ItaniumMangle.cpp revision 314564
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclOpenMP.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36#define MANGLE_CHECKER 0
37
38#if MANGLE_CHECKER
39#include <cxxabi.h>
40#endif
41
42using namespace clang;
43
44namespace {
45
46/// Retrieve the declaration context that should be used when mangling the given
47/// declaration.
48static const DeclContext *getEffectiveDeclContext(const Decl *D) {
49  // The ABI assumes that lambda closure types that occur within
50  // default arguments live in the context of the function. However, due to
51  // the way in which Clang parses and creates function declarations, this is
52  // not the case: the lambda closure type ends up living in the context
53  // where the function itself resides, because the function declaration itself
54  // had not yet been created. Fix the context here.
55  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
56    if (RD->isLambda())
57      if (ParmVarDecl *ContextParam
58            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
59        return ContextParam->getDeclContext();
60  }
61
62  // Perform the same check for block literals.
63  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
64    if (ParmVarDecl *ContextParam
65          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
66      return ContextParam->getDeclContext();
67  }
68
69  const DeclContext *DC = D->getDeclContext();
70  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
71    return getEffectiveDeclContext(cast<Decl>(DC));
72  }
73
74  if (const auto *VD = dyn_cast<VarDecl>(D))
75    if (VD->isExternC())
76      return VD->getASTContext().getTranslationUnitDecl();
77
78  if (const auto *FD = dyn_cast<FunctionDecl>(D))
79    if (FD->isExternC())
80      return FD->getASTContext().getTranslationUnitDecl();
81
82  return DC->getRedeclContext();
83}
84
85static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
86  return getEffectiveDeclContext(cast<Decl>(DC));
87}
88
89static bool isLocalContainerContext(const DeclContext *DC) {
90  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
91}
92
93static const RecordDecl *GetLocalClassDecl(const Decl *D) {
94  const DeclContext *DC = getEffectiveDeclContext(D);
95  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
96    if (isLocalContainerContext(DC))
97      return dyn_cast<RecordDecl>(D);
98    D = cast<Decl>(DC);
99    DC = getEffectiveDeclContext(D);
100  }
101  return nullptr;
102}
103
104static const FunctionDecl *getStructor(const FunctionDecl *fn) {
105  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
106    return ftd->getTemplatedDecl();
107
108  return fn;
109}
110
111static const NamedDecl *getStructor(const NamedDecl *decl) {
112  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
113  return (fn ? getStructor(fn) : decl);
114}
115
116static bool isLambda(const NamedDecl *ND) {
117  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
118  if (!Record)
119    return false;
120
121  return Record->isLambda();
122}
123
124static const unsigned UnknownArity = ~0U;
125
126class ItaniumMangleContextImpl : public ItaniumMangleContext {
127  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
128  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
129  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
130
131public:
132  explicit ItaniumMangleContextImpl(ASTContext &Context,
133                                    DiagnosticsEngine &Diags)
134      : ItaniumMangleContext(Context, Diags) {}
135
136  /// @name Mangler Entry Points
137  /// @{
138
139  bool shouldMangleCXXName(const NamedDecl *D) override;
140  bool shouldMangleStringLiteral(const StringLiteral *) override {
141    return false;
142  }
143  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
144  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145                   raw_ostream &) override;
146  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
147                          const ThisAdjustment &ThisAdjustment,
148                          raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
150                                raw_ostream &) override;
151  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
152  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
153  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
154                           const CXXRecordDecl *Type, raw_ostream &) override;
155  void mangleCXXRTTI(QualType T, raw_ostream &) override;
156  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
157  void mangleTypeName(QualType T, raw_ostream &) override;
158  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
159                     raw_ostream &) override;
160  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
161                     raw_ostream &) override;
162
163  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
164  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
165  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
166  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
167  void mangleDynamicAtExitDestructor(const VarDecl *D,
168                                     raw_ostream &Out) override;
169  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170                                 raw_ostream &Out) override;
171  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172                             raw_ostream &Out) override;
173  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175                                       raw_ostream &) override;
176
177  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178
179  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180    // Lambda closure types are already numbered.
181    if (isLambda(ND))
182      return false;
183
184    // Anonymous tags are already numbered.
185    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187        return false;
188    }
189
190    // Use the canonical number for externally visible decls.
191    if (ND->isExternallyVisible()) {
192      unsigned discriminator = getASTContext().getManglingNumber(ND);
193      if (discriminator == 1)
194        return false;
195      disc = discriminator - 2;
196      return true;
197    }
198
199    // Make up a reasonable number for internal decls.
200    unsigned &discriminator = Uniquifier[ND];
201    if (!discriminator) {
202      const DeclContext *DC = getEffectiveDeclContext(ND);
203      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204    }
205    if (discriminator == 1)
206      return false;
207    disc = discriminator-2;
208    return true;
209  }
210  /// @}
211};
212
213/// Manage the mangling of a single name.
214class CXXNameMangler {
215  ItaniumMangleContextImpl &Context;
216  raw_ostream &Out;
217  bool NullOut = false;
218  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219  /// This mode is used when mangler creates another mangler recursively to
220  /// calculate ABI tags for the function return value or the variable type.
221  /// Also it is required to avoid infinite recursion in some cases.
222  bool DisableDerivedAbiTags = false;
223
224  /// The "structor" is the top-level declaration being mangled, if
225  /// that's not a template specialization; otherwise it's the pattern
226  /// for that specialization.
227  const NamedDecl *Structor;
228  unsigned StructorType;
229
230  /// The next substitution sequence number.
231  unsigned SeqID;
232
233  class FunctionTypeDepthState {
234    unsigned Bits;
235
236    enum { InResultTypeMask = 1 };
237
238  public:
239    FunctionTypeDepthState() : Bits(0) {}
240
241    /// The number of function types we're inside.
242    unsigned getDepth() const {
243      return Bits >> 1;
244    }
245
246    /// True if we're in the return type of the innermost function type.
247    bool isInResultType() const {
248      return Bits & InResultTypeMask;
249    }
250
251    FunctionTypeDepthState push() {
252      FunctionTypeDepthState tmp = *this;
253      Bits = (Bits & ~InResultTypeMask) + 2;
254      return tmp;
255    }
256
257    void enterResultType() {
258      Bits |= InResultTypeMask;
259    }
260
261    void leaveResultType() {
262      Bits &= ~InResultTypeMask;
263    }
264
265    void pop(FunctionTypeDepthState saved) {
266      assert(getDepth() == saved.getDepth() + 1);
267      Bits = saved.Bits;
268    }
269
270  } FunctionTypeDepth;
271
272  // abi_tag is a gcc attribute, taking one or more strings called "tags".
273  // The goal is to annotate against which version of a library an object was
274  // built and to be able to provide backwards compatibility ("dual abi").
275  // For more information see docs/ItaniumMangleAbiTags.rst.
276  typedef SmallVector<StringRef, 4> AbiTagList;
277
278  // State to gather all implicit and explicit tags used in a mangled name.
279  // Must always have an instance of this while emitting any name to keep
280  // track.
281  class AbiTagState final {
282  public:
283    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284      Parent = LinkHead;
285      LinkHead = this;
286    }
287
288    // No copy, no move.
289    AbiTagState(const AbiTagState &) = delete;
290    AbiTagState &operator=(const AbiTagState &) = delete;
291
292    ~AbiTagState() { pop(); }
293
294    void write(raw_ostream &Out, const NamedDecl *ND,
295               const AbiTagList *AdditionalAbiTags) {
296      ND = cast<NamedDecl>(ND->getCanonicalDecl());
297      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298        assert(
299            !AdditionalAbiTags &&
300            "only function and variables need a list of additional abi tags");
301        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304                               AbiTag->tags().end());
305          }
306          // Don't emit abi tags for namespaces.
307          return;
308        }
309      }
310
311      AbiTagList TagList;
312      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314                           AbiTag->tags().end());
315        TagList.insert(TagList.end(), AbiTag->tags().begin(),
316                       AbiTag->tags().end());
317      }
318
319      if (AdditionalAbiTags) {
320        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321                           AdditionalAbiTags->end());
322        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323                       AdditionalAbiTags->end());
324      }
325
326      std::sort(TagList.begin(), TagList.end());
327      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328
329      writeSortedUniqueAbiTags(Out, TagList);
330    }
331
332    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333    void setUsedAbiTags(const AbiTagList &AbiTags) {
334      UsedAbiTags = AbiTags;
335    }
336
337    const AbiTagList &getEmittedAbiTags() const {
338      return EmittedAbiTags;
339    }
340
341    const AbiTagList &getSortedUniqueUsedAbiTags() {
342      std::sort(UsedAbiTags.begin(), UsedAbiTags.end());
343      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344                        UsedAbiTags.end());
345      return UsedAbiTags;
346    }
347
348  private:
349    //! All abi tags used implicitly or explicitly.
350    AbiTagList UsedAbiTags;
351    //! All explicit abi tags (i.e. not from namespace).
352    AbiTagList EmittedAbiTags;
353
354    AbiTagState *&LinkHead;
355    AbiTagState *Parent = nullptr;
356
357    void pop() {
358      assert(LinkHead == this &&
359             "abi tag link head must point to us on destruction");
360      if (Parent) {
361        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362                                   UsedAbiTags.begin(), UsedAbiTags.end());
363        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364                                      EmittedAbiTags.begin(),
365                                      EmittedAbiTags.end());
366      }
367      LinkHead = Parent;
368    }
369
370    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371      for (const auto &Tag : AbiTags) {
372        EmittedAbiTags.push_back(Tag);
373        Out << "B";
374        Out << Tag.size();
375        Out << Tag;
376      }
377    }
378  };
379
380  AbiTagState *AbiTags = nullptr;
381  AbiTagState AbiTagsRoot;
382
383  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384
385  ASTContext &getASTContext() const { return Context.getASTContext(); }
386
387public:
388  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
389                 const NamedDecl *D = nullptr, bool NullOut_ = false)
390    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
391      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
392    // These can't be mangled without a ctor type or dtor type.
393    assert(!D || (!isa<CXXDestructorDecl>(D) &&
394                  !isa<CXXConstructorDecl>(D)));
395  }
396  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
397                 const CXXConstructorDecl *D, CXXCtorType Type)
398    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
399      SeqID(0), AbiTagsRoot(AbiTags) { }
400  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
401                 const CXXDestructorDecl *D, CXXDtorType Type)
402    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
403      SeqID(0), AbiTagsRoot(AbiTags) { }
404
405  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
406      : Context(Outer.Context), Out(Out_), NullOut(false),
407        Structor(Outer.Structor), StructorType(Outer.StructorType),
408        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
409        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
410
411  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
412      : Context(Outer.Context), Out(Out_), NullOut(true),
413        Structor(Outer.Structor), StructorType(Outer.StructorType),
414        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
415        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
416
417#if MANGLE_CHECKER
418  ~CXXNameMangler() {
419    if (Out.str()[0] == '\01')
420      return;
421
422    int status = 0;
423    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
424    assert(status == 0 && "Could not demangle mangled name!");
425    free(result);
426  }
427#endif
428  raw_ostream &getStream() { return Out; }
429
430  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
431  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
432
433  void mangle(const NamedDecl *D);
434  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
435  void mangleNumber(const llvm::APSInt &I);
436  void mangleNumber(int64_t Number);
437  void mangleFloat(const llvm::APFloat &F);
438  void mangleFunctionEncoding(const FunctionDecl *FD);
439  void mangleSeqID(unsigned SeqID);
440  void mangleName(const NamedDecl *ND);
441  void mangleType(QualType T);
442  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
443
444private:
445
446  bool mangleSubstitution(const NamedDecl *ND);
447  bool mangleSubstitution(QualType T);
448  bool mangleSubstitution(TemplateName Template);
449  bool mangleSubstitution(uintptr_t Ptr);
450
451  void mangleExistingSubstitution(TemplateName name);
452
453  bool mangleStandardSubstitution(const NamedDecl *ND);
454
455  void addSubstitution(const NamedDecl *ND) {
456    ND = cast<NamedDecl>(ND->getCanonicalDecl());
457
458    addSubstitution(reinterpret_cast<uintptr_t>(ND));
459  }
460  void addSubstitution(QualType T);
461  void addSubstitution(TemplateName Template);
462  void addSubstitution(uintptr_t Ptr);
463  // Destructive copy substitutions from other mangler.
464  void extendSubstitutions(CXXNameMangler* Other);
465
466  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
467                              bool recursive = false);
468  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
469                            DeclarationName name,
470                            const TemplateArgumentLoc *TemplateArgs,
471                            unsigned NumTemplateArgs,
472                            unsigned KnownArity = UnknownArity);
473
474  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
475
476  void mangleNameWithAbiTags(const NamedDecl *ND,
477                             const AbiTagList *AdditionalAbiTags);
478  void mangleTemplateName(const TemplateDecl *TD,
479                          const TemplateArgument *TemplateArgs,
480                          unsigned NumTemplateArgs);
481  void mangleUnqualifiedName(const NamedDecl *ND,
482                             const AbiTagList *AdditionalAbiTags) {
483    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
484                          AdditionalAbiTags);
485  }
486  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
487                             unsigned KnownArity,
488                             const AbiTagList *AdditionalAbiTags);
489  void mangleUnscopedName(const NamedDecl *ND,
490                          const AbiTagList *AdditionalAbiTags);
491  void mangleUnscopedTemplateName(const TemplateDecl *ND,
492                                  const AbiTagList *AdditionalAbiTags);
493  void mangleUnscopedTemplateName(TemplateName,
494                                  const AbiTagList *AdditionalAbiTags);
495  void mangleSourceName(const IdentifierInfo *II);
496  void mangleRegCallName(const IdentifierInfo *II);
497  void mangleSourceNameWithAbiTags(
498      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
499  void mangleLocalName(const Decl *D,
500                       const AbiTagList *AdditionalAbiTags);
501  void mangleBlockForPrefix(const BlockDecl *Block);
502  void mangleUnqualifiedBlock(const BlockDecl *Block);
503  void mangleLambda(const CXXRecordDecl *Lambda);
504  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
505                        const AbiTagList *AdditionalAbiTags,
506                        bool NoFunction=false);
507  void mangleNestedName(const TemplateDecl *TD,
508                        const TemplateArgument *TemplateArgs,
509                        unsigned NumTemplateArgs);
510  void manglePrefix(NestedNameSpecifier *qualifier);
511  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
512  void manglePrefix(QualType type);
513  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
514  void mangleTemplatePrefix(TemplateName Template);
515  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
516                                      StringRef Prefix = "");
517  void mangleOperatorName(DeclarationName Name, unsigned Arity);
518  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
519  void mangleVendorQualifier(StringRef qualifier);
520  void mangleQualifiers(Qualifiers Quals);
521  void mangleRefQualifier(RefQualifierKind RefQualifier);
522
523  void mangleObjCMethodName(const ObjCMethodDecl *MD);
524
525  // Declare manglers for every type class.
526#define ABSTRACT_TYPE(CLASS, PARENT)
527#define NON_CANONICAL_TYPE(CLASS, PARENT)
528#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
529#include "clang/AST/TypeNodes.def"
530
531  void mangleType(const TagType*);
532  void mangleType(TemplateName);
533  static StringRef getCallingConvQualifierName(CallingConv CC);
534  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
535  void mangleExtFunctionInfo(const FunctionType *T);
536  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
537                              const FunctionDecl *FD = nullptr);
538  void mangleNeonVectorType(const VectorType *T);
539  void mangleAArch64NeonVectorType(const VectorType *T);
540
541  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
542  void mangleMemberExprBase(const Expr *base, bool isArrow);
543  void mangleMemberExpr(const Expr *base, bool isArrow,
544                        NestedNameSpecifier *qualifier,
545                        NamedDecl *firstQualifierLookup,
546                        DeclarationName name,
547                        const TemplateArgumentLoc *TemplateArgs,
548                        unsigned NumTemplateArgs,
549                        unsigned knownArity);
550  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
551  void mangleInitListElements(const InitListExpr *InitList);
552  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
553  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
554  void mangleCXXDtorType(CXXDtorType T);
555
556  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
557                          unsigned NumTemplateArgs);
558  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
559                          unsigned NumTemplateArgs);
560  void mangleTemplateArgs(const TemplateArgumentList &AL);
561  void mangleTemplateArg(TemplateArgument A);
562
563  void mangleTemplateParameter(unsigned Index);
564
565  void mangleFunctionParam(const ParmVarDecl *parm);
566
567  void writeAbiTags(const NamedDecl *ND,
568                    const AbiTagList *AdditionalAbiTags);
569
570  // Returns sorted unique list of ABI tags.
571  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
572  // Returns sorted unique list of ABI tags.
573  AbiTagList makeVariableTypeTags(const VarDecl *VD);
574};
575
576}
577
578bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
579  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
580  if (FD) {
581    LanguageLinkage L = FD->getLanguageLinkage();
582    // Overloadable functions need mangling.
583    if (FD->hasAttr<OverloadableAttr>())
584      return true;
585
586    // "main" is not mangled.
587    if (FD->isMain())
588      return false;
589
590    // C++ functions and those whose names are not a simple identifier need
591    // mangling.
592    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
593      return true;
594
595    // C functions are not mangled.
596    if (L == CLanguageLinkage)
597      return false;
598  }
599
600  // Otherwise, no mangling is done outside C++ mode.
601  if (!getASTContext().getLangOpts().CPlusPlus)
602    return false;
603
604  const VarDecl *VD = dyn_cast<VarDecl>(D);
605  if (VD && !isa<DecompositionDecl>(D)) {
606    // C variables are not mangled.
607    if (VD->isExternC())
608      return false;
609
610    // Variables at global scope with non-internal linkage are not mangled
611    const DeclContext *DC = getEffectiveDeclContext(D);
612    // Check for extern variable declared locally.
613    if (DC->isFunctionOrMethod() && D->hasLinkage())
614      while (!DC->isNamespace() && !DC->isTranslationUnit())
615        DC = getEffectiveParentContext(DC);
616    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
617        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
618        !isa<VarTemplateSpecializationDecl>(D))
619      return false;
620  }
621
622  return true;
623}
624
625void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
626                                  const AbiTagList *AdditionalAbiTags) {
627  assert(AbiTags && "require AbiTagState");
628  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
629}
630
631void CXXNameMangler::mangleSourceNameWithAbiTags(
632    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
633  mangleSourceName(ND->getIdentifier());
634  writeAbiTags(ND, AdditionalAbiTags);
635}
636
637void CXXNameMangler::mangle(const NamedDecl *D) {
638  // <mangled-name> ::= _Z <encoding>
639  //            ::= <data name>
640  //            ::= <special-name>
641  Out << "_Z";
642  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
643    mangleFunctionEncoding(FD);
644  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
645    mangleName(VD);
646  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
647    mangleName(IFD->getAnonField());
648  else
649    mangleName(cast<FieldDecl>(D));
650}
651
652void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
653  // <encoding> ::= <function name> <bare-function-type>
654
655  // Don't mangle in the type if this isn't a decl we should typically mangle.
656  if (!Context.shouldMangleDeclName(FD)) {
657    mangleName(FD);
658    return;
659  }
660
661  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
662  if (ReturnTypeAbiTags.empty()) {
663    // There are no tags for return type, the simplest case.
664    mangleName(FD);
665    mangleFunctionEncodingBareType(FD);
666    return;
667  }
668
669  // Mangle function name and encoding to temporary buffer.
670  // We have to output name and encoding to the same mangler to get the same
671  // substitution as it will be in final mangling.
672  SmallString<256> FunctionEncodingBuf;
673  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
674  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
675  // Output name of the function.
676  FunctionEncodingMangler.disableDerivedAbiTags();
677  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
678
679  // Remember length of the function name in the buffer.
680  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
681  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
682
683  // Get tags from return type that are not present in function name or
684  // encoding.
685  const AbiTagList &UsedAbiTags =
686      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
687  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
688  AdditionalAbiTags.erase(
689      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
690                          UsedAbiTags.begin(), UsedAbiTags.end(),
691                          AdditionalAbiTags.begin()),
692      AdditionalAbiTags.end());
693
694  // Output name with implicit tags and function encoding from temporary buffer.
695  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
696  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
697
698  // Function encoding could create new substitutions so we have to add
699  // temp mangled substitutions to main mangler.
700  extendSubstitutions(&FunctionEncodingMangler);
701}
702
703void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
704  if (FD->hasAttr<EnableIfAttr>()) {
705    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
706    Out << "Ua9enable_ifI";
707    // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
708    // it here.
709    for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
710                                         E = FD->getAttrs().rend();
711         I != E; ++I) {
712      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
713      if (!EIA)
714        continue;
715      Out << 'X';
716      mangleExpression(EIA->getCond());
717      Out << 'E';
718    }
719    Out << 'E';
720    FunctionTypeDepth.pop(Saved);
721  }
722
723  // When mangling an inheriting constructor, the bare function type used is
724  // that of the inherited constructor.
725  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
726    if (auto Inherited = CD->getInheritedConstructor())
727      FD = Inherited.getConstructor();
728
729  // Whether the mangling of a function type includes the return type depends on
730  // the context and the nature of the function. The rules for deciding whether
731  // the return type is included are:
732  //
733  //   1. Template functions (names or types) have return types encoded, with
734  //   the exceptions listed below.
735  //   2. Function types not appearing as part of a function name mangling,
736  //   e.g. parameters, pointer types, etc., have return type encoded, with the
737  //   exceptions listed below.
738  //   3. Non-template function names do not have return types encoded.
739  //
740  // The exceptions mentioned in (1) and (2) above, for which the return type is
741  // never included, are
742  //   1. Constructors.
743  //   2. Destructors.
744  //   3. Conversion operator functions, e.g. operator int.
745  bool MangleReturnType = false;
746  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
747    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
748          isa<CXXConversionDecl>(FD)))
749      MangleReturnType = true;
750
751    // Mangle the type of the primary template.
752    FD = PrimaryTemplate->getTemplatedDecl();
753  }
754
755  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
756                         MangleReturnType, FD);
757}
758
759static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
760  while (isa<LinkageSpecDecl>(DC)) {
761    DC = getEffectiveParentContext(DC);
762  }
763
764  return DC;
765}
766
767/// Return whether a given namespace is the 'std' namespace.
768static bool isStd(const NamespaceDecl *NS) {
769  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
770                                ->isTranslationUnit())
771    return false;
772
773  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
774  return II && II->isStr("std");
775}
776
777// isStdNamespace - Return whether a given decl context is a toplevel 'std'
778// namespace.
779static bool isStdNamespace(const DeclContext *DC) {
780  if (!DC->isNamespace())
781    return false;
782
783  return isStd(cast<NamespaceDecl>(DC));
784}
785
786static const TemplateDecl *
787isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
788  // Check if we have a function template.
789  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
790    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
791      TemplateArgs = FD->getTemplateSpecializationArgs();
792      return TD;
793    }
794  }
795
796  // Check if we have a class template.
797  if (const ClassTemplateSpecializationDecl *Spec =
798        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
799    TemplateArgs = &Spec->getTemplateArgs();
800    return Spec->getSpecializedTemplate();
801  }
802
803  // Check if we have a variable template.
804  if (const VarTemplateSpecializationDecl *Spec =
805          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
806    TemplateArgs = &Spec->getTemplateArgs();
807    return Spec->getSpecializedTemplate();
808  }
809
810  return nullptr;
811}
812
813void CXXNameMangler::mangleName(const NamedDecl *ND) {
814  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
815    // Variables should have implicit tags from its type.
816    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
817    if (VariableTypeAbiTags.empty()) {
818      // Simple case no variable type tags.
819      mangleNameWithAbiTags(VD, nullptr);
820      return;
821    }
822
823    // Mangle variable name to null stream to collect tags.
824    llvm::raw_null_ostream NullOutStream;
825    CXXNameMangler VariableNameMangler(*this, NullOutStream);
826    VariableNameMangler.disableDerivedAbiTags();
827    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
828
829    // Get tags from variable type that are not present in its name.
830    const AbiTagList &UsedAbiTags =
831        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
832    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
833    AdditionalAbiTags.erase(
834        std::set_difference(VariableTypeAbiTags.begin(),
835                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
836                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
837        AdditionalAbiTags.end());
838
839    // Output name with implicit tags.
840    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
841  } else {
842    mangleNameWithAbiTags(ND, nullptr);
843  }
844}
845
846void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
847                                           const AbiTagList *AdditionalAbiTags) {
848  //  <name> ::= <nested-name>
849  //         ::= <unscoped-name>
850  //         ::= <unscoped-template-name> <template-args>
851  //         ::= <local-name>
852  //
853  const DeclContext *DC = getEffectiveDeclContext(ND);
854
855  // If this is an extern variable declared locally, the relevant DeclContext
856  // is that of the containing namespace, or the translation unit.
857  // FIXME: This is a hack; extern variables declared locally should have
858  // a proper semantic declaration context!
859  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
860    while (!DC->isNamespace() && !DC->isTranslationUnit())
861      DC = getEffectiveParentContext(DC);
862  else if (GetLocalClassDecl(ND)) {
863    mangleLocalName(ND, AdditionalAbiTags);
864    return;
865  }
866
867  DC = IgnoreLinkageSpecDecls(DC);
868
869  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
870    // Check if we have a template.
871    const TemplateArgumentList *TemplateArgs = nullptr;
872    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
873      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
874      mangleTemplateArgs(*TemplateArgs);
875      return;
876    }
877
878    mangleUnscopedName(ND, AdditionalAbiTags);
879    return;
880  }
881
882  if (isLocalContainerContext(DC)) {
883    mangleLocalName(ND, AdditionalAbiTags);
884    return;
885  }
886
887  mangleNestedName(ND, DC, AdditionalAbiTags);
888}
889
890void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
891                                        const TemplateArgument *TemplateArgs,
892                                        unsigned NumTemplateArgs) {
893  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
894
895  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
896    mangleUnscopedTemplateName(TD, nullptr);
897    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
898  } else {
899    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
900  }
901}
902
903void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
904                                        const AbiTagList *AdditionalAbiTags) {
905  //  <unscoped-name> ::= <unqualified-name>
906  //                  ::= St <unqualified-name>   # ::std::
907
908  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
909    Out << "St";
910
911  mangleUnqualifiedName(ND, AdditionalAbiTags);
912}
913
914void CXXNameMangler::mangleUnscopedTemplateName(
915    const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
916  //     <unscoped-template-name> ::= <unscoped-name>
917  //                              ::= <substitution>
918  if (mangleSubstitution(ND))
919    return;
920
921  // <template-template-param> ::= <template-param>
922  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
923    assert(!AdditionalAbiTags &&
924           "template template param cannot have abi tags");
925    mangleTemplateParameter(TTP->getIndex());
926  } else if (isa<BuiltinTemplateDecl>(ND)) {
927    mangleUnscopedName(ND, AdditionalAbiTags);
928  } else {
929    mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
930  }
931
932  addSubstitution(ND);
933}
934
935void CXXNameMangler::mangleUnscopedTemplateName(
936    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
937  //     <unscoped-template-name> ::= <unscoped-name>
938  //                              ::= <substitution>
939  if (TemplateDecl *TD = Template.getAsTemplateDecl())
940    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
941
942  if (mangleSubstitution(Template))
943    return;
944
945  assert(!AdditionalAbiTags &&
946         "dependent template name cannot have abi tags");
947
948  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
949  assert(Dependent && "Not a dependent template name?");
950  if (const IdentifierInfo *Id = Dependent->getIdentifier())
951    mangleSourceName(Id);
952  else
953    mangleOperatorName(Dependent->getOperator(), UnknownArity);
954
955  addSubstitution(Template);
956}
957
958void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
959  // ABI:
960  //   Floating-point literals are encoded using a fixed-length
961  //   lowercase hexadecimal string corresponding to the internal
962  //   representation (IEEE on Itanium), high-order bytes first,
963  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
964  //   on Itanium.
965  // The 'without leading zeroes' thing seems to be an editorial
966  // mistake; see the discussion on cxx-abi-dev beginning on
967  // 2012-01-16.
968
969  // Our requirements here are just barely weird enough to justify
970  // using a custom algorithm instead of post-processing APInt::toString().
971
972  llvm::APInt valueBits = f.bitcastToAPInt();
973  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
974  assert(numCharacters != 0);
975
976  // Allocate a buffer of the right number of characters.
977  SmallVector<char, 20> buffer(numCharacters);
978
979  // Fill the buffer left-to-right.
980  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
981    // The bit-index of the next hex digit.
982    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
983
984    // Project out 4 bits starting at 'digitIndex'.
985    llvm::integerPart hexDigit
986      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
987    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
988    hexDigit &= 0xF;
989
990    // Map that over to a lowercase hex digit.
991    static const char charForHex[16] = {
992      '0', '1', '2', '3', '4', '5', '6', '7',
993      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
994    };
995    buffer[stringIndex] = charForHex[hexDigit];
996  }
997
998  Out.write(buffer.data(), numCharacters);
999}
1000
1001void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1002  if (Value.isSigned() && Value.isNegative()) {
1003    Out << 'n';
1004    Value.abs().print(Out, /*signed*/ false);
1005  } else {
1006    Value.print(Out, /*signed*/ false);
1007  }
1008}
1009
1010void CXXNameMangler::mangleNumber(int64_t Number) {
1011  //  <number> ::= [n] <non-negative decimal integer>
1012  if (Number < 0) {
1013    Out << 'n';
1014    Number = -Number;
1015  }
1016
1017  Out << Number;
1018}
1019
1020void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1021  //  <call-offset>  ::= h <nv-offset> _
1022  //                 ::= v <v-offset> _
1023  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1024  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1025  //                      # virtual base override, with vcall offset
1026  if (!Virtual) {
1027    Out << 'h';
1028    mangleNumber(NonVirtual);
1029    Out << '_';
1030    return;
1031  }
1032
1033  Out << 'v';
1034  mangleNumber(NonVirtual);
1035  Out << '_';
1036  mangleNumber(Virtual);
1037  Out << '_';
1038}
1039
1040void CXXNameMangler::manglePrefix(QualType type) {
1041  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1042    if (!mangleSubstitution(QualType(TST, 0))) {
1043      mangleTemplatePrefix(TST->getTemplateName());
1044
1045      // FIXME: GCC does not appear to mangle the template arguments when
1046      // the template in question is a dependent template name. Should we
1047      // emulate that badness?
1048      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1049      addSubstitution(QualType(TST, 0));
1050    }
1051  } else if (const auto *DTST =
1052                 type->getAs<DependentTemplateSpecializationType>()) {
1053    if (!mangleSubstitution(QualType(DTST, 0))) {
1054      TemplateName Template = getASTContext().getDependentTemplateName(
1055          DTST->getQualifier(), DTST->getIdentifier());
1056      mangleTemplatePrefix(Template);
1057
1058      // FIXME: GCC does not appear to mangle the template arguments when
1059      // the template in question is a dependent template name. Should we
1060      // emulate that badness?
1061      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1062      addSubstitution(QualType(DTST, 0));
1063    }
1064  } else {
1065    // We use the QualType mangle type variant here because it handles
1066    // substitutions.
1067    mangleType(type);
1068  }
1069}
1070
1071/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1072///
1073/// \param recursive - true if this is being called recursively,
1074///   i.e. if there is more prefix "to the right".
1075void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1076                                            bool recursive) {
1077
1078  // x, ::x
1079  // <unresolved-name> ::= [gs] <base-unresolved-name>
1080
1081  // T::x / decltype(p)::x
1082  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1083
1084  // T::N::x /decltype(p)::N::x
1085  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1086  //                       <base-unresolved-name>
1087
1088  // A::x, N::y, A<T>::z; "gs" means leading "::"
1089  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1090  //                       <base-unresolved-name>
1091
1092  switch (qualifier->getKind()) {
1093  case NestedNameSpecifier::Global:
1094    Out << "gs";
1095
1096    // We want an 'sr' unless this is the entire NNS.
1097    if (recursive)
1098      Out << "sr";
1099
1100    // We never want an 'E' here.
1101    return;
1102
1103  case NestedNameSpecifier::Super:
1104    llvm_unreachable("Can't mangle __super specifier");
1105
1106  case NestedNameSpecifier::Namespace:
1107    if (qualifier->getPrefix())
1108      mangleUnresolvedPrefix(qualifier->getPrefix(),
1109                             /*recursive*/ true);
1110    else
1111      Out << "sr";
1112    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1113    break;
1114  case NestedNameSpecifier::NamespaceAlias:
1115    if (qualifier->getPrefix())
1116      mangleUnresolvedPrefix(qualifier->getPrefix(),
1117                             /*recursive*/ true);
1118    else
1119      Out << "sr";
1120    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1121    break;
1122
1123  case NestedNameSpecifier::TypeSpec:
1124  case NestedNameSpecifier::TypeSpecWithTemplate: {
1125    const Type *type = qualifier->getAsType();
1126
1127    // We only want to use an unresolved-type encoding if this is one of:
1128    //   - a decltype
1129    //   - a template type parameter
1130    //   - a template template parameter with arguments
1131    // In all of these cases, we should have no prefix.
1132    if (qualifier->getPrefix()) {
1133      mangleUnresolvedPrefix(qualifier->getPrefix(),
1134                             /*recursive*/ true);
1135    } else {
1136      // Otherwise, all the cases want this.
1137      Out << "sr";
1138    }
1139
1140    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1141      return;
1142
1143    break;
1144  }
1145
1146  case NestedNameSpecifier::Identifier:
1147    // Member expressions can have these without prefixes.
1148    if (qualifier->getPrefix())
1149      mangleUnresolvedPrefix(qualifier->getPrefix(),
1150                             /*recursive*/ true);
1151    else
1152      Out << "sr";
1153
1154    mangleSourceName(qualifier->getAsIdentifier());
1155    // An Identifier has no type information, so we can't emit abi tags for it.
1156    break;
1157  }
1158
1159  // If this was the innermost part of the NNS, and we fell out to
1160  // here, append an 'E'.
1161  if (!recursive)
1162    Out << 'E';
1163}
1164
1165/// Mangle an unresolved-name, which is generally used for names which
1166/// weren't resolved to specific entities.
1167void CXXNameMangler::mangleUnresolvedName(
1168    NestedNameSpecifier *qualifier, DeclarationName name,
1169    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1170    unsigned knownArity) {
1171  if (qualifier) mangleUnresolvedPrefix(qualifier);
1172  switch (name.getNameKind()) {
1173    // <base-unresolved-name> ::= <simple-id>
1174    case DeclarationName::Identifier:
1175      mangleSourceName(name.getAsIdentifierInfo());
1176      break;
1177    // <base-unresolved-name> ::= dn <destructor-name>
1178    case DeclarationName::CXXDestructorName:
1179      Out << "dn";
1180      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1181      break;
1182    // <base-unresolved-name> ::= on <operator-name>
1183    case DeclarationName::CXXConversionFunctionName:
1184    case DeclarationName::CXXLiteralOperatorName:
1185    case DeclarationName::CXXOperatorName:
1186      Out << "on";
1187      mangleOperatorName(name, knownArity);
1188      break;
1189    case DeclarationName::CXXConstructorName:
1190      llvm_unreachable("Can't mangle a constructor name!");
1191    case DeclarationName::CXXUsingDirective:
1192      llvm_unreachable("Can't mangle a using directive name!");
1193    case DeclarationName::ObjCMultiArgSelector:
1194    case DeclarationName::ObjCOneArgSelector:
1195    case DeclarationName::ObjCZeroArgSelector:
1196      llvm_unreachable("Can't mangle Objective-C selector names here!");
1197  }
1198
1199  // The <simple-id> and on <operator-name> productions end in an optional
1200  // <template-args>.
1201  if (TemplateArgs)
1202    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1203}
1204
1205void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1206                                           DeclarationName Name,
1207                                           unsigned KnownArity,
1208                                           const AbiTagList *AdditionalAbiTags) {
1209  unsigned Arity = KnownArity;
1210  //  <unqualified-name> ::= <operator-name>
1211  //                     ::= <ctor-dtor-name>
1212  //                     ::= <source-name>
1213  switch (Name.getNameKind()) {
1214  case DeclarationName::Identifier: {
1215    const IdentifierInfo *II = Name.getAsIdentifierInfo();
1216
1217    // We mangle decomposition declarations as the names of their bindings.
1218    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1219      // FIXME: Non-standard mangling for decomposition declarations:
1220      //
1221      //  <unqualified-name> ::= DC <source-name>* E
1222      //
1223      // These can never be referenced across translation units, so we do
1224      // not need a cross-vendor mangling for anything other than demanglers.
1225      // Proposed on cxx-abi-dev on 2016-08-12
1226      Out << "DC";
1227      for (auto *BD : DD->bindings())
1228        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1229      Out << 'E';
1230      writeAbiTags(ND, AdditionalAbiTags);
1231      break;
1232    }
1233
1234    if (II) {
1235      // We must avoid conflicts between internally- and externally-
1236      // linked variable and function declaration names in the same TU:
1237      //   void test() { extern void foo(); }
1238      //   static void foo();
1239      // This naming convention is the same as that followed by GCC,
1240      // though it shouldn't actually matter.
1241      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1242          getEffectiveDeclContext(ND)->isFileContext())
1243        Out << 'L';
1244
1245      auto *FD = dyn_cast<FunctionDecl>(ND);
1246      bool IsRegCall = FD &&
1247                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
1248                           clang::CC_X86RegCall;
1249      if (IsRegCall)
1250        mangleRegCallName(II);
1251      else
1252        mangleSourceName(II);
1253
1254      writeAbiTags(ND, AdditionalAbiTags);
1255      break;
1256    }
1257
1258    // Otherwise, an anonymous entity.  We must have a declaration.
1259    assert(ND && "mangling empty name without declaration");
1260
1261    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1262      if (NS->isAnonymousNamespace()) {
1263        // This is how gcc mangles these names.
1264        Out << "12_GLOBAL__N_1";
1265        break;
1266      }
1267    }
1268
1269    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1270      // We must have an anonymous union or struct declaration.
1271      const RecordDecl *RD =
1272        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1273
1274      // Itanium C++ ABI 5.1.2:
1275      //
1276      //   For the purposes of mangling, the name of an anonymous union is
1277      //   considered to be the name of the first named data member found by a
1278      //   pre-order, depth-first, declaration-order walk of the data members of
1279      //   the anonymous union. If there is no such data member (i.e., if all of
1280      //   the data members in the union are unnamed), then there is no way for
1281      //   a program to refer to the anonymous union, and there is therefore no
1282      //   need to mangle its name.
1283      assert(RD->isAnonymousStructOrUnion()
1284             && "Expected anonymous struct or union!");
1285      const FieldDecl *FD = RD->findFirstNamedDataMember();
1286
1287      // It's actually possible for various reasons for us to get here
1288      // with an empty anonymous struct / union.  Fortunately, it
1289      // doesn't really matter what name we generate.
1290      if (!FD) break;
1291      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1292
1293      mangleSourceName(FD->getIdentifier());
1294      // Not emitting abi tags: internal name anyway.
1295      break;
1296    }
1297
1298    // Class extensions have no name as a category, and it's possible
1299    // for them to be the semantic parent of certain declarations
1300    // (primarily, tag decls defined within declarations).  Such
1301    // declarations will always have internal linkage, so the name
1302    // doesn't really matter, but we shouldn't crash on them.  For
1303    // safety, just handle all ObjC containers here.
1304    if (isa<ObjCContainerDecl>(ND))
1305      break;
1306
1307    // We must have an anonymous struct.
1308    const TagDecl *TD = cast<TagDecl>(ND);
1309    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1310      assert(TD->getDeclContext() == D->getDeclContext() &&
1311             "Typedef should not be in another decl context!");
1312      assert(D->getDeclName().getAsIdentifierInfo() &&
1313             "Typedef was not named!");
1314      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1315      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1316      // Explicit abi tags are still possible; take from underlying type, not
1317      // from typedef.
1318      writeAbiTags(TD, nullptr);
1319      break;
1320    }
1321
1322    // <unnamed-type-name> ::= <closure-type-name>
1323    //
1324    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1325    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1326    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1327      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1328        assert(!AdditionalAbiTags &&
1329               "Lambda type cannot have additional abi tags");
1330        mangleLambda(Record);
1331        break;
1332      }
1333    }
1334
1335    if (TD->isExternallyVisible()) {
1336      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1337      Out << "Ut";
1338      if (UnnamedMangle > 1)
1339        Out << UnnamedMangle - 2;
1340      Out << '_';
1341      writeAbiTags(TD, AdditionalAbiTags);
1342      break;
1343    }
1344
1345    // Get a unique id for the anonymous struct. If it is not a real output
1346    // ID doesn't matter so use fake one.
1347    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1348
1349    // Mangle it as a source name in the form
1350    // [n] $_<id>
1351    // where n is the length of the string.
1352    SmallString<8> Str;
1353    Str += "$_";
1354    Str += llvm::utostr(AnonStructId);
1355
1356    Out << Str.size();
1357    Out << Str;
1358    break;
1359  }
1360
1361  case DeclarationName::ObjCZeroArgSelector:
1362  case DeclarationName::ObjCOneArgSelector:
1363  case DeclarationName::ObjCMultiArgSelector:
1364    llvm_unreachable("Can't mangle Objective-C selector names here!");
1365
1366  case DeclarationName::CXXConstructorName: {
1367    const CXXRecordDecl *InheritedFrom = nullptr;
1368    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1369    if (auto Inherited =
1370            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1371      InheritedFrom = Inherited.getConstructor()->getParent();
1372      InheritedTemplateArgs =
1373          Inherited.getConstructor()->getTemplateSpecializationArgs();
1374    }
1375
1376    if (ND == Structor)
1377      // If the named decl is the C++ constructor we're mangling, use the type
1378      // we were given.
1379      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1380    else
1381      // Otherwise, use the complete constructor name. This is relevant if a
1382      // class with a constructor is declared within a constructor.
1383      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1384
1385    // FIXME: The template arguments are part of the enclosing prefix or
1386    // nested-name, but it's more convenient to mangle them here.
1387    if (InheritedTemplateArgs)
1388      mangleTemplateArgs(*InheritedTemplateArgs);
1389
1390    writeAbiTags(ND, AdditionalAbiTags);
1391    break;
1392  }
1393
1394  case DeclarationName::CXXDestructorName:
1395    if (ND == Structor)
1396      // If the named decl is the C++ destructor we're mangling, use the type we
1397      // were given.
1398      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1399    else
1400      // Otherwise, use the complete destructor name. This is relevant if a
1401      // class with a destructor is declared within a destructor.
1402      mangleCXXDtorType(Dtor_Complete);
1403    writeAbiTags(ND, AdditionalAbiTags);
1404    break;
1405
1406  case DeclarationName::CXXOperatorName:
1407    if (ND && Arity == UnknownArity) {
1408      Arity = cast<FunctionDecl>(ND)->getNumParams();
1409
1410      // If we have a member function, we need to include the 'this' pointer.
1411      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1412        if (!MD->isStatic())
1413          Arity++;
1414    }
1415  // FALLTHROUGH
1416  case DeclarationName::CXXConversionFunctionName:
1417  case DeclarationName::CXXLiteralOperatorName:
1418    mangleOperatorName(Name, Arity);
1419    writeAbiTags(ND, AdditionalAbiTags);
1420    break;
1421
1422  case DeclarationName::CXXUsingDirective:
1423    llvm_unreachable("Can't mangle a using directive name!");
1424  }
1425}
1426
1427void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1428  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1429  // <number> ::= [n] <non-negative decimal integer>
1430  // <identifier> ::= <unqualified source code identifier>
1431  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1432      << II->getName();
1433}
1434
1435void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1436  // <source-name> ::= <positive length number> <identifier>
1437  // <number> ::= [n] <non-negative decimal integer>
1438  // <identifier> ::= <unqualified source code identifier>
1439  Out << II->getLength() << II->getName();
1440}
1441
1442void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1443                                      const DeclContext *DC,
1444                                      const AbiTagList *AdditionalAbiTags,
1445                                      bool NoFunction) {
1446  // <nested-name>
1447  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1448  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1449  //       <template-args> E
1450
1451  Out << 'N';
1452  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1453    Qualifiers MethodQuals =
1454        Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1455    // We do not consider restrict a distinguishing attribute for overloading
1456    // purposes so we must not mangle it.
1457    MethodQuals.removeRestrict();
1458    mangleQualifiers(MethodQuals);
1459    mangleRefQualifier(Method->getRefQualifier());
1460  }
1461
1462  // Check if we have a template.
1463  const TemplateArgumentList *TemplateArgs = nullptr;
1464  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1465    mangleTemplatePrefix(TD, NoFunction);
1466    mangleTemplateArgs(*TemplateArgs);
1467  }
1468  else {
1469    manglePrefix(DC, NoFunction);
1470    mangleUnqualifiedName(ND, AdditionalAbiTags);
1471  }
1472
1473  Out << 'E';
1474}
1475void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1476                                      const TemplateArgument *TemplateArgs,
1477                                      unsigned NumTemplateArgs) {
1478  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1479
1480  Out << 'N';
1481
1482  mangleTemplatePrefix(TD);
1483  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1484
1485  Out << 'E';
1486}
1487
1488void CXXNameMangler::mangleLocalName(const Decl *D,
1489                                     const AbiTagList *AdditionalAbiTags) {
1490  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1491  //              := Z <function encoding> E s [<discriminator>]
1492  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1493  //                 _ <entity name>
1494  // <discriminator> := _ <non-negative number>
1495  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1496  const RecordDecl *RD = GetLocalClassDecl(D);
1497  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1498
1499  Out << 'Z';
1500
1501  {
1502    AbiTagState LocalAbiTags(AbiTags);
1503
1504    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1505      mangleObjCMethodName(MD);
1506    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1507      mangleBlockForPrefix(BD);
1508    else
1509      mangleFunctionEncoding(cast<FunctionDecl>(DC));
1510
1511    // Implicit ABI tags (from namespace) are not available in the following
1512    // entity; reset to actually emitted tags, which are available.
1513    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1514  }
1515
1516  Out << 'E';
1517
1518  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1519  // be a bug that is fixed in trunk.
1520
1521  if (RD) {
1522    // The parameter number is omitted for the last parameter, 0 for the
1523    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1524    // <entity name> will of course contain a <closure-type-name>: Its
1525    // numbering will be local to the particular argument in which it appears
1526    // -- other default arguments do not affect its encoding.
1527    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1528    if (CXXRD && CXXRD->isLambda()) {
1529      if (const ParmVarDecl *Parm
1530              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1531        if (const FunctionDecl *Func
1532              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1533          Out << 'd';
1534          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1535          if (Num > 1)
1536            mangleNumber(Num - 2);
1537          Out << '_';
1538        }
1539      }
1540    }
1541
1542    // Mangle the name relative to the closest enclosing function.
1543    // equality ok because RD derived from ND above
1544    if (D == RD)  {
1545      mangleUnqualifiedName(RD, AdditionalAbiTags);
1546    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1547      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1548      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1549      mangleUnqualifiedBlock(BD);
1550    } else {
1551      const NamedDecl *ND = cast<NamedDecl>(D);
1552      mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1553                       true /*NoFunction*/);
1554    }
1555  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1556    // Mangle a block in a default parameter; see above explanation for
1557    // lambdas.
1558    if (const ParmVarDecl *Parm
1559            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1560      if (const FunctionDecl *Func
1561            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1562        Out << 'd';
1563        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1564        if (Num > 1)
1565          mangleNumber(Num - 2);
1566        Out << '_';
1567      }
1568    }
1569
1570    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1571    mangleUnqualifiedBlock(BD);
1572  } else {
1573    mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1574  }
1575
1576  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1577    unsigned disc;
1578    if (Context.getNextDiscriminator(ND, disc)) {
1579      if (disc < 10)
1580        Out << '_' << disc;
1581      else
1582        Out << "__" << disc << '_';
1583    }
1584  }
1585}
1586
1587void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1588  if (GetLocalClassDecl(Block)) {
1589    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1590    return;
1591  }
1592  const DeclContext *DC = getEffectiveDeclContext(Block);
1593  if (isLocalContainerContext(DC)) {
1594    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1595    return;
1596  }
1597  manglePrefix(getEffectiveDeclContext(Block));
1598  mangleUnqualifiedBlock(Block);
1599}
1600
1601void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1602  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1603    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1604        Context->getDeclContext()->isRecord()) {
1605      const auto *ND = cast<NamedDecl>(Context);
1606      if (ND->getIdentifier()) {
1607        mangleSourceNameWithAbiTags(ND);
1608        Out << 'M';
1609      }
1610    }
1611  }
1612
1613  // If we have a block mangling number, use it.
1614  unsigned Number = Block->getBlockManglingNumber();
1615  // Otherwise, just make up a number. It doesn't matter what it is because
1616  // the symbol in question isn't externally visible.
1617  if (!Number)
1618    Number = Context.getBlockId(Block, false);
1619  Out << "Ub";
1620  if (Number > 0)
1621    Out << Number - 1;
1622  Out << '_';
1623}
1624
1625void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1626  // If the context of a closure type is an initializer for a class member
1627  // (static or nonstatic), it is encoded in a qualified name with a final
1628  // <prefix> of the form:
1629  //
1630  //   <data-member-prefix> := <member source-name> M
1631  //
1632  // Technically, the data-member-prefix is part of the <prefix>. However,
1633  // since a closure type will always be mangled with a prefix, it's easier
1634  // to emit that last part of the prefix here.
1635  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1636    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1637        Context->getDeclContext()->isRecord()) {
1638      if (const IdentifierInfo *Name
1639            = cast<NamedDecl>(Context)->getIdentifier()) {
1640        mangleSourceName(Name);
1641        Out << 'M';
1642      }
1643    }
1644  }
1645
1646  Out << "Ul";
1647  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1648                                   getAs<FunctionProtoType>();
1649  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1650                         Lambda->getLambdaStaticInvoker());
1651  Out << "E";
1652
1653  // The number is omitted for the first closure type with a given
1654  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1655  // (in lexical order) with that same <lambda-sig> and context.
1656  //
1657  // The AST keeps track of the number for us.
1658  unsigned Number = Lambda->getLambdaManglingNumber();
1659  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1660  if (Number > 1)
1661    mangleNumber(Number - 2);
1662  Out << '_';
1663}
1664
1665void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1666  switch (qualifier->getKind()) {
1667  case NestedNameSpecifier::Global:
1668    // nothing
1669    return;
1670
1671  case NestedNameSpecifier::Super:
1672    llvm_unreachable("Can't mangle __super specifier");
1673
1674  case NestedNameSpecifier::Namespace:
1675    mangleName(qualifier->getAsNamespace());
1676    return;
1677
1678  case NestedNameSpecifier::NamespaceAlias:
1679    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1680    return;
1681
1682  case NestedNameSpecifier::TypeSpec:
1683  case NestedNameSpecifier::TypeSpecWithTemplate:
1684    manglePrefix(QualType(qualifier->getAsType(), 0));
1685    return;
1686
1687  case NestedNameSpecifier::Identifier:
1688    // Member expressions can have these without prefixes, but that
1689    // should end up in mangleUnresolvedPrefix instead.
1690    assert(qualifier->getPrefix());
1691    manglePrefix(qualifier->getPrefix());
1692
1693    mangleSourceName(qualifier->getAsIdentifier());
1694    return;
1695  }
1696
1697  llvm_unreachable("unexpected nested name specifier");
1698}
1699
1700void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1701  //  <prefix> ::= <prefix> <unqualified-name>
1702  //           ::= <template-prefix> <template-args>
1703  //           ::= <template-param>
1704  //           ::= # empty
1705  //           ::= <substitution>
1706
1707  DC = IgnoreLinkageSpecDecls(DC);
1708
1709  if (DC->isTranslationUnit())
1710    return;
1711
1712  if (NoFunction && isLocalContainerContext(DC))
1713    return;
1714
1715  assert(!isLocalContainerContext(DC));
1716
1717  const NamedDecl *ND = cast<NamedDecl>(DC);
1718  if (mangleSubstitution(ND))
1719    return;
1720
1721  // Check if we have a template.
1722  const TemplateArgumentList *TemplateArgs = nullptr;
1723  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1724    mangleTemplatePrefix(TD);
1725    mangleTemplateArgs(*TemplateArgs);
1726  } else {
1727    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1728    mangleUnqualifiedName(ND, nullptr);
1729  }
1730
1731  addSubstitution(ND);
1732}
1733
1734void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1735  // <template-prefix> ::= <prefix> <template unqualified-name>
1736  //                   ::= <template-param>
1737  //                   ::= <substitution>
1738  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1739    return mangleTemplatePrefix(TD);
1740
1741  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1742    manglePrefix(Qualified->getQualifier());
1743
1744  if (OverloadedTemplateStorage *Overloaded
1745                                      = Template.getAsOverloadedTemplate()) {
1746    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1747                          UnknownArity, nullptr);
1748    return;
1749  }
1750
1751  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1752  assert(Dependent && "Unknown template name kind?");
1753  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1754    manglePrefix(Qualifier);
1755  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1756}
1757
1758void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1759                                          bool NoFunction) {
1760  // <template-prefix> ::= <prefix> <template unqualified-name>
1761  //                   ::= <template-param>
1762  //                   ::= <substitution>
1763  // <template-template-param> ::= <template-param>
1764  //                               <substitution>
1765
1766  if (mangleSubstitution(ND))
1767    return;
1768
1769  // <template-template-param> ::= <template-param>
1770  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1771    mangleTemplateParameter(TTP->getIndex());
1772  } else {
1773    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1774    if (isa<BuiltinTemplateDecl>(ND))
1775      mangleUnqualifiedName(ND, nullptr);
1776    else
1777      mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1778  }
1779
1780  addSubstitution(ND);
1781}
1782
1783/// Mangles a template name under the production <type>.  Required for
1784/// template template arguments.
1785///   <type> ::= <class-enum-type>
1786///          ::= <template-param>
1787///          ::= <substitution>
1788void CXXNameMangler::mangleType(TemplateName TN) {
1789  if (mangleSubstitution(TN))
1790    return;
1791
1792  TemplateDecl *TD = nullptr;
1793
1794  switch (TN.getKind()) {
1795  case TemplateName::QualifiedTemplate:
1796    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1797    goto HaveDecl;
1798
1799  case TemplateName::Template:
1800    TD = TN.getAsTemplateDecl();
1801    goto HaveDecl;
1802
1803  HaveDecl:
1804    if (isa<TemplateTemplateParmDecl>(TD))
1805      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1806    else
1807      mangleName(TD);
1808    break;
1809
1810  case TemplateName::OverloadedTemplate:
1811    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1812
1813  case TemplateName::DependentTemplate: {
1814    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1815    assert(Dependent->isIdentifier());
1816
1817    // <class-enum-type> ::= <name>
1818    // <name> ::= <nested-name>
1819    mangleUnresolvedPrefix(Dependent->getQualifier());
1820    mangleSourceName(Dependent->getIdentifier());
1821    break;
1822  }
1823
1824  case TemplateName::SubstTemplateTemplateParm: {
1825    // Substituted template parameters are mangled as the substituted
1826    // template.  This will check for the substitution twice, which is
1827    // fine, but we have to return early so that we don't try to *add*
1828    // the substitution twice.
1829    SubstTemplateTemplateParmStorage *subst
1830      = TN.getAsSubstTemplateTemplateParm();
1831    mangleType(subst->getReplacement());
1832    return;
1833  }
1834
1835  case TemplateName::SubstTemplateTemplateParmPack: {
1836    // FIXME: not clear how to mangle this!
1837    // template <template <class> class T...> class A {
1838    //   template <template <class> class U...> void foo(B<T,U> x...);
1839    // };
1840    Out << "_SUBSTPACK_";
1841    break;
1842  }
1843  }
1844
1845  addSubstitution(TN);
1846}
1847
1848bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1849                                                    StringRef Prefix) {
1850  // Only certain other types are valid as prefixes;  enumerate them.
1851  switch (Ty->getTypeClass()) {
1852  case Type::Builtin:
1853  case Type::Complex:
1854  case Type::Adjusted:
1855  case Type::Decayed:
1856  case Type::Pointer:
1857  case Type::BlockPointer:
1858  case Type::LValueReference:
1859  case Type::RValueReference:
1860  case Type::MemberPointer:
1861  case Type::ConstantArray:
1862  case Type::IncompleteArray:
1863  case Type::VariableArray:
1864  case Type::DependentSizedArray:
1865  case Type::DependentSizedExtVector:
1866  case Type::Vector:
1867  case Type::ExtVector:
1868  case Type::FunctionProto:
1869  case Type::FunctionNoProto:
1870  case Type::Paren:
1871  case Type::Attributed:
1872  case Type::Auto:
1873  case Type::PackExpansion:
1874  case Type::ObjCObject:
1875  case Type::ObjCInterface:
1876  case Type::ObjCObjectPointer:
1877  case Type::ObjCTypeParam:
1878  case Type::Atomic:
1879  case Type::Pipe:
1880    llvm_unreachable("type is illegal as a nested name specifier");
1881
1882  case Type::SubstTemplateTypeParmPack:
1883    // FIXME: not clear how to mangle this!
1884    // template <class T...> class A {
1885    //   template <class U...> void foo(decltype(T::foo(U())) x...);
1886    // };
1887    Out << "_SUBSTPACK_";
1888    break;
1889
1890  // <unresolved-type> ::= <template-param>
1891  //                   ::= <decltype>
1892  //                   ::= <template-template-param> <template-args>
1893  // (this last is not official yet)
1894  case Type::TypeOfExpr:
1895  case Type::TypeOf:
1896  case Type::Decltype:
1897  case Type::TemplateTypeParm:
1898  case Type::UnaryTransform:
1899  case Type::SubstTemplateTypeParm:
1900  unresolvedType:
1901    // Some callers want a prefix before the mangled type.
1902    Out << Prefix;
1903
1904    // This seems to do everything we want.  It's not really
1905    // sanctioned for a substituted template parameter, though.
1906    mangleType(Ty);
1907
1908    // We never want to print 'E' directly after an unresolved-type,
1909    // so we return directly.
1910    return true;
1911
1912  case Type::Typedef:
1913    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1914    break;
1915
1916  case Type::UnresolvedUsing:
1917    mangleSourceNameWithAbiTags(
1918        cast<UnresolvedUsingType>(Ty)->getDecl());
1919    break;
1920
1921  case Type::Enum:
1922  case Type::Record:
1923    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
1924    break;
1925
1926  case Type::TemplateSpecialization: {
1927    const TemplateSpecializationType *TST =
1928        cast<TemplateSpecializationType>(Ty);
1929    TemplateName TN = TST->getTemplateName();
1930    switch (TN.getKind()) {
1931    case TemplateName::Template:
1932    case TemplateName::QualifiedTemplate: {
1933      TemplateDecl *TD = TN.getAsTemplateDecl();
1934
1935      // If the base is a template template parameter, this is an
1936      // unresolved type.
1937      assert(TD && "no template for template specialization type");
1938      if (isa<TemplateTemplateParmDecl>(TD))
1939        goto unresolvedType;
1940
1941      mangleSourceNameWithAbiTags(TD);
1942      break;
1943    }
1944
1945    case TemplateName::OverloadedTemplate:
1946    case TemplateName::DependentTemplate:
1947      llvm_unreachable("invalid base for a template specialization type");
1948
1949    case TemplateName::SubstTemplateTemplateParm: {
1950      SubstTemplateTemplateParmStorage *subst =
1951          TN.getAsSubstTemplateTemplateParm();
1952      mangleExistingSubstitution(subst->getReplacement());
1953      break;
1954    }
1955
1956    case TemplateName::SubstTemplateTemplateParmPack: {
1957      // FIXME: not clear how to mangle this!
1958      // template <template <class U> class T...> class A {
1959      //   template <class U...> void foo(decltype(T<U>::foo) x...);
1960      // };
1961      Out << "_SUBSTPACK_";
1962      break;
1963    }
1964    }
1965
1966    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1967    break;
1968  }
1969
1970  case Type::InjectedClassName:
1971    mangleSourceNameWithAbiTags(
1972        cast<InjectedClassNameType>(Ty)->getDecl());
1973    break;
1974
1975  case Type::DependentName:
1976    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1977    break;
1978
1979  case Type::DependentTemplateSpecialization: {
1980    const DependentTemplateSpecializationType *DTST =
1981        cast<DependentTemplateSpecializationType>(Ty);
1982    mangleSourceName(DTST->getIdentifier());
1983    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1984    break;
1985  }
1986
1987  case Type::Elaborated:
1988    return mangleUnresolvedTypeOrSimpleId(
1989        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1990  }
1991
1992  return false;
1993}
1994
1995void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1996  switch (Name.getNameKind()) {
1997  case DeclarationName::CXXConstructorName:
1998  case DeclarationName::CXXDestructorName:
1999  case DeclarationName::CXXUsingDirective:
2000  case DeclarationName::Identifier:
2001  case DeclarationName::ObjCMultiArgSelector:
2002  case DeclarationName::ObjCOneArgSelector:
2003  case DeclarationName::ObjCZeroArgSelector:
2004    llvm_unreachable("Not an operator name");
2005
2006  case DeclarationName::CXXConversionFunctionName:
2007    // <operator-name> ::= cv <type>    # (cast)
2008    Out << "cv";
2009    mangleType(Name.getCXXNameType());
2010    break;
2011
2012  case DeclarationName::CXXLiteralOperatorName:
2013    Out << "li";
2014    mangleSourceName(Name.getCXXLiteralIdentifier());
2015    return;
2016
2017  case DeclarationName::CXXOperatorName:
2018    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2019    break;
2020  }
2021}
2022
2023void
2024CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2025  switch (OO) {
2026  // <operator-name> ::= nw     # new
2027  case OO_New: Out << "nw"; break;
2028  //              ::= na        # new[]
2029  case OO_Array_New: Out << "na"; break;
2030  //              ::= dl        # delete
2031  case OO_Delete: Out << "dl"; break;
2032  //              ::= da        # delete[]
2033  case OO_Array_Delete: Out << "da"; break;
2034  //              ::= ps        # + (unary)
2035  //              ::= pl        # + (binary or unknown)
2036  case OO_Plus:
2037    Out << (Arity == 1? "ps" : "pl"); break;
2038  //              ::= ng        # - (unary)
2039  //              ::= mi        # - (binary or unknown)
2040  case OO_Minus:
2041    Out << (Arity == 1? "ng" : "mi"); break;
2042  //              ::= ad        # & (unary)
2043  //              ::= an        # & (binary or unknown)
2044  case OO_Amp:
2045    Out << (Arity == 1? "ad" : "an"); break;
2046  //              ::= de        # * (unary)
2047  //              ::= ml        # * (binary or unknown)
2048  case OO_Star:
2049    // Use binary when unknown.
2050    Out << (Arity == 1? "de" : "ml"); break;
2051  //              ::= co        # ~
2052  case OO_Tilde: Out << "co"; break;
2053  //              ::= dv        # /
2054  case OO_Slash: Out << "dv"; break;
2055  //              ::= rm        # %
2056  case OO_Percent: Out << "rm"; break;
2057  //              ::= or        # |
2058  case OO_Pipe: Out << "or"; break;
2059  //              ::= eo        # ^
2060  case OO_Caret: Out << "eo"; break;
2061  //              ::= aS        # =
2062  case OO_Equal: Out << "aS"; break;
2063  //              ::= pL        # +=
2064  case OO_PlusEqual: Out << "pL"; break;
2065  //              ::= mI        # -=
2066  case OO_MinusEqual: Out << "mI"; break;
2067  //              ::= mL        # *=
2068  case OO_StarEqual: Out << "mL"; break;
2069  //              ::= dV        # /=
2070  case OO_SlashEqual: Out << "dV"; break;
2071  //              ::= rM        # %=
2072  case OO_PercentEqual: Out << "rM"; break;
2073  //              ::= aN        # &=
2074  case OO_AmpEqual: Out << "aN"; break;
2075  //              ::= oR        # |=
2076  case OO_PipeEqual: Out << "oR"; break;
2077  //              ::= eO        # ^=
2078  case OO_CaretEqual: Out << "eO"; break;
2079  //              ::= ls        # <<
2080  case OO_LessLess: Out << "ls"; break;
2081  //              ::= rs        # >>
2082  case OO_GreaterGreater: Out << "rs"; break;
2083  //              ::= lS        # <<=
2084  case OO_LessLessEqual: Out << "lS"; break;
2085  //              ::= rS        # >>=
2086  case OO_GreaterGreaterEqual: Out << "rS"; break;
2087  //              ::= eq        # ==
2088  case OO_EqualEqual: Out << "eq"; break;
2089  //              ::= ne        # !=
2090  case OO_ExclaimEqual: Out << "ne"; break;
2091  //              ::= lt        # <
2092  case OO_Less: Out << "lt"; break;
2093  //              ::= gt        # >
2094  case OO_Greater: Out << "gt"; break;
2095  //              ::= le        # <=
2096  case OO_LessEqual: Out << "le"; break;
2097  //              ::= ge        # >=
2098  case OO_GreaterEqual: Out << "ge"; break;
2099  //              ::= nt        # !
2100  case OO_Exclaim: Out << "nt"; break;
2101  //              ::= aa        # &&
2102  case OO_AmpAmp: Out << "aa"; break;
2103  //              ::= oo        # ||
2104  case OO_PipePipe: Out << "oo"; break;
2105  //              ::= pp        # ++
2106  case OO_PlusPlus: Out << "pp"; break;
2107  //              ::= mm        # --
2108  case OO_MinusMinus: Out << "mm"; break;
2109  //              ::= cm        # ,
2110  case OO_Comma: Out << "cm"; break;
2111  //              ::= pm        # ->*
2112  case OO_ArrowStar: Out << "pm"; break;
2113  //              ::= pt        # ->
2114  case OO_Arrow: Out << "pt"; break;
2115  //              ::= cl        # ()
2116  case OO_Call: Out << "cl"; break;
2117  //              ::= ix        # []
2118  case OO_Subscript: Out << "ix"; break;
2119
2120  //              ::= qu        # ?
2121  // The conditional operator can't be overloaded, but we still handle it when
2122  // mangling expressions.
2123  case OO_Conditional: Out << "qu"; break;
2124  // Proposal on cxx-abi-dev, 2015-10-21.
2125  //              ::= aw        # co_await
2126  case OO_Coawait: Out << "aw"; break;
2127
2128  case OO_None:
2129  case NUM_OVERLOADED_OPERATORS:
2130    llvm_unreachable("Not an overloaded operator");
2131  }
2132}
2133
2134void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
2135  // Vendor qualifiers come first.
2136
2137  // Address space qualifiers start with an ordinary letter.
2138  if (Quals.hasAddressSpace()) {
2139    // Address space extension:
2140    //
2141    //   <type> ::= U <target-addrspace>
2142    //   <type> ::= U <OpenCL-addrspace>
2143    //   <type> ::= U <CUDA-addrspace>
2144
2145    SmallString<64> ASString;
2146    unsigned AS = Quals.getAddressSpace();
2147
2148    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2149      //  <target-addrspace> ::= "AS" <address-space-number>
2150      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2151      ASString = "AS" + llvm::utostr(TargetAS);
2152    } else {
2153      switch (AS) {
2154      default: llvm_unreachable("Not a language specific address space");
2155      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
2156      case LangAS::opencl_global:   ASString = "CLglobal";   break;
2157      case LangAS::opencl_local:    ASString = "CLlocal";    break;
2158      case LangAS::opencl_constant: ASString = "CLconstant"; break;
2159      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2160      case LangAS::cuda_device:     ASString = "CUdevice";   break;
2161      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2162      case LangAS::cuda_shared:     ASString = "CUshared";   break;
2163      }
2164    }
2165    mangleVendorQualifier(ASString);
2166  }
2167
2168  // The ARC ownership qualifiers start with underscores.
2169  switch (Quals.getObjCLifetime()) {
2170  // Objective-C ARC Extension:
2171  //
2172  //   <type> ::= U "__strong"
2173  //   <type> ::= U "__weak"
2174  //   <type> ::= U "__autoreleasing"
2175  case Qualifiers::OCL_None:
2176    break;
2177
2178  case Qualifiers::OCL_Weak:
2179    mangleVendorQualifier("__weak");
2180    break;
2181
2182  case Qualifiers::OCL_Strong:
2183    mangleVendorQualifier("__strong");
2184    break;
2185
2186  case Qualifiers::OCL_Autoreleasing:
2187    mangleVendorQualifier("__autoreleasing");
2188    break;
2189
2190  case Qualifiers::OCL_ExplicitNone:
2191    // The __unsafe_unretained qualifier is *not* mangled, so that
2192    // __unsafe_unretained types in ARC produce the same manglings as the
2193    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2194    // better ABI compatibility.
2195    //
2196    // It's safe to do this because unqualified 'id' won't show up
2197    // in any type signatures that need to be mangled.
2198    break;
2199  }
2200
2201  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2202  if (Quals.hasRestrict())
2203    Out << 'r';
2204  if (Quals.hasVolatile())
2205    Out << 'V';
2206  if (Quals.hasConst())
2207    Out << 'K';
2208}
2209
2210void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2211  Out << 'U' << name.size() << name;
2212}
2213
2214void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2215  // <ref-qualifier> ::= R                # lvalue reference
2216  //                 ::= O                # rvalue-reference
2217  switch (RefQualifier) {
2218  case RQ_None:
2219    break;
2220
2221  case RQ_LValue:
2222    Out << 'R';
2223    break;
2224
2225  case RQ_RValue:
2226    Out << 'O';
2227    break;
2228  }
2229}
2230
2231void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2232  Context.mangleObjCMethodName(MD, Out);
2233}
2234
2235static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
2236  if (Quals)
2237    return true;
2238  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2239    return true;
2240  if (Ty->isOpenCLSpecificType())
2241    return true;
2242  if (Ty->isBuiltinType())
2243    return false;
2244
2245  return true;
2246}
2247
2248void CXXNameMangler::mangleType(QualType T) {
2249  // If our type is instantiation-dependent but not dependent, we mangle
2250  // it as it was written in the source, removing any top-level sugar.
2251  // Otherwise, use the canonical type.
2252  //
2253  // FIXME: This is an approximation of the instantiation-dependent name
2254  // mangling rules, since we should really be using the type as written and
2255  // augmented via semantic analysis (i.e., with implicit conversions and
2256  // default template arguments) for any instantiation-dependent type.
2257  // Unfortunately, that requires several changes to our AST:
2258  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2259  //     uniqued, so that we can handle substitutions properly
2260  //   - Default template arguments will need to be represented in the
2261  //     TemplateSpecializationType, since they need to be mangled even though
2262  //     they aren't written.
2263  //   - Conversions on non-type template arguments need to be expressed, since
2264  //     they can affect the mangling of sizeof/alignof.
2265  //
2266  // FIXME: This is wrong when mapping to the canonical type for a dependent
2267  // type discards instantiation-dependent portions of the type, such as for:
2268  //
2269  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2270  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2271  //
2272  // It's also wrong in the opposite direction when instantiation-dependent,
2273  // canonically-equivalent types differ in some irrelevant portion of inner
2274  // type sugar. In such cases, we fail to form correct substitutions, eg:
2275  //
2276  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2277  //
2278  // We should instead canonicalize the non-instantiation-dependent parts,
2279  // regardless of whether the type as a whole is dependent or instantiation
2280  // dependent.
2281  if (!T->isInstantiationDependentType() || T->isDependentType())
2282    T = T.getCanonicalType();
2283  else {
2284    // Desugar any types that are purely sugar.
2285    do {
2286      // Don't desugar through template specialization types that aren't
2287      // type aliases. We need to mangle the template arguments as written.
2288      if (const TemplateSpecializationType *TST
2289                                      = dyn_cast<TemplateSpecializationType>(T))
2290        if (!TST->isTypeAlias())
2291          break;
2292
2293      QualType Desugared
2294        = T.getSingleStepDesugaredType(Context.getASTContext());
2295      if (Desugared == T)
2296        break;
2297
2298      T = Desugared;
2299    } while (true);
2300  }
2301  SplitQualType split = T.split();
2302  Qualifiers quals = split.Quals;
2303  const Type *ty = split.Ty;
2304
2305  bool isSubstitutable = isTypeSubstitutable(quals, ty);
2306  if (isSubstitutable && mangleSubstitution(T))
2307    return;
2308
2309  // If we're mangling a qualified array type, push the qualifiers to
2310  // the element type.
2311  if (quals && isa<ArrayType>(T)) {
2312    ty = Context.getASTContext().getAsArrayType(T);
2313    quals = Qualifiers();
2314
2315    // Note that we don't update T: we want to add the
2316    // substitution at the original type.
2317  }
2318
2319  if (quals) {
2320    mangleQualifiers(quals);
2321    // Recurse:  even if the qualified type isn't yet substitutable,
2322    // the unqualified type might be.
2323    mangleType(QualType(ty, 0));
2324  } else {
2325    switch (ty->getTypeClass()) {
2326#define ABSTRACT_TYPE(CLASS, PARENT)
2327#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2328    case Type::CLASS: \
2329      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2330      return;
2331#define TYPE(CLASS, PARENT) \
2332    case Type::CLASS: \
2333      mangleType(static_cast<const CLASS##Type*>(ty)); \
2334      break;
2335#include "clang/AST/TypeNodes.def"
2336    }
2337  }
2338
2339  // Add the substitution.
2340  if (isSubstitutable)
2341    addSubstitution(T);
2342}
2343
2344void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2345  if (!mangleStandardSubstitution(ND))
2346    mangleName(ND);
2347}
2348
2349void CXXNameMangler::mangleType(const BuiltinType *T) {
2350  //  <type>         ::= <builtin-type>
2351  //  <builtin-type> ::= v  # void
2352  //                 ::= w  # wchar_t
2353  //                 ::= b  # bool
2354  //                 ::= c  # char
2355  //                 ::= a  # signed char
2356  //                 ::= h  # unsigned char
2357  //                 ::= s  # short
2358  //                 ::= t  # unsigned short
2359  //                 ::= i  # int
2360  //                 ::= j  # unsigned int
2361  //                 ::= l  # long
2362  //                 ::= m  # unsigned long
2363  //                 ::= x  # long long, __int64
2364  //                 ::= y  # unsigned long long, __int64
2365  //                 ::= n  # __int128
2366  //                 ::= o  # unsigned __int128
2367  //                 ::= f  # float
2368  //                 ::= d  # double
2369  //                 ::= e  # long double, __float80
2370  //                 ::= g  # __float128
2371  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2372  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2373  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2374  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2375  //                 ::= Di # char32_t
2376  //                 ::= Ds # char16_t
2377  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2378  //                 ::= u <source-name>    # vendor extended type
2379  std::string type_name;
2380  switch (T->getKind()) {
2381  case BuiltinType::Void:
2382    Out << 'v';
2383    break;
2384  case BuiltinType::Bool:
2385    Out << 'b';
2386    break;
2387  case BuiltinType::Char_U:
2388  case BuiltinType::Char_S:
2389    Out << 'c';
2390    break;
2391  case BuiltinType::UChar:
2392    Out << 'h';
2393    break;
2394  case BuiltinType::UShort:
2395    Out << 't';
2396    break;
2397  case BuiltinType::UInt:
2398    Out << 'j';
2399    break;
2400  case BuiltinType::ULong:
2401    Out << 'm';
2402    break;
2403  case BuiltinType::ULongLong:
2404    Out << 'y';
2405    break;
2406  case BuiltinType::UInt128:
2407    Out << 'o';
2408    break;
2409  case BuiltinType::SChar:
2410    Out << 'a';
2411    break;
2412  case BuiltinType::WChar_S:
2413  case BuiltinType::WChar_U:
2414    Out << 'w';
2415    break;
2416  case BuiltinType::Char16:
2417    Out << "Ds";
2418    break;
2419  case BuiltinType::Char32:
2420    Out << "Di";
2421    break;
2422  case BuiltinType::Short:
2423    Out << 's';
2424    break;
2425  case BuiltinType::Int:
2426    Out << 'i';
2427    break;
2428  case BuiltinType::Long:
2429    Out << 'l';
2430    break;
2431  case BuiltinType::LongLong:
2432    Out << 'x';
2433    break;
2434  case BuiltinType::Int128:
2435    Out << 'n';
2436    break;
2437  case BuiltinType::Half:
2438    Out << "Dh";
2439    break;
2440  case BuiltinType::Float:
2441    Out << 'f';
2442    break;
2443  case BuiltinType::Double:
2444    Out << 'd';
2445    break;
2446  case BuiltinType::LongDouble:
2447    Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2448                ? 'g'
2449                : 'e');
2450    break;
2451  case BuiltinType::Float128:
2452    if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2453      Out << "U10__float128"; // Match the GCC mangling
2454    else
2455      Out << 'g';
2456    break;
2457  case BuiltinType::NullPtr:
2458    Out << "Dn";
2459    break;
2460
2461#define BUILTIN_TYPE(Id, SingletonId)
2462#define PLACEHOLDER_TYPE(Id, SingletonId) \
2463  case BuiltinType::Id:
2464#include "clang/AST/BuiltinTypes.def"
2465  case BuiltinType::Dependent:
2466    if (!NullOut)
2467      llvm_unreachable("mangling a placeholder type");
2468    break;
2469  case BuiltinType::ObjCId:
2470    Out << "11objc_object";
2471    break;
2472  case BuiltinType::ObjCClass:
2473    Out << "10objc_class";
2474    break;
2475  case BuiltinType::ObjCSel:
2476    Out << "13objc_selector";
2477    break;
2478#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2479  case BuiltinType::Id: \
2480    type_name = "ocl_" #ImgType "_" #Suffix; \
2481    Out << type_name.size() << type_name; \
2482    break;
2483#include "clang/Basic/OpenCLImageTypes.def"
2484  case BuiltinType::OCLSampler:
2485    Out << "11ocl_sampler";
2486    break;
2487  case BuiltinType::OCLEvent:
2488    Out << "9ocl_event";
2489    break;
2490  case BuiltinType::OCLClkEvent:
2491    Out << "12ocl_clkevent";
2492    break;
2493  case BuiltinType::OCLQueue:
2494    Out << "9ocl_queue";
2495    break;
2496  case BuiltinType::OCLNDRange:
2497    Out << "11ocl_ndrange";
2498    break;
2499  case BuiltinType::OCLReserveID:
2500    Out << "13ocl_reserveid";
2501    break;
2502  }
2503}
2504
2505StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2506  switch (CC) {
2507  case CC_C:
2508    return "";
2509
2510  case CC_X86StdCall:
2511  case CC_X86FastCall:
2512  case CC_X86ThisCall:
2513  case CC_X86VectorCall:
2514  case CC_X86Pascal:
2515  case CC_X86_64Win64:
2516  case CC_X86_64SysV:
2517  case CC_X86RegCall:
2518  case CC_AAPCS:
2519  case CC_AAPCS_VFP:
2520  case CC_IntelOclBicc:
2521  case CC_SpirFunction:
2522  case CC_OpenCLKernel:
2523  case CC_PreserveMost:
2524  case CC_PreserveAll:
2525    // FIXME: we should be mangling all of the above.
2526    return "";
2527
2528  case CC_Swift:
2529    return "swiftcall";
2530  }
2531  llvm_unreachable("bad calling convention");
2532}
2533
2534void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2535  // Fast path.
2536  if (T->getExtInfo() == FunctionType::ExtInfo())
2537    return;
2538
2539  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2540  // This will get more complicated in the future if we mangle other
2541  // things here; but for now, since we mangle ns_returns_retained as
2542  // a qualifier on the result type, we can get away with this:
2543  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2544  if (!CCQualifier.empty())
2545    mangleVendorQualifier(CCQualifier);
2546
2547  // FIXME: regparm
2548  // FIXME: noreturn
2549}
2550
2551void
2552CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2553  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2554
2555  // Note that these are *not* substitution candidates.  Demanglers might
2556  // have trouble with this if the parameter type is fully substituted.
2557
2558  switch (PI.getABI()) {
2559  case ParameterABI::Ordinary:
2560    break;
2561
2562  // All of these start with "swift", so they come before "ns_consumed".
2563  case ParameterABI::SwiftContext:
2564  case ParameterABI::SwiftErrorResult:
2565  case ParameterABI::SwiftIndirectResult:
2566    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2567    break;
2568  }
2569
2570  if (PI.isConsumed())
2571    mangleVendorQualifier("ns_consumed");
2572}
2573
2574// <type>          ::= <function-type>
2575// <function-type> ::= [<CV-qualifiers>] F [Y]
2576//                      <bare-function-type> [<ref-qualifier>] E
2577void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2578  mangleExtFunctionInfo(T);
2579
2580  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2581  // e.g. "const" in "int (A::*)() const".
2582  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2583
2584  // Mangle instantiation-dependent exception-specification, if present,
2585  // per cxx-abi-dev proposal on 2016-10-11.
2586  if (T->hasInstantiationDependentExceptionSpec()) {
2587    if (T->getExceptionSpecType() == EST_ComputedNoexcept) {
2588      Out << "DO";
2589      mangleExpression(T->getNoexceptExpr());
2590      Out << "E";
2591    } else {
2592      assert(T->getExceptionSpecType() == EST_Dynamic);
2593      Out << "Dw";
2594      for (auto ExceptTy : T->exceptions())
2595        mangleType(ExceptTy);
2596      Out << "E";
2597    }
2598  } else if (T->isNothrow(getASTContext())) {
2599    Out << "Do";
2600  }
2601
2602  Out << 'F';
2603
2604  // FIXME: We don't have enough information in the AST to produce the 'Y'
2605  // encoding for extern "C" function types.
2606  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2607
2608  // Mangle the ref-qualifier, if present.
2609  mangleRefQualifier(T->getRefQualifier());
2610
2611  Out << 'E';
2612}
2613
2614void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2615  // Function types without prototypes can arise when mangling a function type
2616  // within an overloadable function in C. We mangle these as the absence of any
2617  // parameter types (not even an empty parameter list).
2618  Out << 'F';
2619
2620  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2621
2622  FunctionTypeDepth.enterResultType();
2623  mangleType(T->getReturnType());
2624  FunctionTypeDepth.leaveResultType();
2625
2626  FunctionTypeDepth.pop(saved);
2627  Out << 'E';
2628}
2629
2630void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2631                                            bool MangleReturnType,
2632                                            const FunctionDecl *FD) {
2633  // Record that we're in a function type.  See mangleFunctionParam
2634  // for details on what we're trying to achieve here.
2635  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2636
2637  // <bare-function-type> ::= <signature type>+
2638  if (MangleReturnType) {
2639    FunctionTypeDepth.enterResultType();
2640
2641    // Mangle ns_returns_retained as an order-sensitive qualifier here.
2642    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2643      mangleVendorQualifier("ns_returns_retained");
2644
2645    // Mangle the return type without any direct ARC ownership qualifiers.
2646    QualType ReturnTy = Proto->getReturnType();
2647    if (ReturnTy.getObjCLifetime()) {
2648      auto SplitReturnTy = ReturnTy.split();
2649      SplitReturnTy.Quals.removeObjCLifetime();
2650      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2651    }
2652    mangleType(ReturnTy);
2653
2654    FunctionTypeDepth.leaveResultType();
2655  }
2656
2657  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2658    //   <builtin-type> ::= v   # void
2659    Out << 'v';
2660
2661    FunctionTypeDepth.pop(saved);
2662    return;
2663  }
2664
2665  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2666  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2667    // Mangle extended parameter info as order-sensitive qualifiers here.
2668    if (Proto->hasExtParameterInfos() && FD == nullptr) {
2669      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2670    }
2671
2672    // Mangle the type.
2673    QualType ParamTy = Proto->getParamType(I);
2674    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2675
2676    if (FD) {
2677      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2678        // Attr can only take 1 character, so we can hardcode the length below.
2679        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2680        Out << "U17pass_object_size" << Attr->getType();
2681      }
2682    }
2683  }
2684
2685  FunctionTypeDepth.pop(saved);
2686
2687  // <builtin-type>      ::= z  # ellipsis
2688  if (Proto->isVariadic())
2689    Out << 'z';
2690}
2691
2692// <type>            ::= <class-enum-type>
2693// <class-enum-type> ::= <name>
2694void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2695  mangleName(T->getDecl());
2696}
2697
2698// <type>            ::= <class-enum-type>
2699// <class-enum-type> ::= <name>
2700void CXXNameMangler::mangleType(const EnumType *T) {
2701  mangleType(static_cast<const TagType*>(T));
2702}
2703void CXXNameMangler::mangleType(const RecordType *T) {
2704  mangleType(static_cast<const TagType*>(T));
2705}
2706void CXXNameMangler::mangleType(const TagType *T) {
2707  mangleName(T->getDecl());
2708}
2709
2710// <type>       ::= <array-type>
2711// <array-type> ::= A <positive dimension number> _ <element type>
2712//              ::= A [<dimension expression>] _ <element type>
2713void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2714  Out << 'A' << T->getSize() << '_';
2715  mangleType(T->getElementType());
2716}
2717void CXXNameMangler::mangleType(const VariableArrayType *T) {
2718  Out << 'A';
2719  // decayed vla types (size 0) will just be skipped.
2720  if (T->getSizeExpr())
2721    mangleExpression(T->getSizeExpr());
2722  Out << '_';
2723  mangleType(T->getElementType());
2724}
2725void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2726  Out << 'A';
2727  mangleExpression(T->getSizeExpr());
2728  Out << '_';
2729  mangleType(T->getElementType());
2730}
2731void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2732  Out << "A_";
2733  mangleType(T->getElementType());
2734}
2735
2736// <type>                   ::= <pointer-to-member-type>
2737// <pointer-to-member-type> ::= M <class type> <member type>
2738void CXXNameMangler::mangleType(const MemberPointerType *T) {
2739  Out << 'M';
2740  mangleType(QualType(T->getClass(), 0));
2741  QualType PointeeType = T->getPointeeType();
2742  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2743    mangleType(FPT);
2744
2745    // Itanium C++ ABI 5.1.8:
2746    //
2747    //   The type of a non-static member function is considered to be different,
2748    //   for the purposes of substitution, from the type of a namespace-scope or
2749    //   static member function whose type appears similar. The types of two
2750    //   non-static member functions are considered to be different, for the
2751    //   purposes of substitution, if the functions are members of different
2752    //   classes. In other words, for the purposes of substitution, the class of
2753    //   which the function is a member is considered part of the type of
2754    //   function.
2755
2756    // Given that we already substitute member function pointers as a
2757    // whole, the net effect of this rule is just to unconditionally
2758    // suppress substitution on the function type in a member pointer.
2759    // We increment the SeqID here to emulate adding an entry to the
2760    // substitution table.
2761    ++SeqID;
2762  } else
2763    mangleType(PointeeType);
2764}
2765
2766// <type>           ::= <template-param>
2767void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2768  mangleTemplateParameter(T->getIndex());
2769}
2770
2771// <type>           ::= <template-param>
2772void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2773  // FIXME: not clear how to mangle this!
2774  // template <class T...> class A {
2775  //   template <class U...> void foo(T(*)(U) x...);
2776  // };
2777  Out << "_SUBSTPACK_";
2778}
2779
2780// <type> ::= P <type>   # pointer-to
2781void CXXNameMangler::mangleType(const PointerType *T) {
2782  Out << 'P';
2783  mangleType(T->getPointeeType());
2784}
2785void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2786  Out << 'P';
2787  mangleType(T->getPointeeType());
2788}
2789
2790// <type> ::= R <type>   # reference-to
2791void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2792  Out << 'R';
2793  mangleType(T->getPointeeType());
2794}
2795
2796// <type> ::= O <type>   # rvalue reference-to (C++0x)
2797void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2798  Out << 'O';
2799  mangleType(T->getPointeeType());
2800}
2801
2802// <type> ::= C <type>   # complex pair (C 2000)
2803void CXXNameMangler::mangleType(const ComplexType *T) {
2804  Out << 'C';
2805  mangleType(T->getElementType());
2806}
2807
2808// ARM's ABI for Neon vector types specifies that they should be mangled as
2809// if they are structs (to match ARM's initial implementation).  The
2810// vector type must be one of the special types predefined by ARM.
2811void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2812  QualType EltType = T->getElementType();
2813  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2814  const char *EltName = nullptr;
2815  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2816    switch (cast<BuiltinType>(EltType)->getKind()) {
2817    case BuiltinType::SChar:
2818    case BuiltinType::UChar:
2819      EltName = "poly8_t";
2820      break;
2821    case BuiltinType::Short:
2822    case BuiltinType::UShort:
2823      EltName = "poly16_t";
2824      break;
2825    case BuiltinType::ULongLong:
2826      EltName = "poly64_t";
2827      break;
2828    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2829    }
2830  } else {
2831    switch (cast<BuiltinType>(EltType)->getKind()) {
2832    case BuiltinType::SChar:     EltName = "int8_t"; break;
2833    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2834    case BuiltinType::Short:     EltName = "int16_t"; break;
2835    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2836    case BuiltinType::Int:       EltName = "int32_t"; break;
2837    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2838    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2839    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2840    case BuiltinType::Double:    EltName = "float64_t"; break;
2841    case BuiltinType::Float:     EltName = "float32_t"; break;
2842    case BuiltinType::Half:      EltName = "float16_t";break;
2843    default:
2844      llvm_unreachable("unexpected Neon vector element type");
2845    }
2846  }
2847  const char *BaseName = nullptr;
2848  unsigned BitSize = (T->getNumElements() *
2849                      getASTContext().getTypeSize(EltType));
2850  if (BitSize == 64)
2851    BaseName = "__simd64_";
2852  else {
2853    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2854    BaseName = "__simd128_";
2855  }
2856  Out << strlen(BaseName) + strlen(EltName);
2857  Out << BaseName << EltName;
2858}
2859
2860static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2861  switch (EltType->getKind()) {
2862  case BuiltinType::SChar:
2863    return "Int8";
2864  case BuiltinType::Short:
2865    return "Int16";
2866  case BuiltinType::Int:
2867    return "Int32";
2868  case BuiltinType::Long:
2869  case BuiltinType::LongLong:
2870    return "Int64";
2871  case BuiltinType::UChar:
2872    return "Uint8";
2873  case BuiltinType::UShort:
2874    return "Uint16";
2875  case BuiltinType::UInt:
2876    return "Uint32";
2877  case BuiltinType::ULong:
2878  case BuiltinType::ULongLong:
2879    return "Uint64";
2880  case BuiltinType::Half:
2881    return "Float16";
2882  case BuiltinType::Float:
2883    return "Float32";
2884  case BuiltinType::Double:
2885    return "Float64";
2886  default:
2887    llvm_unreachable("Unexpected vector element base type");
2888  }
2889}
2890
2891// AArch64's ABI for Neon vector types specifies that they should be mangled as
2892// the equivalent internal name. The vector type must be one of the special
2893// types predefined by ARM.
2894void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2895  QualType EltType = T->getElementType();
2896  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2897  unsigned BitSize =
2898      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2899  (void)BitSize; // Silence warning.
2900
2901  assert((BitSize == 64 || BitSize == 128) &&
2902         "Neon vector type not 64 or 128 bits");
2903
2904  StringRef EltName;
2905  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2906    switch (cast<BuiltinType>(EltType)->getKind()) {
2907    case BuiltinType::UChar:
2908      EltName = "Poly8";
2909      break;
2910    case BuiltinType::UShort:
2911      EltName = "Poly16";
2912      break;
2913    case BuiltinType::ULong:
2914    case BuiltinType::ULongLong:
2915      EltName = "Poly64";
2916      break;
2917    default:
2918      llvm_unreachable("unexpected Neon polynomial vector element type");
2919    }
2920  } else
2921    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2922
2923  std::string TypeName =
2924      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
2925  Out << TypeName.length() << TypeName;
2926}
2927
2928// GNU extension: vector types
2929// <type>                  ::= <vector-type>
2930// <vector-type>           ::= Dv <positive dimension number> _
2931//                                    <extended element type>
2932//                         ::= Dv [<dimension expression>] _ <element type>
2933// <extended element type> ::= <element type>
2934//                         ::= p # AltiVec vector pixel
2935//                         ::= b # Altivec vector bool
2936void CXXNameMangler::mangleType(const VectorType *T) {
2937  if ((T->getVectorKind() == VectorType::NeonVector ||
2938       T->getVectorKind() == VectorType::NeonPolyVector)) {
2939    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2940    llvm::Triple::ArchType Arch =
2941        getASTContext().getTargetInfo().getTriple().getArch();
2942    if ((Arch == llvm::Triple::aarch64 ||
2943         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2944      mangleAArch64NeonVectorType(T);
2945    else
2946      mangleNeonVectorType(T);
2947    return;
2948  }
2949  Out << "Dv" << T->getNumElements() << '_';
2950  if (T->getVectorKind() == VectorType::AltiVecPixel)
2951    Out << 'p';
2952  else if (T->getVectorKind() == VectorType::AltiVecBool)
2953    Out << 'b';
2954  else
2955    mangleType(T->getElementType());
2956}
2957void CXXNameMangler::mangleType(const ExtVectorType *T) {
2958  mangleType(static_cast<const VectorType*>(T));
2959}
2960void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2961  Out << "Dv";
2962  mangleExpression(T->getSizeExpr());
2963  Out << '_';
2964  mangleType(T->getElementType());
2965}
2966
2967void CXXNameMangler::mangleType(const PackExpansionType *T) {
2968  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2969  Out << "Dp";
2970  mangleType(T->getPattern());
2971}
2972
2973void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2974  mangleSourceName(T->getDecl()->getIdentifier());
2975}
2976
2977void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2978  // Treat __kindof as a vendor extended type qualifier.
2979  if (T->isKindOfType())
2980    Out << "U8__kindof";
2981
2982  if (!T->qual_empty()) {
2983    // Mangle protocol qualifiers.
2984    SmallString<64> QualStr;
2985    llvm::raw_svector_ostream QualOS(QualStr);
2986    QualOS << "objcproto";
2987    for (const auto *I : T->quals()) {
2988      StringRef name = I->getName();
2989      QualOS << name.size() << name;
2990    }
2991    Out << 'U' << QualStr.size() << QualStr;
2992  }
2993
2994  mangleType(T->getBaseType());
2995
2996  if (T->isSpecialized()) {
2997    // Mangle type arguments as I <type>+ E
2998    Out << 'I';
2999    for (auto typeArg : T->getTypeArgs())
3000      mangleType(typeArg);
3001    Out << 'E';
3002  }
3003}
3004
3005void CXXNameMangler::mangleType(const BlockPointerType *T) {
3006  Out << "U13block_pointer";
3007  mangleType(T->getPointeeType());
3008}
3009
3010void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3011  // Mangle injected class name types as if the user had written the
3012  // specialization out fully.  It may not actually be possible to see
3013  // this mangling, though.
3014  mangleType(T->getInjectedSpecializationType());
3015}
3016
3017void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3018  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3019    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3020  } else {
3021    if (mangleSubstitution(QualType(T, 0)))
3022      return;
3023
3024    mangleTemplatePrefix(T->getTemplateName());
3025
3026    // FIXME: GCC does not appear to mangle the template arguments when
3027    // the template in question is a dependent template name. Should we
3028    // emulate that badness?
3029    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3030    addSubstitution(QualType(T, 0));
3031  }
3032}
3033
3034void CXXNameMangler::mangleType(const DependentNameType *T) {
3035  // Proposal by cxx-abi-dev, 2014-03-26
3036  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3037  //                                 # dependent elaborated type specifier using
3038  //                                 # 'typename'
3039  //                   ::= Ts <name> # dependent elaborated type specifier using
3040  //                                 # 'struct' or 'class'
3041  //                   ::= Tu <name> # dependent elaborated type specifier using
3042  //                                 # 'union'
3043  //                   ::= Te <name> # dependent elaborated type specifier using
3044  //                                 # 'enum'
3045  switch (T->getKeyword()) {
3046    case ETK_Typename:
3047      break;
3048    case ETK_Struct:
3049    case ETK_Class:
3050    case ETK_Interface:
3051      Out << "Ts";
3052      break;
3053    case ETK_Union:
3054      Out << "Tu";
3055      break;
3056    case ETK_Enum:
3057      Out << "Te";
3058      break;
3059    default:
3060      llvm_unreachable("unexpected keyword for dependent type name");
3061  }
3062  // Typename types are always nested
3063  Out << 'N';
3064  manglePrefix(T->getQualifier());
3065  mangleSourceName(T->getIdentifier());
3066  Out << 'E';
3067}
3068
3069void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3070  // Dependently-scoped template types are nested if they have a prefix.
3071  Out << 'N';
3072
3073  // TODO: avoid making this TemplateName.
3074  TemplateName Prefix =
3075    getASTContext().getDependentTemplateName(T->getQualifier(),
3076                                             T->getIdentifier());
3077  mangleTemplatePrefix(Prefix);
3078
3079  // FIXME: GCC does not appear to mangle the template arguments when
3080  // the template in question is a dependent template name. Should we
3081  // emulate that badness?
3082  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3083  Out << 'E';
3084}
3085
3086void CXXNameMangler::mangleType(const TypeOfType *T) {
3087  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3088  // "extension with parameters" mangling.
3089  Out << "u6typeof";
3090}
3091
3092void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3093  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3094  // "extension with parameters" mangling.
3095  Out << "u6typeof";
3096}
3097
3098void CXXNameMangler::mangleType(const DecltypeType *T) {
3099  Expr *E = T->getUnderlyingExpr();
3100
3101  // type ::= Dt <expression> E  # decltype of an id-expression
3102  //                             #   or class member access
3103  //      ::= DT <expression> E  # decltype of an expression
3104
3105  // This purports to be an exhaustive list of id-expressions and
3106  // class member accesses.  Note that we do not ignore parentheses;
3107  // parentheses change the semantics of decltype for these
3108  // expressions (and cause the mangler to use the other form).
3109  if (isa<DeclRefExpr>(E) ||
3110      isa<MemberExpr>(E) ||
3111      isa<UnresolvedLookupExpr>(E) ||
3112      isa<DependentScopeDeclRefExpr>(E) ||
3113      isa<CXXDependentScopeMemberExpr>(E) ||
3114      isa<UnresolvedMemberExpr>(E))
3115    Out << "Dt";
3116  else
3117    Out << "DT";
3118  mangleExpression(E);
3119  Out << 'E';
3120}
3121
3122void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3123  // If this is dependent, we need to record that. If not, we simply
3124  // mangle it as the underlying type since they are equivalent.
3125  if (T->isDependentType()) {
3126    Out << 'U';
3127
3128    switch (T->getUTTKind()) {
3129      case UnaryTransformType::EnumUnderlyingType:
3130        Out << "3eut";
3131        break;
3132    }
3133  }
3134
3135  mangleType(T->getBaseType());
3136}
3137
3138void CXXNameMangler::mangleType(const AutoType *T) {
3139  QualType D = T->getDeducedType();
3140  // <builtin-type> ::= Da  # dependent auto
3141  if (D.isNull()) {
3142    assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3143           "shouldn't need to mangle __auto_type!");
3144    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3145  } else
3146    mangleType(D);
3147}
3148
3149void CXXNameMangler::mangleType(const AtomicType *T) {
3150  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3151  // (Until there's a standardized mangling...)
3152  Out << "U7_Atomic";
3153  mangleType(T->getValueType());
3154}
3155
3156void CXXNameMangler::mangleType(const PipeType *T) {
3157  // Pipe type mangling rules are described in SPIR 2.0 specification
3158  // A.1 Data types and A.3 Summary of changes
3159  // <type> ::= 8ocl_pipe
3160  Out << "8ocl_pipe";
3161}
3162
3163void CXXNameMangler::mangleIntegerLiteral(QualType T,
3164                                          const llvm::APSInt &Value) {
3165  //  <expr-primary> ::= L <type> <value number> E # integer literal
3166  Out << 'L';
3167
3168  mangleType(T);
3169  if (T->isBooleanType()) {
3170    // Boolean values are encoded as 0/1.
3171    Out << (Value.getBoolValue() ? '1' : '0');
3172  } else {
3173    mangleNumber(Value);
3174  }
3175  Out << 'E';
3176
3177}
3178
3179void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3180  // Ignore member expressions involving anonymous unions.
3181  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3182    if (!RT->getDecl()->isAnonymousStructOrUnion())
3183      break;
3184    const auto *ME = dyn_cast<MemberExpr>(Base);
3185    if (!ME)
3186      break;
3187    Base = ME->getBase();
3188    IsArrow = ME->isArrow();
3189  }
3190
3191  if (Base->isImplicitCXXThis()) {
3192    // Note: GCC mangles member expressions to the implicit 'this' as
3193    // *this., whereas we represent them as this->. The Itanium C++ ABI
3194    // does not specify anything here, so we follow GCC.
3195    Out << "dtdefpT";
3196  } else {
3197    Out << (IsArrow ? "pt" : "dt");
3198    mangleExpression(Base);
3199  }
3200}
3201
3202/// Mangles a member expression.
3203void CXXNameMangler::mangleMemberExpr(const Expr *base,
3204                                      bool isArrow,
3205                                      NestedNameSpecifier *qualifier,
3206                                      NamedDecl *firstQualifierLookup,
3207                                      DeclarationName member,
3208                                      const TemplateArgumentLoc *TemplateArgs,
3209                                      unsigned NumTemplateArgs,
3210                                      unsigned arity) {
3211  // <expression> ::= dt <expression> <unresolved-name>
3212  //              ::= pt <expression> <unresolved-name>
3213  if (base)
3214    mangleMemberExprBase(base, isArrow);
3215  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3216}
3217
3218/// Look at the callee of the given call expression and determine if
3219/// it's a parenthesized id-expression which would have triggered ADL
3220/// otherwise.
3221static bool isParenthesizedADLCallee(const CallExpr *call) {
3222  const Expr *callee = call->getCallee();
3223  const Expr *fn = callee->IgnoreParens();
3224
3225  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3226  // too, but for those to appear in the callee, it would have to be
3227  // parenthesized.
3228  if (callee == fn) return false;
3229
3230  // Must be an unresolved lookup.
3231  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3232  if (!lookup) return false;
3233
3234  assert(!lookup->requiresADL());
3235
3236  // Must be an unqualified lookup.
3237  if (lookup->getQualifier()) return false;
3238
3239  // Must not have found a class member.  Note that if one is a class
3240  // member, they're all class members.
3241  if (lookup->getNumDecls() > 0 &&
3242      (*lookup->decls_begin())->isCXXClassMember())
3243    return false;
3244
3245  // Otherwise, ADL would have been triggered.
3246  return true;
3247}
3248
3249void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3250  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3251  Out << CastEncoding;
3252  mangleType(ECE->getType());
3253  mangleExpression(ECE->getSubExpr());
3254}
3255
3256void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3257  if (auto *Syntactic = InitList->getSyntacticForm())
3258    InitList = Syntactic;
3259  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3260    mangleExpression(InitList->getInit(i));
3261}
3262
3263void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3264  // <expression> ::= <unary operator-name> <expression>
3265  //              ::= <binary operator-name> <expression> <expression>
3266  //              ::= <trinary operator-name> <expression> <expression> <expression>
3267  //              ::= cv <type> expression           # conversion with one argument
3268  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3269  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3270  //              ::= sc <type> <expression>         # static_cast<type> (expression)
3271  //              ::= cc <type> <expression>         # const_cast<type> (expression)
3272  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3273  //              ::= st <type>                      # sizeof (a type)
3274  //              ::= at <type>                      # alignof (a type)
3275  //              ::= <template-param>
3276  //              ::= <function-param>
3277  //              ::= sr <type> <unqualified-name>                   # dependent name
3278  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3279  //              ::= ds <expression> <expression>                   # expr.*expr
3280  //              ::= sZ <template-param>                            # size of a parameter pack
3281  //              ::= sZ <function-param>    # size of a function parameter pack
3282  //              ::= <expr-primary>
3283  // <expr-primary> ::= L <type> <value number> E    # integer literal
3284  //                ::= L <type <value float> E      # floating literal
3285  //                ::= L <mangled-name> E           # external name
3286  //                ::= fpT                          # 'this' expression
3287  QualType ImplicitlyConvertedToType;
3288
3289recurse:
3290  switch (E->getStmtClass()) {
3291  case Expr::NoStmtClass:
3292#define ABSTRACT_STMT(Type)
3293#define EXPR(Type, Base)
3294#define STMT(Type, Base) \
3295  case Expr::Type##Class:
3296#include "clang/AST/StmtNodes.inc"
3297    // fallthrough
3298
3299  // These all can only appear in local or variable-initialization
3300  // contexts and so should never appear in a mangling.
3301  case Expr::AddrLabelExprClass:
3302  case Expr::DesignatedInitUpdateExprClass:
3303  case Expr::ImplicitValueInitExprClass:
3304  case Expr::ArrayInitLoopExprClass:
3305  case Expr::ArrayInitIndexExprClass:
3306  case Expr::NoInitExprClass:
3307  case Expr::ParenListExprClass:
3308  case Expr::LambdaExprClass:
3309  case Expr::MSPropertyRefExprClass:
3310  case Expr::MSPropertySubscriptExprClass:
3311  case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3312  case Expr::OMPArraySectionExprClass:
3313  case Expr::CXXInheritedCtorInitExprClass:
3314    llvm_unreachable("unexpected statement kind");
3315
3316  // FIXME: invent manglings for all these.
3317  case Expr::BlockExprClass:
3318  case Expr::ChooseExprClass:
3319  case Expr::CompoundLiteralExprClass:
3320  case Expr::DesignatedInitExprClass:
3321  case Expr::ExtVectorElementExprClass:
3322  case Expr::GenericSelectionExprClass:
3323  case Expr::ObjCEncodeExprClass:
3324  case Expr::ObjCIsaExprClass:
3325  case Expr::ObjCIvarRefExprClass:
3326  case Expr::ObjCMessageExprClass:
3327  case Expr::ObjCPropertyRefExprClass:
3328  case Expr::ObjCProtocolExprClass:
3329  case Expr::ObjCSelectorExprClass:
3330  case Expr::ObjCStringLiteralClass:
3331  case Expr::ObjCBoxedExprClass:
3332  case Expr::ObjCArrayLiteralClass:
3333  case Expr::ObjCDictionaryLiteralClass:
3334  case Expr::ObjCSubscriptRefExprClass:
3335  case Expr::ObjCIndirectCopyRestoreExprClass:
3336  case Expr::ObjCAvailabilityCheckExprClass:
3337  case Expr::OffsetOfExprClass:
3338  case Expr::PredefinedExprClass:
3339  case Expr::ShuffleVectorExprClass:
3340  case Expr::ConvertVectorExprClass:
3341  case Expr::StmtExprClass:
3342  case Expr::TypeTraitExprClass:
3343  case Expr::ArrayTypeTraitExprClass:
3344  case Expr::ExpressionTraitExprClass:
3345  case Expr::VAArgExprClass:
3346  case Expr::CUDAKernelCallExprClass:
3347  case Expr::AsTypeExprClass:
3348  case Expr::PseudoObjectExprClass:
3349  case Expr::AtomicExprClass:
3350  {
3351    if (!NullOut) {
3352      // As bad as this diagnostic is, it's better than crashing.
3353      DiagnosticsEngine &Diags = Context.getDiags();
3354      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3355                                       "cannot yet mangle expression type %0");
3356      Diags.Report(E->getExprLoc(), DiagID)
3357        << E->getStmtClassName() << E->getSourceRange();
3358    }
3359    break;
3360  }
3361
3362  case Expr::CXXUuidofExprClass: {
3363    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3364    if (UE->isTypeOperand()) {
3365      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3366      Out << "u8__uuidoft";
3367      mangleType(UuidT);
3368    } else {
3369      Expr *UuidExp = UE->getExprOperand();
3370      Out << "u8__uuidofz";
3371      mangleExpression(UuidExp, Arity);
3372    }
3373    break;
3374  }
3375
3376  // Even gcc-4.5 doesn't mangle this.
3377  case Expr::BinaryConditionalOperatorClass: {
3378    DiagnosticsEngine &Diags = Context.getDiags();
3379    unsigned DiagID =
3380      Diags.getCustomDiagID(DiagnosticsEngine::Error,
3381                "?: operator with omitted middle operand cannot be mangled");
3382    Diags.Report(E->getExprLoc(), DiagID)
3383      << E->getStmtClassName() << E->getSourceRange();
3384    break;
3385  }
3386
3387  // These are used for internal purposes and cannot be meaningfully mangled.
3388  case Expr::OpaqueValueExprClass:
3389    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3390
3391  case Expr::InitListExprClass: {
3392    Out << "il";
3393    mangleInitListElements(cast<InitListExpr>(E));
3394    Out << "E";
3395    break;
3396  }
3397
3398  case Expr::CXXDefaultArgExprClass:
3399    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3400    break;
3401
3402  case Expr::CXXDefaultInitExprClass:
3403    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3404    break;
3405
3406  case Expr::CXXStdInitializerListExprClass:
3407    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3408    break;
3409
3410  case Expr::SubstNonTypeTemplateParmExprClass:
3411    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3412                     Arity);
3413    break;
3414
3415  case Expr::UserDefinedLiteralClass:
3416    // We follow g++'s approach of mangling a UDL as a call to the literal
3417    // operator.
3418  case Expr::CXXMemberCallExprClass: // fallthrough
3419  case Expr::CallExprClass: {
3420    const CallExpr *CE = cast<CallExpr>(E);
3421
3422    // <expression> ::= cp <simple-id> <expression>* E
3423    // We use this mangling only when the call would use ADL except
3424    // for being parenthesized.  Per discussion with David
3425    // Vandervoorde, 2011.04.25.
3426    if (isParenthesizedADLCallee(CE)) {
3427      Out << "cp";
3428      // The callee here is a parenthesized UnresolvedLookupExpr with
3429      // no qualifier and should always get mangled as a <simple-id>
3430      // anyway.
3431
3432    // <expression> ::= cl <expression>* E
3433    } else {
3434      Out << "cl";
3435    }
3436
3437    unsigned CallArity = CE->getNumArgs();
3438    for (const Expr *Arg : CE->arguments())
3439      if (isa<PackExpansionExpr>(Arg))
3440        CallArity = UnknownArity;
3441
3442    mangleExpression(CE->getCallee(), CallArity);
3443    for (const Expr *Arg : CE->arguments())
3444      mangleExpression(Arg);
3445    Out << 'E';
3446    break;
3447  }
3448
3449  case Expr::CXXNewExprClass: {
3450    const CXXNewExpr *New = cast<CXXNewExpr>(E);
3451    if (New->isGlobalNew()) Out << "gs";
3452    Out << (New->isArray() ? "na" : "nw");
3453    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3454           E = New->placement_arg_end(); I != E; ++I)
3455      mangleExpression(*I);
3456    Out << '_';
3457    mangleType(New->getAllocatedType());
3458    if (New->hasInitializer()) {
3459      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3460        Out << "il";
3461      else
3462        Out << "pi";
3463      const Expr *Init = New->getInitializer();
3464      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3465        // Directly inline the initializers.
3466        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3467                                                  E = CCE->arg_end();
3468             I != E; ++I)
3469          mangleExpression(*I);
3470      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3471        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3472          mangleExpression(PLE->getExpr(i));
3473      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3474                 isa<InitListExpr>(Init)) {
3475        // Only take InitListExprs apart for list-initialization.
3476        mangleInitListElements(cast<InitListExpr>(Init));
3477      } else
3478        mangleExpression(Init);
3479    }
3480    Out << 'E';
3481    break;
3482  }
3483
3484  case Expr::CXXPseudoDestructorExprClass: {
3485    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3486    if (const Expr *Base = PDE->getBase())
3487      mangleMemberExprBase(Base, PDE->isArrow());
3488    NestedNameSpecifier *Qualifier = PDE->getQualifier();
3489    QualType ScopeType;
3490    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3491      if (Qualifier) {
3492        mangleUnresolvedPrefix(Qualifier,
3493                               /*Recursive=*/true);
3494        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3495        Out << 'E';
3496      } else {
3497        Out << "sr";
3498        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3499          Out << 'E';
3500      }
3501    } else if (Qualifier) {
3502      mangleUnresolvedPrefix(Qualifier);
3503    }
3504    // <base-unresolved-name> ::= dn <destructor-name>
3505    Out << "dn";
3506    QualType DestroyedType = PDE->getDestroyedType();
3507    mangleUnresolvedTypeOrSimpleId(DestroyedType);
3508    break;
3509  }
3510
3511  case Expr::MemberExprClass: {
3512    const MemberExpr *ME = cast<MemberExpr>(E);
3513    mangleMemberExpr(ME->getBase(), ME->isArrow(),
3514                     ME->getQualifier(), nullptr,
3515                     ME->getMemberDecl()->getDeclName(),
3516                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3517                     Arity);
3518    break;
3519  }
3520
3521  case Expr::UnresolvedMemberExprClass: {
3522    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3523    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3524                     ME->isArrow(), ME->getQualifier(), nullptr,
3525                     ME->getMemberName(),
3526                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3527                     Arity);
3528    break;
3529  }
3530
3531  case Expr::CXXDependentScopeMemberExprClass: {
3532    const CXXDependentScopeMemberExpr *ME
3533      = cast<CXXDependentScopeMemberExpr>(E);
3534    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3535                     ME->isArrow(), ME->getQualifier(),
3536                     ME->getFirstQualifierFoundInScope(),
3537                     ME->getMember(),
3538                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3539                     Arity);
3540    break;
3541  }
3542
3543  case Expr::UnresolvedLookupExprClass: {
3544    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3545    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3546                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3547                         Arity);
3548    break;
3549  }
3550
3551  case Expr::CXXUnresolvedConstructExprClass: {
3552    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3553    unsigned N = CE->arg_size();
3554
3555    Out << "cv";
3556    mangleType(CE->getType());
3557    if (N != 1) Out << '_';
3558    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3559    if (N != 1) Out << 'E';
3560    break;
3561  }
3562
3563  case Expr::CXXConstructExprClass: {
3564    const auto *CE = cast<CXXConstructExpr>(E);
3565    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3566      assert(
3567          CE->getNumArgs() >= 1 &&
3568          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3569          "implicit CXXConstructExpr must have one argument");
3570      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3571    }
3572    Out << "il";
3573    for (auto *E : CE->arguments())
3574      mangleExpression(E);
3575    Out << "E";
3576    break;
3577  }
3578
3579  case Expr::CXXTemporaryObjectExprClass: {
3580    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3581    unsigned N = CE->getNumArgs();
3582    bool List = CE->isListInitialization();
3583
3584    if (List)
3585      Out << "tl";
3586    else
3587      Out << "cv";
3588    mangleType(CE->getType());
3589    if (!List && N != 1)
3590      Out << '_';
3591    if (CE->isStdInitListInitialization()) {
3592      // We implicitly created a std::initializer_list<T> for the first argument
3593      // of a constructor of type U in an expression of the form U{a, b, c}.
3594      // Strip all the semantic gunk off the initializer list.
3595      auto *SILE =
3596          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3597      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3598      mangleInitListElements(ILE);
3599    } else {
3600      for (auto *E : CE->arguments())
3601        mangleExpression(E);
3602    }
3603    if (List || N != 1)
3604      Out << 'E';
3605    break;
3606  }
3607
3608  case Expr::CXXScalarValueInitExprClass:
3609    Out << "cv";
3610    mangleType(E->getType());
3611    Out << "_E";
3612    break;
3613
3614  case Expr::CXXNoexceptExprClass:
3615    Out << "nx";
3616    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3617    break;
3618
3619  case Expr::UnaryExprOrTypeTraitExprClass: {
3620    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3621
3622    if (!SAE->isInstantiationDependent()) {
3623      // Itanium C++ ABI:
3624      //   If the operand of a sizeof or alignof operator is not
3625      //   instantiation-dependent it is encoded as an integer literal
3626      //   reflecting the result of the operator.
3627      //
3628      //   If the result of the operator is implicitly converted to a known
3629      //   integer type, that type is used for the literal; otherwise, the type
3630      //   of std::size_t or std::ptrdiff_t is used.
3631      QualType T = (ImplicitlyConvertedToType.isNull() ||
3632                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3633                                                    : ImplicitlyConvertedToType;
3634      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3635      mangleIntegerLiteral(T, V);
3636      break;
3637    }
3638
3639    switch(SAE->getKind()) {
3640    case UETT_SizeOf:
3641      Out << 's';
3642      break;
3643    case UETT_AlignOf:
3644      Out << 'a';
3645      break;
3646    case UETT_VecStep: {
3647      DiagnosticsEngine &Diags = Context.getDiags();
3648      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3649                                     "cannot yet mangle vec_step expression");
3650      Diags.Report(DiagID);
3651      return;
3652    }
3653    case UETT_OpenMPRequiredSimdAlign:
3654      DiagnosticsEngine &Diags = Context.getDiags();
3655      unsigned DiagID = Diags.getCustomDiagID(
3656          DiagnosticsEngine::Error,
3657          "cannot yet mangle __builtin_omp_required_simd_align expression");
3658      Diags.Report(DiagID);
3659      return;
3660    }
3661    if (SAE->isArgumentType()) {
3662      Out << 't';
3663      mangleType(SAE->getArgumentType());
3664    } else {
3665      Out << 'z';
3666      mangleExpression(SAE->getArgumentExpr());
3667    }
3668    break;
3669  }
3670
3671  case Expr::CXXThrowExprClass: {
3672    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3673    //  <expression> ::= tw <expression>  # throw expression
3674    //               ::= tr               # rethrow
3675    if (TE->getSubExpr()) {
3676      Out << "tw";
3677      mangleExpression(TE->getSubExpr());
3678    } else {
3679      Out << "tr";
3680    }
3681    break;
3682  }
3683
3684  case Expr::CXXTypeidExprClass: {
3685    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3686    //  <expression> ::= ti <type>        # typeid (type)
3687    //               ::= te <expression>  # typeid (expression)
3688    if (TIE->isTypeOperand()) {
3689      Out << "ti";
3690      mangleType(TIE->getTypeOperand(Context.getASTContext()));
3691    } else {
3692      Out << "te";
3693      mangleExpression(TIE->getExprOperand());
3694    }
3695    break;
3696  }
3697
3698  case Expr::CXXDeleteExprClass: {
3699    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3700    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3701    //               ::= [gs] da <expression>  # [::] delete [] expr
3702    if (DE->isGlobalDelete()) Out << "gs";
3703    Out << (DE->isArrayForm() ? "da" : "dl");
3704    mangleExpression(DE->getArgument());
3705    break;
3706  }
3707
3708  case Expr::UnaryOperatorClass: {
3709    const UnaryOperator *UO = cast<UnaryOperator>(E);
3710    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3711                       /*Arity=*/1);
3712    mangleExpression(UO->getSubExpr());
3713    break;
3714  }
3715
3716  case Expr::ArraySubscriptExprClass: {
3717    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3718
3719    // Array subscript is treated as a syntactically weird form of
3720    // binary operator.
3721    Out << "ix";
3722    mangleExpression(AE->getLHS());
3723    mangleExpression(AE->getRHS());
3724    break;
3725  }
3726
3727  case Expr::CompoundAssignOperatorClass: // fallthrough
3728  case Expr::BinaryOperatorClass: {
3729    const BinaryOperator *BO = cast<BinaryOperator>(E);
3730    if (BO->getOpcode() == BO_PtrMemD)
3731      Out << "ds";
3732    else
3733      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3734                         /*Arity=*/2);
3735    mangleExpression(BO->getLHS());
3736    mangleExpression(BO->getRHS());
3737    break;
3738  }
3739
3740  case Expr::ConditionalOperatorClass: {
3741    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3742    mangleOperatorName(OO_Conditional, /*Arity=*/3);
3743    mangleExpression(CO->getCond());
3744    mangleExpression(CO->getLHS(), Arity);
3745    mangleExpression(CO->getRHS(), Arity);
3746    break;
3747  }
3748
3749  case Expr::ImplicitCastExprClass: {
3750    ImplicitlyConvertedToType = E->getType();
3751    E = cast<ImplicitCastExpr>(E)->getSubExpr();
3752    goto recurse;
3753  }
3754
3755  case Expr::ObjCBridgedCastExprClass: {
3756    // Mangle ownership casts as a vendor extended operator __bridge,
3757    // __bridge_transfer, or __bridge_retain.
3758    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3759    Out << "v1U" << Kind.size() << Kind;
3760  }
3761  // Fall through to mangle the cast itself.
3762
3763  case Expr::CStyleCastExprClass:
3764    mangleCastExpression(E, "cv");
3765    break;
3766
3767  case Expr::CXXFunctionalCastExprClass: {
3768    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3769    // FIXME: Add isImplicit to CXXConstructExpr.
3770    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3771      if (CCE->getParenOrBraceRange().isInvalid())
3772        Sub = CCE->getArg(0)->IgnoreImplicit();
3773    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3774      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3775    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3776      Out << "tl";
3777      mangleType(E->getType());
3778      mangleInitListElements(IL);
3779      Out << "E";
3780    } else {
3781      mangleCastExpression(E, "cv");
3782    }
3783    break;
3784  }
3785
3786  case Expr::CXXStaticCastExprClass:
3787    mangleCastExpression(E, "sc");
3788    break;
3789  case Expr::CXXDynamicCastExprClass:
3790    mangleCastExpression(E, "dc");
3791    break;
3792  case Expr::CXXReinterpretCastExprClass:
3793    mangleCastExpression(E, "rc");
3794    break;
3795  case Expr::CXXConstCastExprClass:
3796    mangleCastExpression(E, "cc");
3797    break;
3798
3799  case Expr::CXXOperatorCallExprClass: {
3800    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3801    unsigned NumArgs = CE->getNumArgs();
3802    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
3803    // (the enclosing MemberExpr covers the syntactic portion).
3804    if (CE->getOperator() != OO_Arrow)
3805      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3806    // Mangle the arguments.
3807    for (unsigned i = 0; i != NumArgs; ++i)
3808      mangleExpression(CE->getArg(i));
3809    break;
3810  }
3811
3812  case Expr::ParenExprClass:
3813    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3814    break;
3815
3816  case Expr::DeclRefExprClass: {
3817    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3818
3819    switch (D->getKind()) {
3820    default:
3821      //  <expr-primary> ::= L <mangled-name> E # external name
3822      Out << 'L';
3823      mangle(D);
3824      Out << 'E';
3825      break;
3826
3827    case Decl::ParmVar:
3828      mangleFunctionParam(cast<ParmVarDecl>(D));
3829      break;
3830
3831    case Decl::EnumConstant: {
3832      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3833      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3834      break;
3835    }
3836
3837    case Decl::NonTypeTemplateParm: {
3838      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3839      mangleTemplateParameter(PD->getIndex());
3840      break;
3841    }
3842
3843    }
3844
3845    break;
3846  }
3847
3848  case Expr::SubstNonTypeTemplateParmPackExprClass:
3849    // FIXME: not clear how to mangle this!
3850    // template <unsigned N...> class A {
3851    //   template <class U...> void foo(U (&x)[N]...);
3852    // };
3853    Out << "_SUBSTPACK_";
3854    break;
3855
3856  case Expr::FunctionParmPackExprClass: {
3857    // FIXME: not clear how to mangle this!
3858    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3859    Out << "v110_SUBSTPACK";
3860    mangleFunctionParam(FPPE->getParameterPack());
3861    break;
3862  }
3863
3864  case Expr::DependentScopeDeclRefExprClass: {
3865    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3866    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
3867                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
3868                         Arity);
3869    break;
3870  }
3871
3872  case Expr::CXXBindTemporaryExprClass:
3873    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3874    break;
3875
3876  case Expr::ExprWithCleanupsClass:
3877    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3878    break;
3879
3880  case Expr::FloatingLiteralClass: {
3881    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3882    Out << 'L';
3883    mangleType(FL->getType());
3884    mangleFloat(FL->getValue());
3885    Out << 'E';
3886    break;
3887  }
3888
3889  case Expr::CharacterLiteralClass:
3890    Out << 'L';
3891    mangleType(E->getType());
3892    Out << cast<CharacterLiteral>(E)->getValue();
3893    Out << 'E';
3894    break;
3895
3896  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3897  case Expr::ObjCBoolLiteralExprClass:
3898    Out << "Lb";
3899    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3900    Out << 'E';
3901    break;
3902
3903  case Expr::CXXBoolLiteralExprClass:
3904    Out << "Lb";
3905    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3906    Out << 'E';
3907    break;
3908
3909  case Expr::IntegerLiteralClass: {
3910    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3911    if (E->getType()->isSignedIntegerType())
3912      Value.setIsSigned(true);
3913    mangleIntegerLiteral(E->getType(), Value);
3914    break;
3915  }
3916
3917  case Expr::ImaginaryLiteralClass: {
3918    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3919    // Mangle as if a complex literal.
3920    // Proposal from David Vandevoorde, 2010.06.30.
3921    Out << 'L';
3922    mangleType(E->getType());
3923    if (const FloatingLiteral *Imag =
3924          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3925      // Mangle a floating-point zero of the appropriate type.
3926      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3927      Out << '_';
3928      mangleFloat(Imag->getValue());
3929    } else {
3930      Out << "0_";
3931      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3932      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3933        Value.setIsSigned(true);
3934      mangleNumber(Value);
3935    }
3936    Out << 'E';
3937    break;
3938  }
3939
3940  case Expr::StringLiteralClass: {
3941    // Revised proposal from David Vandervoorde, 2010.07.15.
3942    Out << 'L';
3943    assert(isa<ConstantArrayType>(E->getType()));
3944    mangleType(E->getType());
3945    Out << 'E';
3946    break;
3947  }
3948
3949  case Expr::GNUNullExprClass:
3950    // FIXME: should this really be mangled the same as nullptr?
3951    // fallthrough
3952
3953  case Expr::CXXNullPtrLiteralExprClass: {
3954    Out << "LDnE";
3955    break;
3956  }
3957
3958  case Expr::PackExpansionExprClass:
3959    Out << "sp";
3960    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3961    break;
3962
3963  case Expr::SizeOfPackExprClass: {
3964    auto *SPE = cast<SizeOfPackExpr>(E);
3965    if (SPE->isPartiallySubstituted()) {
3966      Out << "sP";
3967      for (const auto &A : SPE->getPartialArguments())
3968        mangleTemplateArg(A);
3969      Out << "E";
3970      break;
3971    }
3972
3973    Out << "sZ";
3974    const NamedDecl *Pack = SPE->getPack();
3975    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3976      mangleTemplateParameter(TTP->getIndex());
3977    else if (const NonTypeTemplateParmDecl *NTTP
3978                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3979      mangleTemplateParameter(NTTP->getIndex());
3980    else if (const TemplateTemplateParmDecl *TempTP
3981                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3982      mangleTemplateParameter(TempTP->getIndex());
3983    else
3984      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3985    break;
3986  }
3987
3988  case Expr::MaterializeTemporaryExprClass: {
3989    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3990    break;
3991  }
3992
3993  case Expr::CXXFoldExprClass: {
3994    auto *FE = cast<CXXFoldExpr>(E);
3995    if (FE->isLeftFold())
3996      Out << (FE->getInit() ? "fL" : "fl");
3997    else
3998      Out << (FE->getInit() ? "fR" : "fr");
3999
4000    if (FE->getOperator() == BO_PtrMemD)
4001      Out << "ds";
4002    else
4003      mangleOperatorName(
4004          BinaryOperator::getOverloadedOperator(FE->getOperator()),
4005          /*Arity=*/2);
4006
4007    if (FE->getLHS())
4008      mangleExpression(FE->getLHS());
4009    if (FE->getRHS())
4010      mangleExpression(FE->getRHS());
4011    break;
4012  }
4013
4014  case Expr::CXXThisExprClass:
4015    Out << "fpT";
4016    break;
4017
4018  case Expr::CoawaitExprClass:
4019    // FIXME: Propose a non-vendor mangling.
4020    Out << "v18co_await";
4021    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4022    break;
4023
4024  case Expr::CoyieldExprClass:
4025    // FIXME: Propose a non-vendor mangling.
4026    Out << "v18co_yield";
4027    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4028    break;
4029  }
4030}
4031
4032/// Mangle an expression which refers to a parameter variable.
4033///
4034/// <expression>     ::= <function-param>
4035/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4036/// <function-param> ::= fp <top-level CV-qualifiers>
4037///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4038/// <function-param> ::= fL <L-1 non-negative number>
4039///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4040/// <function-param> ::= fL <L-1 non-negative number>
4041///                      p <top-level CV-qualifiers>
4042///                      <I-1 non-negative number> _         # L > 0, I > 0
4043///
4044/// L is the nesting depth of the parameter, defined as 1 if the
4045/// parameter comes from the innermost function prototype scope
4046/// enclosing the current context, 2 if from the next enclosing
4047/// function prototype scope, and so on, with one special case: if
4048/// we've processed the full parameter clause for the innermost
4049/// function type, then L is one less.  This definition conveniently
4050/// makes it irrelevant whether a function's result type was written
4051/// trailing or leading, but is otherwise overly complicated; the
4052/// numbering was first designed without considering references to
4053/// parameter in locations other than return types, and then the
4054/// mangling had to be generalized without changing the existing
4055/// manglings.
4056///
4057/// I is the zero-based index of the parameter within its parameter
4058/// declaration clause.  Note that the original ABI document describes
4059/// this using 1-based ordinals.
4060void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4061  unsigned parmDepth = parm->getFunctionScopeDepth();
4062  unsigned parmIndex = parm->getFunctionScopeIndex();
4063
4064  // Compute 'L'.
4065  // parmDepth does not include the declaring function prototype.
4066  // FunctionTypeDepth does account for that.
4067  assert(parmDepth < FunctionTypeDepth.getDepth());
4068  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4069  if (FunctionTypeDepth.isInResultType())
4070    nestingDepth--;
4071
4072  if (nestingDepth == 0) {
4073    Out << "fp";
4074  } else {
4075    Out << "fL" << (nestingDepth - 1) << 'p';
4076  }
4077
4078  // Top-level qualifiers.  We don't have to worry about arrays here,
4079  // because parameters declared as arrays should already have been
4080  // transformed to have pointer type. FIXME: apparently these don't
4081  // get mangled if used as an rvalue of a known non-class type?
4082  assert(!parm->getType()->isArrayType()
4083         && "parameter's type is still an array type?");
4084  mangleQualifiers(parm->getType().getQualifiers());
4085
4086  // Parameter index.
4087  if (parmIndex != 0) {
4088    Out << (parmIndex - 1);
4089  }
4090  Out << '_';
4091}
4092
4093void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4094                                       const CXXRecordDecl *InheritedFrom) {
4095  // <ctor-dtor-name> ::= C1  # complete object constructor
4096  //                  ::= C2  # base object constructor
4097  //                  ::= CI1 <type> # complete inheriting constructor
4098  //                  ::= CI2 <type> # base inheriting constructor
4099  //
4100  // In addition, C5 is a comdat name with C1 and C2 in it.
4101  Out << 'C';
4102  if (InheritedFrom)
4103    Out << 'I';
4104  switch (T) {
4105  case Ctor_Complete:
4106    Out << '1';
4107    break;
4108  case Ctor_Base:
4109    Out << '2';
4110    break;
4111  case Ctor_Comdat:
4112    Out << '5';
4113    break;
4114  case Ctor_DefaultClosure:
4115  case Ctor_CopyingClosure:
4116    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4117  }
4118  if (InheritedFrom)
4119    mangleName(InheritedFrom);
4120}
4121
4122void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4123  // <ctor-dtor-name> ::= D0  # deleting destructor
4124  //                  ::= D1  # complete object destructor
4125  //                  ::= D2  # base object destructor
4126  //
4127  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4128  switch (T) {
4129  case Dtor_Deleting:
4130    Out << "D0";
4131    break;
4132  case Dtor_Complete:
4133    Out << "D1";
4134    break;
4135  case Dtor_Base:
4136    Out << "D2";
4137    break;
4138  case Dtor_Comdat:
4139    Out << "D5";
4140    break;
4141  }
4142}
4143
4144void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4145                                        unsigned NumTemplateArgs) {
4146  // <template-args> ::= I <template-arg>+ E
4147  Out << 'I';
4148  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4149    mangleTemplateArg(TemplateArgs[i].getArgument());
4150  Out << 'E';
4151}
4152
4153void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4154  // <template-args> ::= I <template-arg>+ E
4155  Out << 'I';
4156  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4157    mangleTemplateArg(AL[i]);
4158  Out << 'E';
4159}
4160
4161void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4162                                        unsigned NumTemplateArgs) {
4163  // <template-args> ::= I <template-arg>+ E
4164  Out << 'I';
4165  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4166    mangleTemplateArg(TemplateArgs[i]);
4167  Out << 'E';
4168}
4169
4170void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4171  // <template-arg> ::= <type>              # type or template
4172  //                ::= X <expression> E    # expression
4173  //                ::= <expr-primary>      # simple expressions
4174  //                ::= J <template-arg>* E # argument pack
4175  if (!A.isInstantiationDependent() || A.isDependent())
4176    A = Context.getASTContext().getCanonicalTemplateArgument(A);
4177
4178  switch (A.getKind()) {
4179  case TemplateArgument::Null:
4180    llvm_unreachable("Cannot mangle NULL template argument");
4181
4182  case TemplateArgument::Type:
4183    mangleType(A.getAsType());
4184    break;
4185  case TemplateArgument::Template:
4186    // This is mangled as <type>.
4187    mangleType(A.getAsTemplate());
4188    break;
4189  case TemplateArgument::TemplateExpansion:
4190    // <type>  ::= Dp <type>          # pack expansion (C++0x)
4191    Out << "Dp";
4192    mangleType(A.getAsTemplateOrTemplatePattern());
4193    break;
4194  case TemplateArgument::Expression: {
4195    // It's possible to end up with a DeclRefExpr here in certain
4196    // dependent cases, in which case we should mangle as a
4197    // declaration.
4198    const Expr *E = A.getAsExpr()->IgnoreParens();
4199    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4200      const ValueDecl *D = DRE->getDecl();
4201      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4202        Out << 'L';
4203        mangle(D);
4204        Out << 'E';
4205        break;
4206      }
4207    }
4208
4209    Out << 'X';
4210    mangleExpression(E);
4211    Out << 'E';
4212    break;
4213  }
4214  case TemplateArgument::Integral:
4215    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4216    break;
4217  case TemplateArgument::Declaration: {
4218    //  <expr-primary> ::= L <mangled-name> E # external name
4219    // Clang produces AST's where pointer-to-member-function expressions
4220    // and pointer-to-function expressions are represented as a declaration not
4221    // an expression. We compensate for it here to produce the correct mangling.
4222    ValueDecl *D = A.getAsDecl();
4223    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4224    if (compensateMangling) {
4225      Out << 'X';
4226      mangleOperatorName(OO_Amp, 1);
4227    }
4228
4229    Out << 'L';
4230    // References to external entities use the mangled name; if the name would
4231    // not normally be mangled then mangle it as unqualified.
4232    mangle(D);
4233    Out << 'E';
4234
4235    if (compensateMangling)
4236      Out << 'E';
4237
4238    break;
4239  }
4240  case TemplateArgument::NullPtr: {
4241    //  <expr-primary> ::= L <type> 0 E
4242    Out << 'L';
4243    mangleType(A.getNullPtrType());
4244    Out << "0E";
4245    break;
4246  }
4247  case TemplateArgument::Pack: {
4248    //  <template-arg> ::= J <template-arg>* E
4249    Out << 'J';
4250    for (const auto &P : A.pack_elements())
4251      mangleTemplateArg(P);
4252    Out << 'E';
4253  }
4254  }
4255}
4256
4257void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4258  // <template-param> ::= T_    # first template parameter
4259  //                  ::= T <parameter-2 non-negative number> _
4260  if (Index == 0)
4261    Out << "T_";
4262  else
4263    Out << 'T' << (Index - 1) << '_';
4264}
4265
4266void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4267  if (SeqID == 1)
4268    Out << '0';
4269  else if (SeqID > 1) {
4270    SeqID--;
4271
4272    // <seq-id> is encoded in base-36, using digits and upper case letters.
4273    char Buffer[7]; // log(2**32) / log(36) ~= 7
4274    MutableArrayRef<char> BufferRef(Buffer);
4275    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4276
4277    for (; SeqID != 0; SeqID /= 36) {
4278      unsigned C = SeqID % 36;
4279      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4280    }
4281
4282    Out.write(I.base(), I - BufferRef.rbegin());
4283  }
4284  Out << '_';
4285}
4286
4287void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4288  bool result = mangleSubstitution(tname);
4289  assert(result && "no existing substitution for template name");
4290  (void) result;
4291}
4292
4293// <substitution> ::= S <seq-id> _
4294//                ::= S_
4295bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4296  // Try one of the standard substitutions first.
4297  if (mangleStandardSubstitution(ND))
4298    return true;
4299
4300  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4301  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4302}
4303
4304/// Determine whether the given type has any qualifiers that are relevant for
4305/// substitutions.
4306static bool hasMangledSubstitutionQualifiers(QualType T) {
4307  Qualifiers Qs = T.getQualifiers();
4308  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
4309}
4310
4311bool CXXNameMangler::mangleSubstitution(QualType T) {
4312  if (!hasMangledSubstitutionQualifiers(T)) {
4313    if (const RecordType *RT = T->getAs<RecordType>())
4314      return mangleSubstitution(RT->getDecl());
4315  }
4316
4317  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4318
4319  return mangleSubstitution(TypePtr);
4320}
4321
4322bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4323  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4324    return mangleSubstitution(TD);
4325
4326  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4327  return mangleSubstitution(
4328                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4329}
4330
4331bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4332  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4333  if (I == Substitutions.end())
4334    return false;
4335
4336  unsigned SeqID = I->second;
4337  Out << 'S';
4338  mangleSeqID(SeqID);
4339
4340  return true;
4341}
4342
4343static bool isCharType(QualType T) {
4344  if (T.isNull())
4345    return false;
4346
4347  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4348    T->isSpecificBuiltinType(BuiltinType::Char_U);
4349}
4350
4351/// Returns whether a given type is a template specialization of a given name
4352/// with a single argument of type char.
4353static bool isCharSpecialization(QualType T, const char *Name) {
4354  if (T.isNull())
4355    return false;
4356
4357  const RecordType *RT = T->getAs<RecordType>();
4358  if (!RT)
4359    return false;
4360
4361  const ClassTemplateSpecializationDecl *SD =
4362    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4363  if (!SD)
4364    return false;
4365
4366  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4367    return false;
4368
4369  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4370  if (TemplateArgs.size() != 1)
4371    return false;
4372
4373  if (!isCharType(TemplateArgs[0].getAsType()))
4374    return false;
4375
4376  return SD->getIdentifier()->getName() == Name;
4377}
4378
4379template <std::size_t StrLen>
4380static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4381                                       const char (&Str)[StrLen]) {
4382  if (!SD->getIdentifier()->isStr(Str))
4383    return false;
4384
4385  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4386  if (TemplateArgs.size() != 2)
4387    return false;
4388
4389  if (!isCharType(TemplateArgs[0].getAsType()))
4390    return false;
4391
4392  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4393    return false;
4394
4395  return true;
4396}
4397
4398bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4399  // <substitution> ::= St # ::std::
4400  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4401    if (isStd(NS)) {
4402      Out << "St";
4403      return true;
4404    }
4405  }
4406
4407  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4408    if (!isStdNamespace(getEffectiveDeclContext(TD)))
4409      return false;
4410
4411    // <substitution> ::= Sa # ::std::allocator
4412    if (TD->getIdentifier()->isStr("allocator")) {
4413      Out << "Sa";
4414      return true;
4415    }
4416
4417    // <<substitution> ::= Sb # ::std::basic_string
4418    if (TD->getIdentifier()->isStr("basic_string")) {
4419      Out << "Sb";
4420      return true;
4421    }
4422  }
4423
4424  if (const ClassTemplateSpecializationDecl *SD =
4425        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4426    if (!isStdNamespace(getEffectiveDeclContext(SD)))
4427      return false;
4428
4429    //    <substitution> ::= Ss # ::std::basic_string<char,
4430    //                            ::std::char_traits<char>,
4431    //                            ::std::allocator<char> >
4432    if (SD->getIdentifier()->isStr("basic_string")) {
4433      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4434
4435      if (TemplateArgs.size() != 3)
4436        return false;
4437
4438      if (!isCharType(TemplateArgs[0].getAsType()))
4439        return false;
4440
4441      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4442        return false;
4443
4444      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4445        return false;
4446
4447      Out << "Ss";
4448      return true;
4449    }
4450
4451    //    <substitution> ::= Si # ::std::basic_istream<char,
4452    //                            ::std::char_traits<char> >
4453    if (isStreamCharSpecialization(SD, "basic_istream")) {
4454      Out << "Si";
4455      return true;
4456    }
4457
4458    //    <substitution> ::= So # ::std::basic_ostream<char,
4459    //                            ::std::char_traits<char> >
4460    if (isStreamCharSpecialization(SD, "basic_ostream")) {
4461      Out << "So";
4462      return true;
4463    }
4464
4465    //    <substitution> ::= Sd # ::std::basic_iostream<char,
4466    //                            ::std::char_traits<char> >
4467    if (isStreamCharSpecialization(SD, "basic_iostream")) {
4468      Out << "Sd";
4469      return true;
4470    }
4471  }
4472  return false;
4473}
4474
4475void CXXNameMangler::addSubstitution(QualType T) {
4476  if (!hasMangledSubstitutionQualifiers(T)) {
4477    if (const RecordType *RT = T->getAs<RecordType>()) {
4478      addSubstitution(RT->getDecl());
4479      return;
4480    }
4481  }
4482
4483  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4484  addSubstitution(TypePtr);
4485}
4486
4487void CXXNameMangler::addSubstitution(TemplateName Template) {
4488  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4489    return addSubstitution(TD);
4490
4491  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4492  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4493}
4494
4495void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4496  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4497  Substitutions[Ptr] = SeqID++;
4498}
4499
4500void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4501  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4502  if (Other->SeqID > SeqID) {
4503    Substitutions.swap(Other->Substitutions);
4504    SeqID = Other->SeqID;
4505  }
4506}
4507
4508CXXNameMangler::AbiTagList
4509CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4510  // When derived abi tags are disabled there is no need to make any list.
4511  if (DisableDerivedAbiTags)
4512    return AbiTagList();
4513
4514  llvm::raw_null_ostream NullOutStream;
4515  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4516  TrackReturnTypeTags.disableDerivedAbiTags();
4517
4518  const FunctionProtoType *Proto =
4519      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4520  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4521  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4522  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4523
4524  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4525}
4526
4527CXXNameMangler::AbiTagList
4528CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4529  // When derived abi tags are disabled there is no need to make any list.
4530  if (DisableDerivedAbiTags)
4531    return AbiTagList();
4532
4533  llvm::raw_null_ostream NullOutStream;
4534  CXXNameMangler TrackVariableType(*this, NullOutStream);
4535  TrackVariableType.disableDerivedAbiTags();
4536
4537  TrackVariableType.mangleType(VD->getType());
4538
4539  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4540}
4541
4542bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4543                                       const VarDecl *VD) {
4544  llvm::raw_null_ostream NullOutStream;
4545  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4546  TrackAbiTags.mangle(VD);
4547  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4548}
4549
4550//
4551
4552/// Mangles the name of the declaration D and emits that name to the given
4553/// output stream.
4554///
4555/// If the declaration D requires a mangled name, this routine will emit that
4556/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4557/// and this routine will return false. In this case, the caller should just
4558/// emit the identifier of the declaration (\c D->getIdentifier()) as its
4559/// name.
4560void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4561                                             raw_ostream &Out) {
4562  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4563          "Invalid mangleName() call, argument is not a variable or function!");
4564  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4565         "Invalid mangleName() call on 'structor decl!");
4566
4567  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4568                                 getASTContext().getSourceManager(),
4569                                 "Mangling declaration");
4570
4571  CXXNameMangler Mangler(*this, Out, D);
4572  Mangler.mangle(D);
4573}
4574
4575void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4576                                             CXXCtorType Type,
4577                                             raw_ostream &Out) {
4578  CXXNameMangler Mangler(*this, Out, D, Type);
4579  Mangler.mangle(D);
4580}
4581
4582void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4583                                             CXXDtorType Type,
4584                                             raw_ostream &Out) {
4585  CXXNameMangler Mangler(*this, Out, D, Type);
4586  Mangler.mangle(D);
4587}
4588
4589void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4590                                                   raw_ostream &Out) {
4591  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4592  Mangler.mangle(D);
4593}
4594
4595void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4596                                                   raw_ostream &Out) {
4597  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4598  Mangler.mangle(D);
4599}
4600
4601void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4602                                           const ThunkInfo &Thunk,
4603                                           raw_ostream &Out) {
4604  //  <special-name> ::= T <call-offset> <base encoding>
4605  //                      # base is the nominal target function of thunk
4606  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4607  //                      # base is the nominal target function of thunk
4608  //                      # first call-offset is 'this' adjustment
4609  //                      # second call-offset is result adjustment
4610
4611  assert(!isa<CXXDestructorDecl>(MD) &&
4612         "Use mangleCXXDtor for destructor decls!");
4613  CXXNameMangler Mangler(*this, Out);
4614  Mangler.getStream() << "_ZT";
4615  if (!Thunk.Return.isEmpty())
4616    Mangler.getStream() << 'c';
4617
4618  // Mangle the 'this' pointer adjustment.
4619  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4620                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4621
4622  // Mangle the return pointer adjustment if there is one.
4623  if (!Thunk.Return.isEmpty())
4624    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4625                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4626
4627  Mangler.mangleFunctionEncoding(MD);
4628}
4629
4630void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4631    const CXXDestructorDecl *DD, CXXDtorType Type,
4632    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4633  //  <special-name> ::= T <call-offset> <base encoding>
4634  //                      # base is the nominal target function of thunk
4635  CXXNameMangler Mangler(*this, Out, DD, Type);
4636  Mangler.getStream() << "_ZT";
4637
4638  // Mangle the 'this' pointer adjustment.
4639  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4640                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4641
4642  Mangler.mangleFunctionEncoding(DD);
4643}
4644
4645/// Returns the mangled name for a guard variable for the passed in VarDecl.
4646void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4647                                                         raw_ostream &Out) {
4648  //  <special-name> ::= GV <object name>       # Guard variable for one-time
4649  //                                            # initialization
4650  CXXNameMangler Mangler(*this, Out);
4651  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4652  // be a bug that is fixed in trunk.
4653  Mangler.getStream() << "_ZGV";
4654  Mangler.mangleName(D);
4655}
4656
4657void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4658                                                        raw_ostream &Out) {
4659  // These symbols are internal in the Itanium ABI, so the names don't matter.
4660  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4661  // avoid duplicate symbols.
4662  Out << "__cxx_global_var_init";
4663}
4664
4665void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4666                                                             raw_ostream &Out) {
4667  // Prefix the mangling of D with __dtor_.
4668  CXXNameMangler Mangler(*this, Out);
4669  Mangler.getStream() << "__dtor_";
4670  if (shouldMangleDeclName(D))
4671    Mangler.mangle(D);
4672  else
4673    Mangler.getStream() << D->getName();
4674}
4675
4676void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4677    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4678  CXXNameMangler Mangler(*this, Out);
4679  Mangler.getStream() << "__filt_";
4680  if (shouldMangleDeclName(EnclosingDecl))
4681    Mangler.mangle(EnclosingDecl);
4682  else
4683    Mangler.getStream() << EnclosingDecl->getName();
4684}
4685
4686void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4687    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4688  CXXNameMangler Mangler(*this, Out);
4689  Mangler.getStream() << "__fin_";
4690  if (shouldMangleDeclName(EnclosingDecl))
4691    Mangler.mangle(EnclosingDecl);
4692  else
4693    Mangler.getStream() << EnclosingDecl->getName();
4694}
4695
4696void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4697                                                            raw_ostream &Out) {
4698  //  <special-name> ::= TH <object name>
4699  CXXNameMangler Mangler(*this, Out);
4700  Mangler.getStream() << "_ZTH";
4701  Mangler.mangleName(D);
4702}
4703
4704void
4705ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4706                                                          raw_ostream &Out) {
4707  //  <special-name> ::= TW <object name>
4708  CXXNameMangler Mangler(*this, Out);
4709  Mangler.getStream() << "_ZTW";
4710  Mangler.mangleName(D);
4711}
4712
4713void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4714                                                        unsigned ManglingNumber,
4715                                                        raw_ostream &Out) {
4716  // We match the GCC mangling here.
4717  //  <special-name> ::= GR <object name>
4718  CXXNameMangler Mangler(*this, Out);
4719  Mangler.getStream() << "_ZGR";
4720  Mangler.mangleName(D);
4721  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4722  Mangler.mangleSeqID(ManglingNumber - 1);
4723}
4724
4725void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4726                                               raw_ostream &Out) {
4727  // <special-name> ::= TV <type>  # virtual table
4728  CXXNameMangler Mangler(*this, Out);
4729  Mangler.getStream() << "_ZTV";
4730  Mangler.mangleNameOrStandardSubstitution(RD);
4731}
4732
4733void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4734                                            raw_ostream &Out) {
4735  // <special-name> ::= TT <type>  # VTT structure
4736  CXXNameMangler Mangler(*this, Out);
4737  Mangler.getStream() << "_ZTT";
4738  Mangler.mangleNameOrStandardSubstitution(RD);
4739}
4740
4741void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4742                                                   int64_t Offset,
4743                                                   const CXXRecordDecl *Type,
4744                                                   raw_ostream &Out) {
4745  // <special-name> ::= TC <type> <offset number> _ <base type>
4746  CXXNameMangler Mangler(*this, Out);
4747  Mangler.getStream() << "_ZTC";
4748  Mangler.mangleNameOrStandardSubstitution(RD);
4749  Mangler.getStream() << Offset;
4750  Mangler.getStream() << '_';
4751  Mangler.mangleNameOrStandardSubstitution(Type);
4752}
4753
4754void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4755  // <special-name> ::= TI <type>  # typeinfo structure
4756  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4757  CXXNameMangler Mangler(*this, Out);
4758  Mangler.getStream() << "_ZTI";
4759  Mangler.mangleType(Ty);
4760}
4761
4762void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4763                                                 raw_ostream &Out) {
4764  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4765  CXXNameMangler Mangler(*this, Out);
4766  Mangler.getStream() << "_ZTS";
4767  Mangler.mangleType(Ty);
4768}
4769
4770void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4771  mangleCXXRTTIName(Ty, Out);
4772}
4773
4774void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4775  llvm_unreachable("Can't mangle string literals");
4776}
4777
4778ItaniumMangleContext *
4779ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4780  return new ItaniumMangleContextImpl(Context, Diags);
4781}
4782