1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implements C++ name mangling according to the Itanium C++ ABI,
10// which is used in GCC 3.2 and newer (and many compilers that are
11// ABI-compatible with GCC):
12//
13//   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14//
15//===----------------------------------------------------------------------===//
16#include "clang/AST/Mangle.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclOpenMP.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprConcepts.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36using namespace clang;
37
38namespace {
39
40/// Retrieve the declaration context that should be used when mangling the given
41/// declaration.
42static const DeclContext *getEffectiveDeclContext(const Decl *D) {
43  // The ABI assumes that lambda closure types that occur within
44  // default arguments live in the context of the function. However, due to
45  // the way in which Clang parses and creates function declarations, this is
46  // not the case: the lambda closure type ends up living in the context
47  // where the function itself resides, because the function declaration itself
48  // had not yet been created. Fix the context here.
49  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
50    if (RD->isLambda())
51      if (ParmVarDecl *ContextParam
52            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
53        return ContextParam->getDeclContext();
54  }
55
56  // Perform the same check for block literals.
57  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
58    if (ParmVarDecl *ContextParam
59          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
60      return ContextParam->getDeclContext();
61  }
62
63  const DeclContext *DC = D->getDeclContext();
64  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
65      isa<OMPDeclareMapperDecl>(DC)) {
66    return getEffectiveDeclContext(cast<Decl>(DC));
67  }
68
69  if (const auto *VD = dyn_cast<VarDecl>(D))
70    if (VD->isExternC())
71      return VD->getASTContext().getTranslationUnitDecl();
72
73  if (const auto *FD = dyn_cast<FunctionDecl>(D))
74    if (FD->isExternC())
75      return FD->getASTContext().getTranslationUnitDecl();
76
77  return DC->getRedeclContext();
78}
79
80static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
81  return getEffectiveDeclContext(cast<Decl>(DC));
82}
83
84static bool isLocalContainerContext(const DeclContext *DC) {
85  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
86}
87
88static const RecordDecl *GetLocalClassDecl(const Decl *D) {
89  const DeclContext *DC = getEffectiveDeclContext(D);
90  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
91    if (isLocalContainerContext(DC))
92      return dyn_cast<RecordDecl>(D);
93    D = cast<Decl>(DC);
94    DC = getEffectiveDeclContext(D);
95  }
96  return nullptr;
97}
98
99static const FunctionDecl *getStructor(const FunctionDecl *fn) {
100  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
101    return ftd->getTemplatedDecl();
102
103  return fn;
104}
105
106static const NamedDecl *getStructor(const NamedDecl *decl) {
107  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
108  return (fn ? getStructor(fn) : decl);
109}
110
111static bool isLambda(const NamedDecl *ND) {
112  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
113  if (!Record)
114    return false;
115
116  return Record->isLambda();
117}
118
119static const unsigned UnknownArity = ~0U;
120
121class ItaniumMangleContextImpl : public ItaniumMangleContext {
122  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
123  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
124  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
125
126public:
127  explicit ItaniumMangleContextImpl(ASTContext &Context,
128                                    DiagnosticsEngine &Diags)
129      : ItaniumMangleContext(Context, Diags) {}
130
131  /// @name Mangler Entry Points
132  /// @{
133
134  bool shouldMangleCXXName(const NamedDecl *D) override;
135  bool shouldMangleStringLiteral(const StringLiteral *) override {
136    return false;
137  }
138  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
139  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
140                   raw_ostream &) override;
141  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
142                          const ThisAdjustment &ThisAdjustment,
143                          raw_ostream &) override;
144  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
145                                raw_ostream &) override;
146  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
147  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
148  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
149                           const CXXRecordDecl *Type, raw_ostream &) override;
150  void mangleCXXRTTI(QualType T, raw_ostream &) override;
151  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
152  void mangleTypeName(QualType T, raw_ostream &) override;
153  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
154                     raw_ostream &) override;
155  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
156                     raw_ostream &) override;
157
158  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
159  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
160  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
161  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
162  void mangleDynamicAtExitDestructor(const VarDecl *D,
163                                     raw_ostream &Out) override;
164  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
165                                 raw_ostream &Out) override;
166  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
167                             raw_ostream &Out) override;
168  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
169  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
170                                       raw_ostream &) override;
171
172  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
173
174  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
175
176  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
177    // Lambda closure types are already numbered.
178    if (isLambda(ND))
179      return false;
180
181    // Anonymous tags are already numbered.
182    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
183      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
184        return false;
185    }
186
187    // Use the canonical number for externally visible decls.
188    if (ND->isExternallyVisible()) {
189      unsigned discriminator = getASTContext().getManglingNumber(ND);
190      if (discriminator == 1)
191        return false;
192      disc = discriminator - 2;
193      return true;
194    }
195
196    // Make up a reasonable number for internal decls.
197    unsigned &discriminator = Uniquifier[ND];
198    if (!discriminator) {
199      const DeclContext *DC = getEffectiveDeclContext(ND);
200      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
201    }
202    if (discriminator == 1)
203      return false;
204    disc = discriminator-2;
205    return true;
206  }
207  /// @}
208};
209
210/// Manage the mangling of a single name.
211class CXXNameMangler {
212  ItaniumMangleContextImpl &Context;
213  raw_ostream &Out;
214  bool NullOut = false;
215  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
216  /// This mode is used when mangler creates another mangler recursively to
217  /// calculate ABI tags for the function return value or the variable type.
218  /// Also it is required to avoid infinite recursion in some cases.
219  bool DisableDerivedAbiTags = false;
220
221  /// The "structor" is the top-level declaration being mangled, if
222  /// that's not a template specialization; otherwise it's the pattern
223  /// for that specialization.
224  const NamedDecl *Structor;
225  unsigned StructorType;
226
227  /// The next substitution sequence number.
228  unsigned SeqID;
229
230  class FunctionTypeDepthState {
231    unsigned Bits;
232
233    enum { InResultTypeMask = 1 };
234
235  public:
236    FunctionTypeDepthState() : Bits(0) {}
237
238    /// The number of function types we're inside.
239    unsigned getDepth() const {
240      return Bits >> 1;
241    }
242
243    /// True if we're in the return type of the innermost function type.
244    bool isInResultType() const {
245      return Bits & InResultTypeMask;
246    }
247
248    FunctionTypeDepthState push() {
249      FunctionTypeDepthState tmp = *this;
250      Bits = (Bits & ~InResultTypeMask) + 2;
251      return tmp;
252    }
253
254    void enterResultType() {
255      Bits |= InResultTypeMask;
256    }
257
258    void leaveResultType() {
259      Bits &= ~InResultTypeMask;
260    }
261
262    void pop(FunctionTypeDepthState saved) {
263      assert(getDepth() == saved.getDepth() + 1);
264      Bits = saved.Bits;
265    }
266
267  } FunctionTypeDepth;
268
269  // abi_tag is a gcc attribute, taking one or more strings called "tags".
270  // The goal is to annotate against which version of a library an object was
271  // built and to be able to provide backwards compatibility ("dual abi").
272  // For more information see docs/ItaniumMangleAbiTags.rst.
273  typedef SmallVector<StringRef, 4> AbiTagList;
274
275  // State to gather all implicit and explicit tags used in a mangled name.
276  // Must always have an instance of this while emitting any name to keep
277  // track.
278  class AbiTagState final {
279  public:
280    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
281      Parent = LinkHead;
282      LinkHead = this;
283    }
284
285    // No copy, no move.
286    AbiTagState(const AbiTagState &) = delete;
287    AbiTagState &operator=(const AbiTagState &) = delete;
288
289    ~AbiTagState() { pop(); }
290
291    void write(raw_ostream &Out, const NamedDecl *ND,
292               const AbiTagList *AdditionalAbiTags) {
293      ND = cast<NamedDecl>(ND->getCanonicalDecl());
294      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
295        assert(
296            !AdditionalAbiTags &&
297            "only function and variables need a list of additional abi tags");
298        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
299          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
300            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
301                               AbiTag->tags().end());
302          }
303          // Don't emit abi tags for namespaces.
304          return;
305        }
306      }
307
308      AbiTagList TagList;
309      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
310        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
311                           AbiTag->tags().end());
312        TagList.insert(TagList.end(), AbiTag->tags().begin(),
313                       AbiTag->tags().end());
314      }
315
316      if (AdditionalAbiTags) {
317        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
318                           AdditionalAbiTags->end());
319        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
320                       AdditionalAbiTags->end());
321      }
322
323      llvm::sort(TagList);
324      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
325
326      writeSortedUniqueAbiTags(Out, TagList);
327    }
328
329    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
330    void setUsedAbiTags(const AbiTagList &AbiTags) {
331      UsedAbiTags = AbiTags;
332    }
333
334    const AbiTagList &getEmittedAbiTags() const {
335      return EmittedAbiTags;
336    }
337
338    const AbiTagList &getSortedUniqueUsedAbiTags() {
339      llvm::sort(UsedAbiTags);
340      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
341                        UsedAbiTags.end());
342      return UsedAbiTags;
343    }
344
345  private:
346    //! All abi tags used implicitly or explicitly.
347    AbiTagList UsedAbiTags;
348    //! All explicit abi tags (i.e. not from namespace).
349    AbiTagList EmittedAbiTags;
350
351    AbiTagState *&LinkHead;
352    AbiTagState *Parent = nullptr;
353
354    void pop() {
355      assert(LinkHead == this &&
356             "abi tag link head must point to us on destruction");
357      if (Parent) {
358        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
359                                   UsedAbiTags.begin(), UsedAbiTags.end());
360        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
361                                      EmittedAbiTags.begin(),
362                                      EmittedAbiTags.end());
363      }
364      LinkHead = Parent;
365    }
366
367    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
368      for (const auto &Tag : AbiTags) {
369        EmittedAbiTags.push_back(Tag);
370        Out << "B";
371        Out << Tag.size();
372        Out << Tag;
373      }
374    }
375  };
376
377  AbiTagState *AbiTags = nullptr;
378  AbiTagState AbiTagsRoot;
379
380  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
381  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
382
383  ASTContext &getASTContext() const { return Context.getASTContext(); }
384
385public:
386  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
387                 const NamedDecl *D = nullptr, bool NullOut_ = false)
388    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
389      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
390    // These can't be mangled without a ctor type or dtor type.
391    assert(!D || (!isa<CXXDestructorDecl>(D) &&
392                  !isa<CXXConstructorDecl>(D)));
393  }
394  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
395                 const CXXConstructorDecl *D, CXXCtorType Type)
396    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
397      SeqID(0), AbiTagsRoot(AbiTags) { }
398  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399                 const CXXDestructorDecl *D, CXXDtorType Type)
400    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
401      SeqID(0), AbiTagsRoot(AbiTags) { }
402
403  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
404      : Context(Outer.Context), Out(Out_), NullOut(false),
405        Structor(Outer.Structor), StructorType(Outer.StructorType),
406        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
407        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
408
409  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
410      : Context(Outer.Context), Out(Out_), NullOut(true),
411        Structor(Outer.Structor), StructorType(Outer.StructorType),
412        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
413        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
414
415  raw_ostream &getStream() { return Out; }
416
417  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
418  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
419
420  void mangle(const NamedDecl *D);
421  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
422  void mangleNumber(const llvm::APSInt &I);
423  void mangleNumber(int64_t Number);
424  void mangleFloat(const llvm::APFloat &F);
425  void mangleFunctionEncoding(const FunctionDecl *FD);
426  void mangleSeqID(unsigned SeqID);
427  void mangleName(const NamedDecl *ND);
428  void mangleType(QualType T);
429  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
430  void mangleLambdaSig(const CXXRecordDecl *Lambda);
431
432private:
433
434  bool mangleSubstitution(const NamedDecl *ND);
435  bool mangleSubstitution(QualType T);
436  bool mangleSubstitution(TemplateName Template);
437  bool mangleSubstitution(uintptr_t Ptr);
438
439  void mangleExistingSubstitution(TemplateName name);
440
441  bool mangleStandardSubstitution(const NamedDecl *ND);
442
443  void addSubstitution(const NamedDecl *ND) {
444    ND = cast<NamedDecl>(ND->getCanonicalDecl());
445
446    addSubstitution(reinterpret_cast<uintptr_t>(ND));
447  }
448  void addSubstitution(QualType T);
449  void addSubstitution(TemplateName Template);
450  void addSubstitution(uintptr_t Ptr);
451  // Destructive copy substitutions from other mangler.
452  void extendSubstitutions(CXXNameMangler* Other);
453
454  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
455                              bool recursive = false);
456  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
457                            DeclarationName name,
458                            const TemplateArgumentLoc *TemplateArgs,
459                            unsigned NumTemplateArgs,
460                            unsigned KnownArity = UnknownArity);
461
462  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
463
464  void mangleNameWithAbiTags(const NamedDecl *ND,
465                             const AbiTagList *AdditionalAbiTags);
466  void mangleModuleName(const Module *M);
467  void mangleModuleNamePrefix(StringRef Name);
468  void mangleTemplateName(const TemplateDecl *TD,
469                          const TemplateArgument *TemplateArgs,
470                          unsigned NumTemplateArgs);
471  void mangleUnqualifiedName(const NamedDecl *ND,
472                             const AbiTagList *AdditionalAbiTags) {
473    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
474                          AdditionalAbiTags);
475  }
476  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
477                             unsigned KnownArity,
478                             const AbiTagList *AdditionalAbiTags);
479  void mangleUnscopedName(const NamedDecl *ND,
480                          const AbiTagList *AdditionalAbiTags);
481  void mangleUnscopedTemplateName(const TemplateDecl *ND,
482                                  const AbiTagList *AdditionalAbiTags);
483  void mangleUnscopedTemplateName(TemplateName,
484                                  const AbiTagList *AdditionalAbiTags);
485  void mangleSourceName(const IdentifierInfo *II);
486  void mangleRegCallName(const IdentifierInfo *II);
487  void mangleSourceNameWithAbiTags(
488      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
489  void mangleLocalName(const Decl *D,
490                       const AbiTagList *AdditionalAbiTags);
491  void mangleBlockForPrefix(const BlockDecl *Block);
492  void mangleUnqualifiedBlock(const BlockDecl *Block);
493  void mangleTemplateParamDecl(const NamedDecl *Decl);
494  void mangleLambda(const CXXRecordDecl *Lambda);
495  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
496                        const AbiTagList *AdditionalAbiTags,
497                        bool NoFunction=false);
498  void mangleNestedName(const TemplateDecl *TD,
499                        const TemplateArgument *TemplateArgs,
500                        unsigned NumTemplateArgs);
501  void manglePrefix(NestedNameSpecifier *qualifier);
502  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
503  void manglePrefix(QualType type);
504  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
505  void mangleTemplatePrefix(TemplateName Template);
506  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
507                                      StringRef Prefix = "");
508  void mangleOperatorName(DeclarationName Name, unsigned Arity);
509  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
510  void mangleVendorQualifier(StringRef qualifier);
511  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
512  void mangleRefQualifier(RefQualifierKind RefQualifier);
513
514  void mangleObjCMethodName(const ObjCMethodDecl *MD);
515
516  // Declare manglers for every type class.
517#define ABSTRACT_TYPE(CLASS, PARENT)
518#define NON_CANONICAL_TYPE(CLASS, PARENT)
519#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
520#include "clang/AST/TypeNodes.inc"
521
522  void mangleType(const TagType*);
523  void mangleType(TemplateName);
524  static StringRef getCallingConvQualifierName(CallingConv CC);
525  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
526  void mangleExtFunctionInfo(const FunctionType *T);
527  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
528                              const FunctionDecl *FD = nullptr);
529  void mangleNeonVectorType(const VectorType *T);
530  void mangleNeonVectorType(const DependentVectorType *T);
531  void mangleAArch64NeonVectorType(const VectorType *T);
532  void mangleAArch64NeonVectorType(const DependentVectorType *T);
533
534  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
535  void mangleMemberExprBase(const Expr *base, bool isArrow);
536  void mangleMemberExpr(const Expr *base, bool isArrow,
537                        NestedNameSpecifier *qualifier,
538                        NamedDecl *firstQualifierLookup,
539                        DeclarationName name,
540                        const TemplateArgumentLoc *TemplateArgs,
541                        unsigned NumTemplateArgs,
542                        unsigned knownArity);
543  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
544  void mangleInitListElements(const InitListExpr *InitList);
545  void mangleDeclRefExpr(const NamedDecl *D);
546  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
547  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
548  void mangleCXXDtorType(CXXDtorType T);
549
550  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
551                          unsigned NumTemplateArgs);
552  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
553                          unsigned NumTemplateArgs);
554  void mangleTemplateArgs(const TemplateArgumentList &AL);
555  void mangleTemplateArg(TemplateArgument A);
556
557  void mangleTemplateParameter(unsigned Depth, unsigned Index);
558
559  void mangleFunctionParam(const ParmVarDecl *parm);
560
561  void writeAbiTags(const NamedDecl *ND,
562                    const AbiTagList *AdditionalAbiTags);
563
564  // Returns sorted unique list of ABI tags.
565  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
566  // Returns sorted unique list of ABI tags.
567  AbiTagList makeVariableTypeTags(const VarDecl *VD);
568};
569
570}
571
572bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
573  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
574  if (FD) {
575    LanguageLinkage L = FD->getLanguageLinkage();
576    // Overloadable functions need mangling.
577    if (FD->hasAttr<OverloadableAttr>())
578      return true;
579
580    // "main" is not mangled.
581    if (FD->isMain())
582      return false;
583
584    // The Windows ABI expects that we would never mangle "typical"
585    // user-defined entry points regardless of visibility or freestanding-ness.
586    //
587    // N.B. This is distinct from asking about "main".  "main" has a lot of
588    // special rules associated with it in the standard while these
589    // user-defined entry points are outside of the purview of the standard.
590    // For example, there can be only one definition for "main" in a standards
591    // compliant program; however nothing forbids the existence of wmain and
592    // WinMain in the same translation unit.
593    if (FD->isMSVCRTEntryPoint())
594      return false;
595
596    // C++ functions and those whose names are not a simple identifier need
597    // mangling.
598    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
599      return true;
600
601    // C functions are not mangled.
602    if (L == CLanguageLinkage)
603      return false;
604  }
605
606  // Otherwise, no mangling is done outside C++ mode.
607  if (!getASTContext().getLangOpts().CPlusPlus)
608    return false;
609
610  const VarDecl *VD = dyn_cast<VarDecl>(D);
611  if (VD && !isa<DecompositionDecl>(D)) {
612    // C variables are not mangled.
613    if (VD->isExternC())
614      return false;
615
616    // Variables at global scope with non-internal linkage are not mangled
617    const DeclContext *DC = getEffectiveDeclContext(D);
618    // Check for extern variable declared locally.
619    if (DC->isFunctionOrMethod() && D->hasLinkage())
620      while (!DC->isNamespace() && !DC->isTranslationUnit())
621        DC = getEffectiveParentContext(DC);
622    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
623        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
624        !isa<VarTemplateSpecializationDecl>(D))
625      return false;
626  }
627
628  return true;
629}
630
631void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
632                                  const AbiTagList *AdditionalAbiTags) {
633  assert(AbiTags && "require AbiTagState");
634  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
635}
636
637void CXXNameMangler::mangleSourceNameWithAbiTags(
638    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
639  mangleSourceName(ND->getIdentifier());
640  writeAbiTags(ND, AdditionalAbiTags);
641}
642
643void CXXNameMangler::mangle(const NamedDecl *D) {
644  // <mangled-name> ::= _Z <encoding>
645  //            ::= <data name>
646  //            ::= <special-name>
647  Out << "_Z";
648  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
649    mangleFunctionEncoding(FD);
650  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
651    mangleName(VD);
652  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
653    mangleName(IFD->getAnonField());
654  else
655    mangleName(cast<FieldDecl>(D));
656}
657
658void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
659  // <encoding> ::= <function name> <bare-function-type>
660
661  // Don't mangle in the type if this isn't a decl we should typically mangle.
662  if (!Context.shouldMangleDeclName(FD)) {
663    mangleName(FD);
664    return;
665  }
666
667  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
668  if (ReturnTypeAbiTags.empty()) {
669    // There are no tags for return type, the simplest case.
670    mangleName(FD);
671    mangleFunctionEncodingBareType(FD);
672    return;
673  }
674
675  // Mangle function name and encoding to temporary buffer.
676  // We have to output name and encoding to the same mangler to get the same
677  // substitution as it will be in final mangling.
678  SmallString<256> FunctionEncodingBuf;
679  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
680  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
681  // Output name of the function.
682  FunctionEncodingMangler.disableDerivedAbiTags();
683  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
684
685  // Remember length of the function name in the buffer.
686  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
687  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
688
689  // Get tags from return type that are not present in function name or
690  // encoding.
691  const AbiTagList &UsedAbiTags =
692      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
693  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
694  AdditionalAbiTags.erase(
695      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
696                          UsedAbiTags.begin(), UsedAbiTags.end(),
697                          AdditionalAbiTags.begin()),
698      AdditionalAbiTags.end());
699
700  // Output name with implicit tags and function encoding from temporary buffer.
701  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
702  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
703
704  // Function encoding could create new substitutions so we have to add
705  // temp mangled substitutions to main mangler.
706  extendSubstitutions(&FunctionEncodingMangler);
707}
708
709void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
710  if (FD->hasAttr<EnableIfAttr>()) {
711    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
712    Out << "Ua9enable_ifI";
713    for (AttrVec::const_iterator I = FD->getAttrs().begin(),
714                                 E = FD->getAttrs().end();
715         I != E; ++I) {
716      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
717      if (!EIA)
718        continue;
719      Out << 'X';
720      mangleExpression(EIA->getCond());
721      Out << 'E';
722    }
723    Out << 'E';
724    FunctionTypeDepth.pop(Saved);
725  }
726
727  // When mangling an inheriting constructor, the bare function type used is
728  // that of the inherited constructor.
729  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
730    if (auto Inherited = CD->getInheritedConstructor())
731      FD = Inherited.getConstructor();
732
733  // Whether the mangling of a function type includes the return type depends on
734  // the context and the nature of the function. The rules for deciding whether
735  // the return type is included are:
736  //
737  //   1. Template functions (names or types) have return types encoded, with
738  //   the exceptions listed below.
739  //   2. Function types not appearing as part of a function name mangling,
740  //   e.g. parameters, pointer types, etc., have return type encoded, with the
741  //   exceptions listed below.
742  //   3. Non-template function names do not have return types encoded.
743  //
744  // The exceptions mentioned in (1) and (2) above, for which the return type is
745  // never included, are
746  //   1. Constructors.
747  //   2. Destructors.
748  //   3. Conversion operator functions, e.g. operator int.
749  bool MangleReturnType = false;
750  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
751    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
752          isa<CXXConversionDecl>(FD)))
753      MangleReturnType = true;
754
755    // Mangle the type of the primary template.
756    FD = PrimaryTemplate->getTemplatedDecl();
757  }
758
759  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
760                         MangleReturnType, FD);
761}
762
763static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
764  while (isa<LinkageSpecDecl>(DC)) {
765    DC = getEffectiveParentContext(DC);
766  }
767
768  return DC;
769}
770
771/// Return whether a given namespace is the 'std' namespace.
772static bool isStd(const NamespaceDecl *NS) {
773  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
774                                ->isTranslationUnit())
775    return false;
776
777  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
778  return II && II->isStr("std");
779}
780
781// isStdNamespace - Return whether a given decl context is a toplevel 'std'
782// namespace.
783static bool isStdNamespace(const DeclContext *DC) {
784  if (!DC->isNamespace())
785    return false;
786
787  return isStd(cast<NamespaceDecl>(DC));
788}
789
790static const TemplateDecl *
791isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
792  // Check if we have a function template.
793  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
794    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
795      TemplateArgs = FD->getTemplateSpecializationArgs();
796      return TD;
797    }
798  }
799
800  // Check if we have a class template.
801  if (const ClassTemplateSpecializationDecl *Spec =
802        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
803    TemplateArgs = &Spec->getTemplateArgs();
804    return Spec->getSpecializedTemplate();
805  }
806
807  // Check if we have a variable template.
808  if (const VarTemplateSpecializationDecl *Spec =
809          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
810    TemplateArgs = &Spec->getTemplateArgs();
811    return Spec->getSpecializedTemplate();
812  }
813
814  return nullptr;
815}
816
817void CXXNameMangler::mangleName(const NamedDecl *ND) {
818  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
819    // Variables should have implicit tags from its type.
820    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
821    if (VariableTypeAbiTags.empty()) {
822      // Simple case no variable type tags.
823      mangleNameWithAbiTags(VD, nullptr);
824      return;
825    }
826
827    // Mangle variable name to null stream to collect tags.
828    llvm::raw_null_ostream NullOutStream;
829    CXXNameMangler VariableNameMangler(*this, NullOutStream);
830    VariableNameMangler.disableDerivedAbiTags();
831    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
832
833    // Get tags from variable type that are not present in its name.
834    const AbiTagList &UsedAbiTags =
835        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
836    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
837    AdditionalAbiTags.erase(
838        std::set_difference(VariableTypeAbiTags.begin(),
839                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
840                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
841        AdditionalAbiTags.end());
842
843    // Output name with implicit tags.
844    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
845  } else {
846    mangleNameWithAbiTags(ND, nullptr);
847  }
848}
849
850void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
851                                           const AbiTagList *AdditionalAbiTags) {
852  //  <name> ::= [<module-name>] <nested-name>
853  //         ::= [<module-name>] <unscoped-name>
854  //         ::= [<module-name>] <unscoped-template-name> <template-args>
855  //         ::= <local-name>
856  //
857  const DeclContext *DC = getEffectiveDeclContext(ND);
858
859  // If this is an extern variable declared locally, the relevant DeclContext
860  // is that of the containing namespace, or the translation unit.
861  // FIXME: This is a hack; extern variables declared locally should have
862  // a proper semantic declaration context!
863  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
864    while (!DC->isNamespace() && !DC->isTranslationUnit())
865      DC = getEffectiveParentContext(DC);
866  else if (GetLocalClassDecl(ND)) {
867    mangleLocalName(ND, AdditionalAbiTags);
868    return;
869  }
870
871  DC = IgnoreLinkageSpecDecls(DC);
872
873  if (isLocalContainerContext(DC)) {
874    mangleLocalName(ND, AdditionalAbiTags);
875    return;
876  }
877
878  // Do not mangle the owning module for an external linkage declaration.
879  // This enables backwards-compatibility with non-modular code, and is
880  // a valid choice since conflicts are not permitted by C++ Modules TS
881  // [basic.def.odr]/6.2.
882  if (!ND->hasExternalFormalLinkage())
883    if (Module *M = ND->getOwningModuleForLinkage())
884      mangleModuleName(M);
885
886  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
887    // Check if we have a template.
888    const TemplateArgumentList *TemplateArgs = nullptr;
889    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
890      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
891      mangleTemplateArgs(*TemplateArgs);
892      return;
893    }
894
895    mangleUnscopedName(ND, AdditionalAbiTags);
896    return;
897  }
898
899  mangleNestedName(ND, DC, AdditionalAbiTags);
900}
901
902void CXXNameMangler::mangleModuleName(const Module *M) {
903  // Implement the C++ Modules TS name mangling proposal; see
904  //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
905  //
906  //   <module-name> ::= W <unscoped-name>+ E
907  //                 ::= W <module-subst> <unscoped-name>* E
908  Out << 'W';
909  mangleModuleNamePrefix(M->Name);
910  Out << 'E';
911}
912
913void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
914  //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
915  //                 ::= W <seq-id - 10> _   # otherwise
916  auto It = ModuleSubstitutions.find(Name);
917  if (It != ModuleSubstitutions.end()) {
918    if (It->second < 10)
919      Out << '_' << static_cast<char>('0' + It->second);
920    else
921      Out << 'W' << (It->second - 10) << '_';
922    return;
923  }
924
925  // FIXME: Preserve hierarchy in module names rather than flattening
926  // them to strings; use Module*s as substitution keys.
927  auto Parts = Name.rsplit('.');
928  if (Parts.second.empty())
929    Parts.second = Parts.first;
930  else
931    mangleModuleNamePrefix(Parts.first);
932
933  Out << Parts.second.size() << Parts.second;
934  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
935}
936
937void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
938                                        const TemplateArgument *TemplateArgs,
939                                        unsigned NumTemplateArgs) {
940  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
941
942  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
943    mangleUnscopedTemplateName(TD, nullptr);
944    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
945  } else {
946    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
947  }
948}
949
950void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
951                                        const AbiTagList *AdditionalAbiTags) {
952  //  <unscoped-name> ::= <unqualified-name>
953  //                  ::= St <unqualified-name>   # ::std::
954
955  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
956    Out << "St";
957
958  mangleUnqualifiedName(ND, AdditionalAbiTags);
959}
960
961void CXXNameMangler::mangleUnscopedTemplateName(
962    const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
963  //     <unscoped-template-name> ::= <unscoped-name>
964  //                              ::= <substitution>
965  if (mangleSubstitution(ND))
966    return;
967
968  // <template-template-param> ::= <template-param>
969  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
970    assert(!AdditionalAbiTags &&
971           "template template param cannot have abi tags");
972    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
973  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
974    mangleUnscopedName(ND, AdditionalAbiTags);
975  } else {
976    mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
977  }
978
979  addSubstitution(ND);
980}
981
982void CXXNameMangler::mangleUnscopedTemplateName(
983    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
984  //     <unscoped-template-name> ::= <unscoped-name>
985  //                              ::= <substitution>
986  if (TemplateDecl *TD = Template.getAsTemplateDecl())
987    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
988
989  if (mangleSubstitution(Template))
990    return;
991
992  assert(!AdditionalAbiTags &&
993         "dependent template name cannot have abi tags");
994
995  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
996  assert(Dependent && "Not a dependent template name?");
997  if (const IdentifierInfo *Id = Dependent->getIdentifier())
998    mangleSourceName(Id);
999  else
1000    mangleOperatorName(Dependent->getOperator(), UnknownArity);
1001
1002  addSubstitution(Template);
1003}
1004
1005void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1006  // ABI:
1007  //   Floating-point literals are encoded using a fixed-length
1008  //   lowercase hexadecimal string corresponding to the internal
1009  //   representation (IEEE on Itanium), high-order bytes first,
1010  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1011  //   on Itanium.
1012  // The 'without leading zeroes' thing seems to be an editorial
1013  // mistake; see the discussion on cxx-abi-dev beginning on
1014  // 2012-01-16.
1015
1016  // Our requirements here are just barely weird enough to justify
1017  // using a custom algorithm instead of post-processing APInt::toString().
1018
1019  llvm::APInt valueBits = f.bitcastToAPInt();
1020  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1021  assert(numCharacters != 0);
1022
1023  // Allocate a buffer of the right number of characters.
1024  SmallVector<char, 20> buffer(numCharacters);
1025
1026  // Fill the buffer left-to-right.
1027  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1028    // The bit-index of the next hex digit.
1029    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1030
1031    // Project out 4 bits starting at 'digitIndex'.
1032    uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1033    hexDigit >>= (digitBitIndex % 64);
1034    hexDigit &= 0xF;
1035
1036    // Map that over to a lowercase hex digit.
1037    static const char charForHex[16] = {
1038      '0', '1', '2', '3', '4', '5', '6', '7',
1039      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1040    };
1041    buffer[stringIndex] = charForHex[hexDigit];
1042  }
1043
1044  Out.write(buffer.data(), numCharacters);
1045}
1046
1047void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1048  if (Value.isSigned() && Value.isNegative()) {
1049    Out << 'n';
1050    Value.abs().print(Out, /*signed*/ false);
1051  } else {
1052    Value.print(Out, /*signed*/ false);
1053  }
1054}
1055
1056void CXXNameMangler::mangleNumber(int64_t Number) {
1057  //  <number> ::= [n] <non-negative decimal integer>
1058  if (Number < 0) {
1059    Out << 'n';
1060    Number = -Number;
1061  }
1062
1063  Out << Number;
1064}
1065
1066void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1067  //  <call-offset>  ::= h <nv-offset> _
1068  //                 ::= v <v-offset> _
1069  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1070  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1071  //                      # virtual base override, with vcall offset
1072  if (!Virtual) {
1073    Out << 'h';
1074    mangleNumber(NonVirtual);
1075    Out << '_';
1076    return;
1077  }
1078
1079  Out << 'v';
1080  mangleNumber(NonVirtual);
1081  Out << '_';
1082  mangleNumber(Virtual);
1083  Out << '_';
1084}
1085
1086void CXXNameMangler::manglePrefix(QualType type) {
1087  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1088    if (!mangleSubstitution(QualType(TST, 0))) {
1089      mangleTemplatePrefix(TST->getTemplateName());
1090
1091      // FIXME: GCC does not appear to mangle the template arguments when
1092      // the template in question is a dependent template name. Should we
1093      // emulate that badness?
1094      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1095      addSubstitution(QualType(TST, 0));
1096    }
1097  } else if (const auto *DTST =
1098                 type->getAs<DependentTemplateSpecializationType>()) {
1099    if (!mangleSubstitution(QualType(DTST, 0))) {
1100      TemplateName Template = getASTContext().getDependentTemplateName(
1101          DTST->getQualifier(), DTST->getIdentifier());
1102      mangleTemplatePrefix(Template);
1103
1104      // FIXME: GCC does not appear to mangle the template arguments when
1105      // the template in question is a dependent template name. Should we
1106      // emulate that badness?
1107      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1108      addSubstitution(QualType(DTST, 0));
1109    }
1110  } else {
1111    // We use the QualType mangle type variant here because it handles
1112    // substitutions.
1113    mangleType(type);
1114  }
1115}
1116
1117/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1118///
1119/// \param recursive - true if this is being called recursively,
1120///   i.e. if there is more prefix "to the right".
1121void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1122                                            bool recursive) {
1123
1124  // x, ::x
1125  // <unresolved-name> ::= [gs] <base-unresolved-name>
1126
1127  // T::x / decltype(p)::x
1128  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1129
1130  // T::N::x /decltype(p)::N::x
1131  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1132  //                       <base-unresolved-name>
1133
1134  // A::x, N::y, A<T>::z; "gs" means leading "::"
1135  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1136  //                       <base-unresolved-name>
1137
1138  switch (qualifier->getKind()) {
1139  case NestedNameSpecifier::Global:
1140    Out << "gs";
1141
1142    // We want an 'sr' unless this is the entire NNS.
1143    if (recursive)
1144      Out << "sr";
1145
1146    // We never want an 'E' here.
1147    return;
1148
1149  case NestedNameSpecifier::Super:
1150    llvm_unreachable("Can't mangle __super specifier");
1151
1152  case NestedNameSpecifier::Namespace:
1153    if (qualifier->getPrefix())
1154      mangleUnresolvedPrefix(qualifier->getPrefix(),
1155                             /*recursive*/ true);
1156    else
1157      Out << "sr";
1158    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1159    break;
1160  case NestedNameSpecifier::NamespaceAlias:
1161    if (qualifier->getPrefix())
1162      mangleUnresolvedPrefix(qualifier->getPrefix(),
1163                             /*recursive*/ true);
1164    else
1165      Out << "sr";
1166    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1167    break;
1168
1169  case NestedNameSpecifier::TypeSpec:
1170  case NestedNameSpecifier::TypeSpecWithTemplate: {
1171    const Type *type = qualifier->getAsType();
1172
1173    // We only want to use an unresolved-type encoding if this is one of:
1174    //   - a decltype
1175    //   - a template type parameter
1176    //   - a template template parameter with arguments
1177    // In all of these cases, we should have no prefix.
1178    if (qualifier->getPrefix()) {
1179      mangleUnresolvedPrefix(qualifier->getPrefix(),
1180                             /*recursive*/ true);
1181    } else {
1182      // Otherwise, all the cases want this.
1183      Out << "sr";
1184    }
1185
1186    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1187      return;
1188
1189    break;
1190  }
1191
1192  case NestedNameSpecifier::Identifier:
1193    // Member expressions can have these without prefixes.
1194    if (qualifier->getPrefix())
1195      mangleUnresolvedPrefix(qualifier->getPrefix(),
1196                             /*recursive*/ true);
1197    else
1198      Out << "sr";
1199
1200    mangleSourceName(qualifier->getAsIdentifier());
1201    // An Identifier has no type information, so we can't emit abi tags for it.
1202    break;
1203  }
1204
1205  // If this was the innermost part of the NNS, and we fell out to
1206  // here, append an 'E'.
1207  if (!recursive)
1208    Out << 'E';
1209}
1210
1211/// Mangle an unresolved-name, which is generally used for names which
1212/// weren't resolved to specific entities.
1213void CXXNameMangler::mangleUnresolvedName(
1214    NestedNameSpecifier *qualifier, DeclarationName name,
1215    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1216    unsigned knownArity) {
1217  if (qualifier) mangleUnresolvedPrefix(qualifier);
1218  switch (name.getNameKind()) {
1219    // <base-unresolved-name> ::= <simple-id>
1220    case DeclarationName::Identifier:
1221      mangleSourceName(name.getAsIdentifierInfo());
1222      break;
1223    // <base-unresolved-name> ::= dn <destructor-name>
1224    case DeclarationName::CXXDestructorName:
1225      Out << "dn";
1226      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1227      break;
1228    // <base-unresolved-name> ::= on <operator-name>
1229    case DeclarationName::CXXConversionFunctionName:
1230    case DeclarationName::CXXLiteralOperatorName:
1231    case DeclarationName::CXXOperatorName:
1232      Out << "on";
1233      mangleOperatorName(name, knownArity);
1234      break;
1235    case DeclarationName::CXXConstructorName:
1236      llvm_unreachable("Can't mangle a constructor name!");
1237    case DeclarationName::CXXUsingDirective:
1238      llvm_unreachable("Can't mangle a using directive name!");
1239    case DeclarationName::CXXDeductionGuideName:
1240      llvm_unreachable("Can't mangle a deduction guide name!");
1241    case DeclarationName::ObjCMultiArgSelector:
1242    case DeclarationName::ObjCOneArgSelector:
1243    case DeclarationName::ObjCZeroArgSelector:
1244      llvm_unreachable("Can't mangle Objective-C selector names here!");
1245  }
1246
1247  // The <simple-id> and on <operator-name> productions end in an optional
1248  // <template-args>.
1249  if (TemplateArgs)
1250    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1251}
1252
1253void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1254                                           DeclarationName Name,
1255                                           unsigned KnownArity,
1256                                           const AbiTagList *AdditionalAbiTags) {
1257  unsigned Arity = KnownArity;
1258  //  <unqualified-name> ::= <operator-name>
1259  //                     ::= <ctor-dtor-name>
1260  //                     ::= <source-name>
1261  switch (Name.getNameKind()) {
1262  case DeclarationName::Identifier: {
1263    const IdentifierInfo *II = Name.getAsIdentifierInfo();
1264
1265    // We mangle decomposition declarations as the names of their bindings.
1266    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1267      // FIXME: Non-standard mangling for decomposition declarations:
1268      //
1269      //  <unqualified-name> ::= DC <source-name>* E
1270      //
1271      // These can never be referenced across translation units, so we do
1272      // not need a cross-vendor mangling for anything other than demanglers.
1273      // Proposed on cxx-abi-dev on 2016-08-12
1274      Out << "DC";
1275      for (auto *BD : DD->bindings())
1276        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1277      Out << 'E';
1278      writeAbiTags(ND, AdditionalAbiTags);
1279      break;
1280    }
1281
1282    if (II) {
1283      // Match GCC's naming convention for internal linkage symbols, for
1284      // symbols that are not actually visible outside of this TU. GCC
1285      // distinguishes between internal and external linkage symbols in
1286      // its mangling, to support cases like this that were valid C++ prior
1287      // to DR426:
1288      //
1289      //   void test() { extern void foo(); }
1290      //   static void foo();
1291      //
1292      // Don't bother with the L marker for names in anonymous namespaces; the
1293      // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1294      // matches GCC anyway, because GCC does not treat anonymous namespaces as
1295      // implying internal linkage.
1296      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1297          !ND->isExternallyVisible() &&
1298          getEffectiveDeclContext(ND)->isFileContext() &&
1299          !ND->isInAnonymousNamespace())
1300        Out << 'L';
1301
1302      auto *FD = dyn_cast<FunctionDecl>(ND);
1303      bool IsRegCall = FD &&
1304                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
1305                           clang::CC_X86RegCall;
1306      if (IsRegCall)
1307        mangleRegCallName(II);
1308      else
1309        mangleSourceName(II);
1310
1311      writeAbiTags(ND, AdditionalAbiTags);
1312      break;
1313    }
1314
1315    // Otherwise, an anonymous entity.  We must have a declaration.
1316    assert(ND && "mangling empty name without declaration");
1317
1318    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1319      if (NS->isAnonymousNamespace()) {
1320        // This is how gcc mangles these names.
1321        Out << "12_GLOBAL__N_1";
1322        break;
1323      }
1324    }
1325
1326    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1327      // We must have an anonymous union or struct declaration.
1328      const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1329
1330      // Itanium C++ ABI 5.1.2:
1331      //
1332      //   For the purposes of mangling, the name of an anonymous union is
1333      //   considered to be the name of the first named data member found by a
1334      //   pre-order, depth-first, declaration-order walk of the data members of
1335      //   the anonymous union. If there is no such data member (i.e., if all of
1336      //   the data members in the union are unnamed), then there is no way for
1337      //   a program to refer to the anonymous union, and there is therefore no
1338      //   need to mangle its name.
1339      assert(RD->isAnonymousStructOrUnion()
1340             && "Expected anonymous struct or union!");
1341      const FieldDecl *FD = RD->findFirstNamedDataMember();
1342
1343      // It's actually possible for various reasons for us to get here
1344      // with an empty anonymous struct / union.  Fortunately, it
1345      // doesn't really matter what name we generate.
1346      if (!FD) break;
1347      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1348
1349      mangleSourceName(FD->getIdentifier());
1350      // Not emitting abi tags: internal name anyway.
1351      break;
1352    }
1353
1354    // Class extensions have no name as a category, and it's possible
1355    // for them to be the semantic parent of certain declarations
1356    // (primarily, tag decls defined within declarations).  Such
1357    // declarations will always have internal linkage, so the name
1358    // doesn't really matter, but we shouldn't crash on them.  For
1359    // safety, just handle all ObjC containers here.
1360    if (isa<ObjCContainerDecl>(ND))
1361      break;
1362
1363    // We must have an anonymous struct.
1364    const TagDecl *TD = cast<TagDecl>(ND);
1365    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1366      assert(TD->getDeclContext() == D->getDeclContext() &&
1367             "Typedef should not be in another decl context!");
1368      assert(D->getDeclName().getAsIdentifierInfo() &&
1369             "Typedef was not named!");
1370      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1371      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1372      // Explicit abi tags are still possible; take from underlying type, not
1373      // from typedef.
1374      writeAbiTags(TD, nullptr);
1375      break;
1376    }
1377
1378    // <unnamed-type-name> ::= <closure-type-name>
1379    //
1380    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1381    // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1382    //     # Parameter types or 'v' for 'void'.
1383    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1384      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1385        assert(!AdditionalAbiTags &&
1386               "Lambda type cannot have additional abi tags");
1387        mangleLambda(Record);
1388        break;
1389      }
1390    }
1391
1392    if (TD->isExternallyVisible()) {
1393      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1394      Out << "Ut";
1395      if (UnnamedMangle > 1)
1396        Out << UnnamedMangle - 2;
1397      Out << '_';
1398      writeAbiTags(TD, AdditionalAbiTags);
1399      break;
1400    }
1401
1402    // Get a unique id for the anonymous struct. If it is not a real output
1403    // ID doesn't matter so use fake one.
1404    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1405
1406    // Mangle it as a source name in the form
1407    // [n] $_<id>
1408    // where n is the length of the string.
1409    SmallString<8> Str;
1410    Str += "$_";
1411    Str += llvm::utostr(AnonStructId);
1412
1413    Out << Str.size();
1414    Out << Str;
1415    break;
1416  }
1417
1418  case DeclarationName::ObjCZeroArgSelector:
1419  case DeclarationName::ObjCOneArgSelector:
1420  case DeclarationName::ObjCMultiArgSelector:
1421    llvm_unreachable("Can't mangle Objective-C selector names here!");
1422
1423  case DeclarationName::CXXConstructorName: {
1424    const CXXRecordDecl *InheritedFrom = nullptr;
1425    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1426    if (auto Inherited =
1427            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1428      InheritedFrom = Inherited.getConstructor()->getParent();
1429      InheritedTemplateArgs =
1430          Inherited.getConstructor()->getTemplateSpecializationArgs();
1431    }
1432
1433    if (ND == Structor)
1434      // If the named decl is the C++ constructor we're mangling, use the type
1435      // we were given.
1436      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1437    else
1438      // Otherwise, use the complete constructor name. This is relevant if a
1439      // class with a constructor is declared within a constructor.
1440      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1441
1442    // FIXME: The template arguments are part of the enclosing prefix or
1443    // nested-name, but it's more convenient to mangle them here.
1444    if (InheritedTemplateArgs)
1445      mangleTemplateArgs(*InheritedTemplateArgs);
1446
1447    writeAbiTags(ND, AdditionalAbiTags);
1448    break;
1449  }
1450
1451  case DeclarationName::CXXDestructorName:
1452    if (ND == Structor)
1453      // If the named decl is the C++ destructor we're mangling, use the type we
1454      // were given.
1455      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1456    else
1457      // Otherwise, use the complete destructor name. This is relevant if a
1458      // class with a destructor is declared within a destructor.
1459      mangleCXXDtorType(Dtor_Complete);
1460    writeAbiTags(ND, AdditionalAbiTags);
1461    break;
1462
1463  case DeclarationName::CXXOperatorName:
1464    if (ND && Arity == UnknownArity) {
1465      Arity = cast<FunctionDecl>(ND)->getNumParams();
1466
1467      // If we have a member function, we need to include the 'this' pointer.
1468      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1469        if (!MD->isStatic())
1470          Arity++;
1471    }
1472    LLVM_FALLTHROUGH;
1473  case DeclarationName::CXXConversionFunctionName:
1474  case DeclarationName::CXXLiteralOperatorName:
1475    mangleOperatorName(Name, Arity);
1476    writeAbiTags(ND, AdditionalAbiTags);
1477    break;
1478
1479  case DeclarationName::CXXDeductionGuideName:
1480    llvm_unreachable("Can't mangle a deduction guide name!");
1481
1482  case DeclarationName::CXXUsingDirective:
1483    llvm_unreachable("Can't mangle a using directive name!");
1484  }
1485}
1486
1487void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1488  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1489  // <number> ::= [n] <non-negative decimal integer>
1490  // <identifier> ::= <unqualified source code identifier>
1491  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1492      << II->getName();
1493}
1494
1495void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1496  // <source-name> ::= <positive length number> <identifier>
1497  // <number> ::= [n] <non-negative decimal integer>
1498  // <identifier> ::= <unqualified source code identifier>
1499  Out << II->getLength() << II->getName();
1500}
1501
1502void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1503                                      const DeclContext *DC,
1504                                      const AbiTagList *AdditionalAbiTags,
1505                                      bool NoFunction) {
1506  // <nested-name>
1507  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1508  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1509  //       <template-args> E
1510
1511  Out << 'N';
1512  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1513    Qualifiers MethodQuals = Method->getMethodQualifiers();
1514    // We do not consider restrict a distinguishing attribute for overloading
1515    // purposes so we must not mangle it.
1516    MethodQuals.removeRestrict();
1517    mangleQualifiers(MethodQuals);
1518    mangleRefQualifier(Method->getRefQualifier());
1519  }
1520
1521  // Check if we have a template.
1522  const TemplateArgumentList *TemplateArgs = nullptr;
1523  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1524    mangleTemplatePrefix(TD, NoFunction);
1525    mangleTemplateArgs(*TemplateArgs);
1526  }
1527  else {
1528    manglePrefix(DC, NoFunction);
1529    mangleUnqualifiedName(ND, AdditionalAbiTags);
1530  }
1531
1532  Out << 'E';
1533}
1534void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1535                                      const TemplateArgument *TemplateArgs,
1536                                      unsigned NumTemplateArgs) {
1537  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1538
1539  Out << 'N';
1540
1541  mangleTemplatePrefix(TD);
1542  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1543
1544  Out << 'E';
1545}
1546
1547void CXXNameMangler::mangleLocalName(const Decl *D,
1548                                     const AbiTagList *AdditionalAbiTags) {
1549  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1550  //              := Z <function encoding> E s [<discriminator>]
1551  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1552  //                 _ <entity name>
1553  // <discriminator> := _ <non-negative number>
1554  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1555  const RecordDecl *RD = GetLocalClassDecl(D);
1556  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1557
1558  Out << 'Z';
1559
1560  {
1561    AbiTagState LocalAbiTags(AbiTags);
1562
1563    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1564      mangleObjCMethodName(MD);
1565    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1566      mangleBlockForPrefix(BD);
1567    else
1568      mangleFunctionEncoding(cast<FunctionDecl>(DC));
1569
1570    // Implicit ABI tags (from namespace) are not available in the following
1571    // entity; reset to actually emitted tags, which are available.
1572    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1573  }
1574
1575  Out << 'E';
1576
1577  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1578  // be a bug that is fixed in trunk.
1579
1580  if (RD) {
1581    // The parameter number is omitted for the last parameter, 0 for the
1582    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1583    // <entity name> will of course contain a <closure-type-name>: Its
1584    // numbering will be local to the particular argument in which it appears
1585    // -- other default arguments do not affect its encoding.
1586    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1587    if (CXXRD && CXXRD->isLambda()) {
1588      if (const ParmVarDecl *Parm
1589              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1590        if (const FunctionDecl *Func
1591              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1592          Out << 'd';
1593          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1594          if (Num > 1)
1595            mangleNumber(Num - 2);
1596          Out << '_';
1597        }
1598      }
1599    }
1600
1601    // Mangle the name relative to the closest enclosing function.
1602    // equality ok because RD derived from ND above
1603    if (D == RD)  {
1604      mangleUnqualifiedName(RD, AdditionalAbiTags);
1605    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1606      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1607      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1608      mangleUnqualifiedBlock(BD);
1609    } else {
1610      const NamedDecl *ND = cast<NamedDecl>(D);
1611      mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1612                       true /*NoFunction*/);
1613    }
1614  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1615    // Mangle a block in a default parameter; see above explanation for
1616    // lambdas.
1617    if (const ParmVarDecl *Parm
1618            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1619      if (const FunctionDecl *Func
1620            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1621        Out << 'd';
1622        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1623        if (Num > 1)
1624          mangleNumber(Num - 2);
1625        Out << '_';
1626      }
1627    }
1628
1629    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1630    mangleUnqualifiedBlock(BD);
1631  } else {
1632    mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1633  }
1634
1635  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1636    unsigned disc;
1637    if (Context.getNextDiscriminator(ND, disc)) {
1638      if (disc < 10)
1639        Out << '_' << disc;
1640      else
1641        Out << "__" << disc << '_';
1642    }
1643  }
1644}
1645
1646void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1647  if (GetLocalClassDecl(Block)) {
1648    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1649    return;
1650  }
1651  const DeclContext *DC = getEffectiveDeclContext(Block);
1652  if (isLocalContainerContext(DC)) {
1653    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1654    return;
1655  }
1656  manglePrefix(getEffectiveDeclContext(Block));
1657  mangleUnqualifiedBlock(Block);
1658}
1659
1660void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1661  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1662    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1663        Context->getDeclContext()->isRecord()) {
1664      const auto *ND = cast<NamedDecl>(Context);
1665      if (ND->getIdentifier()) {
1666        mangleSourceNameWithAbiTags(ND);
1667        Out << 'M';
1668      }
1669    }
1670  }
1671
1672  // If we have a block mangling number, use it.
1673  unsigned Number = Block->getBlockManglingNumber();
1674  // Otherwise, just make up a number. It doesn't matter what it is because
1675  // the symbol in question isn't externally visible.
1676  if (!Number)
1677    Number = Context.getBlockId(Block, false);
1678  else {
1679    // Stored mangling numbers are 1-based.
1680    --Number;
1681  }
1682  Out << "Ub";
1683  if (Number > 0)
1684    Out << Number - 1;
1685  Out << '_';
1686}
1687
1688// <template-param-decl>
1689//   ::= Ty                              # template type parameter
1690//   ::= Tn <type>                       # template non-type parameter
1691//   ::= Tt <template-param-decl>* E     # template template parameter
1692//   ::= Tp <template-param-decl>        # template parameter pack
1693void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1694  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1695    if (Ty->isParameterPack())
1696      Out << "Tp";
1697    Out << "Ty";
1698  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1699    if (Tn->isExpandedParameterPack()) {
1700      for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1701        Out << "Tn";
1702        mangleType(Tn->getExpansionType(I));
1703      }
1704    } else {
1705      QualType T = Tn->getType();
1706      if (Tn->isParameterPack()) {
1707        Out << "Tp";
1708        if (auto *PackExpansion = T->getAs<PackExpansionType>())
1709          T = PackExpansion->getPattern();
1710      }
1711      Out << "Tn";
1712      mangleType(T);
1713    }
1714  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1715    if (Tt->isExpandedParameterPack()) {
1716      for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1717           ++I) {
1718        Out << "Tt";
1719        for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1720          mangleTemplateParamDecl(Param);
1721        Out << "E";
1722      }
1723    } else {
1724      if (Tt->isParameterPack())
1725        Out << "Tp";
1726      Out << "Tt";
1727      for (auto *Param : *Tt->getTemplateParameters())
1728        mangleTemplateParamDecl(Param);
1729      Out << "E";
1730    }
1731  }
1732}
1733
1734void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1735  // If the context of a closure type is an initializer for a class member
1736  // (static or nonstatic), it is encoded in a qualified name with a final
1737  // <prefix> of the form:
1738  //
1739  //   <data-member-prefix> := <member source-name> M
1740  //
1741  // Technically, the data-member-prefix is part of the <prefix>. However,
1742  // since a closure type will always be mangled with a prefix, it's easier
1743  // to emit that last part of the prefix here.
1744  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1745    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1746        !isa<ParmVarDecl>(Context)) {
1747      // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1748      // reasonable mangling here.
1749      if (const IdentifierInfo *Name
1750            = cast<NamedDecl>(Context)->getIdentifier()) {
1751        mangleSourceName(Name);
1752        const TemplateArgumentList *TemplateArgs = nullptr;
1753        if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1754          mangleTemplateArgs(*TemplateArgs);
1755        Out << 'M';
1756      }
1757    }
1758  }
1759
1760  Out << "Ul";
1761  mangleLambdaSig(Lambda);
1762  Out << "E";
1763
1764  // The number is omitted for the first closure type with a given
1765  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1766  // (in lexical order) with that same <lambda-sig> and context.
1767  //
1768  // The AST keeps track of the number for us.
1769  unsigned Number = Lambda->getLambdaManglingNumber();
1770  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1771  if (Number > 1)
1772    mangleNumber(Number - 2);
1773  Out << '_';
1774}
1775
1776void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1777  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1778    mangleTemplateParamDecl(D);
1779  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1780                                   getAs<FunctionProtoType>();
1781  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1782                         Lambda->getLambdaStaticInvoker());
1783}
1784
1785void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1786  switch (qualifier->getKind()) {
1787  case NestedNameSpecifier::Global:
1788    // nothing
1789    return;
1790
1791  case NestedNameSpecifier::Super:
1792    llvm_unreachable("Can't mangle __super specifier");
1793
1794  case NestedNameSpecifier::Namespace:
1795    mangleName(qualifier->getAsNamespace());
1796    return;
1797
1798  case NestedNameSpecifier::NamespaceAlias:
1799    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1800    return;
1801
1802  case NestedNameSpecifier::TypeSpec:
1803  case NestedNameSpecifier::TypeSpecWithTemplate:
1804    manglePrefix(QualType(qualifier->getAsType(), 0));
1805    return;
1806
1807  case NestedNameSpecifier::Identifier:
1808    // Member expressions can have these without prefixes, but that
1809    // should end up in mangleUnresolvedPrefix instead.
1810    assert(qualifier->getPrefix());
1811    manglePrefix(qualifier->getPrefix());
1812
1813    mangleSourceName(qualifier->getAsIdentifier());
1814    return;
1815  }
1816
1817  llvm_unreachable("unexpected nested name specifier");
1818}
1819
1820void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1821  //  <prefix> ::= <prefix> <unqualified-name>
1822  //           ::= <template-prefix> <template-args>
1823  //           ::= <template-param>
1824  //           ::= # empty
1825  //           ::= <substitution>
1826
1827  DC = IgnoreLinkageSpecDecls(DC);
1828
1829  if (DC->isTranslationUnit())
1830    return;
1831
1832  if (NoFunction && isLocalContainerContext(DC))
1833    return;
1834
1835  assert(!isLocalContainerContext(DC));
1836
1837  const NamedDecl *ND = cast<NamedDecl>(DC);
1838  if (mangleSubstitution(ND))
1839    return;
1840
1841  // Check if we have a template.
1842  const TemplateArgumentList *TemplateArgs = nullptr;
1843  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1844    mangleTemplatePrefix(TD);
1845    mangleTemplateArgs(*TemplateArgs);
1846  } else {
1847    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1848    mangleUnqualifiedName(ND, nullptr);
1849  }
1850
1851  addSubstitution(ND);
1852}
1853
1854void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1855  // <template-prefix> ::= <prefix> <template unqualified-name>
1856  //                   ::= <template-param>
1857  //                   ::= <substitution>
1858  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1859    return mangleTemplatePrefix(TD);
1860
1861  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1862    manglePrefix(Qualified->getQualifier());
1863
1864  if (OverloadedTemplateStorage *Overloaded
1865                                      = Template.getAsOverloadedTemplate()) {
1866    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1867                          UnknownArity, nullptr);
1868    return;
1869  }
1870
1871  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1872  assert(Dependent && "Unknown template name kind?");
1873  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1874    manglePrefix(Qualifier);
1875  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1876}
1877
1878void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1879                                          bool NoFunction) {
1880  // <template-prefix> ::= <prefix> <template unqualified-name>
1881  //                   ::= <template-param>
1882  //                   ::= <substitution>
1883  // <template-template-param> ::= <template-param>
1884  //                               <substitution>
1885
1886  if (mangleSubstitution(ND))
1887    return;
1888
1889  // <template-template-param> ::= <template-param>
1890  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1891    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1892  } else {
1893    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1894    if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1895      mangleUnqualifiedName(ND, nullptr);
1896    else
1897      mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1898  }
1899
1900  addSubstitution(ND);
1901}
1902
1903/// Mangles a template name under the production <type>.  Required for
1904/// template template arguments.
1905///   <type> ::= <class-enum-type>
1906///          ::= <template-param>
1907///          ::= <substitution>
1908void CXXNameMangler::mangleType(TemplateName TN) {
1909  if (mangleSubstitution(TN))
1910    return;
1911
1912  TemplateDecl *TD = nullptr;
1913
1914  switch (TN.getKind()) {
1915  case TemplateName::QualifiedTemplate:
1916    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1917    goto HaveDecl;
1918
1919  case TemplateName::Template:
1920    TD = TN.getAsTemplateDecl();
1921    goto HaveDecl;
1922
1923  HaveDecl:
1924    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
1925      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1926    else
1927      mangleName(TD);
1928    break;
1929
1930  case TemplateName::OverloadedTemplate:
1931  case TemplateName::AssumedTemplate:
1932    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1933
1934  case TemplateName::DependentTemplate: {
1935    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1936    assert(Dependent->isIdentifier());
1937
1938    // <class-enum-type> ::= <name>
1939    // <name> ::= <nested-name>
1940    mangleUnresolvedPrefix(Dependent->getQualifier());
1941    mangleSourceName(Dependent->getIdentifier());
1942    break;
1943  }
1944
1945  case TemplateName::SubstTemplateTemplateParm: {
1946    // Substituted template parameters are mangled as the substituted
1947    // template.  This will check for the substitution twice, which is
1948    // fine, but we have to return early so that we don't try to *add*
1949    // the substitution twice.
1950    SubstTemplateTemplateParmStorage *subst
1951      = TN.getAsSubstTemplateTemplateParm();
1952    mangleType(subst->getReplacement());
1953    return;
1954  }
1955
1956  case TemplateName::SubstTemplateTemplateParmPack: {
1957    // FIXME: not clear how to mangle this!
1958    // template <template <class> class T...> class A {
1959    //   template <template <class> class U...> void foo(B<T,U> x...);
1960    // };
1961    Out << "_SUBSTPACK_";
1962    break;
1963  }
1964  }
1965
1966  addSubstitution(TN);
1967}
1968
1969bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1970                                                    StringRef Prefix) {
1971  // Only certain other types are valid as prefixes;  enumerate them.
1972  switch (Ty->getTypeClass()) {
1973  case Type::Builtin:
1974  case Type::Complex:
1975  case Type::Adjusted:
1976  case Type::Decayed:
1977  case Type::Pointer:
1978  case Type::BlockPointer:
1979  case Type::LValueReference:
1980  case Type::RValueReference:
1981  case Type::MemberPointer:
1982  case Type::ConstantArray:
1983  case Type::IncompleteArray:
1984  case Type::VariableArray:
1985  case Type::DependentSizedArray:
1986  case Type::DependentAddressSpace:
1987  case Type::DependentVector:
1988  case Type::DependentSizedExtVector:
1989  case Type::Vector:
1990  case Type::ExtVector:
1991  case Type::FunctionProto:
1992  case Type::FunctionNoProto:
1993  case Type::Paren:
1994  case Type::Attributed:
1995  case Type::Auto:
1996  case Type::DeducedTemplateSpecialization:
1997  case Type::PackExpansion:
1998  case Type::ObjCObject:
1999  case Type::ObjCInterface:
2000  case Type::ObjCObjectPointer:
2001  case Type::ObjCTypeParam:
2002  case Type::Atomic:
2003  case Type::Pipe:
2004  case Type::MacroQualified:
2005    llvm_unreachable("type is illegal as a nested name specifier");
2006
2007  case Type::SubstTemplateTypeParmPack:
2008    // FIXME: not clear how to mangle this!
2009    // template <class T...> class A {
2010    //   template <class U...> void foo(decltype(T::foo(U())) x...);
2011    // };
2012    Out << "_SUBSTPACK_";
2013    break;
2014
2015  // <unresolved-type> ::= <template-param>
2016  //                   ::= <decltype>
2017  //                   ::= <template-template-param> <template-args>
2018  // (this last is not official yet)
2019  case Type::TypeOfExpr:
2020  case Type::TypeOf:
2021  case Type::Decltype:
2022  case Type::TemplateTypeParm:
2023  case Type::UnaryTransform:
2024  case Type::SubstTemplateTypeParm:
2025  unresolvedType:
2026    // Some callers want a prefix before the mangled type.
2027    Out << Prefix;
2028
2029    // This seems to do everything we want.  It's not really
2030    // sanctioned for a substituted template parameter, though.
2031    mangleType(Ty);
2032
2033    // We never want to print 'E' directly after an unresolved-type,
2034    // so we return directly.
2035    return true;
2036
2037  case Type::Typedef:
2038    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2039    break;
2040
2041  case Type::UnresolvedUsing:
2042    mangleSourceNameWithAbiTags(
2043        cast<UnresolvedUsingType>(Ty)->getDecl());
2044    break;
2045
2046  case Type::Enum:
2047  case Type::Record:
2048    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2049    break;
2050
2051  case Type::TemplateSpecialization: {
2052    const TemplateSpecializationType *TST =
2053        cast<TemplateSpecializationType>(Ty);
2054    TemplateName TN = TST->getTemplateName();
2055    switch (TN.getKind()) {
2056    case TemplateName::Template:
2057    case TemplateName::QualifiedTemplate: {
2058      TemplateDecl *TD = TN.getAsTemplateDecl();
2059
2060      // If the base is a template template parameter, this is an
2061      // unresolved type.
2062      assert(TD && "no template for template specialization type");
2063      if (isa<TemplateTemplateParmDecl>(TD))
2064        goto unresolvedType;
2065
2066      mangleSourceNameWithAbiTags(TD);
2067      break;
2068    }
2069
2070    case TemplateName::OverloadedTemplate:
2071    case TemplateName::AssumedTemplate:
2072    case TemplateName::DependentTemplate:
2073      llvm_unreachable("invalid base for a template specialization type");
2074
2075    case TemplateName::SubstTemplateTemplateParm: {
2076      SubstTemplateTemplateParmStorage *subst =
2077          TN.getAsSubstTemplateTemplateParm();
2078      mangleExistingSubstitution(subst->getReplacement());
2079      break;
2080    }
2081
2082    case TemplateName::SubstTemplateTemplateParmPack: {
2083      // FIXME: not clear how to mangle this!
2084      // template <template <class U> class T...> class A {
2085      //   template <class U...> void foo(decltype(T<U>::foo) x...);
2086      // };
2087      Out << "_SUBSTPACK_";
2088      break;
2089    }
2090    }
2091
2092    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2093    break;
2094  }
2095
2096  case Type::InjectedClassName:
2097    mangleSourceNameWithAbiTags(
2098        cast<InjectedClassNameType>(Ty)->getDecl());
2099    break;
2100
2101  case Type::DependentName:
2102    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2103    break;
2104
2105  case Type::DependentTemplateSpecialization: {
2106    const DependentTemplateSpecializationType *DTST =
2107        cast<DependentTemplateSpecializationType>(Ty);
2108    mangleSourceName(DTST->getIdentifier());
2109    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2110    break;
2111  }
2112
2113  case Type::Elaborated:
2114    return mangleUnresolvedTypeOrSimpleId(
2115        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2116  }
2117
2118  return false;
2119}
2120
2121void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2122  switch (Name.getNameKind()) {
2123  case DeclarationName::CXXConstructorName:
2124  case DeclarationName::CXXDestructorName:
2125  case DeclarationName::CXXDeductionGuideName:
2126  case DeclarationName::CXXUsingDirective:
2127  case DeclarationName::Identifier:
2128  case DeclarationName::ObjCMultiArgSelector:
2129  case DeclarationName::ObjCOneArgSelector:
2130  case DeclarationName::ObjCZeroArgSelector:
2131    llvm_unreachable("Not an operator name");
2132
2133  case DeclarationName::CXXConversionFunctionName:
2134    // <operator-name> ::= cv <type>    # (cast)
2135    Out << "cv";
2136    mangleType(Name.getCXXNameType());
2137    break;
2138
2139  case DeclarationName::CXXLiteralOperatorName:
2140    Out << "li";
2141    mangleSourceName(Name.getCXXLiteralIdentifier());
2142    return;
2143
2144  case DeclarationName::CXXOperatorName:
2145    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2146    break;
2147  }
2148}
2149
2150void
2151CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2152  switch (OO) {
2153  // <operator-name> ::= nw     # new
2154  case OO_New: Out << "nw"; break;
2155  //              ::= na        # new[]
2156  case OO_Array_New: Out << "na"; break;
2157  //              ::= dl        # delete
2158  case OO_Delete: Out << "dl"; break;
2159  //              ::= da        # delete[]
2160  case OO_Array_Delete: Out << "da"; break;
2161  //              ::= ps        # + (unary)
2162  //              ::= pl        # + (binary or unknown)
2163  case OO_Plus:
2164    Out << (Arity == 1? "ps" : "pl"); break;
2165  //              ::= ng        # - (unary)
2166  //              ::= mi        # - (binary or unknown)
2167  case OO_Minus:
2168    Out << (Arity == 1? "ng" : "mi"); break;
2169  //              ::= ad        # & (unary)
2170  //              ::= an        # & (binary or unknown)
2171  case OO_Amp:
2172    Out << (Arity == 1? "ad" : "an"); break;
2173  //              ::= de        # * (unary)
2174  //              ::= ml        # * (binary or unknown)
2175  case OO_Star:
2176    // Use binary when unknown.
2177    Out << (Arity == 1? "de" : "ml"); break;
2178  //              ::= co        # ~
2179  case OO_Tilde: Out << "co"; break;
2180  //              ::= dv        # /
2181  case OO_Slash: Out << "dv"; break;
2182  //              ::= rm        # %
2183  case OO_Percent: Out << "rm"; break;
2184  //              ::= or        # |
2185  case OO_Pipe: Out << "or"; break;
2186  //              ::= eo        # ^
2187  case OO_Caret: Out << "eo"; break;
2188  //              ::= aS        # =
2189  case OO_Equal: Out << "aS"; break;
2190  //              ::= pL        # +=
2191  case OO_PlusEqual: Out << "pL"; break;
2192  //              ::= mI        # -=
2193  case OO_MinusEqual: Out << "mI"; break;
2194  //              ::= mL        # *=
2195  case OO_StarEqual: Out << "mL"; break;
2196  //              ::= dV        # /=
2197  case OO_SlashEqual: Out << "dV"; break;
2198  //              ::= rM        # %=
2199  case OO_PercentEqual: Out << "rM"; break;
2200  //              ::= aN        # &=
2201  case OO_AmpEqual: Out << "aN"; break;
2202  //              ::= oR        # |=
2203  case OO_PipeEqual: Out << "oR"; break;
2204  //              ::= eO        # ^=
2205  case OO_CaretEqual: Out << "eO"; break;
2206  //              ::= ls        # <<
2207  case OO_LessLess: Out << "ls"; break;
2208  //              ::= rs        # >>
2209  case OO_GreaterGreater: Out << "rs"; break;
2210  //              ::= lS        # <<=
2211  case OO_LessLessEqual: Out << "lS"; break;
2212  //              ::= rS        # >>=
2213  case OO_GreaterGreaterEqual: Out << "rS"; break;
2214  //              ::= eq        # ==
2215  case OO_EqualEqual: Out << "eq"; break;
2216  //              ::= ne        # !=
2217  case OO_ExclaimEqual: Out << "ne"; break;
2218  //              ::= lt        # <
2219  case OO_Less: Out << "lt"; break;
2220  //              ::= gt        # >
2221  case OO_Greater: Out << "gt"; break;
2222  //              ::= le        # <=
2223  case OO_LessEqual: Out << "le"; break;
2224  //              ::= ge        # >=
2225  case OO_GreaterEqual: Out << "ge"; break;
2226  //              ::= nt        # !
2227  case OO_Exclaim: Out << "nt"; break;
2228  //              ::= aa        # &&
2229  case OO_AmpAmp: Out << "aa"; break;
2230  //              ::= oo        # ||
2231  case OO_PipePipe: Out << "oo"; break;
2232  //              ::= pp        # ++
2233  case OO_PlusPlus: Out << "pp"; break;
2234  //              ::= mm        # --
2235  case OO_MinusMinus: Out << "mm"; break;
2236  //              ::= cm        # ,
2237  case OO_Comma: Out << "cm"; break;
2238  //              ::= pm        # ->*
2239  case OO_ArrowStar: Out << "pm"; break;
2240  //              ::= pt        # ->
2241  case OO_Arrow: Out << "pt"; break;
2242  //              ::= cl        # ()
2243  case OO_Call: Out << "cl"; break;
2244  //              ::= ix        # []
2245  case OO_Subscript: Out << "ix"; break;
2246
2247  //              ::= qu        # ?
2248  // The conditional operator can't be overloaded, but we still handle it when
2249  // mangling expressions.
2250  case OO_Conditional: Out << "qu"; break;
2251  // Proposal on cxx-abi-dev, 2015-10-21.
2252  //              ::= aw        # co_await
2253  case OO_Coawait: Out << "aw"; break;
2254  // Proposed in cxx-abi github issue 43.
2255  //              ::= ss        # <=>
2256  case OO_Spaceship: Out << "ss"; break;
2257
2258  case OO_None:
2259  case NUM_OVERLOADED_OPERATORS:
2260    llvm_unreachable("Not an overloaded operator");
2261  }
2262}
2263
2264void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2265  // Vendor qualifiers come first and if they are order-insensitive they must
2266  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2267
2268  // <type> ::= U <addrspace-expr>
2269  if (DAST) {
2270    Out << "U2ASI";
2271    mangleExpression(DAST->getAddrSpaceExpr());
2272    Out << "E";
2273  }
2274
2275  // Address space qualifiers start with an ordinary letter.
2276  if (Quals.hasAddressSpace()) {
2277    // Address space extension:
2278    //
2279    //   <type> ::= U <target-addrspace>
2280    //   <type> ::= U <OpenCL-addrspace>
2281    //   <type> ::= U <CUDA-addrspace>
2282
2283    SmallString<64> ASString;
2284    LangAS AS = Quals.getAddressSpace();
2285
2286    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2287      //  <target-addrspace> ::= "AS" <address-space-number>
2288      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2289      if (TargetAS != 0)
2290        ASString = "AS" + llvm::utostr(TargetAS);
2291    } else {
2292      switch (AS) {
2293      default: llvm_unreachable("Not a language specific address space");
2294      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2295      //                                "private"| "generic" ]
2296      case LangAS::opencl_global:   ASString = "CLglobal";   break;
2297      case LangAS::opencl_local:    ASString = "CLlocal";    break;
2298      case LangAS::opencl_constant: ASString = "CLconstant"; break;
2299      case LangAS::opencl_private:  ASString = "CLprivate";  break;
2300      case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2301      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2302      case LangAS::cuda_device:     ASString = "CUdevice";   break;
2303      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2304      case LangAS::cuda_shared:     ASString = "CUshared";   break;
2305      //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2306      case LangAS::ptr32_sptr:
2307        ASString = "ptr32_sptr";
2308        break;
2309      case LangAS::ptr32_uptr:
2310        ASString = "ptr32_uptr";
2311        break;
2312      case LangAS::ptr64:
2313        ASString = "ptr64";
2314        break;
2315      }
2316    }
2317    if (!ASString.empty())
2318      mangleVendorQualifier(ASString);
2319  }
2320
2321  // The ARC ownership qualifiers start with underscores.
2322  // Objective-C ARC Extension:
2323  //
2324  //   <type> ::= U "__strong"
2325  //   <type> ::= U "__weak"
2326  //   <type> ::= U "__autoreleasing"
2327  //
2328  // Note: we emit __weak first to preserve the order as
2329  // required by the Itanium ABI.
2330  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2331    mangleVendorQualifier("__weak");
2332
2333  // __unaligned (from -fms-extensions)
2334  if (Quals.hasUnaligned())
2335    mangleVendorQualifier("__unaligned");
2336
2337  // Remaining ARC ownership qualifiers.
2338  switch (Quals.getObjCLifetime()) {
2339  case Qualifiers::OCL_None:
2340    break;
2341
2342  case Qualifiers::OCL_Weak:
2343    // Do nothing as we already handled this case above.
2344    break;
2345
2346  case Qualifiers::OCL_Strong:
2347    mangleVendorQualifier("__strong");
2348    break;
2349
2350  case Qualifiers::OCL_Autoreleasing:
2351    mangleVendorQualifier("__autoreleasing");
2352    break;
2353
2354  case Qualifiers::OCL_ExplicitNone:
2355    // The __unsafe_unretained qualifier is *not* mangled, so that
2356    // __unsafe_unretained types in ARC produce the same manglings as the
2357    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2358    // better ABI compatibility.
2359    //
2360    // It's safe to do this because unqualified 'id' won't show up
2361    // in any type signatures that need to be mangled.
2362    break;
2363  }
2364
2365  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2366  if (Quals.hasRestrict())
2367    Out << 'r';
2368  if (Quals.hasVolatile())
2369    Out << 'V';
2370  if (Quals.hasConst())
2371    Out << 'K';
2372}
2373
2374void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2375  Out << 'U' << name.size() << name;
2376}
2377
2378void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2379  // <ref-qualifier> ::= R                # lvalue reference
2380  //                 ::= O                # rvalue-reference
2381  switch (RefQualifier) {
2382  case RQ_None:
2383    break;
2384
2385  case RQ_LValue:
2386    Out << 'R';
2387    break;
2388
2389  case RQ_RValue:
2390    Out << 'O';
2391    break;
2392  }
2393}
2394
2395void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2396  Context.mangleObjCMethodName(MD, Out);
2397}
2398
2399static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2400                                ASTContext &Ctx) {
2401  if (Quals)
2402    return true;
2403  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2404    return true;
2405  if (Ty->isOpenCLSpecificType())
2406    return true;
2407  if (Ty->isBuiltinType())
2408    return false;
2409  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2410  // substitution candidates.
2411  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2412      isa<AutoType>(Ty))
2413    return false;
2414  return true;
2415}
2416
2417void CXXNameMangler::mangleType(QualType T) {
2418  // If our type is instantiation-dependent but not dependent, we mangle
2419  // it as it was written in the source, removing any top-level sugar.
2420  // Otherwise, use the canonical type.
2421  //
2422  // FIXME: This is an approximation of the instantiation-dependent name
2423  // mangling rules, since we should really be using the type as written and
2424  // augmented via semantic analysis (i.e., with implicit conversions and
2425  // default template arguments) for any instantiation-dependent type.
2426  // Unfortunately, that requires several changes to our AST:
2427  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2428  //     uniqued, so that we can handle substitutions properly
2429  //   - Default template arguments will need to be represented in the
2430  //     TemplateSpecializationType, since they need to be mangled even though
2431  //     they aren't written.
2432  //   - Conversions on non-type template arguments need to be expressed, since
2433  //     they can affect the mangling of sizeof/alignof.
2434  //
2435  // FIXME: This is wrong when mapping to the canonical type for a dependent
2436  // type discards instantiation-dependent portions of the type, such as for:
2437  //
2438  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2439  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2440  //
2441  // It's also wrong in the opposite direction when instantiation-dependent,
2442  // canonically-equivalent types differ in some irrelevant portion of inner
2443  // type sugar. In such cases, we fail to form correct substitutions, eg:
2444  //
2445  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2446  //
2447  // We should instead canonicalize the non-instantiation-dependent parts,
2448  // regardless of whether the type as a whole is dependent or instantiation
2449  // dependent.
2450  if (!T->isInstantiationDependentType() || T->isDependentType())
2451    T = T.getCanonicalType();
2452  else {
2453    // Desugar any types that are purely sugar.
2454    do {
2455      // Don't desugar through template specialization types that aren't
2456      // type aliases. We need to mangle the template arguments as written.
2457      if (const TemplateSpecializationType *TST
2458                                      = dyn_cast<TemplateSpecializationType>(T))
2459        if (!TST->isTypeAlias())
2460          break;
2461
2462      QualType Desugared
2463        = T.getSingleStepDesugaredType(Context.getASTContext());
2464      if (Desugared == T)
2465        break;
2466
2467      T = Desugared;
2468    } while (true);
2469  }
2470  SplitQualType split = T.split();
2471  Qualifiers quals = split.Quals;
2472  const Type *ty = split.Ty;
2473
2474  bool isSubstitutable =
2475    isTypeSubstitutable(quals, ty, Context.getASTContext());
2476  if (isSubstitutable && mangleSubstitution(T))
2477    return;
2478
2479  // If we're mangling a qualified array type, push the qualifiers to
2480  // the element type.
2481  if (quals && isa<ArrayType>(T)) {
2482    ty = Context.getASTContext().getAsArrayType(T);
2483    quals = Qualifiers();
2484
2485    // Note that we don't update T: we want to add the
2486    // substitution at the original type.
2487  }
2488
2489  if (quals || ty->isDependentAddressSpaceType()) {
2490    if (const DependentAddressSpaceType *DAST =
2491        dyn_cast<DependentAddressSpaceType>(ty)) {
2492      SplitQualType splitDAST = DAST->getPointeeType().split();
2493      mangleQualifiers(splitDAST.Quals, DAST);
2494      mangleType(QualType(splitDAST.Ty, 0));
2495    } else {
2496      mangleQualifiers(quals);
2497
2498      // Recurse:  even if the qualified type isn't yet substitutable,
2499      // the unqualified type might be.
2500      mangleType(QualType(ty, 0));
2501    }
2502  } else {
2503    switch (ty->getTypeClass()) {
2504#define ABSTRACT_TYPE(CLASS, PARENT)
2505#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2506    case Type::CLASS: \
2507      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2508      return;
2509#define TYPE(CLASS, PARENT) \
2510    case Type::CLASS: \
2511      mangleType(static_cast<const CLASS##Type*>(ty)); \
2512      break;
2513#include "clang/AST/TypeNodes.inc"
2514    }
2515  }
2516
2517  // Add the substitution.
2518  if (isSubstitutable)
2519    addSubstitution(T);
2520}
2521
2522void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2523  if (!mangleStandardSubstitution(ND))
2524    mangleName(ND);
2525}
2526
2527void CXXNameMangler::mangleType(const BuiltinType *T) {
2528  //  <type>         ::= <builtin-type>
2529  //  <builtin-type> ::= v  # void
2530  //                 ::= w  # wchar_t
2531  //                 ::= b  # bool
2532  //                 ::= c  # char
2533  //                 ::= a  # signed char
2534  //                 ::= h  # unsigned char
2535  //                 ::= s  # short
2536  //                 ::= t  # unsigned short
2537  //                 ::= i  # int
2538  //                 ::= j  # unsigned int
2539  //                 ::= l  # long
2540  //                 ::= m  # unsigned long
2541  //                 ::= x  # long long, __int64
2542  //                 ::= y  # unsigned long long, __int64
2543  //                 ::= n  # __int128
2544  //                 ::= o  # unsigned __int128
2545  //                 ::= f  # float
2546  //                 ::= d  # double
2547  //                 ::= e  # long double, __float80
2548  //                 ::= g  # __float128
2549  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2550  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2551  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2552  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2553  //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2554  //                 ::= Di # char32_t
2555  //                 ::= Ds # char16_t
2556  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2557  //                 ::= u <source-name>    # vendor extended type
2558  std::string type_name;
2559  switch (T->getKind()) {
2560  case BuiltinType::Void:
2561    Out << 'v';
2562    break;
2563  case BuiltinType::Bool:
2564    Out << 'b';
2565    break;
2566  case BuiltinType::Char_U:
2567  case BuiltinType::Char_S:
2568    Out << 'c';
2569    break;
2570  case BuiltinType::UChar:
2571    Out << 'h';
2572    break;
2573  case BuiltinType::UShort:
2574    Out << 't';
2575    break;
2576  case BuiltinType::UInt:
2577    Out << 'j';
2578    break;
2579  case BuiltinType::ULong:
2580    Out << 'm';
2581    break;
2582  case BuiltinType::ULongLong:
2583    Out << 'y';
2584    break;
2585  case BuiltinType::UInt128:
2586    Out << 'o';
2587    break;
2588  case BuiltinType::SChar:
2589    Out << 'a';
2590    break;
2591  case BuiltinType::WChar_S:
2592  case BuiltinType::WChar_U:
2593    Out << 'w';
2594    break;
2595  case BuiltinType::Char8:
2596    Out << "Du";
2597    break;
2598  case BuiltinType::Char16:
2599    Out << "Ds";
2600    break;
2601  case BuiltinType::Char32:
2602    Out << "Di";
2603    break;
2604  case BuiltinType::Short:
2605    Out << 's';
2606    break;
2607  case BuiltinType::Int:
2608    Out << 'i';
2609    break;
2610  case BuiltinType::Long:
2611    Out << 'l';
2612    break;
2613  case BuiltinType::LongLong:
2614    Out << 'x';
2615    break;
2616  case BuiltinType::Int128:
2617    Out << 'n';
2618    break;
2619  case BuiltinType::Float16:
2620    Out << "DF16_";
2621    break;
2622  case BuiltinType::ShortAccum:
2623  case BuiltinType::Accum:
2624  case BuiltinType::LongAccum:
2625  case BuiltinType::UShortAccum:
2626  case BuiltinType::UAccum:
2627  case BuiltinType::ULongAccum:
2628  case BuiltinType::ShortFract:
2629  case BuiltinType::Fract:
2630  case BuiltinType::LongFract:
2631  case BuiltinType::UShortFract:
2632  case BuiltinType::UFract:
2633  case BuiltinType::ULongFract:
2634  case BuiltinType::SatShortAccum:
2635  case BuiltinType::SatAccum:
2636  case BuiltinType::SatLongAccum:
2637  case BuiltinType::SatUShortAccum:
2638  case BuiltinType::SatUAccum:
2639  case BuiltinType::SatULongAccum:
2640  case BuiltinType::SatShortFract:
2641  case BuiltinType::SatFract:
2642  case BuiltinType::SatLongFract:
2643  case BuiltinType::SatUShortFract:
2644  case BuiltinType::SatUFract:
2645  case BuiltinType::SatULongFract:
2646    llvm_unreachable("Fixed point types are disabled for c++");
2647  case BuiltinType::Half:
2648    Out << "Dh";
2649    break;
2650  case BuiltinType::Float:
2651    Out << 'f';
2652    break;
2653  case BuiltinType::Double:
2654    Out << 'd';
2655    break;
2656  case BuiltinType::LongDouble: {
2657    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2658                                   getASTContext().getLangOpts().OpenMPIsDevice
2659                               ? getASTContext().getAuxTargetInfo()
2660                               : &getASTContext().getTargetInfo();
2661    Out << TI->getLongDoubleMangling();
2662    break;
2663  }
2664  case BuiltinType::Float128: {
2665    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2666                                   getASTContext().getLangOpts().OpenMPIsDevice
2667                               ? getASTContext().getAuxTargetInfo()
2668                               : &getASTContext().getTargetInfo();
2669    Out << TI->getFloat128Mangling();
2670    break;
2671  }
2672  case BuiltinType::NullPtr:
2673    Out << "Dn";
2674    break;
2675
2676#define BUILTIN_TYPE(Id, SingletonId)
2677#define PLACEHOLDER_TYPE(Id, SingletonId) \
2678  case BuiltinType::Id:
2679#include "clang/AST/BuiltinTypes.def"
2680  case BuiltinType::Dependent:
2681    if (!NullOut)
2682      llvm_unreachable("mangling a placeholder type");
2683    break;
2684  case BuiltinType::ObjCId:
2685    Out << "11objc_object";
2686    break;
2687  case BuiltinType::ObjCClass:
2688    Out << "10objc_class";
2689    break;
2690  case BuiltinType::ObjCSel:
2691    Out << "13objc_selector";
2692    break;
2693#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2694  case BuiltinType::Id: \
2695    type_name = "ocl_" #ImgType "_" #Suffix; \
2696    Out << type_name.size() << type_name; \
2697    break;
2698#include "clang/Basic/OpenCLImageTypes.def"
2699  case BuiltinType::OCLSampler:
2700    Out << "11ocl_sampler";
2701    break;
2702  case BuiltinType::OCLEvent:
2703    Out << "9ocl_event";
2704    break;
2705  case BuiltinType::OCLClkEvent:
2706    Out << "12ocl_clkevent";
2707    break;
2708  case BuiltinType::OCLQueue:
2709    Out << "9ocl_queue";
2710    break;
2711  case BuiltinType::OCLReserveID:
2712    Out << "13ocl_reserveid";
2713    break;
2714#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2715  case BuiltinType::Id: \
2716    type_name = "ocl_" #ExtType; \
2717    Out << type_name.size() << type_name; \
2718    break;
2719#include "clang/Basic/OpenCLExtensionTypes.def"
2720  // The SVE types are effectively target-specific.  The mangling scheme
2721  // is defined in the appendices to the Procedure Call Standard for the
2722  // Arm Architecture.
2723#define SVE_TYPE(Name, Id, SingletonId) \
2724  case BuiltinType::Id: \
2725    type_name = Name; \
2726    Out << 'u' << type_name.size() << type_name; \
2727    break;
2728#include "clang/Basic/AArch64SVEACLETypes.def"
2729  }
2730}
2731
2732StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2733  switch (CC) {
2734  case CC_C:
2735    return "";
2736
2737  case CC_X86VectorCall:
2738  case CC_X86Pascal:
2739  case CC_X86RegCall:
2740  case CC_AAPCS:
2741  case CC_AAPCS_VFP:
2742  case CC_AArch64VectorCall:
2743  case CC_IntelOclBicc:
2744  case CC_SpirFunction:
2745  case CC_OpenCLKernel:
2746  case CC_PreserveMost:
2747  case CC_PreserveAll:
2748    // FIXME: we should be mangling all of the above.
2749    return "";
2750
2751  case CC_X86ThisCall:
2752    // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2753    // used explicitly. At this point, we don't have that much information in
2754    // the AST, since clang tends to bake the convention into the canonical
2755    // function type. thiscall only rarely used explicitly, so don't mangle it
2756    // for now.
2757    return "";
2758
2759  case CC_X86StdCall:
2760    return "stdcall";
2761  case CC_X86FastCall:
2762    return "fastcall";
2763  case CC_X86_64SysV:
2764    return "sysv_abi";
2765  case CC_Win64:
2766    return "ms_abi";
2767  case CC_Swift:
2768    return "swiftcall";
2769  }
2770  llvm_unreachable("bad calling convention");
2771}
2772
2773void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2774  // Fast path.
2775  if (T->getExtInfo() == FunctionType::ExtInfo())
2776    return;
2777
2778  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2779  // This will get more complicated in the future if we mangle other
2780  // things here; but for now, since we mangle ns_returns_retained as
2781  // a qualifier on the result type, we can get away with this:
2782  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2783  if (!CCQualifier.empty())
2784    mangleVendorQualifier(CCQualifier);
2785
2786  // FIXME: regparm
2787  // FIXME: noreturn
2788}
2789
2790void
2791CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2792  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2793
2794  // Note that these are *not* substitution candidates.  Demanglers might
2795  // have trouble with this if the parameter type is fully substituted.
2796
2797  switch (PI.getABI()) {
2798  case ParameterABI::Ordinary:
2799    break;
2800
2801  // All of these start with "swift", so they come before "ns_consumed".
2802  case ParameterABI::SwiftContext:
2803  case ParameterABI::SwiftErrorResult:
2804  case ParameterABI::SwiftIndirectResult:
2805    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2806    break;
2807  }
2808
2809  if (PI.isConsumed())
2810    mangleVendorQualifier("ns_consumed");
2811
2812  if (PI.isNoEscape())
2813    mangleVendorQualifier("noescape");
2814}
2815
2816// <type>          ::= <function-type>
2817// <function-type> ::= [<CV-qualifiers>] F [Y]
2818//                      <bare-function-type> [<ref-qualifier>] E
2819void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2820  mangleExtFunctionInfo(T);
2821
2822  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2823  // e.g. "const" in "int (A::*)() const".
2824  mangleQualifiers(T->getMethodQuals());
2825
2826  // Mangle instantiation-dependent exception-specification, if present,
2827  // per cxx-abi-dev proposal on 2016-10-11.
2828  if (T->hasInstantiationDependentExceptionSpec()) {
2829    if (isComputedNoexcept(T->getExceptionSpecType())) {
2830      Out << "DO";
2831      mangleExpression(T->getNoexceptExpr());
2832      Out << "E";
2833    } else {
2834      assert(T->getExceptionSpecType() == EST_Dynamic);
2835      Out << "Dw";
2836      for (auto ExceptTy : T->exceptions())
2837        mangleType(ExceptTy);
2838      Out << "E";
2839    }
2840  } else if (T->isNothrow()) {
2841    Out << "Do";
2842  }
2843
2844  Out << 'F';
2845
2846  // FIXME: We don't have enough information in the AST to produce the 'Y'
2847  // encoding for extern "C" function types.
2848  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2849
2850  // Mangle the ref-qualifier, if present.
2851  mangleRefQualifier(T->getRefQualifier());
2852
2853  Out << 'E';
2854}
2855
2856void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2857  // Function types without prototypes can arise when mangling a function type
2858  // within an overloadable function in C. We mangle these as the absence of any
2859  // parameter types (not even an empty parameter list).
2860  Out << 'F';
2861
2862  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2863
2864  FunctionTypeDepth.enterResultType();
2865  mangleType(T->getReturnType());
2866  FunctionTypeDepth.leaveResultType();
2867
2868  FunctionTypeDepth.pop(saved);
2869  Out << 'E';
2870}
2871
2872void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2873                                            bool MangleReturnType,
2874                                            const FunctionDecl *FD) {
2875  // Record that we're in a function type.  See mangleFunctionParam
2876  // for details on what we're trying to achieve here.
2877  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2878
2879  // <bare-function-type> ::= <signature type>+
2880  if (MangleReturnType) {
2881    FunctionTypeDepth.enterResultType();
2882
2883    // Mangle ns_returns_retained as an order-sensitive qualifier here.
2884    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2885      mangleVendorQualifier("ns_returns_retained");
2886
2887    // Mangle the return type without any direct ARC ownership qualifiers.
2888    QualType ReturnTy = Proto->getReturnType();
2889    if (ReturnTy.getObjCLifetime()) {
2890      auto SplitReturnTy = ReturnTy.split();
2891      SplitReturnTy.Quals.removeObjCLifetime();
2892      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2893    }
2894    mangleType(ReturnTy);
2895
2896    FunctionTypeDepth.leaveResultType();
2897  }
2898
2899  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2900    //   <builtin-type> ::= v   # void
2901    Out << 'v';
2902
2903    FunctionTypeDepth.pop(saved);
2904    return;
2905  }
2906
2907  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2908  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2909    // Mangle extended parameter info as order-sensitive qualifiers here.
2910    if (Proto->hasExtParameterInfos() && FD == nullptr) {
2911      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2912    }
2913
2914    // Mangle the type.
2915    QualType ParamTy = Proto->getParamType(I);
2916    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2917
2918    if (FD) {
2919      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2920        // Attr can only take 1 character, so we can hardcode the length below.
2921        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2922        if (Attr->isDynamic())
2923          Out << "U25pass_dynamic_object_size" << Attr->getType();
2924        else
2925          Out << "U17pass_object_size" << Attr->getType();
2926      }
2927    }
2928  }
2929
2930  FunctionTypeDepth.pop(saved);
2931
2932  // <builtin-type>      ::= z  # ellipsis
2933  if (Proto->isVariadic())
2934    Out << 'z';
2935}
2936
2937// <type>            ::= <class-enum-type>
2938// <class-enum-type> ::= <name>
2939void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2940  mangleName(T->getDecl());
2941}
2942
2943// <type>            ::= <class-enum-type>
2944// <class-enum-type> ::= <name>
2945void CXXNameMangler::mangleType(const EnumType *T) {
2946  mangleType(static_cast<const TagType*>(T));
2947}
2948void CXXNameMangler::mangleType(const RecordType *T) {
2949  mangleType(static_cast<const TagType*>(T));
2950}
2951void CXXNameMangler::mangleType(const TagType *T) {
2952  mangleName(T->getDecl());
2953}
2954
2955// <type>       ::= <array-type>
2956// <array-type> ::= A <positive dimension number> _ <element type>
2957//              ::= A [<dimension expression>] _ <element type>
2958void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2959  Out << 'A' << T->getSize() << '_';
2960  mangleType(T->getElementType());
2961}
2962void CXXNameMangler::mangleType(const VariableArrayType *T) {
2963  Out << 'A';
2964  // decayed vla types (size 0) will just be skipped.
2965  if (T->getSizeExpr())
2966    mangleExpression(T->getSizeExpr());
2967  Out << '_';
2968  mangleType(T->getElementType());
2969}
2970void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2971  Out << 'A';
2972  mangleExpression(T->getSizeExpr());
2973  Out << '_';
2974  mangleType(T->getElementType());
2975}
2976void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2977  Out << "A_";
2978  mangleType(T->getElementType());
2979}
2980
2981// <type>                   ::= <pointer-to-member-type>
2982// <pointer-to-member-type> ::= M <class type> <member type>
2983void CXXNameMangler::mangleType(const MemberPointerType *T) {
2984  Out << 'M';
2985  mangleType(QualType(T->getClass(), 0));
2986  QualType PointeeType = T->getPointeeType();
2987  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2988    mangleType(FPT);
2989
2990    // Itanium C++ ABI 5.1.8:
2991    //
2992    //   The type of a non-static member function is considered to be different,
2993    //   for the purposes of substitution, from the type of a namespace-scope or
2994    //   static member function whose type appears similar. The types of two
2995    //   non-static member functions are considered to be different, for the
2996    //   purposes of substitution, if the functions are members of different
2997    //   classes. In other words, for the purposes of substitution, the class of
2998    //   which the function is a member is considered part of the type of
2999    //   function.
3000
3001    // Given that we already substitute member function pointers as a
3002    // whole, the net effect of this rule is just to unconditionally
3003    // suppress substitution on the function type in a member pointer.
3004    // We increment the SeqID here to emulate adding an entry to the
3005    // substitution table.
3006    ++SeqID;
3007  } else
3008    mangleType(PointeeType);
3009}
3010
3011// <type>           ::= <template-param>
3012void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3013  mangleTemplateParameter(T->getDepth(), T->getIndex());
3014}
3015
3016// <type>           ::= <template-param>
3017void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3018  // FIXME: not clear how to mangle this!
3019  // template <class T...> class A {
3020  //   template <class U...> void foo(T(*)(U) x...);
3021  // };
3022  Out << "_SUBSTPACK_";
3023}
3024
3025// <type> ::= P <type>   # pointer-to
3026void CXXNameMangler::mangleType(const PointerType *T) {
3027  Out << 'P';
3028  mangleType(T->getPointeeType());
3029}
3030void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3031  Out << 'P';
3032  mangleType(T->getPointeeType());
3033}
3034
3035// <type> ::= R <type>   # reference-to
3036void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3037  Out << 'R';
3038  mangleType(T->getPointeeType());
3039}
3040
3041// <type> ::= O <type>   # rvalue reference-to (C++0x)
3042void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3043  Out << 'O';
3044  mangleType(T->getPointeeType());
3045}
3046
3047// <type> ::= C <type>   # complex pair (C 2000)
3048void CXXNameMangler::mangleType(const ComplexType *T) {
3049  Out << 'C';
3050  mangleType(T->getElementType());
3051}
3052
3053// ARM's ABI for Neon vector types specifies that they should be mangled as
3054// if they are structs (to match ARM's initial implementation).  The
3055// vector type must be one of the special types predefined by ARM.
3056void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3057  QualType EltType = T->getElementType();
3058  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3059  const char *EltName = nullptr;
3060  if (T->getVectorKind() == VectorType::NeonPolyVector) {
3061    switch (cast<BuiltinType>(EltType)->getKind()) {
3062    case BuiltinType::SChar:
3063    case BuiltinType::UChar:
3064      EltName = "poly8_t";
3065      break;
3066    case BuiltinType::Short:
3067    case BuiltinType::UShort:
3068      EltName = "poly16_t";
3069      break;
3070    case BuiltinType::ULongLong:
3071      EltName = "poly64_t";
3072      break;
3073    default: llvm_unreachable("unexpected Neon polynomial vector element type");
3074    }
3075  } else {
3076    switch (cast<BuiltinType>(EltType)->getKind()) {
3077    case BuiltinType::SChar:     EltName = "int8_t"; break;
3078    case BuiltinType::UChar:     EltName = "uint8_t"; break;
3079    case BuiltinType::Short:     EltName = "int16_t"; break;
3080    case BuiltinType::UShort:    EltName = "uint16_t"; break;
3081    case BuiltinType::Int:       EltName = "int32_t"; break;
3082    case BuiltinType::UInt:      EltName = "uint32_t"; break;
3083    case BuiltinType::LongLong:  EltName = "int64_t"; break;
3084    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3085    case BuiltinType::Double:    EltName = "float64_t"; break;
3086    case BuiltinType::Float:     EltName = "float32_t"; break;
3087    case BuiltinType::Half:      EltName = "float16_t";break;
3088    default:
3089      llvm_unreachable("unexpected Neon vector element type");
3090    }
3091  }
3092  const char *BaseName = nullptr;
3093  unsigned BitSize = (T->getNumElements() *
3094                      getASTContext().getTypeSize(EltType));
3095  if (BitSize == 64)
3096    BaseName = "__simd64_";
3097  else {
3098    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3099    BaseName = "__simd128_";
3100  }
3101  Out << strlen(BaseName) + strlen(EltName);
3102  Out << BaseName << EltName;
3103}
3104
3105void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3106  DiagnosticsEngine &Diags = Context.getDiags();
3107  unsigned DiagID = Diags.getCustomDiagID(
3108      DiagnosticsEngine::Error,
3109      "cannot mangle this dependent neon vector type yet");
3110  Diags.Report(T->getAttributeLoc(), DiagID);
3111}
3112
3113static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3114  switch (EltType->getKind()) {
3115  case BuiltinType::SChar:
3116    return "Int8";
3117  case BuiltinType::Short:
3118    return "Int16";
3119  case BuiltinType::Int:
3120    return "Int32";
3121  case BuiltinType::Long:
3122  case BuiltinType::LongLong:
3123    return "Int64";
3124  case BuiltinType::UChar:
3125    return "Uint8";
3126  case BuiltinType::UShort:
3127    return "Uint16";
3128  case BuiltinType::UInt:
3129    return "Uint32";
3130  case BuiltinType::ULong:
3131  case BuiltinType::ULongLong:
3132    return "Uint64";
3133  case BuiltinType::Half:
3134    return "Float16";
3135  case BuiltinType::Float:
3136    return "Float32";
3137  case BuiltinType::Double:
3138    return "Float64";
3139  default:
3140    llvm_unreachable("Unexpected vector element base type");
3141  }
3142}
3143
3144// AArch64's ABI for Neon vector types specifies that they should be mangled as
3145// the equivalent internal name. The vector type must be one of the special
3146// types predefined by ARM.
3147void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3148  QualType EltType = T->getElementType();
3149  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3150  unsigned BitSize =
3151      (T->getNumElements() * getASTContext().getTypeSize(EltType));
3152  (void)BitSize; // Silence warning.
3153
3154  assert((BitSize == 64 || BitSize == 128) &&
3155         "Neon vector type not 64 or 128 bits");
3156
3157  StringRef EltName;
3158  if (T->getVectorKind() == VectorType::NeonPolyVector) {
3159    switch (cast<BuiltinType>(EltType)->getKind()) {
3160    case BuiltinType::UChar:
3161      EltName = "Poly8";
3162      break;
3163    case BuiltinType::UShort:
3164      EltName = "Poly16";
3165      break;
3166    case BuiltinType::ULong:
3167    case BuiltinType::ULongLong:
3168      EltName = "Poly64";
3169      break;
3170    default:
3171      llvm_unreachable("unexpected Neon polynomial vector element type");
3172    }
3173  } else
3174    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3175
3176  std::string TypeName =
3177      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3178  Out << TypeName.length() << TypeName;
3179}
3180void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3181  DiagnosticsEngine &Diags = Context.getDiags();
3182  unsigned DiagID = Diags.getCustomDiagID(
3183      DiagnosticsEngine::Error,
3184      "cannot mangle this dependent neon vector type yet");
3185  Diags.Report(T->getAttributeLoc(), DiagID);
3186}
3187
3188// GNU extension: vector types
3189// <type>                  ::= <vector-type>
3190// <vector-type>           ::= Dv <positive dimension number> _
3191//                                    <extended element type>
3192//                         ::= Dv [<dimension expression>] _ <element type>
3193// <extended element type> ::= <element type>
3194//                         ::= p # AltiVec vector pixel
3195//                         ::= b # Altivec vector bool
3196void CXXNameMangler::mangleType(const VectorType *T) {
3197  if ((T->getVectorKind() == VectorType::NeonVector ||
3198       T->getVectorKind() == VectorType::NeonPolyVector)) {
3199    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3200    llvm::Triple::ArchType Arch =
3201        getASTContext().getTargetInfo().getTriple().getArch();
3202    if ((Arch == llvm::Triple::aarch64 ||
3203         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3204      mangleAArch64NeonVectorType(T);
3205    else
3206      mangleNeonVectorType(T);
3207    return;
3208  }
3209  Out << "Dv" << T->getNumElements() << '_';
3210  if (T->getVectorKind() == VectorType::AltiVecPixel)
3211    Out << 'p';
3212  else if (T->getVectorKind() == VectorType::AltiVecBool)
3213    Out << 'b';
3214  else
3215    mangleType(T->getElementType());
3216}
3217
3218void CXXNameMangler::mangleType(const DependentVectorType *T) {
3219  if ((T->getVectorKind() == VectorType::NeonVector ||
3220       T->getVectorKind() == VectorType::NeonPolyVector)) {
3221    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3222    llvm::Triple::ArchType Arch =
3223        getASTContext().getTargetInfo().getTriple().getArch();
3224    if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3225        !Target.isOSDarwin())
3226      mangleAArch64NeonVectorType(T);
3227    else
3228      mangleNeonVectorType(T);
3229    return;
3230  }
3231
3232  Out << "Dv";
3233  mangleExpression(T->getSizeExpr());
3234  Out << '_';
3235  if (T->getVectorKind() == VectorType::AltiVecPixel)
3236    Out << 'p';
3237  else if (T->getVectorKind() == VectorType::AltiVecBool)
3238    Out << 'b';
3239  else
3240    mangleType(T->getElementType());
3241}
3242
3243void CXXNameMangler::mangleType(const ExtVectorType *T) {
3244  mangleType(static_cast<const VectorType*>(T));
3245}
3246void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3247  Out << "Dv";
3248  mangleExpression(T->getSizeExpr());
3249  Out << '_';
3250  mangleType(T->getElementType());
3251}
3252
3253void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3254  SplitQualType split = T->getPointeeType().split();
3255  mangleQualifiers(split.Quals, T);
3256  mangleType(QualType(split.Ty, 0));
3257}
3258
3259void CXXNameMangler::mangleType(const PackExpansionType *T) {
3260  // <type>  ::= Dp <type>          # pack expansion (C++0x)
3261  Out << "Dp";
3262  mangleType(T->getPattern());
3263}
3264
3265void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3266  mangleSourceName(T->getDecl()->getIdentifier());
3267}
3268
3269void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3270  // Treat __kindof as a vendor extended type qualifier.
3271  if (T->isKindOfType())
3272    Out << "U8__kindof";
3273
3274  if (!T->qual_empty()) {
3275    // Mangle protocol qualifiers.
3276    SmallString<64> QualStr;
3277    llvm::raw_svector_ostream QualOS(QualStr);
3278    QualOS << "objcproto";
3279    for (const auto *I : T->quals()) {
3280      StringRef name = I->getName();
3281      QualOS << name.size() << name;
3282    }
3283    Out << 'U' << QualStr.size() << QualStr;
3284  }
3285
3286  mangleType(T->getBaseType());
3287
3288  if (T->isSpecialized()) {
3289    // Mangle type arguments as I <type>+ E
3290    Out << 'I';
3291    for (auto typeArg : T->getTypeArgs())
3292      mangleType(typeArg);
3293    Out << 'E';
3294  }
3295}
3296
3297void CXXNameMangler::mangleType(const BlockPointerType *T) {
3298  Out << "U13block_pointer";
3299  mangleType(T->getPointeeType());
3300}
3301
3302void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3303  // Mangle injected class name types as if the user had written the
3304  // specialization out fully.  It may not actually be possible to see
3305  // this mangling, though.
3306  mangleType(T->getInjectedSpecializationType());
3307}
3308
3309void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3310  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3311    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3312  } else {
3313    if (mangleSubstitution(QualType(T, 0)))
3314      return;
3315
3316    mangleTemplatePrefix(T->getTemplateName());
3317
3318    // FIXME: GCC does not appear to mangle the template arguments when
3319    // the template in question is a dependent template name. Should we
3320    // emulate that badness?
3321    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3322    addSubstitution(QualType(T, 0));
3323  }
3324}
3325
3326void CXXNameMangler::mangleType(const DependentNameType *T) {
3327  // Proposal by cxx-abi-dev, 2014-03-26
3328  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3329  //                                 # dependent elaborated type specifier using
3330  //                                 # 'typename'
3331  //                   ::= Ts <name> # dependent elaborated type specifier using
3332  //                                 # 'struct' or 'class'
3333  //                   ::= Tu <name> # dependent elaborated type specifier using
3334  //                                 # 'union'
3335  //                   ::= Te <name> # dependent elaborated type specifier using
3336  //                                 # 'enum'
3337  switch (T->getKeyword()) {
3338    case ETK_None:
3339    case ETK_Typename:
3340      break;
3341    case ETK_Struct:
3342    case ETK_Class:
3343    case ETK_Interface:
3344      Out << "Ts";
3345      break;
3346    case ETK_Union:
3347      Out << "Tu";
3348      break;
3349    case ETK_Enum:
3350      Out << "Te";
3351      break;
3352  }
3353  // Typename types are always nested
3354  Out << 'N';
3355  manglePrefix(T->getQualifier());
3356  mangleSourceName(T->getIdentifier());
3357  Out << 'E';
3358}
3359
3360void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3361  // Dependently-scoped template types are nested if they have a prefix.
3362  Out << 'N';
3363
3364  // TODO: avoid making this TemplateName.
3365  TemplateName Prefix =
3366    getASTContext().getDependentTemplateName(T->getQualifier(),
3367                                             T->getIdentifier());
3368  mangleTemplatePrefix(Prefix);
3369
3370  // FIXME: GCC does not appear to mangle the template arguments when
3371  // the template in question is a dependent template name. Should we
3372  // emulate that badness?
3373  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3374  Out << 'E';
3375}
3376
3377void CXXNameMangler::mangleType(const TypeOfType *T) {
3378  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3379  // "extension with parameters" mangling.
3380  Out << "u6typeof";
3381}
3382
3383void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3384  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3385  // "extension with parameters" mangling.
3386  Out << "u6typeof";
3387}
3388
3389void CXXNameMangler::mangleType(const DecltypeType *T) {
3390  Expr *E = T->getUnderlyingExpr();
3391
3392  // type ::= Dt <expression> E  # decltype of an id-expression
3393  //                             #   or class member access
3394  //      ::= DT <expression> E  # decltype of an expression
3395
3396  // This purports to be an exhaustive list of id-expressions and
3397  // class member accesses.  Note that we do not ignore parentheses;
3398  // parentheses change the semantics of decltype for these
3399  // expressions (and cause the mangler to use the other form).
3400  if (isa<DeclRefExpr>(E) ||
3401      isa<MemberExpr>(E) ||
3402      isa<UnresolvedLookupExpr>(E) ||
3403      isa<DependentScopeDeclRefExpr>(E) ||
3404      isa<CXXDependentScopeMemberExpr>(E) ||
3405      isa<UnresolvedMemberExpr>(E))
3406    Out << "Dt";
3407  else
3408    Out << "DT";
3409  mangleExpression(E);
3410  Out << 'E';
3411}
3412
3413void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3414  // If this is dependent, we need to record that. If not, we simply
3415  // mangle it as the underlying type since they are equivalent.
3416  if (T->isDependentType()) {
3417    Out << 'U';
3418
3419    switch (T->getUTTKind()) {
3420      case UnaryTransformType::EnumUnderlyingType:
3421        Out << "3eut";
3422        break;
3423    }
3424  }
3425
3426  mangleType(T->getBaseType());
3427}
3428
3429void CXXNameMangler::mangleType(const AutoType *T) {
3430  assert(T->getDeducedType().isNull() &&
3431         "Deduced AutoType shouldn't be handled here!");
3432  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3433         "shouldn't need to mangle __auto_type!");
3434  // <builtin-type> ::= Da # auto
3435  //                ::= Dc # decltype(auto)
3436  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3437}
3438
3439void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3440  // FIXME: This is not the right mangling. We also need to include a scope
3441  // here in some cases.
3442  QualType D = T->getDeducedType();
3443  if (D.isNull())
3444    mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3445  else
3446    mangleType(D);
3447}
3448
3449void CXXNameMangler::mangleType(const AtomicType *T) {
3450  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3451  // (Until there's a standardized mangling...)
3452  Out << "U7_Atomic";
3453  mangleType(T->getValueType());
3454}
3455
3456void CXXNameMangler::mangleType(const PipeType *T) {
3457  // Pipe type mangling rules are described in SPIR 2.0 specification
3458  // A.1 Data types and A.3 Summary of changes
3459  // <type> ::= 8ocl_pipe
3460  Out << "8ocl_pipe";
3461}
3462
3463void CXXNameMangler::mangleIntegerLiteral(QualType T,
3464                                          const llvm::APSInt &Value) {
3465  //  <expr-primary> ::= L <type> <value number> E # integer literal
3466  Out << 'L';
3467
3468  mangleType(T);
3469  if (T->isBooleanType()) {
3470    // Boolean values are encoded as 0/1.
3471    Out << (Value.getBoolValue() ? '1' : '0');
3472  } else {
3473    mangleNumber(Value);
3474  }
3475  Out << 'E';
3476
3477}
3478
3479void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3480  // Ignore member expressions involving anonymous unions.
3481  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3482    if (!RT->getDecl()->isAnonymousStructOrUnion())
3483      break;
3484    const auto *ME = dyn_cast<MemberExpr>(Base);
3485    if (!ME)
3486      break;
3487    Base = ME->getBase();
3488    IsArrow = ME->isArrow();
3489  }
3490
3491  if (Base->isImplicitCXXThis()) {
3492    // Note: GCC mangles member expressions to the implicit 'this' as
3493    // *this., whereas we represent them as this->. The Itanium C++ ABI
3494    // does not specify anything here, so we follow GCC.
3495    Out << "dtdefpT";
3496  } else {
3497    Out << (IsArrow ? "pt" : "dt");
3498    mangleExpression(Base);
3499  }
3500}
3501
3502/// Mangles a member expression.
3503void CXXNameMangler::mangleMemberExpr(const Expr *base,
3504                                      bool isArrow,
3505                                      NestedNameSpecifier *qualifier,
3506                                      NamedDecl *firstQualifierLookup,
3507                                      DeclarationName member,
3508                                      const TemplateArgumentLoc *TemplateArgs,
3509                                      unsigned NumTemplateArgs,
3510                                      unsigned arity) {
3511  // <expression> ::= dt <expression> <unresolved-name>
3512  //              ::= pt <expression> <unresolved-name>
3513  if (base)
3514    mangleMemberExprBase(base, isArrow);
3515  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3516}
3517
3518/// Look at the callee of the given call expression and determine if
3519/// it's a parenthesized id-expression which would have triggered ADL
3520/// otherwise.
3521static bool isParenthesizedADLCallee(const CallExpr *call) {
3522  const Expr *callee = call->getCallee();
3523  const Expr *fn = callee->IgnoreParens();
3524
3525  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3526  // too, but for those to appear in the callee, it would have to be
3527  // parenthesized.
3528  if (callee == fn) return false;
3529
3530  // Must be an unresolved lookup.
3531  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3532  if (!lookup) return false;
3533
3534  assert(!lookup->requiresADL());
3535
3536  // Must be an unqualified lookup.
3537  if (lookup->getQualifier()) return false;
3538
3539  // Must not have found a class member.  Note that if one is a class
3540  // member, they're all class members.
3541  if (lookup->getNumDecls() > 0 &&
3542      (*lookup->decls_begin())->isCXXClassMember())
3543    return false;
3544
3545  // Otherwise, ADL would have been triggered.
3546  return true;
3547}
3548
3549void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3550  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3551  Out << CastEncoding;
3552  mangleType(ECE->getType());
3553  mangleExpression(ECE->getSubExpr());
3554}
3555
3556void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3557  if (auto *Syntactic = InitList->getSyntacticForm())
3558    InitList = Syntactic;
3559  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3560    mangleExpression(InitList->getInit(i));
3561}
3562
3563void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3564  switch (D->getKind()) {
3565  default:
3566    //  <expr-primary> ::= L <mangled-name> E # external name
3567    Out << 'L';
3568    mangle(D);
3569    Out << 'E';
3570    break;
3571
3572  case Decl::ParmVar:
3573    mangleFunctionParam(cast<ParmVarDecl>(D));
3574    break;
3575
3576  case Decl::EnumConstant: {
3577    const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3578    mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3579    break;
3580  }
3581
3582  case Decl::NonTypeTemplateParm:
3583    const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3584    mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3585    break;
3586  }
3587}
3588
3589void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3590  // <expression> ::= <unary operator-name> <expression>
3591  //              ::= <binary operator-name> <expression> <expression>
3592  //              ::= <trinary operator-name> <expression> <expression> <expression>
3593  //              ::= cv <type> expression           # conversion with one argument
3594  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3595  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3596  //              ::= sc <type> <expression>         # static_cast<type> (expression)
3597  //              ::= cc <type> <expression>         # const_cast<type> (expression)
3598  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3599  //              ::= st <type>                      # sizeof (a type)
3600  //              ::= at <type>                      # alignof (a type)
3601  //              ::= <template-param>
3602  //              ::= <function-param>
3603  //              ::= sr <type> <unqualified-name>                   # dependent name
3604  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3605  //              ::= ds <expression> <expression>                   # expr.*expr
3606  //              ::= sZ <template-param>                            # size of a parameter pack
3607  //              ::= sZ <function-param>    # size of a function parameter pack
3608  //              ::= <expr-primary>
3609  // <expr-primary> ::= L <type> <value number> E    # integer literal
3610  //                ::= L <type <value float> E      # floating literal
3611  //                ::= L <mangled-name> E           # external name
3612  //                ::= fpT                          # 'this' expression
3613  QualType ImplicitlyConvertedToType;
3614
3615recurse:
3616  switch (E->getStmtClass()) {
3617  case Expr::NoStmtClass:
3618#define ABSTRACT_STMT(Type)
3619#define EXPR(Type, Base)
3620#define STMT(Type, Base) \
3621  case Expr::Type##Class:
3622#include "clang/AST/StmtNodes.inc"
3623    // fallthrough
3624
3625  // These all can only appear in local or variable-initialization
3626  // contexts and so should never appear in a mangling.
3627  case Expr::AddrLabelExprClass:
3628  case Expr::DesignatedInitUpdateExprClass:
3629  case Expr::ImplicitValueInitExprClass:
3630  case Expr::ArrayInitLoopExprClass:
3631  case Expr::ArrayInitIndexExprClass:
3632  case Expr::NoInitExprClass:
3633  case Expr::ParenListExprClass:
3634  case Expr::LambdaExprClass:
3635  case Expr::MSPropertyRefExprClass:
3636  case Expr::MSPropertySubscriptExprClass:
3637  case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3638  case Expr::OMPArraySectionExprClass:
3639  case Expr::CXXInheritedCtorInitExprClass:
3640    llvm_unreachable("unexpected statement kind");
3641
3642  case Expr::ConstantExprClass:
3643    E = cast<ConstantExpr>(E)->getSubExpr();
3644    goto recurse;
3645
3646  // FIXME: invent manglings for all these.
3647  case Expr::BlockExprClass:
3648  case Expr::ChooseExprClass:
3649  case Expr::CompoundLiteralExprClass:
3650  case Expr::ExtVectorElementExprClass:
3651  case Expr::GenericSelectionExprClass:
3652  case Expr::ObjCEncodeExprClass:
3653  case Expr::ObjCIsaExprClass:
3654  case Expr::ObjCIvarRefExprClass:
3655  case Expr::ObjCMessageExprClass:
3656  case Expr::ObjCPropertyRefExprClass:
3657  case Expr::ObjCProtocolExprClass:
3658  case Expr::ObjCSelectorExprClass:
3659  case Expr::ObjCStringLiteralClass:
3660  case Expr::ObjCBoxedExprClass:
3661  case Expr::ObjCArrayLiteralClass:
3662  case Expr::ObjCDictionaryLiteralClass:
3663  case Expr::ObjCSubscriptRefExprClass:
3664  case Expr::ObjCIndirectCopyRestoreExprClass:
3665  case Expr::ObjCAvailabilityCheckExprClass:
3666  case Expr::OffsetOfExprClass:
3667  case Expr::PredefinedExprClass:
3668  case Expr::ShuffleVectorExprClass:
3669  case Expr::ConvertVectorExprClass:
3670  case Expr::StmtExprClass:
3671  case Expr::TypeTraitExprClass:
3672  case Expr::RequiresExprClass:
3673  case Expr::ArrayTypeTraitExprClass:
3674  case Expr::ExpressionTraitExprClass:
3675  case Expr::VAArgExprClass:
3676  case Expr::CUDAKernelCallExprClass:
3677  case Expr::AsTypeExprClass:
3678  case Expr::PseudoObjectExprClass:
3679  case Expr::AtomicExprClass:
3680  case Expr::SourceLocExprClass:
3681  case Expr::FixedPointLiteralClass:
3682  case Expr::BuiltinBitCastExprClass:
3683  {
3684    if (!NullOut) {
3685      // As bad as this diagnostic is, it's better than crashing.
3686      DiagnosticsEngine &Diags = Context.getDiags();
3687      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3688                                       "cannot yet mangle expression type %0");
3689      Diags.Report(E->getExprLoc(), DiagID)
3690        << E->getStmtClassName() << E->getSourceRange();
3691    }
3692    break;
3693  }
3694
3695  case Expr::CXXUuidofExprClass: {
3696    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3697    if (UE->isTypeOperand()) {
3698      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3699      Out << "u8__uuidoft";
3700      mangleType(UuidT);
3701    } else {
3702      Expr *UuidExp = UE->getExprOperand();
3703      Out << "u8__uuidofz";
3704      mangleExpression(UuidExp, Arity);
3705    }
3706    break;
3707  }
3708
3709  // Even gcc-4.5 doesn't mangle this.
3710  case Expr::BinaryConditionalOperatorClass: {
3711    DiagnosticsEngine &Diags = Context.getDiags();
3712    unsigned DiagID =
3713      Diags.getCustomDiagID(DiagnosticsEngine::Error,
3714                "?: operator with omitted middle operand cannot be mangled");
3715    Diags.Report(E->getExprLoc(), DiagID)
3716      << E->getStmtClassName() << E->getSourceRange();
3717    break;
3718  }
3719
3720  // These are used for internal purposes and cannot be meaningfully mangled.
3721  case Expr::OpaqueValueExprClass:
3722    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3723
3724  case Expr::InitListExprClass: {
3725    Out << "il";
3726    mangleInitListElements(cast<InitListExpr>(E));
3727    Out << "E";
3728    break;
3729  }
3730
3731  case Expr::DesignatedInitExprClass: {
3732    auto *DIE = cast<DesignatedInitExpr>(E);
3733    for (const auto &Designator : DIE->designators()) {
3734      if (Designator.isFieldDesignator()) {
3735        Out << "di";
3736        mangleSourceName(Designator.getFieldName());
3737      } else if (Designator.isArrayDesignator()) {
3738        Out << "dx";
3739        mangleExpression(DIE->getArrayIndex(Designator));
3740      } else {
3741        assert(Designator.isArrayRangeDesignator() &&
3742               "unknown designator kind");
3743        Out << "dX";
3744        mangleExpression(DIE->getArrayRangeStart(Designator));
3745        mangleExpression(DIE->getArrayRangeEnd(Designator));
3746      }
3747    }
3748    mangleExpression(DIE->getInit());
3749    break;
3750  }
3751
3752  case Expr::CXXDefaultArgExprClass:
3753    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3754    break;
3755
3756  case Expr::CXXDefaultInitExprClass:
3757    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3758    break;
3759
3760  case Expr::CXXStdInitializerListExprClass:
3761    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3762    break;
3763
3764  case Expr::SubstNonTypeTemplateParmExprClass:
3765    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3766                     Arity);
3767    break;
3768
3769  case Expr::UserDefinedLiteralClass:
3770    // We follow g++'s approach of mangling a UDL as a call to the literal
3771    // operator.
3772  case Expr::CXXMemberCallExprClass: // fallthrough
3773  case Expr::CallExprClass: {
3774    const CallExpr *CE = cast<CallExpr>(E);
3775
3776    // <expression> ::= cp <simple-id> <expression>* E
3777    // We use this mangling only when the call would use ADL except
3778    // for being parenthesized.  Per discussion with David
3779    // Vandervoorde, 2011.04.25.
3780    if (isParenthesizedADLCallee(CE)) {
3781      Out << "cp";
3782      // The callee here is a parenthesized UnresolvedLookupExpr with
3783      // no qualifier and should always get mangled as a <simple-id>
3784      // anyway.
3785
3786    // <expression> ::= cl <expression>* E
3787    } else {
3788      Out << "cl";
3789    }
3790
3791    unsigned CallArity = CE->getNumArgs();
3792    for (const Expr *Arg : CE->arguments())
3793      if (isa<PackExpansionExpr>(Arg))
3794        CallArity = UnknownArity;
3795
3796    mangleExpression(CE->getCallee(), CallArity);
3797    for (const Expr *Arg : CE->arguments())
3798      mangleExpression(Arg);
3799    Out << 'E';
3800    break;
3801  }
3802
3803  case Expr::CXXNewExprClass: {
3804    const CXXNewExpr *New = cast<CXXNewExpr>(E);
3805    if (New->isGlobalNew()) Out << "gs";
3806    Out << (New->isArray() ? "na" : "nw");
3807    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3808           E = New->placement_arg_end(); I != E; ++I)
3809      mangleExpression(*I);
3810    Out << '_';
3811    mangleType(New->getAllocatedType());
3812    if (New->hasInitializer()) {
3813      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3814        Out << "il";
3815      else
3816        Out << "pi";
3817      const Expr *Init = New->getInitializer();
3818      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3819        // Directly inline the initializers.
3820        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3821                                                  E = CCE->arg_end();
3822             I != E; ++I)
3823          mangleExpression(*I);
3824      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3825        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3826          mangleExpression(PLE->getExpr(i));
3827      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3828                 isa<InitListExpr>(Init)) {
3829        // Only take InitListExprs apart for list-initialization.
3830        mangleInitListElements(cast<InitListExpr>(Init));
3831      } else
3832        mangleExpression(Init);
3833    }
3834    Out << 'E';
3835    break;
3836  }
3837
3838  case Expr::CXXPseudoDestructorExprClass: {
3839    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3840    if (const Expr *Base = PDE->getBase())
3841      mangleMemberExprBase(Base, PDE->isArrow());
3842    NestedNameSpecifier *Qualifier = PDE->getQualifier();
3843    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3844      if (Qualifier) {
3845        mangleUnresolvedPrefix(Qualifier,
3846                               /*recursive=*/true);
3847        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3848        Out << 'E';
3849      } else {
3850        Out << "sr";
3851        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3852          Out << 'E';
3853      }
3854    } else if (Qualifier) {
3855      mangleUnresolvedPrefix(Qualifier);
3856    }
3857    // <base-unresolved-name> ::= dn <destructor-name>
3858    Out << "dn";
3859    QualType DestroyedType = PDE->getDestroyedType();
3860    mangleUnresolvedTypeOrSimpleId(DestroyedType);
3861    break;
3862  }
3863
3864  case Expr::MemberExprClass: {
3865    const MemberExpr *ME = cast<MemberExpr>(E);
3866    mangleMemberExpr(ME->getBase(), ME->isArrow(),
3867                     ME->getQualifier(), nullptr,
3868                     ME->getMemberDecl()->getDeclName(),
3869                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3870                     Arity);
3871    break;
3872  }
3873
3874  case Expr::UnresolvedMemberExprClass: {
3875    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3876    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3877                     ME->isArrow(), ME->getQualifier(), nullptr,
3878                     ME->getMemberName(),
3879                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3880                     Arity);
3881    break;
3882  }
3883
3884  case Expr::CXXDependentScopeMemberExprClass: {
3885    const CXXDependentScopeMemberExpr *ME
3886      = cast<CXXDependentScopeMemberExpr>(E);
3887    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3888                     ME->isArrow(), ME->getQualifier(),
3889                     ME->getFirstQualifierFoundInScope(),
3890                     ME->getMember(),
3891                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3892                     Arity);
3893    break;
3894  }
3895
3896  case Expr::UnresolvedLookupExprClass: {
3897    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3898    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3899                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3900                         Arity);
3901    break;
3902  }
3903
3904  case Expr::CXXUnresolvedConstructExprClass: {
3905    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3906    unsigned N = CE->arg_size();
3907
3908    if (CE->isListInitialization()) {
3909      assert(N == 1 && "unexpected form for list initialization");
3910      auto *IL = cast<InitListExpr>(CE->getArg(0));
3911      Out << "tl";
3912      mangleType(CE->getType());
3913      mangleInitListElements(IL);
3914      Out << "E";
3915      return;
3916    }
3917
3918    Out << "cv";
3919    mangleType(CE->getType());
3920    if (N != 1) Out << '_';
3921    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3922    if (N != 1) Out << 'E';
3923    break;
3924  }
3925
3926  case Expr::CXXConstructExprClass: {
3927    const auto *CE = cast<CXXConstructExpr>(E);
3928    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3929      assert(
3930          CE->getNumArgs() >= 1 &&
3931          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3932          "implicit CXXConstructExpr must have one argument");
3933      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3934    }
3935    Out << "il";
3936    for (auto *E : CE->arguments())
3937      mangleExpression(E);
3938    Out << "E";
3939    break;
3940  }
3941
3942  case Expr::CXXTemporaryObjectExprClass: {
3943    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3944    unsigned N = CE->getNumArgs();
3945    bool List = CE->isListInitialization();
3946
3947    if (List)
3948      Out << "tl";
3949    else
3950      Out << "cv";
3951    mangleType(CE->getType());
3952    if (!List && N != 1)
3953      Out << '_';
3954    if (CE->isStdInitListInitialization()) {
3955      // We implicitly created a std::initializer_list<T> for the first argument
3956      // of a constructor of type U in an expression of the form U{a, b, c}.
3957      // Strip all the semantic gunk off the initializer list.
3958      auto *SILE =
3959          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3960      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3961      mangleInitListElements(ILE);
3962    } else {
3963      for (auto *E : CE->arguments())
3964        mangleExpression(E);
3965    }
3966    if (List || N != 1)
3967      Out << 'E';
3968    break;
3969  }
3970
3971  case Expr::CXXScalarValueInitExprClass:
3972    Out << "cv";
3973    mangleType(E->getType());
3974    Out << "_E";
3975    break;
3976
3977  case Expr::CXXNoexceptExprClass:
3978    Out << "nx";
3979    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3980    break;
3981
3982  case Expr::UnaryExprOrTypeTraitExprClass: {
3983    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3984
3985    if (!SAE->isInstantiationDependent()) {
3986      // Itanium C++ ABI:
3987      //   If the operand of a sizeof or alignof operator is not
3988      //   instantiation-dependent it is encoded as an integer literal
3989      //   reflecting the result of the operator.
3990      //
3991      //   If the result of the operator is implicitly converted to a known
3992      //   integer type, that type is used for the literal; otherwise, the type
3993      //   of std::size_t or std::ptrdiff_t is used.
3994      QualType T = (ImplicitlyConvertedToType.isNull() ||
3995                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3996                                                    : ImplicitlyConvertedToType;
3997      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3998      mangleIntegerLiteral(T, V);
3999      break;
4000    }
4001
4002    switch(SAE->getKind()) {
4003    case UETT_SizeOf:
4004      Out << 's';
4005      break;
4006    case UETT_PreferredAlignOf:
4007    case UETT_AlignOf:
4008      Out << 'a';
4009      break;
4010    case UETT_VecStep: {
4011      DiagnosticsEngine &Diags = Context.getDiags();
4012      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4013                                     "cannot yet mangle vec_step expression");
4014      Diags.Report(DiagID);
4015      return;
4016    }
4017    case UETT_OpenMPRequiredSimdAlign: {
4018      DiagnosticsEngine &Diags = Context.getDiags();
4019      unsigned DiagID = Diags.getCustomDiagID(
4020          DiagnosticsEngine::Error,
4021          "cannot yet mangle __builtin_omp_required_simd_align expression");
4022      Diags.Report(DiagID);
4023      return;
4024    }
4025    }
4026    if (SAE->isArgumentType()) {
4027      Out << 't';
4028      mangleType(SAE->getArgumentType());
4029    } else {
4030      Out << 'z';
4031      mangleExpression(SAE->getArgumentExpr());
4032    }
4033    break;
4034  }
4035
4036  case Expr::CXXThrowExprClass: {
4037    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4038    //  <expression> ::= tw <expression>  # throw expression
4039    //               ::= tr               # rethrow
4040    if (TE->getSubExpr()) {
4041      Out << "tw";
4042      mangleExpression(TE->getSubExpr());
4043    } else {
4044      Out << "tr";
4045    }
4046    break;
4047  }
4048
4049  case Expr::CXXTypeidExprClass: {
4050    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4051    //  <expression> ::= ti <type>        # typeid (type)
4052    //               ::= te <expression>  # typeid (expression)
4053    if (TIE->isTypeOperand()) {
4054      Out << "ti";
4055      mangleType(TIE->getTypeOperand(Context.getASTContext()));
4056    } else {
4057      Out << "te";
4058      mangleExpression(TIE->getExprOperand());
4059    }
4060    break;
4061  }
4062
4063  case Expr::CXXDeleteExprClass: {
4064    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4065    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4066    //               ::= [gs] da <expression>  # [::] delete [] expr
4067    if (DE->isGlobalDelete()) Out << "gs";
4068    Out << (DE->isArrayForm() ? "da" : "dl");
4069    mangleExpression(DE->getArgument());
4070    break;
4071  }
4072
4073  case Expr::UnaryOperatorClass: {
4074    const UnaryOperator *UO = cast<UnaryOperator>(E);
4075    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4076                       /*Arity=*/1);
4077    mangleExpression(UO->getSubExpr());
4078    break;
4079  }
4080
4081  case Expr::ArraySubscriptExprClass: {
4082    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4083
4084    // Array subscript is treated as a syntactically weird form of
4085    // binary operator.
4086    Out << "ix";
4087    mangleExpression(AE->getLHS());
4088    mangleExpression(AE->getRHS());
4089    break;
4090  }
4091
4092  case Expr::CompoundAssignOperatorClass: // fallthrough
4093  case Expr::BinaryOperatorClass: {
4094    const BinaryOperator *BO = cast<BinaryOperator>(E);
4095    if (BO->getOpcode() == BO_PtrMemD)
4096      Out << "ds";
4097    else
4098      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4099                         /*Arity=*/2);
4100    mangleExpression(BO->getLHS());
4101    mangleExpression(BO->getRHS());
4102    break;
4103  }
4104
4105  case Expr::CXXRewrittenBinaryOperatorClass: {
4106    // The mangled form represents the original syntax.
4107    CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4108        cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4109    mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4110                       /*Arity=*/2);
4111    mangleExpression(Decomposed.LHS);
4112    mangleExpression(Decomposed.RHS);
4113    break;
4114  }
4115
4116  case Expr::ConditionalOperatorClass: {
4117    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4118    mangleOperatorName(OO_Conditional, /*Arity=*/3);
4119    mangleExpression(CO->getCond());
4120    mangleExpression(CO->getLHS(), Arity);
4121    mangleExpression(CO->getRHS(), Arity);
4122    break;
4123  }
4124
4125  case Expr::ImplicitCastExprClass: {
4126    ImplicitlyConvertedToType = E->getType();
4127    E = cast<ImplicitCastExpr>(E)->getSubExpr();
4128    goto recurse;
4129  }
4130
4131  case Expr::ObjCBridgedCastExprClass: {
4132    // Mangle ownership casts as a vendor extended operator __bridge,
4133    // __bridge_transfer, or __bridge_retain.
4134    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4135    Out << "v1U" << Kind.size() << Kind;
4136  }
4137  // Fall through to mangle the cast itself.
4138  LLVM_FALLTHROUGH;
4139
4140  case Expr::CStyleCastExprClass:
4141    mangleCastExpression(E, "cv");
4142    break;
4143
4144  case Expr::CXXFunctionalCastExprClass: {
4145    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4146    // FIXME: Add isImplicit to CXXConstructExpr.
4147    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4148      if (CCE->getParenOrBraceRange().isInvalid())
4149        Sub = CCE->getArg(0)->IgnoreImplicit();
4150    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4151      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4152    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4153      Out << "tl";
4154      mangleType(E->getType());
4155      mangleInitListElements(IL);
4156      Out << "E";
4157    } else {
4158      mangleCastExpression(E, "cv");
4159    }
4160    break;
4161  }
4162
4163  case Expr::CXXStaticCastExprClass:
4164    mangleCastExpression(E, "sc");
4165    break;
4166  case Expr::CXXDynamicCastExprClass:
4167    mangleCastExpression(E, "dc");
4168    break;
4169  case Expr::CXXReinterpretCastExprClass:
4170    mangleCastExpression(E, "rc");
4171    break;
4172  case Expr::CXXConstCastExprClass:
4173    mangleCastExpression(E, "cc");
4174    break;
4175
4176  case Expr::CXXOperatorCallExprClass: {
4177    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4178    unsigned NumArgs = CE->getNumArgs();
4179    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4180    // (the enclosing MemberExpr covers the syntactic portion).
4181    if (CE->getOperator() != OO_Arrow)
4182      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4183    // Mangle the arguments.
4184    for (unsigned i = 0; i != NumArgs; ++i)
4185      mangleExpression(CE->getArg(i));
4186    break;
4187  }
4188
4189  case Expr::ParenExprClass:
4190    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4191    break;
4192
4193
4194  case Expr::ConceptSpecializationExprClass: {
4195    //  <expr-primary> ::= L <mangled-name> E # external name
4196    Out << "L_Z";
4197    auto *CSE = cast<ConceptSpecializationExpr>(E);
4198    mangleTemplateName(CSE->getNamedConcept(),
4199                       CSE->getTemplateArguments().data(),
4200                       CSE->getTemplateArguments().size());
4201    Out << 'E';
4202    break;
4203  }
4204
4205  case Expr::DeclRefExprClass:
4206    mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4207    break;
4208
4209  case Expr::SubstNonTypeTemplateParmPackExprClass:
4210    // FIXME: not clear how to mangle this!
4211    // template <unsigned N...> class A {
4212    //   template <class U...> void foo(U (&x)[N]...);
4213    // };
4214    Out << "_SUBSTPACK_";
4215    break;
4216
4217  case Expr::FunctionParmPackExprClass: {
4218    // FIXME: not clear how to mangle this!
4219    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4220    Out << "v110_SUBSTPACK";
4221    mangleDeclRefExpr(FPPE->getParameterPack());
4222    break;
4223  }
4224
4225  case Expr::DependentScopeDeclRefExprClass: {
4226    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4227    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4228                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4229                         Arity);
4230    break;
4231  }
4232
4233  case Expr::CXXBindTemporaryExprClass:
4234    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4235    break;
4236
4237  case Expr::ExprWithCleanupsClass:
4238    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4239    break;
4240
4241  case Expr::FloatingLiteralClass: {
4242    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4243    Out << 'L';
4244    mangleType(FL->getType());
4245    mangleFloat(FL->getValue());
4246    Out << 'E';
4247    break;
4248  }
4249
4250  case Expr::CharacterLiteralClass:
4251    Out << 'L';
4252    mangleType(E->getType());
4253    Out << cast<CharacterLiteral>(E)->getValue();
4254    Out << 'E';
4255    break;
4256
4257  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4258  case Expr::ObjCBoolLiteralExprClass:
4259    Out << "Lb";
4260    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4261    Out << 'E';
4262    break;
4263
4264  case Expr::CXXBoolLiteralExprClass:
4265    Out << "Lb";
4266    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4267    Out << 'E';
4268    break;
4269
4270  case Expr::IntegerLiteralClass: {
4271    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4272    if (E->getType()->isSignedIntegerType())
4273      Value.setIsSigned(true);
4274    mangleIntegerLiteral(E->getType(), Value);
4275    break;
4276  }
4277
4278  case Expr::ImaginaryLiteralClass: {
4279    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4280    // Mangle as if a complex literal.
4281    // Proposal from David Vandevoorde, 2010.06.30.
4282    Out << 'L';
4283    mangleType(E->getType());
4284    if (const FloatingLiteral *Imag =
4285          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4286      // Mangle a floating-point zero of the appropriate type.
4287      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4288      Out << '_';
4289      mangleFloat(Imag->getValue());
4290    } else {
4291      Out << "0_";
4292      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4293      if (IE->getSubExpr()->getType()->isSignedIntegerType())
4294        Value.setIsSigned(true);
4295      mangleNumber(Value);
4296    }
4297    Out << 'E';
4298    break;
4299  }
4300
4301  case Expr::StringLiteralClass: {
4302    // Revised proposal from David Vandervoorde, 2010.07.15.
4303    Out << 'L';
4304    assert(isa<ConstantArrayType>(E->getType()));
4305    mangleType(E->getType());
4306    Out << 'E';
4307    break;
4308  }
4309
4310  case Expr::GNUNullExprClass:
4311    // Mangle as if an integer literal 0.
4312    Out << 'L';
4313    mangleType(E->getType());
4314    Out << "0E";
4315    break;
4316
4317  case Expr::CXXNullPtrLiteralExprClass: {
4318    Out << "LDnE";
4319    break;
4320  }
4321
4322  case Expr::PackExpansionExprClass:
4323    Out << "sp";
4324    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4325    break;
4326
4327  case Expr::SizeOfPackExprClass: {
4328    auto *SPE = cast<SizeOfPackExpr>(E);
4329    if (SPE->isPartiallySubstituted()) {
4330      Out << "sP";
4331      for (const auto &A : SPE->getPartialArguments())
4332        mangleTemplateArg(A);
4333      Out << "E";
4334      break;
4335    }
4336
4337    Out << "sZ";
4338    const NamedDecl *Pack = SPE->getPack();
4339    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4340      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4341    else if (const NonTypeTemplateParmDecl *NTTP
4342                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4343      mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4344    else if (const TemplateTemplateParmDecl *TempTP
4345                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
4346      mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4347    else
4348      mangleFunctionParam(cast<ParmVarDecl>(Pack));
4349    break;
4350  }
4351
4352  case Expr::MaterializeTemporaryExprClass: {
4353    mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4354    break;
4355  }
4356
4357  case Expr::CXXFoldExprClass: {
4358    auto *FE = cast<CXXFoldExpr>(E);
4359    if (FE->isLeftFold())
4360      Out << (FE->getInit() ? "fL" : "fl");
4361    else
4362      Out << (FE->getInit() ? "fR" : "fr");
4363
4364    if (FE->getOperator() == BO_PtrMemD)
4365      Out << "ds";
4366    else
4367      mangleOperatorName(
4368          BinaryOperator::getOverloadedOperator(FE->getOperator()),
4369          /*Arity=*/2);
4370
4371    if (FE->getLHS())
4372      mangleExpression(FE->getLHS());
4373    if (FE->getRHS())
4374      mangleExpression(FE->getRHS());
4375    break;
4376  }
4377
4378  case Expr::CXXThisExprClass:
4379    Out << "fpT";
4380    break;
4381
4382  case Expr::CoawaitExprClass:
4383    // FIXME: Propose a non-vendor mangling.
4384    Out << "v18co_await";
4385    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4386    break;
4387
4388  case Expr::DependentCoawaitExprClass:
4389    // FIXME: Propose a non-vendor mangling.
4390    Out << "v18co_await";
4391    mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4392    break;
4393
4394  case Expr::CoyieldExprClass:
4395    // FIXME: Propose a non-vendor mangling.
4396    Out << "v18co_yield";
4397    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4398    break;
4399  }
4400}
4401
4402/// Mangle an expression which refers to a parameter variable.
4403///
4404/// <expression>     ::= <function-param>
4405/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4406/// <function-param> ::= fp <top-level CV-qualifiers>
4407///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4408/// <function-param> ::= fL <L-1 non-negative number>
4409///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4410/// <function-param> ::= fL <L-1 non-negative number>
4411///                      p <top-level CV-qualifiers>
4412///                      <I-1 non-negative number> _         # L > 0, I > 0
4413///
4414/// L is the nesting depth of the parameter, defined as 1 if the
4415/// parameter comes from the innermost function prototype scope
4416/// enclosing the current context, 2 if from the next enclosing
4417/// function prototype scope, and so on, with one special case: if
4418/// we've processed the full parameter clause for the innermost
4419/// function type, then L is one less.  This definition conveniently
4420/// makes it irrelevant whether a function's result type was written
4421/// trailing or leading, but is otherwise overly complicated; the
4422/// numbering was first designed without considering references to
4423/// parameter in locations other than return types, and then the
4424/// mangling had to be generalized without changing the existing
4425/// manglings.
4426///
4427/// I is the zero-based index of the parameter within its parameter
4428/// declaration clause.  Note that the original ABI document describes
4429/// this using 1-based ordinals.
4430void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4431  unsigned parmDepth = parm->getFunctionScopeDepth();
4432  unsigned parmIndex = parm->getFunctionScopeIndex();
4433
4434  // Compute 'L'.
4435  // parmDepth does not include the declaring function prototype.
4436  // FunctionTypeDepth does account for that.
4437  assert(parmDepth < FunctionTypeDepth.getDepth());
4438  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4439  if (FunctionTypeDepth.isInResultType())
4440    nestingDepth--;
4441
4442  if (nestingDepth == 0) {
4443    Out << "fp";
4444  } else {
4445    Out << "fL" << (nestingDepth - 1) << 'p';
4446  }
4447
4448  // Top-level qualifiers.  We don't have to worry about arrays here,
4449  // because parameters declared as arrays should already have been
4450  // transformed to have pointer type. FIXME: apparently these don't
4451  // get mangled if used as an rvalue of a known non-class type?
4452  assert(!parm->getType()->isArrayType()
4453         && "parameter's type is still an array type?");
4454
4455  if (const DependentAddressSpaceType *DAST =
4456      dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4457    mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4458  } else {
4459    mangleQualifiers(parm->getType().getQualifiers());
4460  }
4461
4462  // Parameter index.
4463  if (parmIndex != 0) {
4464    Out << (parmIndex - 1);
4465  }
4466  Out << '_';
4467}
4468
4469void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4470                                       const CXXRecordDecl *InheritedFrom) {
4471  // <ctor-dtor-name> ::= C1  # complete object constructor
4472  //                  ::= C2  # base object constructor
4473  //                  ::= CI1 <type> # complete inheriting constructor
4474  //                  ::= CI2 <type> # base inheriting constructor
4475  //
4476  // In addition, C5 is a comdat name with C1 and C2 in it.
4477  Out << 'C';
4478  if (InheritedFrom)
4479    Out << 'I';
4480  switch (T) {
4481  case Ctor_Complete:
4482    Out << '1';
4483    break;
4484  case Ctor_Base:
4485    Out << '2';
4486    break;
4487  case Ctor_Comdat:
4488    Out << '5';
4489    break;
4490  case Ctor_DefaultClosure:
4491  case Ctor_CopyingClosure:
4492    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4493  }
4494  if (InheritedFrom)
4495    mangleName(InheritedFrom);
4496}
4497
4498void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4499  // <ctor-dtor-name> ::= D0  # deleting destructor
4500  //                  ::= D1  # complete object destructor
4501  //                  ::= D2  # base object destructor
4502  //
4503  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4504  switch (T) {
4505  case Dtor_Deleting:
4506    Out << "D0";
4507    break;
4508  case Dtor_Complete:
4509    Out << "D1";
4510    break;
4511  case Dtor_Base:
4512    Out << "D2";
4513    break;
4514  case Dtor_Comdat:
4515    Out << "D5";
4516    break;
4517  }
4518}
4519
4520void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4521                                        unsigned NumTemplateArgs) {
4522  // <template-args> ::= I <template-arg>+ E
4523  Out << 'I';
4524  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4525    mangleTemplateArg(TemplateArgs[i].getArgument());
4526  Out << 'E';
4527}
4528
4529void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4530  // <template-args> ::= I <template-arg>+ E
4531  Out << 'I';
4532  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4533    mangleTemplateArg(AL[i]);
4534  Out << 'E';
4535}
4536
4537void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4538                                        unsigned NumTemplateArgs) {
4539  // <template-args> ::= I <template-arg>+ E
4540  Out << 'I';
4541  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4542    mangleTemplateArg(TemplateArgs[i]);
4543  Out << 'E';
4544}
4545
4546void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4547  // <template-arg> ::= <type>              # type or template
4548  //                ::= X <expression> E    # expression
4549  //                ::= <expr-primary>      # simple expressions
4550  //                ::= J <template-arg>* E # argument pack
4551  if (!A.isInstantiationDependent() || A.isDependent())
4552    A = Context.getASTContext().getCanonicalTemplateArgument(A);
4553
4554  switch (A.getKind()) {
4555  case TemplateArgument::Null:
4556    llvm_unreachable("Cannot mangle NULL template argument");
4557
4558  case TemplateArgument::Type:
4559    mangleType(A.getAsType());
4560    break;
4561  case TemplateArgument::Template:
4562    // This is mangled as <type>.
4563    mangleType(A.getAsTemplate());
4564    break;
4565  case TemplateArgument::TemplateExpansion:
4566    // <type>  ::= Dp <type>          # pack expansion (C++0x)
4567    Out << "Dp";
4568    mangleType(A.getAsTemplateOrTemplatePattern());
4569    break;
4570  case TemplateArgument::Expression: {
4571    // It's possible to end up with a DeclRefExpr here in certain
4572    // dependent cases, in which case we should mangle as a
4573    // declaration.
4574    const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4575    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4576      const ValueDecl *D = DRE->getDecl();
4577      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4578        Out << 'L';
4579        mangle(D);
4580        Out << 'E';
4581        break;
4582      }
4583    }
4584
4585    Out << 'X';
4586    mangleExpression(E);
4587    Out << 'E';
4588    break;
4589  }
4590  case TemplateArgument::Integral:
4591    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4592    break;
4593  case TemplateArgument::Declaration: {
4594    //  <expr-primary> ::= L <mangled-name> E # external name
4595    // Clang produces AST's where pointer-to-member-function expressions
4596    // and pointer-to-function expressions are represented as a declaration not
4597    // an expression. We compensate for it here to produce the correct mangling.
4598    ValueDecl *D = A.getAsDecl();
4599    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4600    if (compensateMangling) {
4601      Out << 'X';
4602      mangleOperatorName(OO_Amp, 1);
4603    }
4604
4605    Out << 'L';
4606    // References to external entities use the mangled name; if the name would
4607    // not normally be mangled then mangle it as unqualified.
4608    mangle(D);
4609    Out << 'E';
4610
4611    if (compensateMangling)
4612      Out << 'E';
4613
4614    break;
4615  }
4616  case TemplateArgument::NullPtr: {
4617    //  <expr-primary> ::= L <type> 0 E
4618    Out << 'L';
4619    mangleType(A.getNullPtrType());
4620    Out << "0E";
4621    break;
4622  }
4623  case TemplateArgument::Pack: {
4624    //  <template-arg> ::= J <template-arg>* E
4625    Out << 'J';
4626    for (const auto &P : A.pack_elements())
4627      mangleTemplateArg(P);
4628    Out << 'E';
4629  }
4630  }
4631}
4632
4633void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
4634  // <template-param> ::= T_    # first template parameter
4635  //                  ::= T <parameter-2 non-negative number> _
4636  //                  ::= TL <L-1 non-negative number> __
4637  //                  ::= TL <L-1 non-negative number> _
4638  //                         <parameter-2 non-negative number> _
4639  //
4640  // The latter two manglings are from a proposal here:
4641  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
4642  Out << 'T';
4643  if (Depth != 0)
4644    Out << 'L' << (Depth - 1) << '_';
4645  if (Index != 0)
4646    Out << (Index - 1);
4647  Out << '_';
4648}
4649
4650void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4651  if (SeqID == 1)
4652    Out << '0';
4653  else if (SeqID > 1) {
4654    SeqID--;
4655
4656    // <seq-id> is encoded in base-36, using digits and upper case letters.
4657    char Buffer[7]; // log(2**32) / log(36) ~= 7
4658    MutableArrayRef<char> BufferRef(Buffer);
4659    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4660
4661    for (; SeqID != 0; SeqID /= 36) {
4662      unsigned C = SeqID % 36;
4663      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4664    }
4665
4666    Out.write(I.base(), I - BufferRef.rbegin());
4667  }
4668  Out << '_';
4669}
4670
4671void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4672  bool result = mangleSubstitution(tname);
4673  assert(result && "no existing substitution for template name");
4674  (void) result;
4675}
4676
4677// <substitution> ::= S <seq-id> _
4678//                ::= S_
4679bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4680  // Try one of the standard substitutions first.
4681  if (mangleStandardSubstitution(ND))
4682    return true;
4683
4684  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4685  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4686}
4687
4688/// Determine whether the given type has any qualifiers that are relevant for
4689/// substitutions.
4690static bool hasMangledSubstitutionQualifiers(QualType T) {
4691  Qualifiers Qs = T.getQualifiers();
4692  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4693}
4694
4695bool CXXNameMangler::mangleSubstitution(QualType T) {
4696  if (!hasMangledSubstitutionQualifiers(T)) {
4697    if (const RecordType *RT = T->getAs<RecordType>())
4698      return mangleSubstitution(RT->getDecl());
4699  }
4700
4701  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4702
4703  return mangleSubstitution(TypePtr);
4704}
4705
4706bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4707  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4708    return mangleSubstitution(TD);
4709
4710  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4711  return mangleSubstitution(
4712                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4713}
4714
4715bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4716  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4717  if (I == Substitutions.end())
4718    return false;
4719
4720  unsigned SeqID = I->second;
4721  Out << 'S';
4722  mangleSeqID(SeqID);
4723
4724  return true;
4725}
4726
4727static bool isCharType(QualType T) {
4728  if (T.isNull())
4729    return false;
4730
4731  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4732    T->isSpecificBuiltinType(BuiltinType::Char_U);
4733}
4734
4735/// Returns whether a given type is a template specialization of a given name
4736/// with a single argument of type char.
4737static bool isCharSpecialization(QualType T, const char *Name) {
4738  if (T.isNull())
4739    return false;
4740
4741  const RecordType *RT = T->getAs<RecordType>();
4742  if (!RT)
4743    return false;
4744
4745  const ClassTemplateSpecializationDecl *SD =
4746    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4747  if (!SD)
4748    return false;
4749
4750  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4751    return false;
4752
4753  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4754  if (TemplateArgs.size() != 1)
4755    return false;
4756
4757  if (!isCharType(TemplateArgs[0].getAsType()))
4758    return false;
4759
4760  return SD->getIdentifier()->getName() == Name;
4761}
4762
4763template <std::size_t StrLen>
4764static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4765                                       const char (&Str)[StrLen]) {
4766  if (!SD->getIdentifier()->isStr(Str))
4767    return false;
4768
4769  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4770  if (TemplateArgs.size() != 2)
4771    return false;
4772
4773  if (!isCharType(TemplateArgs[0].getAsType()))
4774    return false;
4775
4776  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4777    return false;
4778
4779  return true;
4780}
4781
4782bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4783  // <substitution> ::= St # ::std::
4784  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4785    if (isStd(NS)) {
4786      Out << "St";
4787      return true;
4788    }
4789  }
4790
4791  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4792    if (!isStdNamespace(getEffectiveDeclContext(TD)))
4793      return false;
4794
4795    // <substitution> ::= Sa # ::std::allocator
4796    if (TD->getIdentifier()->isStr("allocator")) {
4797      Out << "Sa";
4798      return true;
4799    }
4800
4801    // <<substitution> ::= Sb # ::std::basic_string
4802    if (TD->getIdentifier()->isStr("basic_string")) {
4803      Out << "Sb";
4804      return true;
4805    }
4806  }
4807
4808  if (const ClassTemplateSpecializationDecl *SD =
4809        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4810    if (!isStdNamespace(getEffectiveDeclContext(SD)))
4811      return false;
4812
4813    //    <substitution> ::= Ss # ::std::basic_string<char,
4814    //                            ::std::char_traits<char>,
4815    //                            ::std::allocator<char> >
4816    if (SD->getIdentifier()->isStr("basic_string")) {
4817      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4818
4819      if (TemplateArgs.size() != 3)
4820        return false;
4821
4822      if (!isCharType(TemplateArgs[0].getAsType()))
4823        return false;
4824
4825      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4826        return false;
4827
4828      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4829        return false;
4830
4831      Out << "Ss";
4832      return true;
4833    }
4834
4835    //    <substitution> ::= Si # ::std::basic_istream<char,
4836    //                            ::std::char_traits<char> >
4837    if (isStreamCharSpecialization(SD, "basic_istream")) {
4838      Out << "Si";
4839      return true;
4840    }
4841
4842    //    <substitution> ::= So # ::std::basic_ostream<char,
4843    //                            ::std::char_traits<char> >
4844    if (isStreamCharSpecialization(SD, "basic_ostream")) {
4845      Out << "So";
4846      return true;
4847    }
4848
4849    //    <substitution> ::= Sd # ::std::basic_iostream<char,
4850    //                            ::std::char_traits<char> >
4851    if (isStreamCharSpecialization(SD, "basic_iostream")) {
4852      Out << "Sd";
4853      return true;
4854    }
4855  }
4856  return false;
4857}
4858
4859void CXXNameMangler::addSubstitution(QualType T) {
4860  if (!hasMangledSubstitutionQualifiers(T)) {
4861    if (const RecordType *RT = T->getAs<RecordType>()) {
4862      addSubstitution(RT->getDecl());
4863      return;
4864    }
4865  }
4866
4867  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4868  addSubstitution(TypePtr);
4869}
4870
4871void CXXNameMangler::addSubstitution(TemplateName Template) {
4872  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4873    return addSubstitution(TD);
4874
4875  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4876  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4877}
4878
4879void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4880  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4881  Substitutions[Ptr] = SeqID++;
4882}
4883
4884void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4885  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4886  if (Other->SeqID > SeqID) {
4887    Substitutions.swap(Other->Substitutions);
4888    SeqID = Other->SeqID;
4889  }
4890}
4891
4892CXXNameMangler::AbiTagList
4893CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4894  // When derived abi tags are disabled there is no need to make any list.
4895  if (DisableDerivedAbiTags)
4896    return AbiTagList();
4897
4898  llvm::raw_null_ostream NullOutStream;
4899  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4900  TrackReturnTypeTags.disableDerivedAbiTags();
4901
4902  const FunctionProtoType *Proto =
4903      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4904  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4905  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4906  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4907  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4908  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4909
4910  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4911}
4912
4913CXXNameMangler::AbiTagList
4914CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4915  // When derived abi tags are disabled there is no need to make any list.
4916  if (DisableDerivedAbiTags)
4917    return AbiTagList();
4918
4919  llvm::raw_null_ostream NullOutStream;
4920  CXXNameMangler TrackVariableType(*this, NullOutStream);
4921  TrackVariableType.disableDerivedAbiTags();
4922
4923  TrackVariableType.mangleType(VD->getType());
4924
4925  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4926}
4927
4928bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4929                                       const VarDecl *VD) {
4930  llvm::raw_null_ostream NullOutStream;
4931  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4932  TrackAbiTags.mangle(VD);
4933  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4934}
4935
4936//
4937
4938/// Mangles the name of the declaration D and emits that name to the given
4939/// output stream.
4940///
4941/// If the declaration D requires a mangled name, this routine will emit that
4942/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4943/// and this routine will return false. In this case, the caller should just
4944/// emit the identifier of the declaration (\c D->getIdentifier()) as its
4945/// name.
4946void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4947                                             raw_ostream &Out) {
4948  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4949          "Invalid mangleName() call, argument is not a variable or function!");
4950  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4951         "Invalid mangleName() call on 'structor decl!");
4952
4953  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4954                                 getASTContext().getSourceManager(),
4955                                 "Mangling declaration");
4956
4957  CXXNameMangler Mangler(*this, Out, D);
4958  Mangler.mangle(D);
4959}
4960
4961void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4962                                             CXXCtorType Type,
4963                                             raw_ostream &Out) {
4964  CXXNameMangler Mangler(*this, Out, D, Type);
4965  Mangler.mangle(D);
4966}
4967
4968void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4969                                             CXXDtorType Type,
4970                                             raw_ostream &Out) {
4971  CXXNameMangler Mangler(*this, Out, D, Type);
4972  Mangler.mangle(D);
4973}
4974
4975void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4976                                                   raw_ostream &Out) {
4977  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4978  Mangler.mangle(D);
4979}
4980
4981void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4982                                                   raw_ostream &Out) {
4983  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4984  Mangler.mangle(D);
4985}
4986
4987void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4988                                           const ThunkInfo &Thunk,
4989                                           raw_ostream &Out) {
4990  //  <special-name> ::= T <call-offset> <base encoding>
4991  //                      # base is the nominal target function of thunk
4992  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4993  //                      # base is the nominal target function of thunk
4994  //                      # first call-offset is 'this' adjustment
4995  //                      # second call-offset is result adjustment
4996
4997  assert(!isa<CXXDestructorDecl>(MD) &&
4998         "Use mangleCXXDtor for destructor decls!");
4999  CXXNameMangler Mangler(*this, Out);
5000  Mangler.getStream() << "_ZT";
5001  if (!Thunk.Return.isEmpty())
5002    Mangler.getStream() << 'c';
5003
5004  // Mangle the 'this' pointer adjustment.
5005  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5006                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
5007
5008  // Mangle the return pointer adjustment if there is one.
5009  if (!Thunk.Return.isEmpty())
5010    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5011                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
5012
5013  Mangler.mangleFunctionEncoding(MD);
5014}
5015
5016void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5017    const CXXDestructorDecl *DD, CXXDtorType Type,
5018    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5019  //  <special-name> ::= T <call-offset> <base encoding>
5020  //                      # base is the nominal target function of thunk
5021  CXXNameMangler Mangler(*this, Out, DD, Type);
5022  Mangler.getStream() << "_ZT";
5023
5024  // Mangle the 'this' pointer adjustment.
5025  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5026                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5027
5028  Mangler.mangleFunctionEncoding(DD);
5029}
5030
5031/// Returns the mangled name for a guard variable for the passed in VarDecl.
5032void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5033                                                         raw_ostream &Out) {
5034  //  <special-name> ::= GV <object name>       # Guard variable for one-time
5035  //                                            # initialization
5036  CXXNameMangler Mangler(*this, Out);
5037  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5038  // be a bug that is fixed in trunk.
5039  Mangler.getStream() << "_ZGV";
5040  Mangler.mangleName(D);
5041}
5042
5043void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5044                                                        raw_ostream &Out) {
5045  // These symbols are internal in the Itanium ABI, so the names don't matter.
5046  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5047  // avoid duplicate symbols.
5048  Out << "__cxx_global_var_init";
5049}
5050
5051void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5052                                                             raw_ostream &Out) {
5053  // Prefix the mangling of D with __dtor_.
5054  CXXNameMangler Mangler(*this, Out);
5055  Mangler.getStream() << "__dtor_";
5056  if (shouldMangleDeclName(D))
5057    Mangler.mangle(D);
5058  else
5059    Mangler.getStream() << D->getName();
5060}
5061
5062void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5063    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5064  CXXNameMangler Mangler(*this, Out);
5065  Mangler.getStream() << "__filt_";
5066  if (shouldMangleDeclName(EnclosingDecl))
5067    Mangler.mangle(EnclosingDecl);
5068  else
5069    Mangler.getStream() << EnclosingDecl->getName();
5070}
5071
5072void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5073    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5074  CXXNameMangler Mangler(*this, Out);
5075  Mangler.getStream() << "__fin_";
5076  if (shouldMangleDeclName(EnclosingDecl))
5077    Mangler.mangle(EnclosingDecl);
5078  else
5079    Mangler.getStream() << EnclosingDecl->getName();
5080}
5081
5082void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5083                                                            raw_ostream &Out) {
5084  //  <special-name> ::= TH <object name>
5085  CXXNameMangler Mangler(*this, Out);
5086  Mangler.getStream() << "_ZTH";
5087  Mangler.mangleName(D);
5088}
5089
5090void
5091ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5092                                                          raw_ostream &Out) {
5093  //  <special-name> ::= TW <object name>
5094  CXXNameMangler Mangler(*this, Out);
5095  Mangler.getStream() << "_ZTW";
5096  Mangler.mangleName(D);
5097}
5098
5099void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5100                                                        unsigned ManglingNumber,
5101                                                        raw_ostream &Out) {
5102  // We match the GCC mangling here.
5103  //  <special-name> ::= GR <object name>
5104  CXXNameMangler Mangler(*this, Out);
5105  Mangler.getStream() << "_ZGR";
5106  Mangler.mangleName(D);
5107  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5108  Mangler.mangleSeqID(ManglingNumber - 1);
5109}
5110
5111void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5112                                               raw_ostream &Out) {
5113  // <special-name> ::= TV <type>  # virtual table
5114  CXXNameMangler Mangler(*this, Out);
5115  Mangler.getStream() << "_ZTV";
5116  Mangler.mangleNameOrStandardSubstitution(RD);
5117}
5118
5119void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5120                                            raw_ostream &Out) {
5121  // <special-name> ::= TT <type>  # VTT structure
5122  CXXNameMangler Mangler(*this, Out);
5123  Mangler.getStream() << "_ZTT";
5124  Mangler.mangleNameOrStandardSubstitution(RD);
5125}
5126
5127void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5128                                                   int64_t Offset,
5129                                                   const CXXRecordDecl *Type,
5130                                                   raw_ostream &Out) {
5131  // <special-name> ::= TC <type> <offset number> _ <base type>
5132  CXXNameMangler Mangler(*this, Out);
5133  Mangler.getStream() << "_ZTC";
5134  Mangler.mangleNameOrStandardSubstitution(RD);
5135  Mangler.getStream() << Offset;
5136  Mangler.getStream() << '_';
5137  Mangler.mangleNameOrStandardSubstitution(Type);
5138}
5139
5140void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5141  // <special-name> ::= TI <type>  # typeinfo structure
5142  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5143  CXXNameMangler Mangler(*this, Out);
5144  Mangler.getStream() << "_ZTI";
5145  Mangler.mangleType(Ty);
5146}
5147
5148void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5149                                                 raw_ostream &Out) {
5150  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
5151  CXXNameMangler Mangler(*this, Out);
5152  Mangler.getStream() << "_ZTS";
5153  Mangler.mangleType(Ty);
5154}
5155
5156void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5157  mangleCXXRTTIName(Ty, Out);
5158}
5159
5160void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5161  llvm_unreachable("Can't mangle string literals");
5162}
5163
5164void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
5165                                               raw_ostream &Out) {
5166  CXXNameMangler Mangler(*this, Out);
5167  Mangler.mangleLambdaSig(Lambda);
5168}
5169
5170ItaniumMangleContext *
5171ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
5172  return new ItaniumMangleContextImpl(Context, Diags);
5173}
5174