");
1231    case DeclarationName::CXXUsingDirective:
1232      llvm_unreachable("Can't mangle a using directive name!");
1233    case DeclarationName::CXXDeductionGuideName:
1234      llvm_unreachable("Can't mangle a deduction guide name!");
1235    case DeclarationName::ObjCMultiArgSelector:
1236    case DeclarationName::ObjCOneArgSelector:
1237    case DeclarationName::ObjCZeroArgSelector:
1238      llvm_unreachable("Can't mangle Objective-C selector names here!");
1239  }
1240
1241  // The <simple-id> and on <operator-name> productions end in an optional
1242  // <template-args>.
1243  if (TemplateArgs)
1244    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1245}
1246
1247void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1248                                           DeclarationName Name,
1249                                           unsigned KnownArity,
1250                                           const AbiTagList *AdditionalAbiTags) {
1251  unsigned Arity = KnownArity;
1252  //  <unqualified-name> ::= <operator-name>
1253  //                     ::= <ctor-dtor-name>
1254  //                     ::= <source-name>
1255  switch (Name.getNameKind()) {
1256  case DeclarationName::Identifier: {
1257    const IdentifierInfo *II = Name.getAsIdentifierInfo();
1258
1259    // We mangle decomposition declarations as the names of their bindings.
1260    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1261      // FIXME: Non-standard mangling for decomposition declarations:
1262      //
1263      //  <unqualified-name> ::= DC <source-name>* E
1264      //
1265      // These can never be referenced across translation units, so we do
1266      // not need a cross-vendor mangling for anything other than demanglers.
1267      // Proposed on cxx-abi-dev on 2016-08-12
1268      Out << "DC";
1269      for (auto *BD : DD->bindings())
1270        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1271      Out << 'E';
1272      writeAbiTags(ND, AdditionalAbiTags);
1273      break;
1274    }
1275
1276    if (II) {
1277      // Match GCC's naming convention for internal linkage symbols, for
1278      // symbols that are not actually visible outside of this TU. GCC
1279      // distinguishes between internal and external linkage symbols in
1280      // its mangling, to support cases like this that were valid C++ prior
1281      // to DR426:
1282      //
1283      //   void test() { extern void foo(); }
1284      //   static void foo();
1285      //
1286      // Don't bother with the L marker for names in anonymous namespaces; the
1287      // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1288      // matches GCC anyway, because GCC does not treat anonymous namespaces as
1289      // implying internal linkage.
1290      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1291          !ND->isExternallyVisible() &&
1292          getEffectiveDeclContext(ND)->isFileContext() &&
1293          !ND->isInAnonymousNamespace())
1294        Out << 'L';
1295
1296      auto *FD = dyn_cast<FunctionDecl>(ND);
1297      bool IsRegCall = FD &&
1298                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
1299                           clang::CC_X86RegCall;
1300      if (IsRegCall)
1301        mangleRegCallName(II);
1302      else
1303        mangleSourceName(II);
1304
1305      writeAbiTags(ND, AdditionalAbiTags);
1306      break;
1307    }
1308
1309    // Otherwise, an anonymous entity.  We must have a declaration.
1310    assert(ND && "mangling empty name without declaration");
1311
1312    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1313      if (NS->isAnonymousNamespace()) {
1314        // This is how gcc mangles these names.
1315        Out << "12_GLOBAL__N_1";
1316        break;
1317      }
1318    }
1319
1320    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1321      // We must have an anonymous union or struct declaration.
1322      const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
1323
1324      // Itanium C++ ABI 5.1.2:
1325      //
1326      //   For the purposes of mangling, the name of an anonymous union is
1327      //   considered to be the name of the first named data member found by a
1328      //   pre-order, depth-first, declaration-order walk of the data members of
1329      //   the anonymous union. If there is no such data member (i.e., if all of
1330      //   the data members in the union are unnamed), then there is no way for
1331      //   a program to refer to the anonymous union, and there is therefore no
1332      //   need to mangle its name.
1333      assert(RD->isAnonymousStructOrUnion()
1334             && "Expected anonymous struct or union!");
1335      const FieldDecl *FD = RD->findFirstNamedDataMember();
1336
1337      // It's actually possible for various reasons for us to get here
1338      // with an empty anonymous struct / union.  Fortunately, it
1339      // doesn't really matter what name we generate.
1340      if (!FD) break;
1341      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1342
1343      mangleSourceName(FD->getIdentifier());
1344      // Not emitting abi tags: internal name anyway.
1345      break;
1346    }
1347
1348    // Class extensions have no name as a category, and it's possible
1349    // for them to be the semantic parent of certain declarations
1350    // (primarily, tag decls defined within declarations).  Such
1351    // declarations will always have internal linkage, so the name
1352    // doesn't really matter, but we shouldn't crash on them.  For
1353    // safety, just handle all ObjC containers here.
1354    if (isa<ObjCContainerDecl>(ND))
1355      break;
1356
1357    // We must have an anonymous struct.
1358    const TagDecl *TD = cast<TagDecl>(ND);
1359    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1360      assert(TD->getDeclContext() == D->getDeclContext() &&
1361             "Typedef should not be in another decl context!");
1362      assert(D->getDeclName().getAsIdentifierInfo() &&
1363             "Typedef was not named!");
1364      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1365      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1366      // Explicit abi tags are still possible; take from underlying type, not
1367      // from typedef.
1368      writeAbiTags(TD, nullptr);
1369      break;
1370    }
1371
1372    // <unnamed-type-name> ::= <closure-type-name>
1373    //
1374    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1375    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1376    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1377      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1378        assert(!AdditionalAbiTags &&
1379               "Lambda type cannot have additional abi tags");
1380        mangleLambda(Record);
1381        break;
1382      }
1383    }
1384
1385    if (TD->isExternallyVisible()) {
1386      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1387      Out << "Ut";
1388      if (UnnamedMangle > 1)
1389        Out << UnnamedMangle - 2;
1390      Out << '_';
1391      writeAbiTags(TD, AdditionalAbiTags);
1392      break;
1393    }
1394
1395    // Get a unique id for the anonymous struct. If it is not a real output
1396    // ID doesn't matter so use fake one.
1397    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1398
1399    // Mangle it as a source name in the form
1400    // [n] $_<id>
1401    // where n is the length of the string.
1402    SmallString<8> Str;
1403    Str += "$_";
1404    Str += llvm::utostr(AnonStructId);
1405
1406    Out << Str.size();
1407    Out << Str;
1408    break;
1409  }
1410
1411  case DeclarationName::ObjCZeroArgSelector:
1412  case DeclarationName::ObjCOneArgSelector:
1413  case DeclarationName::ObjCMultiArgSelector:
1414    llvm_unreachable("Can't mangle Objective-C selector names here!");
1415
1416  case DeclarationName::CXXConstructorName: {
1417    const CXXRecordDecl *InheritedFrom = nullptr;
1418    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1419    if (auto Inherited =
1420            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1421      InheritedFrom = Inherited.getConstructor()->getParent();
1422      InheritedTemplateArgs =
1423          Inherited.getConstructor()->getTemplateSpecializationArgs();
1424    }
1425
1426    if (ND == Structor)
1427      // If the named decl is the C++ constructor we're mangling, use the type
1428      // we were given.
1429      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1430    else
1431      // Otherwise, use the complete constructor name. This is relevant if a
1432      // class with a constructor is declared within a constructor.
1433      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1434
1435    // FIXME: The template arguments are part of the enclosing prefix or
1436    // nested-name, but it's more convenient to mangle them here.
1437    if (InheritedTemplateArgs)
1438      mangleTemplateArgs(*InheritedTemplateArgs);
1439
1440    writeAbiTags(ND, AdditionalAbiTags);
1441    break;
1442  }
1443
1444  case DeclarationName::CXXDestructorName:
1445    if (ND == Structor)
1446      // If the named decl is the C++ destructor we're mangling, use the type we
1447      // were given.
1448      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1449    else
1450      // Otherwise, use the complete destructor name. This is relevant if a
1451      // class with a destructor is declared within a destructor.
1452      mangleCXXDtorType(Dtor_Complete);
1453    writeAbiTags(ND, AdditionalAbiTags);
1454    break;
1455
1456  case DeclarationName::CXXOperatorName:
1457    if (ND && Arity == UnknownArity) {
1458      Arity = cast<FunctionDecl>(ND)->getNumParams();
1459
1460      // If we have a member function, we need to include the 'this' pointer.
1461      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1462        if (!MD->isStatic())
1463          Arity++;
1464    }
1465    LLVM_FALLTHROUGH;
1466  case DeclarationName::CXXConversionFunctionName:
1467  case DeclarationName::CXXLiteralOperatorName:
1468    mangleOperatorName(Name, Arity);
1469    writeAbiTags(ND, AdditionalAbiTags);
1470    break;
1471
1472  case DeclarationName::CXXDeductionGuideName:
1473    llvm_unreachable("Can't mangle a deduction guide name!");
1474
1475  case DeclarationName::CXXUsingDirective:
1476    llvm_unreachable("Can't mangle a using directive name!");
1477  }
1478}
1479
1480void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1481  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1482  // <number> ::= [n] <non-negative decimal integer>
1483  // <identifier> ::= <unqualified source code identifier>
1484  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1485      << II->getName();
1486}
1487
1488void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1489  // <source-name> ::= <positive length number> <identifier>
1490  // <number> ::= [n] <non-negative decimal integer>
1491  // <identifier> ::= <unqualified source code identifier>
1492  Out << II->getLength() << II->getName();
1493}
1494
1495void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1496                                      const DeclContext *DC,
1497                                      const AbiTagList *AdditionalAbiTags,
1498                                      bool NoFunction) {
1499  // <nested-name>
1500  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1501  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1502  //       <template-args> E
1503
1504  Out << 'N';
1505  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1506    Qualifiers MethodQuals = Method->getTypeQualifiers();
1507    // We do not consider restrict a distinguishing attribute for overloading
1508    // purposes so we must not mangle it.
1509    MethodQuals.removeRestrict();
1510    mangleQualifiers(MethodQuals);
1511    mangleRefQualifier(Method->getRefQualifier());
1512  }
1513
1514  // Check if we have a template.
1515  const TemplateArgumentList *TemplateArgs = nullptr;
1516  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1517    mangleTemplatePrefix(TD, NoFunction);
1518    mangleTemplateArgs(*TemplateArgs);
1519  }
1520  else {
1521    manglePrefix(DC, NoFunction);
1522    mangleUnqualifiedName(ND, AdditionalAbiTags);
1523  }
1524
1525  Out << 'E';
1526}
1527void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1528                                      const TemplateArgument *TemplateArgs,
1529                                      unsigned NumTemplateArgs) {
1530  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1531
1532  Out << 'N';
1533
1534  mangleTemplatePrefix(TD);
1535  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1536
1537  Out << 'E';
1538}
1539
1540void CXXNameMangler::mangleLocalName(const Decl *D,
1541                                     const AbiTagList *AdditionalAbiTags) {
1542  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1543  //              := Z <function encoding> E s [<discriminator>]
1544  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1545  //                 _ <entity name>
1546  // <discriminator> := _ <non-negative number>
1547  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1548  const RecordDecl *RD = GetLocalClassDecl(D);
1549  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1550
1551  Out << 'Z';
1552
1553  {
1554    AbiTagState LocalAbiTags(AbiTags);
1555
1556    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1557      mangleObjCMethodName(MD);
1558    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1559      mangleBlockForPrefix(BD);
1560    else
1561      mangleFunctionEncoding(cast<FunctionDecl>(DC));
1562
1563    // Implicit ABI tags (from namespace) are not available in the following
1564    // entity; reset to actually emitted tags, which are available.
1565    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1566  }
1567
1568  Out << 'E';
1569
1570  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1571  // be a bug that is fixed in trunk.
1572
1573  if (RD) {
1574    // The parameter number is omitted for the last parameter, 0 for the
1575    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1576    // <entity name> will of course contain a <closure-type-name>: Its
1577    // numbering will be local to the particular argument in which it appears
1578    // -- other default arguments do not affect its encoding.
1579    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1580    if (CXXRD && CXXRD->isLambda()) {
1581      if (const ParmVarDecl *Parm
1582              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1583        if (const FunctionDecl *Func
1584              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1585          Out << 'd';
1586          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1587          if (Num > 1)
1588            mangleNumber(Num - 2);
1589          Out << '_';
1590        }
1591      }
1592    }
1593
1594    // Mangle the name relative to the closest enclosing function.
1595    // equality ok because RD derived from ND above
1596    if (D == RD)  {
1597      mangleUnqualifiedName(RD, AdditionalAbiTags);
1598    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1599      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1600      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1601      mangleUnqualifiedBlock(BD);
1602    } else {
1603      const NamedDecl *ND = cast<NamedDecl>(D);
1604      mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1605                       true /*NoFunction*/);
1606    }
1607  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1608    // Mangle a block in a default parameter; see above explanation for
1609    // lambdas.
1610    if (const ParmVarDecl *Parm
1611            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1612      if (const FunctionDecl *Func
1613            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1614        Out << 'd';
1615        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1616        if (Num > 1)
1617          mangleNumber(Num - 2);
1618        Out << '_';
1619      }
1620    }
1621
1622    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1623    mangleUnqualifiedBlock(BD);
1624  } else {
1625    mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1626  }
1627
1628  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1629    unsigned disc;
1630    if (Context.getNextDiscriminator(ND, disc)) {
1631      if (disc < 10)
1632        Out << '_' << disc;
1633      else
1634        Out << "__" << disc << '_';
1635    }
1636  }
1637}
1638
1639void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1640  if (GetLocalClassDecl(Block)) {
1641    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1642    return;
1643  }
1644  const DeclContext *DC = getEffectiveDeclContext(Block);
1645  if (isLocalContainerContext(DC)) {
1646    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1647    return;
1648  }
1649  manglePrefix(getEffectiveDeclContext(Block));
1650  mangleUnqualifiedBlock(Block);
1651}
1652
1653void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1654  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1655    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1656        Context->getDeclContext()->isRecord()) {
1657      const auto *ND = cast<NamedDecl>(Context);
1658      if (ND->getIdentifier()) {
1659        mangleSourceNameWithAbiTags(ND);
1660        Out << 'M';
1661      }
1662    }
1663  }
1664
1665  // If we have a block mangling number, use it.
1666  unsigned Number = Block->getBlockManglingNumber();
1667  // Otherwise, just make up a number. It doesn't matter what it is because
1668  // the symbol in question isn't externally visible.
1669  if (!Number)
1670    Number = Context.getBlockId(Block, false);
1671  else {
1672    // Stored mangling numbers are 1-based.
1673    --Number;
1674  }
1675  Out << "Ub";
1676  if (Number > 0)
1677    Out << Number - 1;
1678  Out << '_';
1679}
1680
1681void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1682  // If the context of a closure type is an initializer for a class member
1683  // (static or nonstatic), it is encoded in a qualified name with a final
1684  // <prefix> of the form:
1685  //
1686  //   <data-member-prefix> := <member source-name> M
1687  //
1688  // Technically, the data-member-prefix is part of the <prefix>. However,
1689  // since a closure type will always be mangled with a prefix, it's easier
1690  // to emit that last part of the prefix here.
1691  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1692    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1693        !isa<ParmVarDecl>(Context)) {
1694      // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1695      // reasonable mangling here.
1696      if (const IdentifierInfo *Name
1697            = cast<NamedDecl>(Context)->getIdentifier()) {
1698        mangleSourceName(Name);
1699        const TemplateArgumentList *TemplateArgs = nullptr;
1700        if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1701          mangleTemplateArgs(*TemplateArgs);
1702        Out << 'M';
1703      }
1704    }
1705  }
1706
1707  Out << "Ul";
1708  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1709                                   getAs<FunctionProtoType>();
1710  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1711                         Lambda->getLambdaStaticInvoker());
1712  Out << "E";
1713
1714  // The number is omitted for the first closure type with a given
1715  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1716  // (in lexical order) with that same <lambda-sig> and context.
1717  //
1718  // The AST keeps track of the number for us.
1719  unsigned Number = Lambda->getLambdaManglingNumber();
1720  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1721  if (Number > 1)
1722    mangleNumber(Number - 2);
1723  Out << '_';
1724}
1725
1726void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1727  switch (qualifier->getKind()) {
1728  case NestedNameSpecifier::Global:
1729    // nothing
1730    return;
1731
1732  case NestedNameSpecifier::Super:
1733    llvm_unreachable("Can't mangle __super specifier");
1734
1735  case NestedNameSpecifier::Namespace:
1736    mangleName(qualifier->getAsNamespace());
1737    return;
1738
1739  case NestedNameSpecifier::NamespaceAlias:
1740    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1741    return;
1742
1743  case NestedNameSpecifier::TypeSpec:
1744  case NestedNameSpecifier::TypeSpecWithTemplate:
1745    manglePrefix(QualType(qualifier->getAsType(), 0));
1746    return;
1747
1748  case NestedNameSpecifier::Identifier:
1749    // Member expressions can have these without prefixes, but that
1750    // should end up in mangleUnresolvedPrefix instead.
1751    assert(qualifier->getPrefix());
1752    manglePrefix(qualifier->getPrefix());
1753
1754    mangleSourceName(qualifier->getAsIdentifier());
1755    return;
1756  }
1757
1758  llvm_unreachable("unexpected nested name specifier");
1759}
1760
1761void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1762  //  <prefix> ::= <prefix> <unqualified-name>
1763  //           ::= <template-prefix> <template-args>
1764  //           ::= <template-param>
1765  //           ::= # empty
1766  //           ::= <substitution>
1767
1768  DC = IgnoreLinkageSpecDecls(DC);
1769
1770  if (DC->isTranslationUnit())
1771    return;
1772
1773  if (NoFunction && isLocalContainerContext(DC))
1774    return;
1775
1776  assert(!isLocalContainerContext(DC));
1777
1778  const NamedDecl *ND = cast<NamedDecl>(DC);
1779  if (mangleSubstitution(ND))
1780    return;
1781
1782  // Check if we have a template.
1783  const TemplateArgumentList *TemplateArgs = nullptr;
1784  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1785    mangleTemplatePrefix(TD);
1786    mangleTemplateArgs(*TemplateArgs);
1787  } else {
1788    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1789    mangleUnqualifiedName(ND, nullptr);
1790  }
1791
1792  addSubstitution(ND);
1793}
1794
1795void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1796  // <template-prefix> ::= <prefix> <template unqualified-name>
1797  //                   ::= <template-param>
1798  //                   ::= <substitution>
1799  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1800    return mangleTemplatePrefix(TD);
1801
1802  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1803    manglePrefix(Qualified->getQualifier());
1804
1805  if (OverloadedTemplateStorage *Overloaded
1806                                      = Template.getAsOverloadedTemplate()) {
1807    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1808                          UnknownArity, nullptr);
1809    return;
1810  }
1811
1812  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1813  assert(Dependent && "Unknown template name kind?");
1814  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1815    manglePrefix(Qualifier);
1816  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1817}
1818
1819void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1820                                          bool NoFunction) {
1821  // <template-prefix> ::= <prefix> <template unqualified-name>
1822  //                   ::= <template-param>
1823  //                   ::= <substitution>
1824  // <template-template-param> ::= <template-param>
1825  //                               <substitution>
1826
1827  if (mangleSubstitution(ND))
1828    return;
1829
1830  // <template-template-param> ::= <template-param>
1831  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1832    mangleTemplateParameter(TTP->getIndex());
1833  } else {
1834    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1835    if (isa<BuiltinTemplateDecl>(ND))
1836      mangleUnqualifiedName(ND, nullptr);
1837    else
1838      mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1839  }
1840
1841  addSubstitution(ND);
1842}
1843
1844/// Mangles a template name under the production <type>.  Required for
1845/// template template arguments.
1846///   <type> ::= <class-enum-type>
1847///          ::= <template-param>
1848///          ::= <substitution>
1849void CXXNameMangler::mangleType(TemplateName TN) {
1850  if (mangleSubstitution(TN))
1851    return;
1852
1853  TemplateDecl *TD = nullptr;
1854
1855  switch (TN.getKind()) {
1856  case TemplateName::QualifiedTemplate:
1857    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1858    goto HaveDecl;
1859
1860  case TemplateName::Template:
1861    TD = TN.getAsTemplateDecl();
1862    goto HaveDecl;
1863
1864  HaveDecl:
1865    if (isa<TemplateTemplateParmDecl>(TD))
1866      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1867    else
1868      mangleName(TD);
1869    break;
1870
1871  case TemplateName::OverloadedTemplate:
1872    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1873
1874  case TemplateName::DependentTemplate: {
1875    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1876    assert(Dependent->isIdentifier());
1877
1878    // <class-enum-type> ::= <name>
1879    // <name> ::= <nested-name>
1880    mangleUnresolvedPrefix(Dependent->getQualifier());
1881    mangleSourceName(Dependent->getIdentifier());
1882    break;
1883  }
1884
1885  case TemplateName::SubstTemplateTemplateParm: {
1886    // Substituted template parameters are mangled as the substituted
1887    // template.  This will check for the substitution twice, which is
1888    // fine, but we have to return early so that we don't try to *add*
1889    // the substitution twice.
1890    SubstTemplateTemplateParmStorage *subst
1891      = TN.getAsSubstTemplateTemplateParm();
1892    mangleType(subst->getReplacement());
1893    return;
1894  }
1895
1896  case TemplateName::SubstTemplateTemplateParmPack: {
1897    // FIXME: not clear how to mangle this!
1898    // template <template <class> class T...> class A {
1899    //   template <template <class> class U...> void foo(B<T,U> x...);
1900    // };
1901    Out << "_SUBSTPACK_";
1902    break;
1903  }
1904  }
1905
1906  addSubstitution(TN);
1907}
1908
1909bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1910                                                    StringRef Prefix) {
1911  // Only certain other types are valid as prefixes;  enumerate them.
1912  switch (Ty->getTypeClass()) {
1913  case Type::Builtin:
1914  case Type::Complex:
1915  case Type::Adjusted:
1916  case Type::Decayed:
1917  case Type::Pointer:
1918  case Type::BlockPointer:
1919  case Type::LValueReference:
1920  case Type::RValueReference:
1921  case Type::MemberPointer:
1922  case Type::ConstantArray:
1923  case Type::IncompleteArray:
1924  case Type::VariableArray:
1925  case Type::DependentSizedArray:
1926  case Type::DependentAddressSpace:
1927  case Type::DependentVector:
1928  case Type::DependentSizedExtVector:
1929  case Type::Vector:
1930  case Type::ExtVector:
1931  case Type::FunctionProto:
1932  case Type::FunctionNoProto:
1933  case Type::Paren:
1934  case Type::Attributed:
1935  case Type::Auto:
1936  case Type::DeducedTemplateSpecialization:
1937  case Type::PackExpansion:
1938  case Type::ObjCObject:
1939  case Type::ObjCInterface:
1940  case Type::ObjCObjectPointer:
1941  case Type::ObjCTypeParam:
1942  case Type::Atomic:
1943  case Type::Pipe:
1944    llvm_unreachable("type is illegal as a nested name specifier");
1945
1946  case Type::SubstTemplateTypeParmPack:
1947    // FIXME: not clear how to mangle this!
1948    // template <class T...> class A {
1949    //   template <class U...> void foo(decltype(T::foo(U())) x...);
1950    // };
1951    Out << "_SUBSTPACK_";
1952    break;
1953
1954  // <unresolved-type> ::= <template-param>
1955  //                   ::= <decltype>
1956  //                   ::= <template-template-param> <template-args>
1957  // (this last is not official yet)
1958  case Type::TypeOfExpr:
1959  case Type::TypeOf:
1960  case Type::Decltype:
1961  case Type::TemplateTypeParm:
1962  case Type::UnaryTransform:
1963  case Type::SubstTemplateTypeParm:
1964  unresolvedType:
1965    // Some callers want a prefix before the mangled type.
1966    Out << Prefix;
1967
1968    // This seems to do everything we want.  It's not really
1969    // sanctioned for a substituted template parameter, though.
1970    mangleType(Ty);
1971
1972    // We never want to print 'E' directly after an unresolved-type,
1973    // so we return directly.
1974    return true;
1975
1976  case Type::Typedef:
1977    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1978    break;
1979
1980  case Type::UnresolvedUsing:
1981    mangleSourceNameWithAbiTags(
1982        cast<UnresolvedUsingType>(Ty)->getDecl());
1983    break;
1984
1985  case Type::Enum:
1986  case Type::Record:
1987    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
1988    break;
1989
1990  case Type::TemplateSpecialization: {
1991    const TemplateSpecializationType *TST =
1992        cast<TemplateSpecializationType>(Ty);
1993    TemplateName TN = TST->getTemplateName();
1994    switch (TN.getKind()) {
1995    case TemplateName::Template:
1996    case TemplateName::QualifiedTemplate: {
1997      TemplateDecl *TD = TN.getAsTemplateDecl();
1998
1999      // If the base is a template template parameter, this is an
2000      // unresolved type.
2001      assert(TD && "no template for template specialization type");
2002      if (isa<TemplateTemplateParmDecl>(TD))
2003        goto unresolvedType;
2004
2005      mangleSourceNameWithAbiTags(TD);
2006      break;
2007    }
2008
2009    case TemplateName::OverloadedTemplate:
2010    case TemplateName::DependentTemplate:
2011      llvm_unreachable("invalid base for a template specialization type");
2012
2013    case TemplateName::SubstTemplateTemplateParm: {
2014      SubstTemplateTemplateParmStorage *subst =
2015          TN.getAsSubstTemplateTemplateParm();
2016      mangleExistingSubstitution(subst->getReplacement());
2017      break;
2018    }
2019
2020    case TemplateName::SubstTemplateTemplateParmPack: {
2021      // FIXME: not clear how to mangle this!
2022      // template <template <class U> class T...> class A {
2023      //   template <class U...> void foo(decltype(T<U>::foo) x...);
2024      // };
2025      Out << "_SUBSTPACK_";
2026      break;
2027    }
2028    }
2029
2030    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2031    break;
2032  }
2033
2034  case Type::InjectedClassName:
2035    mangleSourceNameWithAbiTags(
2036        cast<InjectedClassNameType>(Ty)->getDecl());
2037    break;
2038
2039  case Type::DependentName:
2040    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2041    break;
2042
2043  case Type::DependentTemplateSpecialization: {
2044    const DependentTemplateSpecializationType *DTST =
2045        cast<DependentTemplateSpecializationType>(Ty);
2046    mangleSourceName(DTST->getIdentifier());
2047    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2048    break;
2049  }
2050
2051  case Type::Elaborated:
2052    return mangleUnresolvedTypeOrSimpleId(
2053        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2054  }
2055
2056  return false;
2057}
2058
2059void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2060  switch (Name.getNameKind()) {
2061  case DeclarationName::CXXConstructorName:
2062  case DeclarationName::CXXDestructorName:
2063  case DeclarationName::CXXDeductionGuideName:
2064  case DeclarationName::CXXUsingDirective:
2065  case DeclarationName::Identifier:
2066  case DeclarationName::ObjCMultiArgSelector:
2067  case DeclarationName::ObjCOneArgSelector:
2068  case DeclarationName::ObjCZeroArgSelector:
2069    llvm_unreachable("Not an operator name");
2070
2071  case DeclarationName::CXXConversionFunctionName:
2072    // <operator-name> ::= cv <type>    # (cast)
2073    Out << "cv";
2074    mangleType(Name.getCXXNameType());
2075    break;
2076
2077  case DeclarationName::CXXLiteralOperatorName:
2078    Out << "li";
2079    mangleSourceName(Name.getCXXLiteralIdentifier());
2080    return;
2081
2082  case DeclarationName::CXXOperatorName:
2083    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2084    break;
2085  }
2086}
2087
2088void
2089CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2090  switch (OO) {
2091  // <operator-name> ::= nw     # new
2092  case OO_New: Out << "nw"; break;
2093  //              ::= na        # new[]
2094  case OO_Array_New: Out << "na"; break;
2095  //              ::= dl        # delete
2096  case OO_Delete: Out << "dl"; break;
2097  //              ::= da        # delete[]
2098  case OO_Array_Delete: Out << "da"; break;
2099  //              ::= ps        # + (unary)
2100  //              ::= pl        # + (binary or unknown)
2101  case OO_Plus:
2102    Out << (Arity == 1? "ps" : "pl"); break;
2103  //              ::= ng        # - (unary)
2104  //              ::= mi        # - (binary or unknown)
2105  case OO_Minus:
2106    Out << (Arity == 1? "ng" : "mi"); break;
2107  //              ::= ad        # & (unary)
2108  //              ::= an        # & (binary or unknown)
2109  case OO_Amp:
2110    Out << (Arity == 1? "ad" : "an"); break;
2111  //              ::= de        # * (unary)
2112  //              ::= ml        # * (binary or unknown)
2113  case OO_Star:
2114    // Use binary when unknown.
2115    Out << (Arity == 1? "de" : "ml"); break;
2116  //              ::= co        # ~
2117  case OO_Tilde: Out << "co"; break;
2118  //              ::= dv        # /
2119  case OO_Slash: Out << "dv"; break;
2120  //              ::= rm        # %
2121  case OO_Percent: Out << "rm"; break;
2122  //              ::= or        # |
2123  case OO_Pipe: Out << "or"; break;
2124  //              ::= eo        # ^
2125  case OO_Caret: Out << "eo"; break;
2126  //              ::= aS        # =
2127  case OO_Equal: Out << "aS"; break;
2128  //              ::= pL        # +=
2129  case OO_PlusEqual: Out << "pL"; break;
2130  //              ::= mI        # -=
2131  case OO_MinusEqual: Out << "mI"; break;
2132  //              ::= mL        # *=
2133  case OO_StarEqual: Out << "mL"; break;
2134  //              ::= dV        # /=
2135  case OO_SlashEqual: Out << "dV"; break;
2136  //              ::= rM        # %=
2137  case OO_PercentEqual: Out << "rM"; break;
2138  //              ::= aN        # &=
2139  case OO_AmpEqual: Out << "aN"; break;
2140  //              ::= oR        # |=
2141  case OO_PipeEqual: Out << "oR"; break;
2142  //              ::= eO        # ^=
2143  case OO_CaretEqual: Out << "eO"; break;
2144  //              ::= ls        # <<
2145  case OO_LessLess: Out << "ls"; break;
2146  //              ::= rs        # >>
2147  case OO_GreaterGreater: Out << "rs"; break;
2148  //              ::= lS        # <<=
2149  case OO_LessLessEqual: Out << "lS"; break;
2150  //              ::= rS        # >>=
2151  case OO_GreaterGreaterEqual: Out << "rS"; break;
2152  //              ::= eq        # ==
2153  case OO_EqualEqual: Out << "eq"; break;
2154  //              ::= ne        # !=
2155  case OO_ExclaimEqual: Out << "ne"; break;
2156  //              ::= lt        # <
2157  case OO_Less: Out << "lt"; break;
2158  //              ::= gt        # >
2159  case OO_Greater: Out << "gt"; break;
2160  //              ::= le        # <=
2161  case OO_LessEqual: Out << "le"; break;
2162  //              ::= ge        # >=
2163  case OO_GreaterEqual: Out << "ge"; break;
2164  //              ::= nt        # !
2165  case OO_Exclaim: Out << "nt"; break;
2166  //              ::= aa        # &&
2167  case OO_AmpAmp: Out << "aa"; break;
2168  //              ::= oo        # ||
2169  case OO_PipePipe: Out << "oo"; break;
2170  //              ::= pp        # ++
2171  case OO_PlusPlus: Out << "pp"; break;
2172  //              ::= mm        # --
2173  case OO_MinusMinus: Out << "mm"; break;
2174  //              ::= cm        # ,
2175  case OO_Comma: Out << "cm"; break;
2176  //              ::= pm        # ->*
2177  case OO_ArrowStar: Out << "pm"; break;
2178  //              ::= pt        # ->
2179  case OO_Arrow: Out << "pt"; break;
2180  //              ::= cl        # ()
2181  case OO_Call: Out << "cl"; break;
2182  //              ::= ix        # []
2183  case OO_Subscript: Out << "ix"; break;
2184
2185  //              ::= qu        # ?
2186  // The conditional operator can't be overloaded, but we still handle it when
2187  // mangling expressions.
2188  case OO_Conditional: Out << "qu"; break;
2189  // Proposal on cxx-abi-dev, 2015-10-21.
2190  //              ::= aw        # co_await
2191  case OO_Coawait: Out << "aw"; break;
2192  // Proposed in cxx-abi github issue 43.
2193  //              ::= ss        # <=>
2194  case OO_Spaceship: Out << "ss"; break;
2195
2196  case OO_None:
2197  case NUM_OVERLOADED_OPERATORS:
2198    llvm_unreachable("Not an overloaded operator");
2199  }
2200}
2201
2202void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2203  // Vendor qualifiers come first and if they are order-insensitive they must
2204  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2205
2206  // <type> ::= U <addrspace-expr>
2207  if (DAST) {
2208    Out << "U2ASI";
2209    mangleExpression(DAST->getAddrSpaceExpr());
2210    Out << "E";
2211  }
2212
2213  // Address space qualifiers start with an ordinary letter.
2214  if (Quals.hasAddressSpace()) {
2215    // Address space extension:
2216    //
2217    //   <type> ::= U <target-addrspace>
2218    //   <type> ::= U <OpenCL-addrspace>
2219    //   <type> ::= U <CUDA-addrspace>
2220
2221    SmallString<64> ASString;
2222    LangAS AS = Quals.getAddressSpace();
2223
2224    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2225      //  <target-addrspace> ::= "AS" <address-space-number>
2226      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2227      if (TargetAS != 0)
2228        ASString = "AS" + llvm::utostr(TargetAS);
2229    } else {
2230      switch (AS) {
2231      default: llvm_unreachable("Not a language specific address space");
2232      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2233      //                                "private"| "generic" ]
2234      case LangAS::opencl_global:   ASString = "CLglobal";   break;
2235      case LangAS::opencl_local:    ASString = "CLlocal";    break;
2236      case LangAS::opencl_constant: ASString = "CLconstant"; break;
2237      case LangAS::opencl_private:  ASString = "CLprivate";  break;
2238      case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2239      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2240      case LangAS::cuda_device:     ASString = "CUdevice";   break;
2241      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2242      case LangAS::cuda_shared:     ASString = "CUshared";   break;
2243      }
2244    }
2245    if (!ASString.empty())
2246      mangleVendorQualifier(ASString);
2247  }
2248
2249  // The ARC ownership qualifiers start with underscores.
2250  // Objective-C ARC Extension:
2251  //
2252  //   <type> ::= U "__strong"
2253  //   <type> ::= U "__weak"
2254  //   <type> ::= U "__autoreleasing"
2255  //
2256  // Note: we emit __weak first to preserve the order as
2257  // required by the Itanium ABI.
2258  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2259    mangleVendorQualifier("__weak");
2260
2261  // __unaligned (from -fms-extensions)
2262  if (Quals.hasUnaligned())
2263    mangleVendorQualifier("__unaligned");
2264
2265  // Remaining ARC ownership qualifiers.
2266  switch (Quals.getObjCLifetime()) {
2267  case Qualifiers::OCL_None:
2268    break;
2269
2270  case Qualifiers::OCL_Weak:
2271    // Do nothing as we already handled this case above.
2272    break;
2273
2274  case Qualifiers::OCL_Strong:
2275    mangleVendorQualifier("__strong");
2276    break;
2277
2278  case Qualifiers::OCL_Autoreleasing:
2279    mangleVendorQualifier("__autoreleasing");
2280    break;
2281
2282  case Qualifiers::OCL_ExplicitNone:
2283    // The __unsafe_unretained qualifier is *not* mangled, so that
2284    // __unsafe_unretained types in ARC produce the same manglings as the
2285    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2286    // better ABI compatibility.
2287    //
2288    // It's safe to do this because unqualified 'id' won't show up
2289    // in any type signatures that need to be mangled.
2290    break;
2291  }
2292
2293  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2294  if (Quals.hasRestrict())
2295    Out << 'r';
2296  if (Quals.hasVolatile())
2297    Out << 'V';
2298  if (Quals.hasConst())
2299    Out << 'K';
2300}
2301
2302void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2303  Out << 'U' << name.size() << name;
2304}
2305
2306void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2307  // <ref-qualifier> ::= R                # lvalue reference
2308  //                 ::= O                # rvalue-reference
2309  switch (RefQualifier) {
2310  case RQ_None:
2311    break;
2312
2313  case RQ_LValue:
2314    Out << 'R';
2315    break;
2316
2317  case RQ_RValue:
2318    Out << 'O';
2319    break;
2320  }
2321}
2322
2323void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2324  Context.mangleObjCMethodName(MD, Out);
2325}
2326
2327static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2328                                ASTContext &Ctx) {
2329  if (Quals)
2330    return true;
2331  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2332    return true;
2333  if (Ty->isOpenCLSpecificType())
2334    return true;
2335  if (Ty->isBuiltinType())
2336    return false;
2337  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2338  // substitution candidates.
2339  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2340      isa<AutoType>(Ty))
2341    return false;
2342  return true;
2343}
2344
2345void CXXNameMangler::mangleType(QualType T) {
2346  // If our type is instantiation-dependent but not dependent, we mangle
2347  // it as it was written in the source, removing any top-level sugar.
2348  // Otherwise, use the canonical type.
2349  //
2350  // FIXME: This is an approximation of the instantiation-dependent name
2351  // mangling rules, since we should really be using the type as written and
2352  // augmented via semantic analysis (i.e., with implicit conversions and
2353  // default template arguments) for any instantiation-dependent type.
2354  // Unfortunately, that requires several changes to our AST:
2355  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2356  //     uniqued, so that we can handle substitutions properly
2357  //   - Default template arguments will need to be represented in the
2358  //     TemplateSpecializationType, since they need to be mangled even though
2359  //     they aren't written.
2360  //   - Conversions on non-type template arguments need to be expressed, since
2361  //     they can affect the mangling of sizeof/alignof.
2362  //
2363  // FIXME: This is wrong when mapping to the canonical type for a dependent
2364  // type discards instantiation-dependent portions of the type, such as for:
2365  //
2366  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2367  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2368  //
2369  // It's also wrong in the opposite direction when instantiation-dependent,
2370  // canonically-equivalent types differ in some irrelevant portion of inner
2371  // type sugar. In such cases, we fail to form correct substitutions, eg:
2372  //
2373  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2374  //
2375  // We should instead canonicalize the non-instantiation-dependent parts,
2376  // regardless of whether the type as a whole is dependent or instantiation
2377  // dependent.
2378  if (!T->isInstantiationDependentType() || T->isDependentType())
2379    T = T.getCanonicalType();
2380  else {
2381    // Desugar any types that are purely sugar.
2382    do {
2383      // Don't desugar through template specialization types that aren't
2384      // type aliases. We need to mangle the template arguments as written.
2385      if (const TemplateSpecializationType *TST
2386                                      = dyn_cast<TemplateSpecializationType>(T))
2387        if (!TST->isTypeAlias())
2388          break;
2389
2390      QualType Desugared
2391        = T.getSingleStepDesugaredType(Context.getASTContext());
2392      if (Desugared == T)
2393        break;
2394
2395      T = Desugared;
2396    } while (true);
2397  }
2398  SplitQualType split = T.split();
2399  Qualifiers quals = split.Quals;
2400  const Type *ty = split.Ty;
2401
2402  bool isSubstitutable =
2403    isTypeSubstitutable(quals, ty, Context.getASTContext());
2404  if (isSubstitutable && mangleSubstitution(T))
2405    return;
2406
2407  // If we're mangling a qualified array type, push the qualifiers to
2408  // the element type.
2409  if (quals && isa<ArrayType>(T)) {
2410    ty = Context.getASTContext().getAsArrayType(T);
2411    quals = Qualifiers();
2412
2413    // Note that we don't update T: we want to add the
2414    // substitution at the original type.
2415  }
2416
2417  if (quals || ty->isDependentAddressSpaceType()) {
2418    if (const DependentAddressSpaceType *DAST =
2419        dyn_cast<DependentAddressSpaceType>(ty)) {
2420      SplitQualType splitDAST = DAST->getPointeeType().split();
2421      mangleQualifiers(splitDAST.Quals, DAST);
2422      mangleType(QualType(splitDAST.Ty, 0));
2423    } else {
2424      mangleQualifiers(quals);
2425
2426      // Recurse:  even if the qualified type isn't yet substitutable,
2427      // the unqualified type might be.
2428      mangleType(QualType(ty, 0));
2429    }
2430  } else {
2431    switch (ty->getTypeClass()) {
2432#define ABSTRACT_TYPE(CLASS, PARENT)
2433#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2434    case Type::CLASS: \
2435      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2436      return;
2437#define TYPE(CLASS, PARENT) \
2438    case Type::CLASS: \
2439      mangleType(static_cast<const CLASS##Type*>(ty)); \
2440      break;
2441#include "clang/AST/TypeNodes.def"
2442    }
2443  }
2444
2445  // Add the substitution.
2446  if (isSubstitutable)
2447    addSubstitution(T);
2448}
2449
2450void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2451  if (!mangleStandardSubstitution(ND))
2452    mangleName(ND);
2453}
2454
2455void CXXNameMangler::mangleType(const BuiltinType *T) {
2456  //  <type>         ::= <builtin-type>
2457  //  <builtin-type> ::= v  # void
2458  //                 ::= w  # wchar_t
2459  //                 ::= b  # bool
2460  //                 ::= c  # char
2461  //                 ::= a  # signed char
2462  //                 ::= h  # unsigned char
2463  //                 ::= s  # short
2464  //                 ::= t  # unsigned short
2465  //                 ::= i  # int
2466  //                 ::= j  # unsigned int
2467  //                 ::= l  # long
2468  //                 ::= m  # unsigned long
2469  //                 ::= x  # long long, __int64
2470  //                 ::= y  # unsigned long long, __int64
2471  //                 ::= n  # __int128
2472  //                 ::= o  # unsigned __int128
2473  //                 ::= f  # float
2474  //                 ::= d  # double
2475  //                 ::= e  # long double, __float80
2476  //                 ::= g  # __float128
2477  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2478  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2479  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2480  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2481  //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2482  //                 ::= Di # char32_t
2483  //                 ::= Ds # char16_t
2484  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2485  //                 ::= u <source-name>    # vendor extended type
2486  std::string type_name;
2487  switch (T->getKind()) {
2488  case BuiltinType::Void:
2489    Out << 'v';
2490    break;
2491  case BuiltinType::Bool:
2492    Out << 'b';
2493    break;
2494  case BuiltinType::Char_U:
2495  case BuiltinType::Char_S:
2496    Out << 'c';
2497    break;
2498  case BuiltinType::UChar:
2499    Out << 'h';
2500    break;
2501  case BuiltinType::UShort:
2502    Out << 't';
2503    break;
2504  case BuiltinType::UInt:
2505    Out << 'j';
2506    break;
2507  case BuiltinType::ULong:
2508    Out << 'm';
2509    break;
2510  case BuiltinType::ULongLong:
2511    Out << 'y';
2512    break;
2513  case BuiltinType::UInt128:
2514    Out << 'o';
2515    break;
2516  case BuiltinType::SChar:
2517    Out << 'a';
2518    break;
2519  case BuiltinType::WChar_S:
2520  case BuiltinType::WChar_U:
2521    Out << 'w';
2522    break;
2523  case BuiltinType::Char8:
2524    Out << "Du";
2525    break;
2526  case BuiltinType::Char16:
2527    Out << "Ds";
2528    break;
2529  case BuiltinType::Char32:
2530    Out << "Di";
2531    break;
2532  case BuiltinType::Short:
2533    Out << 's';
2534    break;
2535  case BuiltinType::Int:
2536    Out << 'i';
2537    break;
2538  case BuiltinType::Long:
2539    Out << 'l';
2540    break;
2541  case BuiltinType::LongLong:
2542    Out << 'x';
2543    break;
2544  case BuiltinType::Int128:
2545    Out << 'n';
2546    break;
2547  case BuiltinType::Float16:
2548    Out << "DF16_";
2549    break;
2550  case BuiltinType::ShortAccum:
2551  case BuiltinType::Accum:
2552  case BuiltinType::LongAccum:
2553  case BuiltinType::UShortAccum:
2554  case BuiltinType::UAccum:
2555  case BuiltinType::ULongAccum:
2556  case BuiltinType::ShortFract:
2557  case BuiltinType::Fract:
2558  case BuiltinType::LongFract:
2559  case BuiltinType::UShortFract:
2560  case BuiltinType::UFract:
2561  case BuiltinType::ULongFract:
2562  case BuiltinType::SatShortAccum:
2563  case BuiltinType::SatAccum:
2564  case BuiltinType::SatLongAccum:
2565  case BuiltinType::SatUShortAccum:
2566  case BuiltinType::SatUAccum:
2567  case BuiltinType::SatULongAccum:
2568  case BuiltinType::SatShortFract:
2569  case BuiltinType::SatFract:
2570  case BuiltinType::SatLongFract:
2571  case BuiltinType::SatUShortFract:
2572  case BuiltinType::SatUFract:
2573  case BuiltinType::SatULongFract:
2574    llvm_unreachable("Fixed point types are disabled for c++");
2575  case BuiltinType::Half:
2576    Out << "Dh";
2577    break;
2578  case BuiltinType::Float:
2579    Out << 'f';
2580    break;
2581  case BuiltinType::Double:
2582    Out << 'd';
2583    break;
2584  case BuiltinType::LongDouble:
2585    Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2586                ? 'g'
2587                : 'e');
2588    break;
2589  case BuiltinType::Float128:
2590    if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2591      Out << "U10__float128"; // Match the GCC mangling
2592    else
2593      Out << 'g';
2594    break;
2595  case BuiltinType::NullPtr:
2596    Out << "Dn";
2597    break;
2598
2599#define BUILTIN_TYPE(Id, SingletonId)
2600#define PLACEHOLDER_TYPE(Id, SingletonId) \
2601  case BuiltinType::Id:
2602#include "clang/AST/BuiltinTypes.def"
2603  case BuiltinType::Dependent:
2604    if (!NullOut)
2605      llvm_unreachable("mangling a placeholder type");
2606    break;
2607  case BuiltinType::ObjCId:
2608    Out << "11objc_object";
2609    break;
2610  case BuiltinType::ObjCClass:
2611    Out << "10objc_class";
2612    break;
2613  case BuiltinType::ObjCSel:
2614    Out << "13objc_selector";
2615    break;
2616#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2617  case BuiltinType::Id: \
2618    type_name = "ocl_" #ImgType "_" #Suffix; \
2619    Out << type_name.size() << type_name; \
2620    break;
2621#include "clang/Basic/OpenCLImageTypes.def"
2622  case BuiltinType::OCLSampler:
2623    Out << "11ocl_sampler";
2624    break;
2625  case BuiltinType::OCLEvent:
2626    Out << "9ocl_event";
2627    break;
2628  case BuiltinType::OCLClkEvent:
2629    Out << "12ocl_clkevent";
2630    break;
2631  case BuiltinType::OCLQueue:
2632    Out << "9ocl_queue";
2633    break;
2634  case BuiltinType::OCLReserveID:
2635    Out << "13ocl_reserveid";
2636    break;
2637#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2638  case BuiltinType::Id: \
2639    type_name = "ocl_" #ExtType; \
2640    Out << type_name.size() << type_name; \
2641    break;
2642#include "clang/Basic/OpenCLExtensionTypes.def"
2643  }
2644}
2645
2646StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2647  switch (CC) {
2648  case CC_C:
2649    return "";
2650
2651  case CC_X86VectorCall:
2652  case CC_X86Pascal:
2653  case CC_X86RegCall:
2654  case CC_AAPCS:
2655  case CC_AAPCS_VFP:
2656  case CC_AArch64VectorCall:
2657  case CC_IntelOclBicc:
2658  case CC_SpirFunction:
2659  case CC_OpenCLKernel:
2660  case CC_PreserveMost:
2661  case CC_PreserveAll:
2662    // FIXME: we should be mangling all of the above.
2663    return "";
2664
2665  case CC_X86ThisCall:
2666    // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2667    // used explicitly. At this point, we don't have that much information in
2668    // the AST, since clang tends to bake the convention into the canonical
2669    // function type. thiscall only rarely used explicitly, so don't mangle it
2670    // for now.
2671    return "";
2672
2673  case CC_X86StdCall:
2674    return "stdcall";
2675  case CC_X86FastCall:
2676    return "fastcall";
2677  case CC_X86_64SysV:
2678    return "sysv_abi";
2679  case CC_Win64:
2680    return "ms_abi";
2681  case CC_Swift:
2682    return "swiftcall";
2683  }
2684  llvm_unreachable("bad calling convention");
2685}
2686
2687void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2688  // Fast path.
2689  if (T->getExtInfo() == FunctionType::ExtInfo())
2690    return;
2691
2692  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2693  // This will get more complicated in the future if we mangle other
2694  // things here; but for now, since we mangle ns_returns_retained as
2695  // a qualifier on the result type, we can get away with this:
2696  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2697  if (!CCQualifier.empty())
2698    mangleVendorQualifier(CCQualifier);
2699
2700  // FIXME: regparm
2701  // FIXME: noreturn
2702}
2703
2704void
2705CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2706  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2707
2708  // Note that these are *not* substitution candidates.  Demanglers might
2709  // have trouble with this if the parameter type is fully substituted.
2710
2711  switch (PI.getABI()) {
2712  case ParameterABI::Ordinary:
2713    break;
2714
2715  // All of these start with "swift", so they come before "ns_consumed".
2716  case ParameterABI::SwiftContext:
2717  case ParameterABI::SwiftErrorResult:
2718  case ParameterABI::SwiftIndirectResult:
2719    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2720    break;
2721  }
2722
2723  if (PI.isConsumed())
2724    mangleVendorQualifier("ns_consumed");
2725
2726  if (PI.isNoEscape())
2727    mangleVendorQualifier("noescape");
2728}
2729
2730// <type>          ::= <function-type>
2731// <function-type> ::= [<CV-qualifiers>] F [Y]
2732//                      <bare-function-type> [<ref-qualifier>] E
2733void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2734  mangleExtFunctionInfo(T);
2735
2736  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2737  // e.g. "const" in "int (A::*)() const".
2738  mangleQualifiers(T->getTypeQuals());
2739
2740  // Mangle instantiation-dependent exception-specification, if present,
2741  // per cxx-abi-dev proposal on 2016-10-11.
2742  if (T->hasInstantiationDependentExceptionSpec()) {
2743    if (isComputedNoexcept(T->getExceptionSpecType())) {
2744      Out << "DO";
2745      mangleExpression(T->getNoexceptExpr());
2746      Out << "E";
2747    } else {
2748      assert(T->getExceptionSpecType() == EST_Dynamic);
2749      Out << "Dw";
2750      for (auto ExceptTy : T->exceptions())
2751        mangleType(ExceptTy);
2752      Out << "E";
2753    }
2754  } else if (T->isNothrow()) {
2755    Out << "Do";
2756  }
2757
2758  Out << 'F';
2759
2760  // FIXME: We don't have enough information in the AST to produce the 'Y'
2761  // encoding for extern "C" function types.
2762  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2763
2764  // Mangle the ref-qualifier, if present.
2765  mangleRefQualifier(T->getRefQualifier());
2766
2767  Out << 'E';
2768}
2769
2770void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2771  // Function types without prototypes can arise when mangling a function type
2772  // within an overloadable function in C. We mangle these as the absence of any
2773  // parameter types (not even an empty parameter list).
2774  Out << 'F';
2775
2776  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2777
2778  FunctionTypeDepth.enterResultType();
2779  mangleType(T->getReturnType());
2780  FunctionTypeDepth.leaveResultType();
2781
2782  FunctionTypeDepth.pop(saved);
2783  Out << 'E';
2784}
2785
2786void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2787                                            bool MangleReturnType,
2788                                            const FunctionDecl *FD) {
2789  // Record that we're in a function type.  See mangleFunctionParam
2790  // for details on what we're trying to achieve here.
2791  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2792
2793  // <bare-function-type> ::= <signature type>+
2794  if (MangleReturnType) {
2795    FunctionTypeDepth.enterResultType();
2796
2797    // Mangle ns_returns_retained as an order-sensitive qualifier here.
2798    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2799      mangleVendorQualifier("ns_returns_retained");
2800
2801    // Mangle the return type without any direct ARC ownership qualifiers.
2802    QualType ReturnTy = Proto->getReturnType();
2803    if (ReturnTy.getObjCLifetime()) {
2804      auto SplitReturnTy = ReturnTy.split();
2805      SplitReturnTy.Quals.removeObjCLifetime();
2806      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2807    }
2808    mangleType(ReturnTy);
2809
2810    FunctionTypeDepth.leaveResultType();
2811  }
2812
2813  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2814    //   <builtin-type> ::= v   # void
2815    Out << 'v';
2816
2817    FunctionTypeDepth.pop(saved);
2818    return;
2819  }
2820
2821  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2822  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2823    // Mangle extended parameter info as order-sensitive qualifiers here.
2824    if (Proto->hasExtParameterInfos() && FD == nullptr) {
2825      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2826    }
2827
2828    // Mangle the type.
2829    QualType ParamTy = Proto->getParamType(I);
2830    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2831
2832    if (FD) {
2833      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2834        // Attr can only take 1 character, so we can hardcode the length below.
2835        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2836        Out << "U17pass_object_size" << Attr->getType();
2837      }
2838    }
2839  }
2840
2841  FunctionTypeDepth.pop(saved);
2842
2843  // <builtin-type>      ::= z  # ellipsis
2844  if (Proto->isVariadic())
2845    Out << 'z';
2846}
2847
2848// <type>            ::= <class-enum-type>
2849// <class-enum-type> ::= <name>
2850void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2851  mangleName(T->getDecl());
2852}
2853
2854// <type>            ::= <class-enum-type>
2855// <class-enum-type> ::= <name>
2856void CXXNameMangler::mangleType(const EnumType *T) {
2857  mangleType(static_cast<const TagType*>(T));
2858}
2859void CXXNameMangler::mangleType(const RecordType *T) {
2860  mangleType(static_cast<const TagType*>(T));
2861}
2862void CXXNameMangler::mangleType(const TagType *T) {
2863  mangleName(T->getDecl());
2864}
2865
2866// <type>       ::= <array-type>
2867// <array-type> ::= A <positive dimension number> _ <element type>
2868//              ::= A [<dimension expression>] _ <element type>
2869void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2870  Out << 'A' << T->getSize() << '_';
2871  mangleType(T->getElementType());
2872}
2873void CXXNameMangler::mangleType(const VariableArrayType *T) {
2874  Out << 'A';
2875  // decayed vla types (size 0) will just be skipped.
2876  if (T->getSizeExpr())
2877    mangleExpression(T->getSizeExpr());
2878  Out << '_';
2879  mangleType(T->getElementType());
2880}
2881void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2882  Out << 'A';
2883  mangleExpression(T->getSizeExpr());
2884  Out << '_';
2885  mangleType(T->getElementType());
2886}
2887void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2888  Out << "A_";
2889  mangleType(T->getElementType());
2890}
2891
2892// <type>                   ::= <pointer-to-member-type>
2893// <pointer-to-member-type> ::= M <class type> <member type>
2894void CXXNameMangler::mangleType(const MemberPointerType *T) {
2895  Out << 'M';
2896  mangleType(QualType(T->getClass(), 0));
2897  QualType PointeeType = T->getPointeeType();
2898  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2899    mangleType(FPT);
2900
2901    // Itanium C++ ABI 5.1.8:
2902    //
2903    //   The type of a non-static member function is considered to be different,
2904    //   for the purposes of substitution, from the type of a namespace-scope or
2905    //   static member function whose type appears similar. The types of two
2906    //   non-static member functions are considered to be different, for the
2907    //   purposes of substitution, if the functions are members of different
2908    //   classes. In other words, for the purposes of substitution, the class of
2909    //   which the function is a member is considered part of the type of
2910    //   function.
2911
2912    // Given that we already substitute member function pointers as a
2913    // whole, the net effect of this rule is just to unconditionally
2914    // suppress substitution on the function type in a member pointer.
2915    // We increment the SeqID here to emulate adding an entry to the
2916    // substitution table.
2917    ++SeqID;
2918  } else
2919    mangleType(PointeeType);
2920}
2921
2922// <type>           ::= <template-param>
2923void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2924  mangleTemplateParameter(T->getIndex());
2925}
2926
2927// <type>           ::= <template-param>
2928void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2929  // FIXME: not clear how to mangle this!
2930  // template <class T...> class A {
2931  //   template <class U...> void foo(T(*)(U) x...);
2932  // };
2933  Out << "_SUBSTPACK_";
2934}
2935
2936// <type> ::= P <type>   # pointer-to
2937void CXXNameMangler::mangleType(const PointerType *T) {
2938  Out << 'P';
2939  mangleType(T->getPointeeType());
2940}
2941void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2942  Out << 'P';
2943  mangleType(T->getPointeeType());
2944}
2945
2946// <type> ::= R <type>   # reference-to
2947void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2948  Out << 'R';
2949  mangleType(T->getPointeeType());
2950}
2951
2952// <type> ::= O <type>   # rvalue reference-to (C++0x)
2953void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2954  Out << 'O';
2955  mangleType(T->getPointeeType());
2956}
2957
2958// <type> ::= C <type>   # complex pair (C 2000)
2959void CXXNameMangler::mangleType(const ComplexType *T) {
2960  Out << 'C';
2961  mangleType(T->getElementType());
2962}
2963
2964// ARM's ABI for Neon vector types specifies that they should be mangled as
2965// if they are structs (to match ARM's initial implementation).  The
2966// vector type must be one of the special types predefined by ARM.
2967void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2968  QualType EltType = T->getElementType();
2969  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2970  const char *EltName = nullptr;
2971  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2972    switch (cast<BuiltinType>(EltType)->getKind()) {
2973    case BuiltinType::SChar:
2974    case BuiltinType::UChar:
2975      EltName = "poly8_t";
2976      break;
2977    case BuiltinType::Short:
2978    case BuiltinType::UShort:
2979      EltName = "poly16_t";
2980      break;
2981    case BuiltinType::ULongLong:
2982      EltName = "poly64_t";
2983      break;
2984    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2985    }
2986  } else {
2987    switch (cast<BuiltinType>(EltType)->getKind()) {
2988    case BuiltinType::SChar:     EltName = "int8_t"; break;
2989    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2990    case BuiltinType::Short:     EltName = "int16_t"; break;
2991    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2992    case BuiltinType::Int:       EltName = "int32_t"; break;
2993    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2994    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2995    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2996    case BuiltinType::Double:    EltName = "float64_t"; break;
2997    case BuiltinType::Float:     EltName = "float32_t"; break;
2998    case BuiltinType::Half:      EltName = "float16_t";break;
2999    default:
3000      llvm_unreachable("unexpected Neon vector element type");
3001    }
3002  }
3003  const char *BaseName = nullptr;
3004  unsigned BitSize = (T->getNumElements() *
3005                      getASTContext().getTypeSize(EltType));
3006  if (BitSize == 64)
3007    BaseName = "__simd64_";
3008  else {
3009    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3010    BaseName = "__simd128_";
3011  }
3012  Out << strlen(BaseName) + strlen(EltName);
3013  Out << BaseName << EltName;
3014}
3015
3016void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3017  DiagnosticsEngine &Diags = Context.getDiags();
3018  unsigned DiagID = Diags.getCustomDiagID(
3019      DiagnosticsEngine::Error,
3020      "cannot mangle this dependent neon vector type yet");
3021  Diags.Report(T->getAttributeLoc(), DiagID);
3022}
3023
3024static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3025  switch (EltType->getKind()) {
3026  case BuiltinType::SChar:
3027    return "Int8";
3028  case BuiltinType::Short:
3029    return "Int16";
3030  case BuiltinType::Int:
3031    return "Int32";
3032  case BuiltinType::Long:
3033  case BuiltinType::LongLong:
3034    return "Int64";
3035  case BuiltinType::UChar:
3036    return "Uint8";
3037  case BuiltinType::UShort:
3038    return "Uint16";
3039  case BuiltinType::UInt:
3040    return "Uint32";
3041  case BuiltinType::ULong:
3042  case BuiltinType::ULongLong:
3043    return "Uint64";
3044  case BuiltinType::Half:
3045    return "Float16";
3046  case BuiltinType::Float:
3047    return "Float32";
3048  case BuiltinType::Double:
3049    return "Float64";
3050  default:
3051    llvm_unreachable("Unexpected vector element base type");
3052  }
3053}
3054
3055// AArch64's ABI for Neon vector types specifies that they should be mangled as
3056// the equivalent internal name. The vector type must be one of the special
3057// types predefined by ARM.
3058void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3059  QualType EltType = T->getElementType();
3060  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3061  unsigned BitSize =
3062      (T->getNumElements() * getASTContext().getTypeSize(EltType));
3063  (void)BitSize; // Silence warning.
3064
3065  assert((BitSize == 64 || BitSize == 128) &&
3066         "Neon vector type not 64 or 128 bits");
3067
3068  StringRef EltName;
3069  if (T->getVectorKind() == VectorType::NeonPolyVector) {
3070    switch (cast<BuiltinType>(EltType)->getKind()) {
3071    case BuiltinType::UChar:
3072      EltName = "Poly8";
3073      break;
3074    case BuiltinType::UShort:
3075      EltName = "Poly16";
3076      break;
3077    case BuiltinType::ULong:
3078    case BuiltinType::ULongLong:
3079      EltName = "Poly64";
3080      break;
3081    default:
3082      llvm_unreachable("unexpected Neon polynomial vector element type");
3083    }
3084  } else
3085    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3086
3087  std::string TypeName =
3088      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3089  Out << TypeName.length() << TypeName;
3090}
3091void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3092  DiagnosticsEngine &Diags = Context.getDiags();
3093  unsigned DiagID = Diags.getCustomDiagID(
3094      DiagnosticsEngine::Error,
3095      "cannot mangle this dependent neon vector type yet");
3096  Diags.Report(T->getAttributeLoc(), DiagID);
3097}
3098
3099// GNU extension: vector types
3100// <type>                  ::= <vector-type>
3101// <vector-type>           ::= Dv <positive dimension number> _
3102//                                    <extended element type>
3103//                         ::= Dv [<dimension expression>] _ <element type>
3104// <extended element type> ::= <element type>
3105//                         ::= p # AltiVec vector pixel
3106//                         ::= b # Altivec vector bool
3107void CXXNameMangler::mangleType(const VectorType *T) {
3108  if ((T->getVectorKind() == VectorType::NeonVector ||
3109       T->getVectorKind() == VectorType::NeonPolyVector)) {
3110    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3111    llvm::Triple::ArchType Arch =
3112        getASTContext().getTargetInfo().getTriple().getArch();
3113    if ((Arch == llvm::Triple::aarch64 ||
3114         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3115      mangleAArch64NeonVectorType(T);
3116    else
3117      mangleNeonVectorType(T);
3118    return;
3119  }
3120  Out << "Dv" << T->getNumElements() << '_';
3121  if (T->getVectorKind() == VectorType::AltiVecPixel)
3122    Out << 'p';
3123  else if (T->getVectorKind() == VectorType::AltiVecBool)
3124    Out << 'b';
3125  else
3126    mangleType(T->getElementType());
3127}
3128
3129void CXXNameMangler::mangleType(const DependentVectorType *T) {
3130  if ((T->getVectorKind() == VectorType::NeonVector ||
3131       T->getVectorKind() == VectorType::NeonPolyVector)) {
3132    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3133    llvm::Triple::ArchType Arch =
3134        getASTContext().getTargetInfo().getTriple().getArch();
3135    if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3136        !Target.isOSDarwin())
3137      mangleAArch64NeonVectorType(T);
3138    else
3139      mangleNeonVectorType(T);
3140    return;
3141  }
3142
3143  Out << "Dv";
3144  mangleExpression(T->getSizeExpr());
3145  Out << '_';
3146  if (T->getVectorKind() == VectorType::AltiVecPixel)
3147    Out << 'p';
3148  else if (T->getVectorKind() == VectorType::AltiVecBool)
3149    Out << 'b';
3150  else
3151    mangleType(T->getElementType());
3152}
3153
3154void CXXNameMangler::mangleType(const ExtVectorType *T) {
3155  mangleType(static_cast<const VectorType*>(T));
3156}
3157void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3158  Out << "Dv";
3159  mangleExpression(T->getSizeExpr());
3160  Out << '_';
3161  mangleType(T->getElementType());
3162}
3163
3164void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3165  SplitQualType split = T->getPointeeType().split();
3166  mangleQualifiers(split.Quals, T);
3167  mangleType(QualType(split.Ty, 0));
3168}
3169
3170void CXXNameMangler::mangleType(const PackExpansionType *T) {
3171  // <type>  ::= Dp <type>          # pack expansion (C++0x)
3172  Out << "Dp";
3173  mangleType(T->getPattern());
3174}
3175
3176void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3177  mangleSourceName(T->getDecl()->getIdentifier());
3178}
3179
3180void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3181  // Treat __kindof as a vendor extended type qualifier.
3182  if (T->isKindOfType())
3183    Out << "U8__kindof";
3184
3185  if (!T->qual_empty()) {
3186    // Mangle protocol qualifiers.
3187    SmallString<64> QualStr;
3188    llvm::raw_svector_ostream QualOS(QualStr);
3189    QualOS << "objcproto";
3190    for (const auto *I : T->quals()) {
3191      StringRef name = I->getName();
3192      QualOS << name.size() << name;
3193    }
3194    Out << 'U' << QualStr.size() << QualStr;
3195  }
3196
3197  mangleType(T->getBaseType());
3198
3199  if (T->isSpecialized()) {
3200    // Mangle type arguments as I <type>+ E
3201    Out << 'I';
3202    for (auto typeArg : T->getTypeArgs())
3203      mangleType(typeArg);
3204    Out << 'E';
3205  }
3206}
3207
3208void CXXNameMangler::mangleType(const BlockPointerType *T) {
3209  Out << "U13block_pointer";
3210  mangleType(T->getPointeeType());
3211}
3212
3213void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3214  // Mangle injected class name types as if the user had written the
3215  // specialization out fully.  It may not actually be possible to see
3216  // this mangling, though.
3217  mangleType(T->getInjectedSpecializationType());
3218}
3219
3220void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3221  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3222    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3223  } else {
3224    if (mangleSubstitution(QualType(T, 0)))
3225      return;
3226
3227    mangleTemplatePrefix(T->getTemplateName());
3228
3229    // FIXME: GCC does not appear to mangle the template arguments when
3230    // the template in question is a dependent template name. Should we
3231    // emulate that badness?
3232    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3233    addSubstitution(QualType(T, 0));
3234  }
3235}
3236
3237void CXXNameMangler::mangleType(const DependentNameType *T) {
3238  // Proposal by cxx-abi-dev, 2014-03-26
3239  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3240  //                                 # dependent elaborated type specifier using
3241  //                                 # 'typename'
3242  //                   ::= Ts <name> # dependent elaborated type specifier using
3243  //                                 # 'struct' or 'class'
3244  //                   ::= Tu <name> # dependent elaborated type specifier using
3245  //                                 # 'union'
3246  //                   ::= Te <name> # dependent elaborated type specifier using
3247  //                                 # 'enum'
3248  switch (T->getKeyword()) {
3249    case ETK_None:
3250    case ETK_Typename:
3251      break;
3252    case ETK_Struct:
3253    case ETK_Class:
3254    case ETK_Interface:
3255      Out << "Ts";
3256      break;
3257    case ETK_Union:
3258      Out << "Tu";
3259      break;
3260    case ETK_Enum:
3261      Out << "Te";
3262      break;
3263  }
3264  // Typename types are always nested
3265  Out << 'N';
3266  manglePrefix(T->getQualifier());
3267  mangleSourceName(T->getIdentifier());
3268  Out << 'E';
3269}
3270
3271void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3272  // Dependently-scoped template types are nested if they have a prefix.
3273  Out << 'N';
3274
3275  // TODO: avoid making this TemplateName.
3276  TemplateName Prefix =
3277    getASTContext().getDependentTemplateName(T->getQualifier(),
3278                                             T->getIdentifier());
3279  mangleTemplatePrefix(Prefix);
3280
3281  // FIXME: GCC does not appear to mangle the template arguments when
3282  // the template in question is a dependent template name. Should we
3283  // emulate that badness?
3284  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3285  Out << 'E';
3286}
3287
3288void CXXNameMangler::mangleType(const TypeOfType *T) {
3289  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3290  // "extension with parameters" mangling.
3291  Out << "u6typeof";
3292}
3293
3294void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3295  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3296  // "extension with parameters" mangling.
3297  Out << "u6typeof";
3298}
3299
3300void CXXNameMangler::mangleType(const DecltypeType *T) {
3301  Expr *E = T->getUnderlyingExpr();
3302
3303  // type ::= Dt <expression> E  # decltype of an id-expression
3304  //                             #   or class member access
3305  //      ::= DT <expression> E  # decltype of an expression
3306
3307  // This purports to be an exhaustive list of id-expressions and
3308  // class member accesses.  Note that we do not ignore parentheses;
3309  // parentheses change the semantics of decltype for these
3310  // expressions (and cause the mangler to use the other form).
3311  if (isa<DeclRefExpr>(E) ||
3312      isa<MemberExpr>(E) ||
3313      isa<UnresolvedLookupExpr>(E) ||
3314      isa<DependentScopeDeclRefExpr>(E) ||
3315      isa<CXXDependentScopeMemberExpr>(E) ||
3316      isa<UnresolvedMemberExpr>(E))
3317    Out << "Dt";
3318  else
3319    Out << "DT";
3320  mangleExpression(E);
3321  Out << 'E';
3322}
3323
3324void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3325  // If this is dependent, we need to record that. If not, we simply
3326  // mangle it as the underlying type since they are equivalent.
3327  if (T->isDependentType()) {
3328    Out << 'U';
3329
3330    switch (T->getUTTKind()) {
3331      case UnaryTransformType::EnumUnderlyingType:
3332        Out << "3eut";
3333        break;
3334    }
3335  }
3336
3337  mangleType(T->getBaseType());
3338}
3339
3340void CXXNameMangler::mangleType(const AutoType *T) {
3341  assert(T->getDeducedType().isNull() &&
3342         "Deduced AutoType shouldn't be handled here!");
3343  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3344         "shouldn't need to mangle __auto_type!");
3345  // <builtin-type> ::= Da # auto
3346  //                ::= Dc # decltype(auto)
3347  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3348}
3349
3350void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3351  // FIXME: This is not the right mangling. We also need to include a scope
3352  // here in some cases.
3353  QualType D = T->getDeducedType();
3354  if (D.isNull())
3355    mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3356  else
3357    mangleType(D);
3358}
3359
3360void CXXNameMangler::mangleType(const AtomicType *T) {
3361  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3362  // (Until there's a standardized mangling...)
3363  Out << "U7_Atomic";
3364  mangleType(T->getValueType());
3365}
3366
3367void CXXNameMangler::mangleType(const PipeType *T) {
3368  // Pipe type mangling rules are described in SPIR 2.0 specification
3369  // A.1 Data types and A.3 Summary of changes
3370  // <type> ::= 8ocl_pipe
3371  Out << "8ocl_pipe";
3372}
3373
3374void CXXNameMangler::mangleIntegerLiteral(QualType T,
3375                                          const llvm::APSInt &Value) {
3376  //  <expr-primary> ::= L <type> <value number> E # integer literal
3377  Out << 'L';
3378
3379  mangleType(T);
3380  if (T->isBooleanType()) {
3381    // Boolean values are encoded as 0/1.
3382    Out << (Value.getBoolValue() ? '1' : '0');
3383  } else {
3384    mangleNumber(Value);
3385  }
3386  Out << 'E';
3387
3388}
3389
3390void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3391  // Ignore member expressions involving anonymous unions.
3392  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3393    if (!RT->getDecl()->isAnonymousStructOrUnion())
3394      break;
3395    const auto *ME = dyn_cast<MemberExpr>(Base);
3396    if (!ME)
3397      break;
3398    Base = ME->getBase();
3399    IsArrow = ME->isArrow();
3400  }
3401
3402  if (Base->isImplicitCXXThis()) {
3403    // Note: GCC mangles member expressions to the implicit 'this' as
3404    // *this., whereas we represent them as this->. The Itanium C++ ABI
3405    // does not specify anything here, so we follow GCC.
3406    Out << "dtdefpT";
3407  } else {
3408    Out << (IsArrow ? "pt" : "dt");
3409    mangleExpression(Base);
3410  }
3411}
3412
3413/// Mangles a member expression.
3414void CXXNameMangler::mangleMemberExpr(const Expr *base,
3415                                      bool isArrow,
3416                                      NestedNameSpecifier *qualifier,
3417                                      NamedDecl *firstQualifierLookup,
3418                                      DeclarationName member,
3419                                      const TemplateArgumentLoc *TemplateArgs,
3420                                      unsigned NumTemplateArgs,
3421                                      unsigned arity) {
3422  // <expression> ::= dt <expression> <unresolved-name>
3423  //              ::= pt <expression> <unresolved-name>
3424  if (base)
3425    mangleMemberExprBase(base, isArrow);
3426  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3427}
3428
3429/// Look at the callee of the given call expression and determine if
3430/// it's a parenthesized id-expression which would have triggered ADL
3431/// otherwise.
3432static bool isParenthesizedADLCallee(const CallExpr *call) {
3433  const Expr *callee = call->getCallee();
3434  const Expr *fn = callee->IgnoreParens();
3435
3436  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3437  // too, but for those to appear in the callee, it would have to be
3438  // parenthesized.
3439  if (callee == fn) return false;
3440
3441  // Must be an unresolved lookup.
3442  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3443  if (!lookup) return false;
3444
3445  assert(!lookup->requiresADL());
3446
3447  // Must be an unqualified lookup.
3448  if (lookup->getQualifier()) return false;
3449
3450  // Must not have found a class member.  Note that if one is a class
3451  // member, they're all class members.
3452  if (lookup->getNumDecls() > 0 &&
3453      (*lookup->decls_begin())->isCXXClassMember())
3454    return false;
3455
3456  // Otherwise, ADL would have been triggered.
3457  return true;
3458}
3459
3460void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3461  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3462  Out << CastEncoding;
3463  mangleType(ECE->getType());
3464  mangleExpression(ECE->getSubExpr());
3465}
3466
3467void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3468  if (auto *Syntactic = InitList->getSyntacticForm())
3469    InitList = Syntactic;
3470  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3471    mangleExpression(InitList->getInit(i));
3472}
3473
3474void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3475  // <expression> ::= <unary operator-name> <expression>
3476  //              ::= <binary operator-name> <expression> <expression>
3477  //              ::= <trinary operator-name> <expression> <expression> <expression>
3478  //              ::= cv <type> expression           # conversion with one argument
3479  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3480  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3481  //              ::= sc <type> <expression>         # static_cast<type> (expression)
3482  //              ::= cc <type> <expression>         # const_cast<type> (expression)
3483  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3484  //              ::= st <type>                      # sizeof (a type)
3485  //              ::= at <type>                      # alignof (a type)
3486  //              ::= <template-param>
3487  //              ::= <function-param>
3488  //              ::= sr <type> <unqualified-name>                   # dependent name
3489  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3490  //              ::= ds <expression> <expression>                   # expr.*expr
3491  //              ::= sZ <template-param>                            # size of a parameter pack
3492  //              ::= sZ <function-param>    # size of a function parameter pack
3493  //              ::= <expr-primary>
3494  // <expr-primary> ::= L <type> <value number> E    # integer literal
3495  //                ::= L <type <value float> E      # floating literal
3496  //                ::= L <mangled-name> E           # external name
3497  //                ::= fpT                          # 'this' expression
3498  QualType ImplicitlyConvertedToType;
3499
3500recurse:
3501  switch (E->getStmtClass()) {
3502  case Expr::NoStmtClass:
3503#define ABSTRACT_STMT(Type)
3504#define EXPR(Type, Base)
3505#define STMT(Type, Base) \
3506  case Expr::Type##Class:
3507#include "clang/AST/StmtNodes.inc"
3508    // fallthrough
3509
3510  // These all can only appear in local or variable-initialization
3511  // contexts and so should never appear in a mangling.
3512  case Expr::AddrLabelExprClass:
3513  case Expr::DesignatedInitUpdateExprClass:
3514  case Expr::ImplicitValueInitExprClass:
3515  case Expr::ArrayInitLoopExprClass:
3516  case Expr::ArrayInitIndexExprClass:
3517  case Expr::NoInitExprClass:
3518  case Expr::ParenListExprClass:
3519  case Expr::LambdaExprClass:
3520  case Expr::MSPropertyRefExprClass:
3521  case Expr::MSPropertySubscriptExprClass:
3522  case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3523  case Expr::OMPArraySectionExprClass:
3524  case Expr::CXXInheritedCtorInitExprClass:
3525    llvm_unreachable("unexpected statement kind");
3526
3527  case Expr::ConstantExprClass:
3528    E = cast<ConstantExpr>(E)->getSubExpr();
3529    goto recurse;
3530
3531  // FIXME: invent manglings for all these.
3532  case Expr::BlockExprClass:
3533  case Expr::ChooseExprClass:
3534  case Expr::CompoundLiteralExprClass:
3535  case Expr::ExtVectorElementExprClass:
3536  case Expr::GenericSelectionExprClass:
3537  case Expr::ObjCEncodeExprClass:
3538  case Expr::ObjCIsaExprClass:
3539  case Expr::ObjCIvarRefExprClass:
3540  case Expr::ObjCMessageExprClass:
3541  case Expr::ObjCPropertyRefExprClass:
3542  case Expr::ObjCProtocolExprClass:
3543  case Expr::ObjCSelectorExprClass:
3544  case Expr::ObjCStringLiteralClass:
3545  case Expr::ObjCBoxedExprClass:
3546  case Expr::ObjCArrayLiteralClass:
3547  case Expr::ObjCDictionaryLiteralClass:
3548  case Expr::ObjCSubscriptRefExprClass:
3549  case Expr::ObjCIndirectCopyRestoreExprClass:
3550  case Expr::ObjCAvailabilityCheckExprClass:
3551  case Expr::OffsetOfExprClass:
3552  case Expr::PredefinedExprClass:
3553  case Expr::ShuffleVectorExprClass:
3554  case Expr::ConvertVectorExprClass:
3555  case Expr::StmtExprClass:
3556  case Expr::TypeTraitExprClass:
3557  case Expr::ArrayTypeTraitExprClass:
3558  case Expr::ExpressionTraitExprClass:
3559  case Expr::VAArgExprClass:
3560  case Expr::CUDAKernelCallExprClass:
3561  case Expr::AsTypeExprClass:
3562  case Expr::PseudoObjectExprClass:
3563  case Expr::AtomicExprClass:
3564  case Expr::FixedPointLiteralClass:
3565  {
3566    if (!NullOut) {
3567      // As bad as this diagnostic is, it's better than crashing.
3568      DiagnosticsEngine &Diags = Context.getDiags();
3569      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3570                                       "cannot yet mangle expression type %0");
3571      Diags.Report(E->getExprLoc(), DiagID)
3572        << E->getStmtClassName() << E->getSourceRange();
3573    }
3574    break;
3575  }
3576
3577  case Expr::CXXUuidofExprClass: {
3578    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3579    if (UE->isTypeOperand()) {
3580      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3581      Out << "u8__uuidoft";
3582      mangleType(UuidT);
3583    } else {
3584      Expr *UuidExp = UE->getExprOperand();
3585      Out << "u8__uuidofz";
3586      mangleExpression(UuidExp, Arity);
3587    }
3588    break;
3589  }
3590
3591  // Even gcc-4.5 doesn't mangle this.
3592  case Expr::BinaryConditionalOperatorClass: {
3593    DiagnosticsEngine &Diags = Context.getDiags();
3594    unsigned DiagID =
3595      Diags.getCustomDiagID(DiagnosticsEngine::Error,
3596                "?: operator with omitted middle operand cannot be mangled");
3597    Diags.Report(E->getExprLoc(), DiagID)
3598      << E->getStmtClassName() << E->getSourceRange();
3599    break;
3600  }
3601
3602  // These are used for internal purposes and cannot be meaningfully mangled.
3603  case Expr::OpaqueValueExprClass:
3604    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3605
3606  case Expr::InitListExprClass: {
3607    Out << "il";
3608    mangleInitListElements(cast<InitListExpr>(E));
3609    Out << "E";
3610    break;
3611  }
3612
3613  case Expr::DesignatedInitExprClass: {
3614    auto *DIE = cast<DesignatedInitExpr>(E);
3615    for (const auto &Designator : DIE->designators()) {
3616      if (Designator.isFieldDesignator()) {
3617        Out << "di";
3618        mangleSourceName(Designator.getFieldName());
3619      } else if (Designator.isArrayDesignator()) {
3620        Out << "dx";
3621        mangleExpression(DIE->getArrayIndex(Designator));
3622      } else {
3623        assert(Designator.isArrayRangeDesignator() &&
3624               "unknown designator kind");
3625        Out << "dX";
3626        mangleExpression(DIE->getArrayRangeStart(Designator));
3627        mangleExpression(DIE->getArrayRangeEnd(Designator));
3628      }
3629    }
3630    mangleExpression(DIE->getInit());
3631    break;
3632  }
3633
3634  case Expr::CXXDefaultArgExprClass:
3635    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3636    break;
3637
3638  case Expr::CXXDefaultInitExprClass:
3639    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3640    break;
3641
3642  case Expr::CXXStdInitializerListExprClass:
3643    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3644    break;
3645
3646  case Expr::SubstNonTypeTemplateParmExprClass:
3647    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3648                     Arity);
3649    break;
3650
3651  case Expr::UserDefinedLiteralClass:
3652    // We follow g++'s approach of mangling a UDL as a call to the literal
3653    // operator.
3654  case Expr::CXXMemberCallExprClass: // fallthrough
3655  case Expr::CallExprClass: {
3656    const CallExpr *CE = cast<CallExpr>(E);
3657
3658    // <expression> ::= cp <simple-id> <expression>* E
3659    // We use this mangling only when the call would use ADL except
3660    // for being parenthesized.  Per discussion with David
3661    // Vandervoorde, 2011.04.25.
3662    if (isParenthesizedADLCallee(CE)) {
3663      Out << "cp";
3664      // The callee here is a parenthesized UnresolvedLookupExpr with
3665      // no qualifier and should always get mangled as a <simple-id>
3666      // anyway.
3667
3668    // <expression> ::= cl <expression>* E
3669    } else {
3670      Out << "cl";
3671    }
3672
3673    unsigned CallArity = CE->getNumArgs();
3674    for (const Expr *Arg : CE->arguments())
3675      if (isa<PackExpansionExpr>(Arg))
3676        CallArity = UnknownArity;
3677
3678    mangleExpression(CE->getCallee(), CallArity);
3679    for (const Expr *Arg : CE->arguments())
3680      mangleExpression(Arg);
3681    Out << 'E';
3682    break;
3683  }
3684
3685  case Expr::CXXNewExprClass: {
3686    const CXXNewExpr *New = cast<CXXNewExpr>(E);
3687    if (New->isGlobalNew()) Out << "gs";
3688    Out << (New->isArray() ? "na" : "nw");
3689    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3690           E = New->placement_arg_end(); I != E; ++I)
3691      mangleExpression(*I);
3692    Out << '_';
3693    mangleType(New->getAllocatedType());
3694    if (New->hasInitializer()) {
3695      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3696        Out << "il";
3697      else
3698        Out << "pi";
3699      const Expr *Init = New->getInitializer();
3700      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3701        // Directly inline the initializers.
3702        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3703                                                  E = CCE->arg_end();
3704             I != E; ++I)
3705          mangleExpression(*I);
3706      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3707        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3708          mangleExpression(PLE->getExpr(i));
3709      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3710                 isa<InitListExpr>(Init)) {
3711        // Only take InitListExprs apart for list-initialization.
3712        mangleInitListElements(cast<InitListExpr>(Init));
3713      } else
3714        mangleExpression(Init);
3715    }
3716    Out << 'E';
3717    break;
3718  }
3719
3720  case Expr::CXXPseudoDestructorExprClass: {
3721    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3722    if (const Expr *Base = PDE->getBase())
3723      mangleMemberExprBase(Base, PDE->isArrow());
3724    NestedNameSpecifier *Qualifier = PDE->getQualifier();
3725    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3726      if (Qualifier) {
3727        mangleUnresolvedPrefix(Qualifier,
3728                               /*Recursive=*/true);
3729        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3730        Out << 'E';
3731      } else {
3732        Out << "sr";
3733        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3734          Out << 'E';
3735      }
3736    } else if (Qualifier) {
3737      mangleUnresolvedPrefix(Qualifier);
3738    }
3739    // <base-unresolved-name> ::= dn <destructor-name>
3740    Out << "dn";
3741    QualType DestroyedType = PDE->getDestroyedType();
3742    mangleUnresolvedTypeOrSimpleId(DestroyedType);
3743    break;
3744  }
3745
3746  case Expr::MemberExprClass: {
3747    const MemberExpr *ME = cast<MemberExpr>(E);
3748    mangleMemberExpr(ME->getBase(), ME->isArrow(),
3749                     ME->getQualifier(), nullptr,
3750                     ME->getMemberDecl()->getDeclName(),
3751                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3752                     Arity);
3753    break;
3754  }
3755
3756  case Expr::UnresolvedMemberExprClass: {
3757    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3758    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3759                     ME->isArrow(), ME->getQualifier(), nullptr,
3760                     ME->getMemberName(),
3761                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3762                     Arity);
3763    break;
3764  }
3765
3766  case Expr::CXXDependentScopeMemberExprClass: {
3767    const CXXDependentScopeMemberExpr *ME
3768      = cast<CXXDependentScopeMemberExpr>(E);
3769    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3770                     ME->isArrow(), ME->getQualifier(),
3771                     ME->getFirstQualifierFoundInScope(),
3772                     ME->getMember(),
3773                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3774                     Arity);
3775    break;
3776  }
3777
3778  case Expr::UnresolvedLookupExprClass: {
3779    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3780    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3781                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3782                         Arity);
3783    break;
3784  }
3785
3786  case Expr::CXXUnresolvedConstructExprClass: {
3787    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3788    unsigned N = CE->arg_size();
3789
3790    if (CE->isListInitialization()) {
3791      assert(N == 1 && "unexpected form for list initialization");
3792      auto *IL = cast<InitListExpr>(CE->getArg(0));
3793      Out << "tl";
3794      mangleType(CE->getType());
3795      mangleInitListElements(IL);
3796      Out << "E";
3797      return;
3798    }
3799
3800    Out << "cv";
3801    mangleType(CE->getType());
3802    if (N != 1) Out << '_';
3803    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3804    if (N != 1) Out << 'E';
3805    break;
3806  }
3807
3808  case Expr::CXXConstructExprClass: {
3809    const auto *CE = cast<CXXConstructExpr>(E);
3810    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3811      assert(
3812          CE->getNumArgs() >= 1 &&
3813          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3814          "implicit CXXConstructExpr must have one argument");
3815      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3816    }
3817    Out << "il";
3818    for (auto *E : CE->arguments())
3819      mangleExpression(E);
3820    Out << "E";
3821    break;
3822  }
3823
3824  case Expr::CXXTemporaryObjectExprClass: {
3825    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3826    unsigned N = CE->getNumArgs();
3827    bool List = CE->isListInitialization();
3828
3829    if (List)
3830      Out << "tl";
3831    else
3832      Out << "cv";
3833    mangleType(CE->getType());
3834    if (!List && N != 1)
3835      Out << '_';
3836    if (CE->isStdInitListInitialization()) {
3837      // We implicitly created a std::initializer_list<T> for the first argument
3838      // of a constructor of type U in an expression of the form U{a, b, c}.
3839      // Strip all the semantic gunk off the initializer list.
3840      auto *SILE =
3841          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3842      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3843      mangleInitListElements(ILE);
3844    } else {
3845      for (auto *E : CE->arguments())
3846        mangleExpression(E);
3847    }
3848    if (List || N != 1)
3849      Out << 'E';
3850    break;
3851  }
3852
3853  case Expr::CXXScalarValueInitExprClass:
3854    Out << "cv";
3855    mangleType(E->getType());
3856    Out << "_E";
3857    break;
3858
3859  case Expr::CXXNoexceptExprClass:
3860    Out << "nx";
3861    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3862    break;
3863
3864  case Expr::UnaryExprOrTypeTraitExprClass: {
3865    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3866
3867    if (!SAE->isInstantiationDependent()) {
3868      // Itanium C++ ABI:
3869      //   If the operand of a sizeof or alignof operator is not
3870      //   instantiation-dependent it is encoded as an integer literal
3871      //   reflecting the result of the operator.
3872      //
3873      //   If the result of the operator is implicitly converted to a known
3874      //   integer type, that type is used for the literal; otherwise, the type
3875      //   of std::size_t or std::ptrdiff_t is used.
3876      QualType T = (ImplicitlyConvertedToType.isNull() ||
3877                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3878                                                    : ImplicitlyConvertedToType;
3879      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3880      mangleIntegerLiteral(T, V);
3881      break;
3882    }
3883
3884    switch(SAE->getKind()) {
3885    case UETT_SizeOf:
3886      Out << 's';
3887      break;
3888    case UETT_PreferredAlignOf:
3889    case UETT_AlignOf:
3890      Out << 'a';
3891      break;
3892    case UETT_VecStep: {
3893      DiagnosticsEngine &Diags = Context.getDiags();
3894      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3895                                     "cannot yet mangle vec_step expression");
3896      Diags.Report(DiagID);
3897      return;
3898    }
3899    case UETT_OpenMPRequiredSimdAlign:
3900      DiagnosticsEngine &Diags = Context.getDiags();
3901      unsigned DiagID = Diags.getCustomDiagID(
3902          DiagnosticsEngine::Error,
3903          "cannot yet mangle __builtin_omp_required_simd_align expression");
3904      Diags.Report(DiagID);
3905      return;
3906    }
3907    if (SAE->isArgumentType()) {
3908      Out << 't';
3909      mangleType(SAE->getArgumentType());
3910    } else {
3911      Out << 'z';
3912      mangleExpression(SAE->getArgumentExpr());
3913    }
3914    break;
3915  }
3916
3917  case Expr::CXXThrowExprClass: {
3918    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3919    //  <expression> ::= tw <expression>  # throw expression
3920    //               ::= tr               # rethrow
3921    if (TE->getSubExpr()) {
3922      Out << "tw";
3923      mangleExpression(TE->getSubExpr());
3924    } else {
3925      Out << "tr";
3926    }
3927    break;
3928  }
3929
3930  case Expr::CXXTypeidExprClass: {
3931    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3932    //  <expression> ::= ti <type>        # typeid (type)
3933    //               ::= te <expression>  # typeid (expression)
3934    if (TIE->isTypeOperand()) {
3935      Out << "ti";
3936      mangleType(TIE->getTypeOperand(Context.getASTContext()));
3937    } else {
3938      Out << "te";
3939      mangleExpression(TIE->getExprOperand());
3940    }
3941    break;
3942  }
3943
3944  case Expr::CXXDeleteExprClass: {
3945    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3946    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3947    //               ::= [gs] da <expression>  # [::] delete [] expr
3948    if (DE->isGlobalDelete()) Out << "gs";
3949    Out << (DE->isArrayForm() ? "da" : "dl");
3950    mangleExpression(DE->getArgument());
3951    break;
3952  }
3953
3954  case Expr::UnaryOperatorClass: {
3955    const UnaryOperator *UO = cast<UnaryOperator>(E);
3956    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3957                       /*Arity=*/1);
3958    mangleExpression(UO->getSubExpr());
3959    break;
3960  }
3961
3962  case Expr::ArraySubscriptExprClass: {
3963    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3964
3965    // Array subscript is treated as a syntactically weird form of
3966    // binary operator.
3967    Out << "ix";
3968    mangleExpression(AE->getLHS());
3969    mangleExpression(AE->getRHS());
3970    break;
3971  }
3972
3973  case Expr::CompoundAssignOperatorClass: // fallthrough
3974  case Expr::BinaryOperatorClass: {
3975    const BinaryOperator *BO = cast<BinaryOperator>(E);
3976    if (BO->getOpcode() == BO_PtrMemD)
3977      Out << "ds";
3978    else
3979      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3980                         /*Arity=*/2);
3981    mangleExpression(BO->getLHS());
3982    mangleExpression(BO->getRHS());
3983    break;
3984  }
3985
3986  case Expr::ConditionalOperatorClass: {
3987    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3988    mangleOperatorName(OO_Conditional, /*Arity=*/3);
3989    mangleExpression(CO->getCond());
3990    mangleExpression(CO->getLHS(), Arity);
3991    mangleExpression(CO->getRHS(), Arity);
3992    break;
3993  }
3994
3995  case Expr::ImplicitCastExprClass: {
3996    ImplicitlyConvertedToType = E->getType();
3997    E = cast<ImplicitCastExpr>(E)->getSubExpr();
3998    goto recurse;
3999  }
4000
4001  case Expr::ObjCBridgedCastExprClass: {
4002    // Mangle ownership casts as a vendor extended operator __bridge,
4003    // __bridge_transfer, or __bridge_retain.
4004    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4005    Out << "v1U" << Kind.size() << Kind;
4006  }
4007  // Fall through to mangle the cast itself.
4008  LLVM_FALLTHROUGH;
4009
4010  case Expr::CStyleCastExprClass:
4011    mangleCastExpression(E, "cv");
4012    break;
4013
4014  case Expr::CXXFunctionalCastExprClass: {
4015    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4016    // FIXME: Add isImplicit to CXXConstructExpr.
4017    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4018      if (CCE->getParenOrBraceRange().isInvalid())
4019        Sub = CCE->getArg(0)->IgnoreImplicit();
4020    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4021      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4022    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4023      Out << "tl";
4024      mangleType(E->getType());
4025      mangleInitListElements(IL);
4026      Out << "E";
4027    } else {
4028      mangleCastExpression(E, "cv");
4029    }
4030    break;
4031  }
4032
4033  case Expr::CXXStaticCastExprClass:
4034    mangleCastExpression(E, "sc");
4035    break;
4036  case Expr::CXXDynamicCastExprClass:
4037    mangleCastExpression(E, "dc");
4038    break;
4039  case Expr::CXXReinterpretCastExprClass:
4040    mangleCastExpression(E, "rc");
4041    break;
4042  case Expr::CXXConstCastExprClass:
4043    mangleCastExpression(E, "cc");
4044    break;
4045
4046  case Expr::CXXOperatorCallExprClass: {
4047    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4048    unsigned NumArgs = CE->getNumArgs();
4049    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4050    // (the enclosing MemberExpr covers the syntactic portion).
4051    if (CE->getOperator() != OO_Arrow)
4052      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4053    // Mangle the arguments.
4054    for (unsigned i = 0; i != NumArgs; ++i)
4055      mangleExpression(CE->getArg(i));
4056    break;
4057  }
4058
4059  case Expr::ParenExprClass:
4060    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4061    break;
4062
4063  case Expr::DeclRefExprClass: {
4064    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
4065
4066    switch (D->getKind()) {
4067    default:
4068      //  <expr-primary> ::= L <mangled-name> E # external name
4069      Out << 'L';
4070      mangle(D);
4071      Out << 'E';
4072      break;
4073
4074    case Decl::ParmVar:
4075      mangleFunctionParam(cast<ParmVarDecl>(D));
4076      break;
4077
4078    case Decl::EnumConstant: {
4079      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4080      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4081      break;
4082    }
4083
4084    case Decl::NonTypeTemplateParm: {
4085      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4086      mangleTemplateParameter(PD->getIndex());
4087      break;
4088    }
4089
4090    }
4091
4092    break;
4093  }
4094
4095  case Expr::SubstNonTypeTemplateParmPackExprClass:
4096    // FIXME: not clear how to mangle this!
4097    // template <unsigned N...> class A {
4098    //   template <class U...> void foo(U (&x)[N]...);
4099    // };
4100    Out << "_SUBSTPACK_";
4101    break;
4102
4103  case Expr::FunctionParmPackExprClass: {
4104    // FIXME: not clear how to mangle this!
4105    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4106    Out << "v110_SUBSTPACK";
4107    mangleFunctionParam(FPPE->getParameterPack());
4108    break;
4109  }
4110
4111  case Expr::DependentScopeDeclRefExprClass: {
4112    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4113    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4114                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4115                         Arity);
4116    break;
4117  }
4118
4119  case Expr::CXXBindTemporaryExprClass:
4120    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4121    break;
4122
4123  case Expr::ExprWithCleanupsClass:
4124    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4125    break;
4126
4127  case Expr::FloatingLiteralClass: {
4128    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4129    Out << 'L';
4130    mangleType(FL->getType());
4131    mangleFloat(FL->getValue());
4132    Out << 'E';
4133    break;
4134  }
4135
4136  case Expr::CharacterLiteralClass:
4137    Out << 'L';
4138    mangleType(E->getType());
4139    Out << cast<CharacterLiteral>(E)->getValue();
4140    Out << 'E';
4141    break;
4142
4143  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4144  case Expr::ObjCBoolLiteralExprClass:
4145    Out << "Lb";
4146    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4147    Out << 'E';
4148    break;
4149
4150  case Expr::CXXBoolLiteralExprClass:
4151    Out << "Lb";
4152    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4153    Out << 'E';
4154    break;
4155
4156  case Expr::IntegerLiteralClass: {
4157    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4158    if (E->getType()->isSignedIntegerType())
4159      Value.setIsSigned(true);
4160    mangleIntegerLiteral(E->getType(), Value);
4161    break;
4162  }
4163
4164  case Expr::ImaginaryLiteralClass: {
4165    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4166    // Mangle as if a complex literal.
4167    // Proposal from David Vandevoorde, 2010.06.30.
4168    Out << 'L';
4169    mangleType(E->getType());
4170    if (const FloatingLiteral *Imag =
4171          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4172      // Mangle a floating-point zero of the appropriate type.
4173      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4174      Out << '_';
4175      mangleFloat(Imag->getValue());
4176    } else {
4177      Out << "0_";
4178      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4179      if (IE->getSubExpr()->getType()->isSignedIntegerType())
4180        Value.setIsSigned(true);
4181      mangleNumber(Value);
4182    }
4183    Out << 'E';
4184    break;
4185  }
4186
4187  case Expr::StringLiteralClass: {
4188    // Revised proposal from David Vandervoorde, 2010.07.15.
4189    Out << 'L';
4190    assert(isa<ConstantArrayType>(E->getType()));
4191    mangleType(E->getType());
4192    Out << 'E';
4193    break;
4194  }
4195
4196  case Expr::GNUNullExprClass:
4197    // FIXME: should this really be mangled the same as nullptr?
4198    // fallthrough
4199
4200  case Expr::CXXNullPtrLiteralExprClass: {
4201    Out << "LDnE";
4202    break;
4203  }
4204
4205  case Expr::PackExpansionExprClass:
4206    Out << "sp";
4207    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4208    break;
4209
4210  case Expr::SizeOfPackExprClass: {
4211    auto *SPE = cast<SizeOfPackExpr>(E);
4212    if (SPE->isPartiallySubstituted()) {
4213      Out << "sP";
4214      for (const auto &A : SPE->getPartialArguments())
4215        mangleTemplateArg(A);
4216      Out << "E";
4217      break;
4218    }
4219
4220    Out << "sZ";
4221    const NamedDecl *Pack = SPE->getPack();
4222    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4223      mangleTemplateParameter(TTP->getIndex());
4224    else if (const NonTypeTemplateParmDecl *NTTP
4225                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4226      mangleTemplateParameter(NTTP->getIndex());
4227    else if (const TemplateTemplateParmDecl *TempTP
4228                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
4229      mangleTemplateParameter(TempTP->getIndex());
4230    else
4231      mangleFunctionParam(cast<ParmVarDecl>(Pack));
4232    break;
4233  }
4234
4235  case Expr::MaterializeTemporaryExprClass: {
4236    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4237    break;
4238  }
4239
4240  case Expr::CXXFoldExprClass: {
4241    auto *FE = cast<CXXFoldExpr>(E);
4242    if (FE->isLeftFold())
4243      Out << (FE->getInit() ? "fL" : "fl");
4244    else
4245      Out << (FE->getInit() ? "fR" : "fr");
4246
4247    if (FE->getOperator() == BO_PtrMemD)
4248      Out << "ds";
4249    else
4250      mangleOperatorName(
4251          BinaryOperator::getOverloadedOperator(FE->getOperator()),
4252          /*Arity=*/2);
4253
4254    if (FE->getLHS())
4255      mangleExpression(FE->getLHS());
4256    if (FE->getRHS())
4257      mangleExpression(FE->getRHS());
4258    break;
4259  }
4260
4261  case Expr::CXXThisExprClass:
4262    Out << "fpT";
4263    break;
4264
4265  case Expr::CoawaitExprClass:
4266    // FIXME: Propose a non-vendor mangling.
4267    Out << "v18co_await";
4268    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4269    break;
4270
4271  case Expr::DependentCoawaitExprClass:
4272    // FIXME: Propose a non-vendor mangling.
4273    Out << "v18co_await";
4274    mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4275    break;
4276
4277  case Expr::CoyieldExprClass:
4278    // FIXME: Propose a non-vendor mangling.
4279    Out << "v18co_yield";
4280    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4281    break;
4282  }
4283}
4284
4285/// Mangle an expression which refers to a parameter variable.
4286///
4287/// <expression>     ::= <function-param>
4288/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4289/// <function-param> ::= fp <top-level CV-qualifiers>
4290///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4291/// <function-param> ::= fL <L-1 non-negative number>
4292///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4293/// <function-param> ::= fL <L-1 non-negative number>
4294///                      p <top-level CV-qualifiers>
4295///                      <I-1 non-negative number> _         # L > 0, I > 0
4296///
4297/// L is the nesting depth of the parameter, defined as 1 if the
4298/// parameter comes from the innermost function prototype scope
4299/// enclosing the current context, 2 if from the next enclosing
4300/// function prototype scope, and so on, with one special case: if
4301/// we've processed the full parameter clause for the innermost
4302/// function type, then L is one less.  This definition conveniently
4303/// makes it irrelevant whether a function's result type was written
4304/// trailing or leading, but is otherwise overly complicated; the
4305/// numbering was first designed without considering references to
4306/// parameter in locations other than return types, and then the
4307/// mangling had to be generalized without changing the existing
4308/// manglings.
4309///
4310/// I is the zero-based index of the parameter within its parameter
4311/// declaration clause.  Note that the original ABI document describes
4312/// this using 1-based ordinals.
4313void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4314  unsigned parmDepth = parm->getFunctionScopeDepth();
4315  unsigned parmIndex = parm->getFunctionScopeIndex();
4316
4317  // Compute 'L'.
4318  // parmDepth does not include the declaring function prototype.
4319  // FunctionTypeDepth does account for that.
4320  assert(parmDepth < FunctionTypeDepth.getDepth());
4321  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4322  if (FunctionTypeDepth.isInResultType())
4323    nestingDepth--;
4324
4325  if (nestingDepth == 0) {
4326    Out << "fp";
4327  } else {
4328    Out << "fL" << (nestingDepth - 1) << 'p';
4329  }
4330
4331  // Top-level qualifiers.  We don't have to worry about arrays here,
4332  // because parameters declared as arrays should already have been
4333  // transformed to have pointer type. FIXME: apparently these don't
4334  // get mangled if used as an rvalue of a known non-class type?
4335  assert(!parm->getType()->isArrayType()
4336         && "parameter's type is still an array type?");
4337
4338  if (const DependentAddressSpaceType *DAST =
4339      dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4340    mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4341  } else {
4342    mangleQualifiers(parm->getType().getQualifiers());
4343  }
4344
4345  // Parameter index.
4346  if (parmIndex != 0) {
4347    Out << (parmIndex - 1);
4348  }
4349  Out << '_';
4350}
4351
4352void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4353                                       const CXXRecordDecl *InheritedFrom) {
4354  // <ctor-dtor-name> ::= C1  # complete object constructor
4355  //                  ::= C2  # base object constructor
4356  //                  ::= CI1 <type> # complete inheriting constructor
4357  //                  ::= CI2 <type> # base inheriting constructor
4358  //
4359  // In addition, C5 is a comdat name with C1 and C2 in it.
4360  Out << 'C';
4361  if (InheritedFrom)
4362    Out << 'I';
4363  switch (T) {
4364  case Ctor_Complete:
4365    Out << '1';
4366    break;
4367  case Ctor_Base:
4368    Out << '2';
4369    break;
4370  case Ctor_Comdat:
4371    Out << '5';
4372    break;
4373  case Ctor_DefaultClosure:
4374  case Ctor_CopyingClosure:
4375    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4376  }
4377  if (InheritedFrom)
4378    mangleName(InheritedFrom);
4379}
4380
4381void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4382  // <ctor-dtor-name> ::= D0  # deleting destructor
4383  //                  ::= D1  # complete object destructor
4384  //                  ::= D2  # base object destructor
4385  //
4386  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4387  switch (T) {
4388  case Dtor_Deleting:
4389    Out << "D0";
4390    break;
4391  case Dtor_Complete:
4392    Out << "D1";
4393    break;
4394  case Dtor_Base:
4395    Out << "D2";
4396    break;
4397  case Dtor_Comdat:
4398    Out << "D5";
4399    break;
4400  }
4401}
4402
4403void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4404                                        unsigned NumTemplateArgs) {
4405  // <template-args> ::= I <template-arg>+ E
4406  Out << 'I';
4407  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4408    mangleTemplateArg(TemplateArgs[i].getArgument());
4409  Out << 'E';
4410}
4411
4412void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4413  // <template-args> ::= I <template-arg>+ E
4414  Out << 'I';
4415  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4416    mangleTemplateArg(AL[i]);
4417  Out << 'E';
4418}
4419
4420void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4421                                        unsigned NumTemplateArgs) {
4422  // <template-args> ::= I <template-arg>+ E
4423  Out << 'I';
4424  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4425    mangleTemplateArg(TemplateArgs[i]);
4426  Out << 'E';
4427}
4428
4429void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4430  // <template-arg> ::= <type>              # type or template
4431  //                ::= X <expression> E    # expression
4432  //                ::= <expr-primary>      # simple expressions
4433  //                ::= J <template-arg>* E # argument pack
4434  if (!A.isInstantiationDependent() || A.isDependent())
4435    A = Context.getASTContext().getCanonicalTemplateArgument(A);
4436
4437  switch (A.getKind()) {
4438  case TemplateArgument::Null:
4439    llvm_unreachable("Cannot mangle NULL template argument");
4440
4441  case TemplateArgument::Type:
4442    mangleType(A.getAsType());
4443    break;
4444  case TemplateArgument::Template:
4445    // This is mangled as <type>.
4446    mangleType(A.getAsTemplate());
4447    break;
4448  case TemplateArgument::TemplateExpansion:
4449    // <type>  ::= Dp <type>          # pack expansion (C++0x)
4450    Out << "Dp";
4451    mangleType(A.getAsTemplateOrTemplatePattern());
4452    break;
4453  case TemplateArgument::Expression: {
4454    // It's possible to end up with a DeclRefExpr here in certain
4455    // dependent cases, in which case we should mangle as a
4456    // declaration.
4457    const Expr *E = A.getAsExpr()->IgnoreParens();
4458    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4459      const ValueDecl *D = DRE->getDecl();
4460      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4461        Out << 'L';
4462        mangle(D);
4463        Out << 'E';
4464        break;
4465      }
4466    }
4467
4468    Out << 'X';
4469    mangleExpression(E);
4470    Out << 'E';
4471    break;
4472  }
4473  case TemplateArgument::Integral:
4474    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4475    break;
4476  case TemplateArgument::Declaration: {
4477    //  <expr-primary> ::= L <mangled-name> E # external name
4478    // Clang produces AST's where pointer-to-member-function expressions
4479    // and pointer-to-function expressions are represented as a declaration not
4480    // an expression. We compensate for it here to produce the correct mangling.
4481    ValueDecl *D = A.getAsDecl();
4482    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4483    if (compensateMangling) {
4484      Out << 'X';
4485      mangleOperatorName(OO_Amp, 1);
4486    }
4487
4488    Out << 'L';
4489    // References to external entities use the mangled name; if the name would
4490    // not normally be mangled then mangle it as unqualified.
4491    mangle(D);
4492    Out << 'E';
4493
4494    if (compensateMangling)
4495      Out << 'E';
4496
4497    break;
4498  }
4499  case TemplateArgument::NullPtr: {
4500    //  <expr-primary> ::= L <type> 0 E
4501    Out << 'L';
4502    mangleType(A.getNullPtrType());
4503    Out << "0E";
4504    break;
4505  }
4506  case TemplateArgument::Pack: {
4507    //  <template-arg> ::= J <template-arg>* E
4508    Out << 'J';
4509    for (const auto &P : A.pack_elements())
4510      mangleTemplateArg(P);
4511    Out << 'E';
4512  }
4513  }
4514}
4515
4516void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4517  // <template-param> ::= T_    # first template parameter
4518  //                  ::= T <parameter-2 non-negative number> _
4519  if (Index == 0)
4520    Out << "T_";
4521  else
4522    Out << 'T' << (Index - 1) << '_';
4523}
4524
4525void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4526  if (SeqID == 1)
4527    Out << '0';
4528  else if (SeqID > 1) {
4529    SeqID--;
4530
4531    // <seq-id> is encoded in base-36, using digits and upper case letters.
4532    char Buffer[7]; // log(2**32) / log(36) ~= 7
4533    MutableArrayRef<char> BufferRef(Buffer);
4534    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4535
4536    for (; SeqID != 0; SeqID /= 36) {
4537      unsigned C = SeqID % 36;
4538      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4539    }
4540
4541    Out.write(I.base(), I - BufferRef.rbegin());
4542  }
4543  Out << '_';
4544}
4545
4546void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4547  bool result = mangleSubstitution(tname);
4548  assert(result && "no existing substitution for template name");
4549  (void) result;
4550}
4551
4552// <substitution> ::= S <seq-id> _
4553//                ::= S_
4554bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4555  // Try one of the standard substitutions first.
4556  if (mangleStandardSubstitution(ND))
4557    return true;
4558
4559  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4560  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4561}
4562
4563/// Determine whether the given type has any qualifiers that are relevant for
4564/// substitutions.
4565static bool hasMangledSubstitutionQualifiers(QualType T) {
4566  Qualifiers Qs = T.getQualifiers();
4567  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4568}
4569
4570bool CXXNameMangler::mangleSubstitution(QualType T) {
4571  if (!hasMangledSubstitutionQualifiers(T)) {
4572    if (const RecordType *RT = T->getAs<RecordType>())
4573      return mangleSubstitution(RT->getDecl());
4574  }
4575
4576  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4577
4578  return mangleSubstitution(TypePtr);
4579}
4580
4581bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4582  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4583    return mangleSubstitution(TD);
4584
4585  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4586  return mangleSubstitution(
4587                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4588}
4589
4590bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4591  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4592  if (I == Substitutions.end())
4593    return false;
4594
4595  unsigned SeqID = I->second;
4596  Out << 'S';
4597  mangleSeqID(SeqID);
4598
4599  return true;
4600}
4601
4602static bool isCharType(QualType T) {
4603  if (T.isNull())
4604    return false;
4605
4606  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4607    T->isSpecificBuiltinType(BuiltinType::Char_U);
4608}
4609
4610/// Returns whether a given type is a template specialization of a given name
4611/// with a single argument of type char.
4612static bool isCharSpecialization(QualType T, const char *Name) {
4613  if (T.isNull())
4614    return false;
4615
4616  const RecordType *RT = T->getAs<RecordType>();
4617  if (!RT)
4618    return false;
4619
4620  const ClassTemplateSpecializationDecl *SD =
4621    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4622  if (!SD)
4623    return false;
4624
4625  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4626    return false;
4627
4628  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4629  if (TemplateArgs.size() != 1)
4630    return false;
4631
4632  if (!isCharType(TemplateArgs[0].getAsType()))
4633    return false;
4634
4635  return SD->getIdentifier()->getName() == Name;
4636}
4637
4638template <std::size_t StrLen>
4639static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4640                                       const char (&Str)[StrLen]) {
4641  if (!SD->getIdentifier()->isStr(Str))
4642    return false;
4643
4644  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4645  if (TemplateArgs.size() != 2)
4646    return false;
4647
4648  if (!isCharType(TemplateArgs[0].getAsType()))
4649    return false;
4650
4651  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4652    return false;
4653
4654  return true;
4655}
4656
4657bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4658  // <substitution> ::= St # ::std::
4659  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4660    if (isStd(NS)) {
4661      Out << "St";
4662      return true;
4663    }
4664  }
4665
4666  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4667    if (!isStdNamespace(getEffectiveDeclContext(TD)))
4668      return false;
4669
4670    // <substitution> ::= Sa # ::std::allocator
4671    if (TD->getIdentifier()->isStr("allocator")) {
4672      Out << "Sa";
4673      return true;
4674    }
4675
4676    // <<substitution> ::= Sb # ::std::basic_string
4677    if (TD->getIdentifier()->isStr("basic_string")) {
4678      Out << "Sb";
4679      return true;
4680    }
4681  }
4682
4683  if (const ClassTemplateSpecializationDecl *SD =
4684        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4685    if (!isStdNamespace(getEffectiveDeclContext(SD)))
4686      return false;
4687
4688    //    <substitution> ::= Ss # ::std::basic_string<char,
4689    //                            ::std::char_traits<char>,
4690    //                            ::std::allocator<char> >
4691    if (SD->getIdentifier()->isStr("basic_string")) {
4692      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4693
4694      if (TemplateArgs.size() != 3)
4695        return false;
4696
4697      if (!isCharType(TemplateArgs[0].getAsType()))
4698        return false;
4699
4700      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4701        return false;
4702
4703      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4704        return false;
4705
4706      Out << "Ss";
4707      return true;
4708    }
4709
4710    //    <substitution> ::= Si # ::std::basic_istream<char,
4711    //                            ::std::char_traits<char> >
4712    if (isStreamCharSpecialization(SD, "basic_istream")) {
4713      Out << "Si";
4714      return true;
4715    }
4716
4717    //    <substitution> ::= So # ::std::basic_ostream<char,
4718    //                            ::std::char_traits<char> >
4719    if (isStreamCharSpecialization(SD, "basic_ostream")) {
4720      Out << "So";
4721      return true;
4722    }
4723
4724    //    <substitution> ::= Sd # ::std::basic_iostream<char,
4725    //                            ::std::char_traits<char> >
4726    if (isStreamCharSpecialization(SD, "basic_iostream")) {
4727      Out << "Sd";
4728      return true;
4729    }
4730  }
4731  return false;
4732}
4733
4734void CXXNameMangler::addSubstitution(QualType T) {
4735  if (!hasMangledSubstitutionQualifiers(T)) {
4736    if (const RecordType *RT = T->getAs<RecordType>()) {
4737      addSubstitution(RT->getDecl());
4738      return;
4739    }
4740  }
4741
4742  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4743  addSubstitution(TypePtr);
4744}
4745
4746void CXXNameMangler::addSubstitution(TemplateName Template) {
4747  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4748    return addSubstitution(TD);
4749
4750  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4751  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4752}
4753
4754void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4755  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4756  Substitutions[Ptr] = SeqID++;
4757}
4758
4759void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4760  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4761  if (Other->SeqID > SeqID) {
4762    Substitutions.swap(Other->Substitutions);
4763    SeqID = Other->SeqID;
4764  }
4765}
4766
4767CXXNameMangler::AbiTagList
4768CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4769  // When derived abi tags are disabled there is no need to make any list.
4770  if (DisableDerivedAbiTags)
4771    return AbiTagList();
4772
4773  llvm::raw_null_ostream NullOutStream;
4774  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4775  TrackReturnTypeTags.disableDerivedAbiTags();
4776
4777  const FunctionProtoType *Proto =
4778      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4779  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4780  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4781  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4782  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4783  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4784
4785  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4786}
4787
4788CXXNameMangler::AbiTagList
4789CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4790  // When derived abi tags are disabled there is no need to make any list.
4791  if (DisableDerivedAbiTags)
4792    return AbiTagList();
4793
4794  llvm::raw_null_ostream NullOutStream;
4795  CXXNameMangler TrackVariableType(*this, NullOutStream);
4796  TrackVariableType.disableDerivedAbiTags();
4797
4798  TrackVariableType.mangleType(VD->getType());
4799
4800  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4801}
4802
4803bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4804                                       const VarDecl *VD) {
4805  llvm::raw_null_ostream NullOutStream;
4806  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4807  TrackAbiTags.mangle(VD);
4808  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4809}
4810
4811//
4812
4813/// Mangles the name of the declaration D and emits that name to the given
4814/// output stream.
4815///
4816/// If the declaration D requires a mangled name, this routine will emit that
4817/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4818/// and this routine will return false. In this case, the caller should just
4819/// emit the identifier of the declaration (\c D->getIdentifier()) as its
4820/// name.
4821void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4822                                             raw_ostream &Out) {
4823  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4824          "Invalid mangleName() call, argument is not a variable or function!");
4825  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4826         "Invalid mangleName() call on 'structor decl!");
4827
4828  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4829                                 getASTContext().getSourceManager(),
4830                                 "Mangling declaration");
4831
4832  CXXNameMangler Mangler(*this, Out, D);
4833  Mangler.mangle(D);
4834}
4835
4836void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4837                                             CXXCtorType Type,
4838                                             raw_ostream &Out) {
4839  CXXNameMangler Mangler(*this, Out, D, Type);
4840  Mangler.mangle(D);
4841}
4842
4843void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4844                                             CXXDtorType Type,
4845                                             raw_ostream &Out) {
4846  CXXNameMangler Mangler(*this, Out, D, Type);
4847  Mangler.mangle(D);
4848}
4849
4850void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4851                                                   raw_ostream &Out) {
4852  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4853  Mangler.mangle(D);
4854}
4855
4856void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4857                                                   raw_ostream &Out) {
4858  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4859  Mangler.mangle(D);
4860}
4861
4862void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4863                                           const ThunkInfo &Thunk,
4864                                           raw_ostream &Out) {
4865  //  <special-name> ::= T <call-offset> <base encoding>
4866  //                      # base is the nominal target function of thunk
4867  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4868  //                      # base is the nominal target function of thunk
4869  //                      # first call-offset is 'this' adjustment
4870  //                      # second call-offset is result adjustment
4871
4872  assert(!isa<CXXDestructorDecl>(MD) &&
4873         "Use mangleCXXDtor for destructor decls!");
4874  CXXNameMangler Mangler(*this, Out);
4875  Mangler.getStream() << "_ZT";
4876  if (!Thunk.Return.isEmpty())
4877    Mangler.getStream() << 'c';
4878
4879  // Mangle the 'this' pointer adjustment.
4880  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4881                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4882
4883  // Mangle the return pointer adjustment if there is one.
4884  if (!Thunk.Return.isEmpty())
4885    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4886                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4887
4888  Mangler.mangleFunctionEncoding(MD);
4889}
4890
4891void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4892    const CXXDestructorDecl *DD, CXXDtorType Type,
4893    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4894  //  <special-name> ::= T <call-offset> <base encoding>
4895  //                      # base is the nominal target function of thunk
4896  CXXNameMangler Mangler(*this, Out, DD, Type);
4897  Mangler.getStream() << "_ZT";
4898
4899  // Mangle the 'this' pointer adjustment.
4900  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4901                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4902
4903  Mangler.mangleFunctionEncoding(DD);
4904}
4905
4906/// Returns the mangled name for a guard variable for the passed in VarDecl.
4907void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4908                                                         raw_ostream &Out) {
4909  //  <special-name> ::= GV <object name>       # Guard variable for one-time
4910  //                                            # initialization
4911  CXXNameMangler Mangler(*this, Out);
4912  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4913  // be a bug that is fixed in trunk.
4914  Mangler.getStream() << "_ZGV";
4915  Mangler.mangleName(D);
4916}
4917
4918void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4919                                                        raw_ostream &Out) {
4920  // These symbols are internal in the Itanium ABI, so the names don't matter.
4921  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4922  // avoid duplicate symbols.
4923  Out << "__cxx_global_var_init";
4924}
4925
4926void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4927                                                             raw_ostream &Out) {
4928  // Prefix the mangling of D with __dtor_.
4929  CXXNameMangler Mangler(*this, Out);
4930  Mangler.getStream() << "__dtor_";
4931  if (shouldMangleDeclName(D))
4932    Mangler.mangle(D);
4933  else
4934    Mangler.getStream() << D->getName();
4935}
4936
4937void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4938    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4939  CXXNameMangler Mangler(*this, Out);
4940  Mangler.getStream() << "__filt_";
4941  if (shouldMangleDeclName(EnclosingDecl))
4942    Mangler.mangle(EnclosingDecl);
4943  else
4944    Mangler.getStream() << EnclosingDecl->getName();
4945}
4946
4947void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4948    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4949  CXXNameMangler Mangler(*this, Out);
4950  Mangler.getStream() << "__fin_";
4951  if (shouldMangleDeclName(EnclosingDecl))
4952    Mangler.mangle(EnclosingDecl);
4953  else
4954    Mangler.getStream() << EnclosingDecl->getName();
4955}
4956
4957void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4958                                                            raw_ostream &Out) {
4959  //  <special-name> ::= TH <object name>
4960  CXXNameMangler Mangler(*this, Out);
4961  Mangler.getStream() << "_ZTH";
4962  Mangler.mangleName(D);
4963}
4964
4965void
4966ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4967                                                          raw_ostream &Out) {
4968  //  <special-name> ::= TW <object name>
4969  CXXNameMangler Mangler(*this, Out);
4970  Mangler.getStream() << "_ZTW";
4971  Mangler.mangleName(D);
4972}
4973
4974void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4975                                                        unsigned ManglingNumber,
4976                                                        raw_ostream &Out) {
4977  // We match the GCC mangling here.
4978  //  <special-name> ::= GR <object name>
4979  CXXNameMangler Mangler(*this, Out);
4980  Mangler.getStream() << "_ZGR";
4981  Mangler.mangleName(D);
4982  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4983  Mangler.mangleSeqID(ManglingNumber - 1);
4984}
4985
4986void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4987                                               raw_ostream &Out) {
4988  // <special-name> ::= TV <type>  # virtual table
4989  CXXNameMangler Mangler(*this, Out);
4990  Mangler.getStream() << "_ZTV";
4991  Mangler.mangleNameOrStandardSubstitution(RD);
4992}
4993
4994void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4995                                            raw_ostream &Out) {
4996  // <special-name> ::= TT <type>  # VTT structure
4997  CXXNameMangler Mangler(*this, Out);
4998  Mangler.getStream() << "_ZTT";
4999  Mangler.mangleNameOrStandardSubstitution(RD);
5000}
5001
5002void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5003                                                   int64_t Offset,
5004                                                   const CXXRecordDecl *Type,
5005                                                   raw_ostream &Out) {
5006  // <special-name> ::= TC <type> <offset number> _ <base type>
5007  CXXNameMangler Mangler(*this, Out);
5008  Mangler.getStream() << "_ZTC";
5009  Mangler.mangleNameOrStandardSubstitution(RD);
5010  Mangler.getStream() << Offset;
5011  Mangler.getStream() << '_';
5012  Mangler.mangleNameOrStandardSubstitution(Type);
5013}
5014
5015void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5016  // <special-name> ::= TI <type>  # typeinfo structure
5017  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5018  CXXNameMangler Mangler(*this, Out);
5019  Mangler.getStream() << "_ZTI";
5020  Mangler.mangleType(Ty);
5021}
5022
5023void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5024                                                 raw_ostream &Out) {
5025  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
5026  CXXNameMangler Mangler(*this, Out);
5027  Mangler.getStream() << "_ZTS";
5028  Mangler.mangleType(Ty);
5029}
5030
5031void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5032  mangleCXXRTTIName(Ty, Out);
5033}
5034
5035void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5036  llvm_unreachable("Can't mangle string literals");
5037}
5038
5039ItaniumMangleContext *
5040ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
5041  return new ItaniumMangleContextImpl(Context, Diags);
5042}
5043