ItaniumMangle.cpp revision 239462
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/ErrorHandling.h"
32
33#define MANGLE_CHECKER 0
34
35#if MANGLE_CHECKER
36#include <cxxabi.h>
37#endif
38
39using namespace clang;
40
41namespace {
42
43/// \brief Retrieve the declaration context that should be used when mangling
44/// the given declaration.
45static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46  // The ABI assumes that lambda closure types that occur within
47  // default arguments live in the context of the function. However, due to
48  // the way in which Clang parses and creates function declarations, this is
49  // not the case: the lambda closure type ends up living in the context
50  // where the function itself resides, because the function declaration itself
51  // had not yet been created. Fix the context here.
52  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53    if (RD->isLambda())
54      if (ParmVarDecl *ContextParam
55            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56        return ContextParam->getDeclContext();
57  }
58
59  return D->getDeclContext();
60}
61
62static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63  return getEffectiveDeclContext(cast<Decl>(DC));
64}
65
66static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67  const DeclContext *DC = dyn_cast<DeclContext>(ND);
68  if (!DC)
69    DC = getEffectiveDeclContext(ND);
70  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72    if (isa<FunctionDecl>(Parent))
73      return dyn_cast<CXXRecordDecl>(DC);
74    DC = Parent;
75  }
76  return 0;
77}
78
79static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81    return ftd->getTemplatedDecl();
82
83  return fn;
84}
85
86static const NamedDecl *getStructor(const NamedDecl *decl) {
87  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88  return (fn ? getStructor(fn) : decl);
89}
90
91static const unsigned UnknownArity = ~0U;
92
93class ItaniumMangleContext : public MangleContext {
94  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95  unsigned Discriminator;
96  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97
98public:
99  explicit ItaniumMangleContext(ASTContext &Context,
100                                DiagnosticsEngine &Diags)
101    : MangleContext(Context, Diags) { }
102
103  uint64_t getAnonymousStructId(const TagDecl *TD) {
104    std::pair<llvm::DenseMap<const TagDecl *,
105      uint64_t>::iterator, bool> Result =
106      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107    return Result.first->second;
108  }
109
110  void startNewFunction() {
111    MangleContext::startNewFunction();
112    mangleInitDiscriminator();
113  }
114
115  /// @name Mangler Entry Points
116  /// @{
117
118  bool shouldMangleDeclName(const NamedDecl *D);
119  void mangleName(const NamedDecl *D, raw_ostream &);
120  void mangleThunk(const CXXMethodDecl *MD,
121                   const ThunkInfo &Thunk,
122                   raw_ostream &);
123  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                          const ThisAdjustment &ThisAdjustment,
125                          raw_ostream &);
126  void mangleReferenceTemporary(const VarDecl *D,
127                                raw_ostream &);
128  void mangleCXXVTable(const CXXRecordDecl *RD,
129                       raw_ostream &);
130  void mangleCXXVTT(const CXXRecordDecl *RD,
131                    raw_ostream &);
132  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                           const CXXRecordDecl *Type,
134                           raw_ostream &);
135  void mangleCXXRTTI(QualType T, raw_ostream &);
136  void mangleCXXRTTIName(QualType T, raw_ostream &);
137  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                     raw_ostream &);
139  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                     raw_ostream &);
141
142  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143
144  void mangleInitDiscriminator() {
145    Discriminator = 0;
146  }
147
148  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149    // Lambda closure types with external linkage (indicated by a
150    // non-zero lambda mangling number) have their own numbering scheme, so
151    // they do not need a discriminator.
152    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154        return false;
155
156    unsigned &discriminator = Uniquifier[ND];
157    if (!discriminator)
158      discriminator = ++Discriminator;
159    if (discriminator == 1)
160      return false;
161    disc = discriminator-2;
162    return true;
163  }
164  /// @}
165};
166
167/// CXXNameMangler - Manage the mangling of a single name.
168class CXXNameMangler {
169  ItaniumMangleContext &Context;
170  raw_ostream &Out;
171
172  /// The "structor" is the top-level declaration being mangled, if
173  /// that's not a template specialization; otherwise it's the pattern
174  /// for that specialization.
175  const NamedDecl *Structor;
176  unsigned StructorType;
177
178  /// SeqID - The next subsitution sequence number.
179  unsigned SeqID;
180
181  class FunctionTypeDepthState {
182    unsigned Bits;
183
184    enum { InResultTypeMask = 1 };
185
186  public:
187    FunctionTypeDepthState() : Bits(0) {}
188
189    /// The number of function types we're inside.
190    unsigned getDepth() const {
191      return Bits >> 1;
192    }
193
194    /// True if we're in the return type of the innermost function type.
195    bool isInResultType() const {
196      return Bits & InResultTypeMask;
197    }
198
199    FunctionTypeDepthState push() {
200      FunctionTypeDepthState tmp = *this;
201      Bits = (Bits & ~InResultTypeMask) + 2;
202      return tmp;
203    }
204
205    void enterResultType() {
206      Bits |= InResultTypeMask;
207    }
208
209    void leaveResultType() {
210      Bits &= ~InResultTypeMask;
211    }
212
213    void pop(FunctionTypeDepthState saved) {
214      assert(getDepth() == saved.getDepth() + 1);
215      Bits = saved.Bits;
216    }
217
218  } FunctionTypeDepth;
219
220  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221
222  ASTContext &getASTContext() const { return Context.getASTContext(); }
223
224public:
225  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                 const NamedDecl *D = 0)
227    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228      SeqID(0) {
229    // These can't be mangled without a ctor type or dtor type.
230    assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                  !isa<CXXConstructorDecl>(D)));
232  }
233  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                 const CXXConstructorDecl *D, CXXCtorType Type)
235    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236      SeqID(0) { }
237  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                 const CXXDestructorDecl *D, CXXDtorType Type)
239    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240      SeqID(0) { }
241
242#if MANGLE_CHECKER
243  ~CXXNameMangler() {
244    if (Out.str()[0] == '\01')
245      return;
246
247    int status = 0;
248    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249    assert(status == 0 && "Could not demangle mangled name!");
250    free(result);
251  }
252#endif
253  raw_ostream &getStream() { return Out; }
254
255  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257  void mangleNumber(const llvm::APSInt &I);
258  void mangleNumber(int64_t Number);
259  void mangleFloat(const llvm::APFloat &F);
260  void mangleFunctionEncoding(const FunctionDecl *FD);
261  void mangleName(const NamedDecl *ND);
262  void mangleType(QualType T);
263  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264
265private:
266  bool mangleSubstitution(const NamedDecl *ND);
267  bool mangleSubstitution(QualType T);
268  bool mangleSubstitution(TemplateName Template);
269  bool mangleSubstitution(uintptr_t Ptr);
270
271  void mangleExistingSubstitution(QualType type);
272  void mangleExistingSubstitution(TemplateName name);
273
274  bool mangleStandardSubstitution(const NamedDecl *ND);
275
276  void addSubstitution(const NamedDecl *ND) {
277    ND = cast<NamedDecl>(ND->getCanonicalDecl());
278
279    addSubstitution(reinterpret_cast<uintptr_t>(ND));
280  }
281  void addSubstitution(QualType T);
282  void addSubstitution(TemplateName Template);
283  void addSubstitution(uintptr_t Ptr);
284
285  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                              NamedDecl *firstQualifierLookup,
287                              bool recursive = false);
288  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                            NamedDecl *firstQualifierLookup,
290                            DeclarationName name,
291                            unsigned KnownArity = UnknownArity);
292
293  void mangleName(const TemplateDecl *TD,
294                  const TemplateArgument *TemplateArgs,
295                  unsigned NumTemplateArgs);
296  void mangleUnqualifiedName(const NamedDecl *ND) {
297    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298  }
299  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                             unsigned KnownArity);
301  void mangleUnscopedName(const NamedDecl *ND);
302  void mangleUnscopedTemplateName(const TemplateDecl *ND);
303  void mangleUnscopedTemplateName(TemplateName);
304  void mangleSourceName(const IdentifierInfo *II);
305  void mangleLocalName(const NamedDecl *ND);
306  void mangleLambda(const CXXRecordDecl *Lambda);
307  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                        bool NoFunction=false);
309  void mangleNestedName(const TemplateDecl *TD,
310                        const TemplateArgument *TemplateArgs,
311                        unsigned NumTemplateArgs);
312  void manglePrefix(NestedNameSpecifier *qualifier);
313  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314  void manglePrefix(QualType type);
315  void mangleTemplatePrefix(const TemplateDecl *ND);
316  void mangleTemplatePrefix(TemplateName Template);
317  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318  void mangleQualifiers(Qualifiers Quals);
319  void mangleRefQualifier(RefQualifierKind RefQualifier);
320
321  void mangleObjCMethodName(const ObjCMethodDecl *MD);
322
323  // Declare manglers for every type class.
324#define ABSTRACT_TYPE(CLASS, PARENT)
325#define NON_CANONICAL_TYPE(CLASS, PARENT)
326#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327#include "clang/AST/TypeNodes.def"
328
329  void mangleType(const TagType*);
330  void mangleType(TemplateName);
331  void mangleBareFunctionType(const FunctionType *T,
332                              bool MangleReturnType);
333  void mangleNeonVectorType(const VectorType *T);
334
335  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336  void mangleMemberExpr(const Expr *base, bool isArrow,
337                        NestedNameSpecifier *qualifier,
338                        NamedDecl *firstQualifierLookup,
339                        DeclarationName name,
340                        unsigned knownArity);
341  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342  void mangleCXXCtorType(CXXCtorType T);
343  void mangleCXXDtorType(CXXDtorType T);
344
345  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346  void mangleTemplateArgs(TemplateName Template,
347                          const TemplateArgument *TemplateArgs,
348                          unsigned NumTemplateArgs);
349  void mangleTemplateArgs(const TemplateParameterList &PL,
350                          const TemplateArgument *TemplateArgs,
351                          unsigned NumTemplateArgs);
352  void mangleTemplateArgs(const TemplateParameterList &PL,
353                          const TemplateArgumentList &AL);
354  void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355  void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356                                    unsigned numArgs);
357
358  void mangleTemplateParameter(unsigned Index);
359
360  void mangleFunctionParam(const ParmVarDecl *parm);
361};
362
363}
364
365static bool isInCLinkageSpecification(const Decl *D) {
366  D = D->getCanonicalDecl();
367  for (const DeclContext *DC = getEffectiveDeclContext(D);
368       !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371  }
372
373  return false;
374}
375
376bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377  // In C, functions with no attributes never need to be mangled. Fastpath them.
378  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379    return false;
380
381  // Any decl can be declared with __asm("foo") on it, and this takes precedence
382  // over all other naming in the .o file.
383  if (D->hasAttr<AsmLabelAttr>())
384    return true;
385
386  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387  // (always) as does passing a C++ member function and a function
388  // whose name is not a simple identifier.
389  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391             !FD->getDeclName().isIdentifier()))
392    return true;
393
394  // Otherwise, no mangling is done outside C++ mode.
395  if (!getASTContext().getLangOpts().CPlusPlus)
396    return false;
397
398  // Variables at global scope with non-internal linkage are not mangled
399  if (!FD) {
400    const DeclContext *DC = getEffectiveDeclContext(D);
401    // Check for extern variable declared locally.
402    if (DC->isFunctionOrMethod() && D->hasLinkage())
403      while (!DC->isNamespace() && !DC->isTranslationUnit())
404        DC = getEffectiveParentContext(DC);
405    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406      return false;
407  }
408
409  // Class members are always mangled.
410  if (getEffectiveDeclContext(D)->isRecord())
411    return true;
412
413  // C functions and "main" are not mangled.
414  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415    return false;
416
417  return true;
418}
419
420void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421  // Any decl can be declared with __asm("foo") on it, and this takes precedence
422  // over all other naming in the .o file.
423  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424    // If we have an asm name, then we use it as the mangling.
425
426    // Adding the prefix can cause problems when one file has a "foo" and
427    // another has a "\01foo". That is known to happen on ELF with the
428    // tricks normally used for producing aliases (PR9177). Fortunately the
429    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430    // marker.  We also avoid adding the marker if this is an alias for an
431    // LLVM intrinsic.
432    StringRef UserLabelPrefix =
433      getASTContext().getTargetInfo().getUserLabelPrefix();
434    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435      Out << '\01';  // LLVM IR Marker for __asm("foo")
436
437    Out << ALA->getLabel();
438    return;
439  }
440
441  // <mangled-name> ::= _Z <encoding>
442  //            ::= <data name>
443  //            ::= <special-name>
444  Out << Prefix;
445  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446    mangleFunctionEncoding(FD);
447  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448    mangleName(VD);
449  else
450    mangleName(cast<FieldDecl>(D));
451}
452
453void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454  // <encoding> ::= <function name> <bare-function-type>
455  mangleName(FD);
456
457  // Don't mangle in the type if this isn't a decl we should typically mangle.
458  if (!Context.shouldMangleDeclName(FD))
459    return;
460
461  // Whether the mangling of a function type includes the return type depends on
462  // the context and the nature of the function. The rules for deciding whether
463  // the return type is included are:
464  //
465  //   1. Template functions (names or types) have return types encoded, with
466  //   the exceptions listed below.
467  //   2. Function types not appearing as part of a function name mangling,
468  //   e.g. parameters, pointer types, etc., have return type encoded, with the
469  //   exceptions listed below.
470  //   3. Non-template function names do not have return types encoded.
471  //
472  // The exceptions mentioned in (1) and (2) above, for which the return type is
473  // never included, are
474  //   1. Constructors.
475  //   2. Destructors.
476  //   3. Conversion operator functions, e.g. operator int.
477  bool MangleReturnType = false;
478  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480          isa<CXXConversionDecl>(FD)))
481      MangleReturnType = true;
482
483    // Mangle the type of the primary template.
484    FD = PrimaryTemplate->getTemplatedDecl();
485  }
486
487  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488                         MangleReturnType);
489}
490
491static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492  while (isa<LinkageSpecDecl>(DC)) {
493    DC = getEffectiveParentContext(DC);
494  }
495
496  return DC;
497}
498
499/// isStd - Return whether a given namespace is the 'std' namespace.
500static bool isStd(const NamespaceDecl *NS) {
501  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502                                ->isTranslationUnit())
503    return false;
504
505  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506  return II && II->isStr("std");
507}
508
509// isStdNamespace - Return whether a given decl context is a toplevel 'std'
510// namespace.
511static bool isStdNamespace(const DeclContext *DC) {
512  if (!DC->isNamespace())
513    return false;
514
515  return isStd(cast<NamespaceDecl>(DC));
516}
517
518static const TemplateDecl *
519isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520  // Check if we have a function template.
521  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523      TemplateArgs = FD->getTemplateSpecializationArgs();
524      return TD;
525    }
526  }
527
528  // Check if we have a class template.
529  if (const ClassTemplateSpecializationDecl *Spec =
530        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531    TemplateArgs = &Spec->getTemplateArgs();
532    return Spec->getSpecializedTemplate();
533  }
534
535  return 0;
536}
537
538static bool isLambda(const NamedDecl *ND) {
539  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
540  if (!Record)
541    return false;
542
543  return Record->isLambda();
544}
545
546void CXXNameMangler::mangleName(const NamedDecl *ND) {
547  //  <name> ::= <nested-name>
548  //         ::= <unscoped-name>
549  //         ::= <unscoped-template-name> <template-args>
550  //         ::= <local-name>
551  //
552  const DeclContext *DC = getEffectiveDeclContext(ND);
553
554  // If this is an extern variable declared locally, the relevant DeclContext
555  // is that of the containing namespace, or the translation unit.
556  // FIXME: This is a hack; extern variables declared locally should have
557  // a proper semantic declaration context!
558  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
559    while (!DC->isNamespace() && !DC->isTranslationUnit())
560      DC = getEffectiveParentContext(DC);
561  else if (GetLocalClassDecl(ND)) {
562    mangleLocalName(ND);
563    return;
564  }
565
566  DC = IgnoreLinkageSpecDecls(DC);
567
568  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
569    // Check if we have a template.
570    const TemplateArgumentList *TemplateArgs = 0;
571    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
572      mangleUnscopedTemplateName(TD);
573      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
574      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
575      return;
576    }
577
578    mangleUnscopedName(ND);
579    return;
580  }
581
582  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
583    mangleLocalName(ND);
584    return;
585  }
586
587  mangleNestedName(ND, DC);
588}
589void CXXNameMangler::mangleName(const TemplateDecl *TD,
590                                const TemplateArgument *TemplateArgs,
591                                unsigned NumTemplateArgs) {
592  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
593
594  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
595    mangleUnscopedTemplateName(TD);
596    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
597    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
598  } else {
599    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600  }
601}
602
603void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604  //  <unscoped-name> ::= <unqualified-name>
605  //                  ::= St <unqualified-name>   # ::std::
606
607  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608    Out << "St";
609
610  mangleUnqualifiedName(ND);
611}
612
613void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614  //     <unscoped-template-name> ::= <unscoped-name>
615  //                              ::= <substitution>
616  if (mangleSubstitution(ND))
617    return;
618
619  // <template-template-param> ::= <template-param>
620  if (const TemplateTemplateParmDecl *TTP
621                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622    mangleTemplateParameter(TTP->getIndex());
623    return;
624  }
625
626  mangleUnscopedName(ND->getTemplatedDecl());
627  addSubstitution(ND);
628}
629
630void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631  //     <unscoped-template-name> ::= <unscoped-name>
632  //                              ::= <substitution>
633  if (TemplateDecl *TD = Template.getAsTemplateDecl())
634    return mangleUnscopedTemplateName(TD);
635
636  if (mangleSubstitution(Template))
637    return;
638
639  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640  assert(Dependent && "Not a dependent template name?");
641  if (const IdentifierInfo *Id = Dependent->getIdentifier())
642    mangleSourceName(Id);
643  else
644    mangleOperatorName(Dependent->getOperator(), UnknownArity);
645
646  addSubstitution(Template);
647}
648
649void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650  // ABI:
651  //   Floating-point literals are encoded using a fixed-length
652  //   lowercase hexadecimal string corresponding to the internal
653  //   representation (IEEE on Itanium), high-order bytes first,
654  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655  //   on Itanium.
656  // The 'without leading zeroes' thing seems to be an editorial
657  // mistake; see the discussion on cxx-abi-dev beginning on
658  // 2012-01-16.
659
660  // Our requirements here are just barely weird enough to justify
661  // using a custom algorithm instead of post-processing APInt::toString().
662
663  llvm::APInt valueBits = f.bitcastToAPInt();
664  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665  assert(numCharacters != 0);
666
667  // Allocate a buffer of the right number of characters.
668  llvm::SmallVector<char, 20> buffer;
669  buffer.set_size(numCharacters);
670
671  // Fill the buffer left-to-right.
672  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673    // The bit-index of the next hex digit.
674    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675
676    // Project out 4 bits starting at 'digitIndex'.
677    llvm::integerPart hexDigit
678      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680    hexDigit &= 0xF;
681
682    // Map that over to a lowercase hex digit.
683    static const char charForHex[16] = {
684      '0', '1', '2', '3', '4', '5', '6', '7',
685      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686    };
687    buffer[stringIndex] = charForHex[hexDigit];
688  }
689
690  Out.write(buffer.data(), numCharacters);
691}
692
693void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694  if (Value.isSigned() && Value.isNegative()) {
695    Out << 'n';
696    Value.abs().print(Out, true);
697  } else
698    Value.print(Out, Value.isSigned());
699}
700
701void CXXNameMangler::mangleNumber(int64_t Number) {
702  //  <number> ::= [n] <non-negative decimal integer>
703  if (Number < 0) {
704    Out << 'n';
705    Number = -Number;
706  }
707
708  Out << Number;
709}
710
711void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
712  //  <call-offset>  ::= h <nv-offset> _
713  //                 ::= v <v-offset> _
714  //  <nv-offset>    ::= <offset number>        # non-virtual base override
715  //  <v-offset>     ::= <offset number> _ <virtual offset number>
716  //                      # virtual base override, with vcall offset
717  if (!Virtual) {
718    Out << 'h';
719    mangleNumber(NonVirtual);
720    Out << '_';
721    return;
722  }
723
724  Out << 'v';
725  mangleNumber(NonVirtual);
726  Out << '_';
727  mangleNumber(Virtual);
728  Out << '_';
729}
730
731void CXXNameMangler::manglePrefix(QualType type) {
732  if (const TemplateSpecializationType *TST =
733        type->getAs<TemplateSpecializationType>()) {
734    if (!mangleSubstitution(QualType(TST, 0))) {
735      mangleTemplatePrefix(TST->getTemplateName());
736
737      // FIXME: GCC does not appear to mangle the template arguments when
738      // the template in question is a dependent template name. Should we
739      // emulate that badness?
740      mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
741                         TST->getNumArgs());
742      addSubstitution(QualType(TST, 0));
743    }
744  } else if (const DependentTemplateSpecializationType *DTST
745               = type->getAs<DependentTemplateSpecializationType>()) {
746    TemplateName Template
747      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
748                                                 DTST->getIdentifier());
749    mangleTemplatePrefix(Template);
750
751    // FIXME: GCC does not appear to mangle the template arguments when
752    // the template in question is a dependent template name. Should we
753    // emulate that badness?
754    mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
755  } else {
756    // We use the QualType mangle type variant here because it handles
757    // substitutions.
758    mangleType(type);
759  }
760}
761
762/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
763///
764/// \param firstQualifierLookup - the entity found by unqualified lookup
765///   for the first name in the qualifier, if this is for a member expression
766/// \param recursive - true if this is being called recursively,
767///   i.e. if there is more prefix "to the right".
768void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
769                                            NamedDecl *firstQualifierLookup,
770                                            bool recursive) {
771
772  // x, ::x
773  // <unresolved-name> ::= [gs] <base-unresolved-name>
774
775  // T::x / decltype(p)::x
776  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
777
778  // T::N::x /decltype(p)::N::x
779  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
780  //                       <base-unresolved-name>
781
782  // A::x, N::y, A<T>::z; "gs" means leading "::"
783  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
784  //                       <base-unresolved-name>
785
786  switch (qualifier->getKind()) {
787  case NestedNameSpecifier::Global:
788    Out << "gs";
789
790    // We want an 'sr' unless this is the entire NNS.
791    if (recursive)
792      Out << "sr";
793
794    // We never want an 'E' here.
795    return;
796
797  case NestedNameSpecifier::Namespace:
798    if (qualifier->getPrefix())
799      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
800                             /*recursive*/ true);
801    else
802      Out << "sr";
803    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
804    break;
805  case NestedNameSpecifier::NamespaceAlias:
806    if (qualifier->getPrefix())
807      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
808                             /*recursive*/ true);
809    else
810      Out << "sr";
811    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
812    break;
813
814  case NestedNameSpecifier::TypeSpec:
815  case NestedNameSpecifier::TypeSpecWithTemplate: {
816    const Type *type = qualifier->getAsType();
817
818    // We only want to use an unresolved-type encoding if this is one of:
819    //   - a decltype
820    //   - a template type parameter
821    //   - a template template parameter with arguments
822    // In all of these cases, we should have no prefix.
823    if (qualifier->getPrefix()) {
824      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825                             /*recursive*/ true);
826    } else {
827      // Otherwise, all the cases want this.
828      Out << "sr";
829    }
830
831    // Only certain other types are valid as prefixes;  enumerate them.
832    switch (type->getTypeClass()) {
833    case Type::Builtin:
834    case Type::Complex:
835    case Type::Pointer:
836    case Type::BlockPointer:
837    case Type::LValueReference:
838    case Type::RValueReference:
839    case Type::MemberPointer:
840    case Type::ConstantArray:
841    case Type::IncompleteArray:
842    case Type::VariableArray:
843    case Type::DependentSizedArray:
844    case Type::DependentSizedExtVector:
845    case Type::Vector:
846    case Type::ExtVector:
847    case Type::FunctionProto:
848    case Type::FunctionNoProto:
849    case Type::Enum:
850    case Type::Paren:
851    case Type::Elaborated:
852    case Type::Attributed:
853    case Type::Auto:
854    case Type::PackExpansion:
855    case Type::ObjCObject:
856    case Type::ObjCInterface:
857    case Type::ObjCObjectPointer:
858    case Type::Atomic:
859      llvm_unreachable("type is illegal as a nested name specifier");
860
861    case Type::SubstTemplateTypeParmPack:
862      // FIXME: not clear how to mangle this!
863      // template <class T...> class A {
864      //   template <class U...> void foo(decltype(T::foo(U())) x...);
865      // };
866      Out << "_SUBSTPACK_";
867      break;
868
869    // <unresolved-type> ::= <template-param>
870    //                   ::= <decltype>
871    //                   ::= <template-template-param> <template-args>
872    // (this last is not official yet)
873    case Type::TypeOfExpr:
874    case Type::TypeOf:
875    case Type::Decltype:
876    case Type::TemplateTypeParm:
877    case Type::UnaryTransform:
878    case Type::SubstTemplateTypeParm:
879    unresolvedType:
880      assert(!qualifier->getPrefix());
881
882      // We only get here recursively if we're followed by identifiers.
883      if (recursive) Out << 'N';
884
885      // This seems to do everything we want.  It's not really
886      // sanctioned for a substituted template parameter, though.
887      mangleType(QualType(type, 0));
888
889      // We never want to print 'E' directly after an unresolved-type,
890      // so we return directly.
891      return;
892
893    case Type::Typedef:
894      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
895      break;
896
897    case Type::UnresolvedUsing:
898      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
899                         ->getIdentifier());
900      break;
901
902    case Type::Record:
903      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
904      break;
905
906    case Type::TemplateSpecialization: {
907      const TemplateSpecializationType *tst
908        = cast<TemplateSpecializationType>(type);
909      TemplateName name = tst->getTemplateName();
910      switch (name.getKind()) {
911      case TemplateName::Template:
912      case TemplateName::QualifiedTemplate: {
913        TemplateDecl *temp = name.getAsTemplateDecl();
914
915        // If the base is a template template parameter, this is an
916        // unresolved type.
917        assert(temp && "no template for template specialization type");
918        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
919
920        mangleSourceName(temp->getIdentifier());
921        break;
922      }
923
924      case TemplateName::OverloadedTemplate:
925      case TemplateName::DependentTemplate:
926        llvm_unreachable("invalid base for a template specialization type");
927
928      case TemplateName::SubstTemplateTemplateParm: {
929        SubstTemplateTemplateParmStorage *subst
930          = name.getAsSubstTemplateTemplateParm();
931        mangleExistingSubstitution(subst->getReplacement());
932        break;
933      }
934
935      case TemplateName::SubstTemplateTemplateParmPack: {
936        // FIXME: not clear how to mangle this!
937        // template <template <class U> class T...> class A {
938        //   template <class U...> void foo(decltype(T<U>::foo) x...);
939        // };
940        Out << "_SUBSTPACK_";
941        break;
942      }
943      }
944
945      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
946      break;
947    }
948
949    case Type::InjectedClassName:
950      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
951                         ->getIdentifier());
952      break;
953
954    case Type::DependentName:
955      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
956      break;
957
958    case Type::DependentTemplateSpecialization: {
959      const DependentTemplateSpecializationType *tst
960        = cast<DependentTemplateSpecializationType>(type);
961      mangleSourceName(tst->getIdentifier());
962      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
963      break;
964    }
965    }
966    break;
967  }
968
969  case NestedNameSpecifier::Identifier:
970    // Member expressions can have these without prefixes.
971    if (qualifier->getPrefix()) {
972      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
973                             /*recursive*/ true);
974    } else if (firstQualifierLookup) {
975
976      // Try to make a proper qualifier out of the lookup result, and
977      // then just recurse on that.
978      NestedNameSpecifier *newQualifier;
979      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
980        QualType type = getASTContext().getTypeDeclType(typeDecl);
981
982        // Pretend we had a different nested name specifier.
983        newQualifier = NestedNameSpecifier::Create(getASTContext(),
984                                                   /*prefix*/ 0,
985                                                   /*template*/ false,
986                                                   type.getTypePtr());
987      } else if (NamespaceDecl *nspace =
988                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
989        newQualifier = NestedNameSpecifier::Create(getASTContext(),
990                                                   /*prefix*/ 0,
991                                                   nspace);
992      } else if (NamespaceAliasDecl *alias =
993                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
994        newQualifier = NestedNameSpecifier::Create(getASTContext(),
995                                                   /*prefix*/ 0,
996                                                   alias);
997      } else {
998        // No sensible mangling to do here.
999        newQualifier = 0;
1000      }
1001
1002      if (newQualifier)
1003        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1004
1005    } else {
1006      Out << "sr";
1007    }
1008
1009    mangleSourceName(qualifier->getAsIdentifier());
1010    break;
1011  }
1012
1013  // If this was the innermost part of the NNS, and we fell out to
1014  // here, append an 'E'.
1015  if (!recursive)
1016    Out << 'E';
1017}
1018
1019/// Mangle an unresolved-name, which is generally used for names which
1020/// weren't resolved to specific entities.
1021void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1022                                          NamedDecl *firstQualifierLookup,
1023                                          DeclarationName name,
1024                                          unsigned knownArity) {
1025  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1026  mangleUnqualifiedName(0, name, knownArity);
1027}
1028
1029static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1030  assert(RD->isAnonymousStructOrUnion() &&
1031         "Expected anonymous struct or union!");
1032
1033  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1034       I != E; ++I) {
1035    if (I->getIdentifier())
1036      return *I;
1037
1038    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1039      if (const FieldDecl *NamedDataMember =
1040          FindFirstNamedDataMember(RT->getDecl()))
1041        return NamedDataMember;
1042    }
1043
1044  // We didn't find a named data member.
1045  return 0;
1046}
1047
1048void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1049                                           DeclarationName Name,
1050                                           unsigned KnownArity) {
1051  //  <unqualified-name> ::= <operator-name>
1052  //                     ::= <ctor-dtor-name>
1053  //                     ::= <source-name>
1054  switch (Name.getNameKind()) {
1055  case DeclarationName::Identifier: {
1056    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1057      // We must avoid conflicts between internally- and externally-
1058      // linked variable and function declaration names in the same TU:
1059      //   void test() { extern void foo(); }
1060      //   static void foo();
1061      // This naming convention is the same as that followed by GCC,
1062      // though it shouldn't actually matter.
1063      if (ND && ND->getLinkage() == InternalLinkage &&
1064          getEffectiveDeclContext(ND)->isFileContext())
1065        Out << 'L';
1066
1067      mangleSourceName(II);
1068      break;
1069    }
1070
1071    // Otherwise, an anonymous entity.  We must have a declaration.
1072    assert(ND && "mangling empty name without declaration");
1073
1074    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1075      if (NS->isAnonymousNamespace()) {
1076        // This is how gcc mangles these names.
1077        Out << "12_GLOBAL__N_1";
1078        break;
1079      }
1080    }
1081
1082    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1083      // We must have an anonymous union or struct declaration.
1084      const RecordDecl *RD =
1085        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1086
1087      // Itanium C++ ABI 5.1.2:
1088      //
1089      //   For the purposes of mangling, the name of an anonymous union is
1090      //   considered to be the name of the first named data member found by a
1091      //   pre-order, depth-first, declaration-order walk of the data members of
1092      //   the anonymous union. If there is no such data member (i.e., if all of
1093      //   the data members in the union are unnamed), then there is no way for
1094      //   a program to refer to the anonymous union, and there is therefore no
1095      //   need to mangle its name.
1096      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1097
1098      // It's actually possible for various reasons for us to get here
1099      // with an empty anonymous struct / union.  Fortunately, it
1100      // doesn't really matter what name we generate.
1101      if (!FD) break;
1102      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1103
1104      mangleSourceName(FD->getIdentifier());
1105      break;
1106    }
1107
1108    // We must have an anonymous struct.
1109    const TagDecl *TD = cast<TagDecl>(ND);
1110    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1111      assert(TD->getDeclContext() == D->getDeclContext() &&
1112             "Typedef should not be in another decl context!");
1113      assert(D->getDeclName().getAsIdentifierInfo() &&
1114             "Typedef was not named!");
1115      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1116      break;
1117    }
1118
1119    // <unnamed-type-name> ::= <closure-type-name>
1120    //
1121    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1122    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1123    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1124      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1125        mangleLambda(Record);
1126        break;
1127      }
1128    }
1129
1130    // Get a unique id for the anonymous struct.
1131    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1132
1133    // Mangle it as a source name in the form
1134    // [n] $_<id>
1135    // where n is the length of the string.
1136    SmallString<8> Str;
1137    Str += "$_";
1138    Str += llvm::utostr(AnonStructId);
1139
1140    Out << Str.size();
1141    Out << Str.str();
1142    break;
1143  }
1144
1145  case DeclarationName::ObjCZeroArgSelector:
1146  case DeclarationName::ObjCOneArgSelector:
1147  case DeclarationName::ObjCMultiArgSelector:
1148    llvm_unreachable("Can't mangle Objective-C selector names here!");
1149
1150  case DeclarationName::CXXConstructorName:
1151    if (ND == Structor)
1152      // If the named decl is the C++ constructor we're mangling, use the type
1153      // we were given.
1154      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1155    else
1156      // Otherwise, use the complete constructor name. This is relevant if a
1157      // class with a constructor is declared within a constructor.
1158      mangleCXXCtorType(Ctor_Complete);
1159    break;
1160
1161  case DeclarationName::CXXDestructorName:
1162    if (ND == Structor)
1163      // If the named decl is the C++ destructor we're mangling, use the type we
1164      // were given.
1165      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1166    else
1167      // Otherwise, use the complete destructor name. This is relevant if a
1168      // class with a destructor is declared within a destructor.
1169      mangleCXXDtorType(Dtor_Complete);
1170    break;
1171
1172  case DeclarationName::CXXConversionFunctionName:
1173    // <operator-name> ::= cv <type>    # (cast)
1174    Out << "cv";
1175    mangleType(Name.getCXXNameType());
1176    break;
1177
1178  case DeclarationName::CXXOperatorName: {
1179    unsigned Arity;
1180    if (ND) {
1181      Arity = cast<FunctionDecl>(ND)->getNumParams();
1182
1183      // If we have a C++ member function, we need to include the 'this' pointer.
1184      // FIXME: This does not make sense for operators that are static, but their
1185      // names stay the same regardless of the arity (operator new for instance).
1186      if (isa<CXXMethodDecl>(ND))
1187        Arity++;
1188    } else
1189      Arity = KnownArity;
1190
1191    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1192    break;
1193  }
1194
1195  case DeclarationName::CXXLiteralOperatorName:
1196    // FIXME: This mangling is not yet official.
1197    Out << "li";
1198    mangleSourceName(Name.getCXXLiteralIdentifier());
1199    break;
1200
1201  case DeclarationName::CXXUsingDirective:
1202    llvm_unreachable("Can't mangle a using directive name!");
1203  }
1204}
1205
1206void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1207  // <source-name> ::= <positive length number> <identifier>
1208  // <number> ::= [n] <non-negative decimal integer>
1209  // <identifier> ::= <unqualified source code identifier>
1210  Out << II->getLength() << II->getName();
1211}
1212
1213void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1214                                      const DeclContext *DC,
1215                                      bool NoFunction) {
1216  // <nested-name>
1217  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1218  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1219  //       <template-args> E
1220
1221  Out << 'N';
1222  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1223    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1224    mangleRefQualifier(Method->getRefQualifier());
1225  }
1226
1227  // Check if we have a template.
1228  const TemplateArgumentList *TemplateArgs = 0;
1229  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1230    mangleTemplatePrefix(TD);
1231    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1232    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1233  }
1234  else {
1235    manglePrefix(DC, NoFunction);
1236    mangleUnqualifiedName(ND);
1237  }
1238
1239  Out << 'E';
1240}
1241void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1242                                      const TemplateArgument *TemplateArgs,
1243                                      unsigned NumTemplateArgs) {
1244  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1245
1246  Out << 'N';
1247
1248  mangleTemplatePrefix(TD);
1249  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1250  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1251
1252  Out << 'E';
1253}
1254
1255void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1256  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1257  //              := Z <function encoding> E s [<discriminator>]
1258  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1259  //                 _ <entity name>
1260  // <discriminator> := _ <non-negative number>
1261  const DeclContext *DC = getEffectiveDeclContext(ND);
1262  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1263    // Don't add objc method name mangling to locally declared function
1264    mangleUnqualifiedName(ND);
1265    return;
1266  }
1267
1268  Out << 'Z';
1269
1270  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1271   mangleObjCMethodName(MD);
1272  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1273    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1274    Out << 'E';
1275
1276    // The parameter number is omitted for the last parameter, 0 for the
1277    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1278    // <entity name> will of course contain a <closure-type-name>: Its
1279    // numbering will be local to the particular argument in which it appears
1280    // -- other default arguments do not affect its encoding.
1281    bool SkipDiscriminator = false;
1282    if (RD->isLambda()) {
1283      if (const ParmVarDecl *Parm
1284                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1285        if (const FunctionDecl *Func
1286              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1287          Out << 'd';
1288          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1289          if (Num > 1)
1290            mangleNumber(Num - 2);
1291          Out << '_';
1292          SkipDiscriminator = true;
1293        }
1294      }
1295    }
1296
1297    // Mangle the name relative to the closest enclosing function.
1298    if (ND == RD) // equality ok because RD derived from ND above
1299      mangleUnqualifiedName(ND);
1300    else
1301      mangleNestedName(ND, DC, true /*NoFunction*/);
1302
1303    if (!SkipDiscriminator) {
1304      unsigned disc;
1305      if (Context.getNextDiscriminator(RD, disc)) {
1306        if (disc < 10)
1307          Out << '_' << disc;
1308        else
1309          Out << "__" << disc << '_';
1310      }
1311    }
1312
1313    return;
1314  }
1315  else
1316    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1317
1318  Out << 'E';
1319  mangleUnqualifiedName(ND);
1320}
1321
1322void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1323  // If the context of a closure type is an initializer for a class member
1324  // (static or nonstatic), it is encoded in a qualified name with a final
1325  // <prefix> of the form:
1326  //
1327  //   <data-member-prefix> := <member source-name> M
1328  //
1329  // Technically, the data-member-prefix is part of the <prefix>. However,
1330  // since a closure type will always be mangled with a prefix, it's easier
1331  // to emit that last part of the prefix here.
1332  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1333    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1334        Context->getDeclContext()->isRecord()) {
1335      if (const IdentifierInfo *Name
1336            = cast<NamedDecl>(Context)->getIdentifier()) {
1337        mangleSourceName(Name);
1338        Out << 'M';
1339      }
1340    }
1341  }
1342
1343  Out << "Ul";
1344  DeclarationName Name
1345    = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1346  const FunctionProtoType *Proto
1347    = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1348        getAs<FunctionProtoType>();
1349  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1350  Out << "E";
1351
1352  // The number is omitted for the first closure type with a given
1353  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1354  // (in lexical order) with that same <lambda-sig> and context.
1355  //
1356  // The AST keeps track of the number for us.
1357  unsigned Number = Lambda->getLambdaManglingNumber();
1358  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1359  if (Number > 1)
1360    mangleNumber(Number - 2);
1361  Out << '_';
1362}
1363
1364void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1365  switch (qualifier->getKind()) {
1366  case NestedNameSpecifier::Global:
1367    // nothing
1368    return;
1369
1370  case NestedNameSpecifier::Namespace:
1371    mangleName(qualifier->getAsNamespace());
1372    return;
1373
1374  case NestedNameSpecifier::NamespaceAlias:
1375    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1376    return;
1377
1378  case NestedNameSpecifier::TypeSpec:
1379  case NestedNameSpecifier::TypeSpecWithTemplate:
1380    manglePrefix(QualType(qualifier->getAsType(), 0));
1381    return;
1382
1383  case NestedNameSpecifier::Identifier:
1384    // Member expressions can have these without prefixes, but that
1385    // should end up in mangleUnresolvedPrefix instead.
1386    assert(qualifier->getPrefix());
1387    manglePrefix(qualifier->getPrefix());
1388
1389    mangleSourceName(qualifier->getAsIdentifier());
1390    return;
1391  }
1392
1393  llvm_unreachable("unexpected nested name specifier");
1394}
1395
1396void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1397  //  <prefix> ::= <prefix> <unqualified-name>
1398  //           ::= <template-prefix> <template-args>
1399  //           ::= <template-param>
1400  //           ::= # empty
1401  //           ::= <substitution>
1402
1403  DC = IgnoreLinkageSpecDecls(DC);
1404
1405  if (DC->isTranslationUnit())
1406    return;
1407
1408  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1409    manglePrefix(getEffectiveParentContext(DC), NoFunction);
1410    SmallString<64> Name;
1411    llvm::raw_svector_ostream NameStream(Name);
1412    Context.mangleBlock(Block, NameStream);
1413    NameStream.flush();
1414    Out << Name.size() << Name;
1415    return;
1416  }
1417
1418  const NamedDecl *ND = cast<NamedDecl>(DC);
1419  if (mangleSubstitution(ND))
1420    return;
1421
1422  // Check if we have a template.
1423  const TemplateArgumentList *TemplateArgs = 0;
1424  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1425    mangleTemplatePrefix(TD);
1426    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1427    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1428  }
1429  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1430    return;
1431  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1432    mangleObjCMethodName(Method);
1433  else {
1434    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1435    mangleUnqualifiedName(ND);
1436  }
1437
1438  addSubstitution(ND);
1439}
1440
1441void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1442  // <template-prefix> ::= <prefix> <template unqualified-name>
1443  //                   ::= <template-param>
1444  //                   ::= <substitution>
1445  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1446    return mangleTemplatePrefix(TD);
1447
1448  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1449    manglePrefix(Qualified->getQualifier());
1450
1451  if (OverloadedTemplateStorage *Overloaded
1452                                      = Template.getAsOverloadedTemplate()) {
1453    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1454                          UnknownArity);
1455    return;
1456  }
1457
1458  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1459  assert(Dependent && "Unknown template name kind?");
1460  manglePrefix(Dependent->getQualifier());
1461  mangleUnscopedTemplateName(Template);
1462}
1463
1464void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1465  // <template-prefix> ::= <prefix> <template unqualified-name>
1466  //                   ::= <template-param>
1467  //                   ::= <substitution>
1468  // <template-template-param> ::= <template-param>
1469  //                               <substitution>
1470
1471  if (mangleSubstitution(ND))
1472    return;
1473
1474  // <template-template-param> ::= <template-param>
1475  if (const TemplateTemplateParmDecl *TTP
1476                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1477    mangleTemplateParameter(TTP->getIndex());
1478    return;
1479  }
1480
1481  manglePrefix(getEffectiveDeclContext(ND));
1482  mangleUnqualifiedName(ND->getTemplatedDecl());
1483  addSubstitution(ND);
1484}
1485
1486/// Mangles a template name under the production <type>.  Required for
1487/// template template arguments.
1488///   <type> ::= <class-enum-type>
1489///          ::= <template-param>
1490///          ::= <substitution>
1491void CXXNameMangler::mangleType(TemplateName TN) {
1492  if (mangleSubstitution(TN))
1493    return;
1494
1495  TemplateDecl *TD = 0;
1496
1497  switch (TN.getKind()) {
1498  case TemplateName::QualifiedTemplate:
1499    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1500    goto HaveDecl;
1501
1502  case TemplateName::Template:
1503    TD = TN.getAsTemplateDecl();
1504    goto HaveDecl;
1505
1506  HaveDecl:
1507    if (isa<TemplateTemplateParmDecl>(TD))
1508      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1509    else
1510      mangleName(TD);
1511    break;
1512
1513  case TemplateName::OverloadedTemplate:
1514    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1515
1516  case TemplateName::DependentTemplate: {
1517    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1518    assert(Dependent->isIdentifier());
1519
1520    // <class-enum-type> ::= <name>
1521    // <name> ::= <nested-name>
1522    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1523    mangleSourceName(Dependent->getIdentifier());
1524    break;
1525  }
1526
1527  case TemplateName::SubstTemplateTemplateParm: {
1528    // Substituted template parameters are mangled as the substituted
1529    // template.  This will check for the substitution twice, which is
1530    // fine, but we have to return early so that we don't try to *add*
1531    // the substitution twice.
1532    SubstTemplateTemplateParmStorage *subst
1533      = TN.getAsSubstTemplateTemplateParm();
1534    mangleType(subst->getReplacement());
1535    return;
1536  }
1537
1538  case TemplateName::SubstTemplateTemplateParmPack: {
1539    // FIXME: not clear how to mangle this!
1540    // template <template <class> class T...> class A {
1541    //   template <template <class> class U...> void foo(B<T,U> x...);
1542    // };
1543    Out << "_SUBSTPACK_";
1544    break;
1545  }
1546  }
1547
1548  addSubstitution(TN);
1549}
1550
1551void
1552CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1553  switch (OO) {
1554  // <operator-name> ::= nw     # new
1555  case OO_New: Out << "nw"; break;
1556  //              ::= na        # new[]
1557  case OO_Array_New: Out << "na"; break;
1558  //              ::= dl        # delete
1559  case OO_Delete: Out << "dl"; break;
1560  //              ::= da        # delete[]
1561  case OO_Array_Delete: Out << "da"; break;
1562  //              ::= ps        # + (unary)
1563  //              ::= pl        # + (binary or unknown)
1564  case OO_Plus:
1565    Out << (Arity == 1? "ps" : "pl"); break;
1566  //              ::= ng        # - (unary)
1567  //              ::= mi        # - (binary or unknown)
1568  case OO_Minus:
1569    Out << (Arity == 1? "ng" : "mi"); break;
1570  //              ::= ad        # & (unary)
1571  //              ::= an        # & (binary or unknown)
1572  case OO_Amp:
1573    Out << (Arity == 1? "ad" : "an"); break;
1574  //              ::= de        # * (unary)
1575  //              ::= ml        # * (binary or unknown)
1576  case OO_Star:
1577    // Use binary when unknown.
1578    Out << (Arity == 1? "de" : "ml"); break;
1579  //              ::= co        # ~
1580  case OO_Tilde: Out << "co"; break;
1581  //              ::= dv        # /
1582  case OO_Slash: Out << "dv"; break;
1583  //              ::= rm        # %
1584  case OO_Percent: Out << "rm"; break;
1585  //              ::= or        # |
1586  case OO_Pipe: Out << "or"; break;
1587  //              ::= eo        # ^
1588  case OO_Caret: Out << "eo"; break;
1589  //              ::= aS        # =
1590  case OO_Equal: Out << "aS"; break;
1591  //              ::= pL        # +=
1592  case OO_PlusEqual: Out << "pL"; break;
1593  //              ::= mI        # -=
1594  case OO_MinusEqual: Out << "mI"; break;
1595  //              ::= mL        # *=
1596  case OO_StarEqual: Out << "mL"; break;
1597  //              ::= dV        # /=
1598  case OO_SlashEqual: Out << "dV"; break;
1599  //              ::= rM        # %=
1600  case OO_PercentEqual: Out << "rM"; break;
1601  //              ::= aN        # &=
1602  case OO_AmpEqual: Out << "aN"; break;
1603  //              ::= oR        # |=
1604  case OO_PipeEqual: Out << "oR"; break;
1605  //              ::= eO        # ^=
1606  case OO_CaretEqual: Out << "eO"; break;
1607  //              ::= ls        # <<
1608  case OO_LessLess: Out << "ls"; break;
1609  //              ::= rs        # >>
1610  case OO_GreaterGreater: Out << "rs"; break;
1611  //              ::= lS        # <<=
1612  case OO_LessLessEqual: Out << "lS"; break;
1613  //              ::= rS        # >>=
1614  case OO_GreaterGreaterEqual: Out << "rS"; break;
1615  //              ::= eq        # ==
1616  case OO_EqualEqual: Out << "eq"; break;
1617  //              ::= ne        # !=
1618  case OO_ExclaimEqual: Out << "ne"; break;
1619  //              ::= lt        # <
1620  case OO_Less: Out << "lt"; break;
1621  //              ::= gt        # >
1622  case OO_Greater: Out << "gt"; break;
1623  //              ::= le        # <=
1624  case OO_LessEqual: Out << "le"; break;
1625  //              ::= ge        # >=
1626  case OO_GreaterEqual: Out << "ge"; break;
1627  //              ::= nt        # !
1628  case OO_Exclaim: Out << "nt"; break;
1629  //              ::= aa        # &&
1630  case OO_AmpAmp: Out << "aa"; break;
1631  //              ::= oo        # ||
1632  case OO_PipePipe: Out << "oo"; break;
1633  //              ::= pp        # ++
1634  case OO_PlusPlus: Out << "pp"; break;
1635  //              ::= mm        # --
1636  case OO_MinusMinus: Out << "mm"; break;
1637  //              ::= cm        # ,
1638  case OO_Comma: Out << "cm"; break;
1639  //              ::= pm        # ->*
1640  case OO_ArrowStar: Out << "pm"; break;
1641  //              ::= pt        # ->
1642  case OO_Arrow: Out << "pt"; break;
1643  //              ::= cl        # ()
1644  case OO_Call: Out << "cl"; break;
1645  //              ::= ix        # []
1646  case OO_Subscript: Out << "ix"; break;
1647
1648  //              ::= qu        # ?
1649  // The conditional operator can't be overloaded, but we still handle it when
1650  // mangling expressions.
1651  case OO_Conditional: Out << "qu"; break;
1652
1653  case OO_None:
1654  case NUM_OVERLOADED_OPERATORS:
1655    llvm_unreachable("Not an overloaded operator");
1656  }
1657}
1658
1659void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1660  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1661  if (Quals.hasRestrict())
1662    Out << 'r';
1663  if (Quals.hasVolatile())
1664    Out << 'V';
1665  if (Quals.hasConst())
1666    Out << 'K';
1667
1668  if (Quals.hasAddressSpace()) {
1669    // Extension:
1670    //
1671    //   <type> ::= U <address-space-number>
1672    //
1673    // where <address-space-number> is a source name consisting of 'AS'
1674    // followed by the address space <number>.
1675    SmallString<64> ASString;
1676    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1677    Out << 'U' << ASString.size() << ASString;
1678  }
1679
1680  StringRef LifetimeName;
1681  switch (Quals.getObjCLifetime()) {
1682  // Objective-C ARC Extension:
1683  //
1684  //   <type> ::= U "__strong"
1685  //   <type> ::= U "__weak"
1686  //   <type> ::= U "__autoreleasing"
1687  case Qualifiers::OCL_None:
1688    break;
1689
1690  case Qualifiers::OCL_Weak:
1691    LifetimeName = "__weak";
1692    break;
1693
1694  case Qualifiers::OCL_Strong:
1695    LifetimeName = "__strong";
1696    break;
1697
1698  case Qualifiers::OCL_Autoreleasing:
1699    LifetimeName = "__autoreleasing";
1700    break;
1701
1702  case Qualifiers::OCL_ExplicitNone:
1703    // The __unsafe_unretained qualifier is *not* mangled, so that
1704    // __unsafe_unretained types in ARC produce the same manglings as the
1705    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1706    // better ABI compatibility.
1707    //
1708    // It's safe to do this because unqualified 'id' won't show up
1709    // in any type signatures that need to be mangled.
1710    break;
1711  }
1712  if (!LifetimeName.empty())
1713    Out << 'U' << LifetimeName.size() << LifetimeName;
1714}
1715
1716void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1717  // <ref-qualifier> ::= R                # lvalue reference
1718  //                 ::= O                # rvalue-reference
1719  // Proposal to Itanium C++ ABI list on 1/26/11
1720  switch (RefQualifier) {
1721  case RQ_None:
1722    break;
1723
1724  case RQ_LValue:
1725    Out << 'R';
1726    break;
1727
1728  case RQ_RValue:
1729    Out << 'O';
1730    break;
1731  }
1732}
1733
1734void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1735  Context.mangleObjCMethodName(MD, Out);
1736}
1737
1738void CXXNameMangler::mangleType(QualType T) {
1739  // If our type is instantiation-dependent but not dependent, we mangle
1740  // it as it was written in the source, removing any top-level sugar.
1741  // Otherwise, use the canonical type.
1742  //
1743  // FIXME: This is an approximation of the instantiation-dependent name
1744  // mangling rules, since we should really be using the type as written and
1745  // augmented via semantic analysis (i.e., with implicit conversions and
1746  // default template arguments) for any instantiation-dependent type.
1747  // Unfortunately, that requires several changes to our AST:
1748  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1749  //     uniqued, so that we can handle substitutions properly
1750  //   - Default template arguments will need to be represented in the
1751  //     TemplateSpecializationType, since they need to be mangled even though
1752  //     they aren't written.
1753  //   - Conversions on non-type template arguments need to be expressed, since
1754  //     they can affect the mangling of sizeof/alignof.
1755  if (!T->isInstantiationDependentType() || T->isDependentType())
1756    T = T.getCanonicalType();
1757  else {
1758    // Desugar any types that are purely sugar.
1759    do {
1760      // Don't desugar through template specialization types that aren't
1761      // type aliases. We need to mangle the template arguments as written.
1762      if (const TemplateSpecializationType *TST
1763                                      = dyn_cast<TemplateSpecializationType>(T))
1764        if (!TST->isTypeAlias())
1765          break;
1766
1767      QualType Desugared
1768        = T.getSingleStepDesugaredType(Context.getASTContext());
1769      if (Desugared == T)
1770        break;
1771
1772      T = Desugared;
1773    } while (true);
1774  }
1775  SplitQualType split = T.split();
1776  Qualifiers quals = split.Quals;
1777  const Type *ty = split.Ty;
1778
1779  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1780  if (isSubstitutable && mangleSubstitution(T))
1781    return;
1782
1783  // If we're mangling a qualified array type, push the qualifiers to
1784  // the element type.
1785  if (quals && isa<ArrayType>(T)) {
1786    ty = Context.getASTContext().getAsArrayType(T);
1787    quals = Qualifiers();
1788
1789    // Note that we don't update T: we want to add the
1790    // substitution at the original type.
1791  }
1792
1793  if (quals) {
1794    mangleQualifiers(quals);
1795    // Recurse:  even if the qualified type isn't yet substitutable,
1796    // the unqualified type might be.
1797    mangleType(QualType(ty, 0));
1798  } else {
1799    switch (ty->getTypeClass()) {
1800#define ABSTRACT_TYPE(CLASS, PARENT)
1801#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1802    case Type::CLASS: \
1803      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1804      return;
1805#define TYPE(CLASS, PARENT) \
1806    case Type::CLASS: \
1807      mangleType(static_cast<const CLASS##Type*>(ty)); \
1808      break;
1809#include "clang/AST/TypeNodes.def"
1810    }
1811  }
1812
1813  // Add the substitution.
1814  if (isSubstitutable)
1815    addSubstitution(T);
1816}
1817
1818void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1819  if (!mangleStandardSubstitution(ND))
1820    mangleName(ND);
1821}
1822
1823void CXXNameMangler::mangleType(const BuiltinType *T) {
1824  //  <type>         ::= <builtin-type>
1825  //  <builtin-type> ::= v  # void
1826  //                 ::= w  # wchar_t
1827  //                 ::= b  # bool
1828  //                 ::= c  # char
1829  //                 ::= a  # signed char
1830  //                 ::= h  # unsigned char
1831  //                 ::= s  # short
1832  //                 ::= t  # unsigned short
1833  //                 ::= i  # int
1834  //                 ::= j  # unsigned int
1835  //                 ::= l  # long
1836  //                 ::= m  # unsigned long
1837  //                 ::= x  # long long, __int64
1838  //                 ::= y  # unsigned long long, __int64
1839  //                 ::= n  # __int128
1840  // UNSUPPORTED:    ::= o  # unsigned __int128
1841  //                 ::= f  # float
1842  //                 ::= d  # double
1843  //                 ::= e  # long double, __float80
1844  // UNSUPPORTED:    ::= g  # __float128
1845  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1846  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1847  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1848  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1849  //                 ::= Di # char32_t
1850  //                 ::= Ds # char16_t
1851  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1852  //                 ::= u <source-name>    # vendor extended type
1853  switch (T->getKind()) {
1854  case BuiltinType::Void: Out << 'v'; break;
1855  case BuiltinType::Bool: Out << 'b'; break;
1856  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1857  case BuiltinType::UChar: Out << 'h'; break;
1858  case BuiltinType::UShort: Out << 't'; break;
1859  case BuiltinType::UInt: Out << 'j'; break;
1860  case BuiltinType::ULong: Out << 'm'; break;
1861  case BuiltinType::ULongLong: Out << 'y'; break;
1862  case BuiltinType::UInt128: Out << 'o'; break;
1863  case BuiltinType::SChar: Out << 'a'; break;
1864  case BuiltinType::WChar_S:
1865  case BuiltinType::WChar_U: Out << 'w'; break;
1866  case BuiltinType::Char16: Out << "Ds"; break;
1867  case BuiltinType::Char32: Out << "Di"; break;
1868  case BuiltinType::Short: Out << 's'; break;
1869  case BuiltinType::Int: Out << 'i'; break;
1870  case BuiltinType::Long: Out << 'l'; break;
1871  case BuiltinType::LongLong: Out << 'x'; break;
1872  case BuiltinType::Int128: Out << 'n'; break;
1873  case BuiltinType::Half: Out << "Dh"; break;
1874  case BuiltinType::Float: Out << 'f'; break;
1875  case BuiltinType::Double: Out << 'd'; break;
1876  case BuiltinType::LongDouble: Out << 'e'; break;
1877  case BuiltinType::NullPtr: Out << "Dn"; break;
1878
1879#define BUILTIN_TYPE(Id, SingletonId)
1880#define PLACEHOLDER_TYPE(Id, SingletonId) \
1881  case BuiltinType::Id:
1882#include "clang/AST/BuiltinTypes.def"
1883  case BuiltinType::Dependent:
1884    llvm_unreachable("mangling a placeholder type");
1885  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1886  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1887  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1888  }
1889}
1890
1891// <type>          ::= <function-type>
1892// <function-type> ::= [<CV-qualifiers>] F [Y]
1893//                      <bare-function-type> [<ref-qualifier>] E
1894// (Proposal to cxx-abi-dev, 2012-05-11)
1895void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1896  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1897  // e.g. "const" in "int (A::*)() const".
1898  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1899
1900  Out << 'F';
1901
1902  // FIXME: We don't have enough information in the AST to produce the 'Y'
1903  // encoding for extern "C" function types.
1904  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1905
1906  // Mangle the ref-qualifier, if present.
1907  mangleRefQualifier(T->getRefQualifier());
1908
1909  Out << 'E';
1910}
1911void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1912  llvm_unreachable("Can't mangle K&R function prototypes");
1913}
1914void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1915                                            bool MangleReturnType) {
1916  // We should never be mangling something without a prototype.
1917  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1918
1919  // Record that we're in a function type.  See mangleFunctionParam
1920  // for details on what we're trying to achieve here.
1921  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1922
1923  // <bare-function-type> ::= <signature type>+
1924  if (MangleReturnType) {
1925    FunctionTypeDepth.enterResultType();
1926    mangleType(Proto->getResultType());
1927    FunctionTypeDepth.leaveResultType();
1928  }
1929
1930  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1931    //   <builtin-type> ::= v   # void
1932    Out << 'v';
1933
1934    FunctionTypeDepth.pop(saved);
1935    return;
1936  }
1937
1938  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1939                                         ArgEnd = Proto->arg_type_end();
1940       Arg != ArgEnd; ++Arg)
1941    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1942
1943  FunctionTypeDepth.pop(saved);
1944
1945  // <builtin-type>      ::= z  # ellipsis
1946  if (Proto->isVariadic())
1947    Out << 'z';
1948}
1949
1950// <type>            ::= <class-enum-type>
1951// <class-enum-type> ::= <name>
1952void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1953  mangleName(T->getDecl());
1954}
1955
1956// <type>            ::= <class-enum-type>
1957// <class-enum-type> ::= <name>
1958void CXXNameMangler::mangleType(const EnumType *T) {
1959  mangleType(static_cast<const TagType*>(T));
1960}
1961void CXXNameMangler::mangleType(const RecordType *T) {
1962  mangleType(static_cast<const TagType*>(T));
1963}
1964void CXXNameMangler::mangleType(const TagType *T) {
1965  mangleName(T->getDecl());
1966}
1967
1968// <type>       ::= <array-type>
1969// <array-type> ::= A <positive dimension number> _ <element type>
1970//              ::= A [<dimension expression>] _ <element type>
1971void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1972  Out << 'A' << T->getSize() << '_';
1973  mangleType(T->getElementType());
1974}
1975void CXXNameMangler::mangleType(const VariableArrayType *T) {
1976  Out << 'A';
1977  // decayed vla types (size 0) will just be skipped.
1978  if (T->getSizeExpr())
1979    mangleExpression(T->getSizeExpr());
1980  Out << '_';
1981  mangleType(T->getElementType());
1982}
1983void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1984  Out << 'A';
1985  mangleExpression(T->getSizeExpr());
1986  Out << '_';
1987  mangleType(T->getElementType());
1988}
1989void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1990  Out << "A_";
1991  mangleType(T->getElementType());
1992}
1993
1994// <type>                   ::= <pointer-to-member-type>
1995// <pointer-to-member-type> ::= M <class type> <member type>
1996void CXXNameMangler::mangleType(const MemberPointerType *T) {
1997  Out << 'M';
1998  mangleType(QualType(T->getClass(), 0));
1999  QualType PointeeType = T->getPointeeType();
2000  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2001    mangleType(FPT);
2002
2003    // Itanium C++ ABI 5.1.8:
2004    //
2005    //   The type of a non-static member function is considered to be different,
2006    //   for the purposes of substitution, from the type of a namespace-scope or
2007    //   static member function whose type appears similar. The types of two
2008    //   non-static member functions are considered to be different, for the
2009    //   purposes of substitution, if the functions are members of different
2010    //   classes. In other words, for the purposes of substitution, the class of
2011    //   which the function is a member is considered part of the type of
2012    //   function.
2013
2014    // Given that we already substitute member function pointers as a
2015    // whole, the net effect of this rule is just to unconditionally
2016    // suppress substitution on the function type in a member pointer.
2017    // We increment the SeqID here to emulate adding an entry to the
2018    // substitution table.
2019    ++SeqID;
2020  } else
2021    mangleType(PointeeType);
2022}
2023
2024// <type>           ::= <template-param>
2025void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2026  mangleTemplateParameter(T->getIndex());
2027}
2028
2029// <type>           ::= <template-param>
2030void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2031  // FIXME: not clear how to mangle this!
2032  // template <class T...> class A {
2033  //   template <class U...> void foo(T(*)(U) x...);
2034  // };
2035  Out << "_SUBSTPACK_";
2036}
2037
2038// <type> ::= P <type>   # pointer-to
2039void CXXNameMangler::mangleType(const PointerType *T) {
2040  Out << 'P';
2041  mangleType(T->getPointeeType());
2042}
2043void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2044  Out << 'P';
2045  mangleType(T->getPointeeType());
2046}
2047
2048// <type> ::= R <type>   # reference-to
2049void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2050  Out << 'R';
2051  mangleType(T->getPointeeType());
2052}
2053
2054// <type> ::= O <type>   # rvalue reference-to (C++0x)
2055void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2056  Out << 'O';
2057  mangleType(T->getPointeeType());
2058}
2059
2060// <type> ::= C <type>   # complex pair (C 2000)
2061void CXXNameMangler::mangleType(const ComplexType *T) {
2062  Out << 'C';
2063  mangleType(T->getElementType());
2064}
2065
2066// ARM's ABI for Neon vector types specifies that they should be mangled as
2067// if they are structs (to match ARM's initial implementation).  The
2068// vector type must be one of the special types predefined by ARM.
2069void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2070  QualType EltType = T->getElementType();
2071  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2072  const char *EltName = 0;
2073  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2074    switch (cast<BuiltinType>(EltType)->getKind()) {
2075    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2076    case BuiltinType::Short:     EltName = "poly16_t"; break;
2077    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2078    }
2079  } else {
2080    switch (cast<BuiltinType>(EltType)->getKind()) {
2081    case BuiltinType::SChar:     EltName = "int8_t"; break;
2082    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2083    case BuiltinType::Short:     EltName = "int16_t"; break;
2084    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2085    case BuiltinType::Int:       EltName = "int32_t"; break;
2086    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2087    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2088    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2089    case BuiltinType::Float:     EltName = "float32_t"; break;
2090    default: llvm_unreachable("unexpected Neon vector element type");
2091    }
2092  }
2093  const char *BaseName = 0;
2094  unsigned BitSize = (T->getNumElements() *
2095                      getASTContext().getTypeSize(EltType));
2096  if (BitSize == 64)
2097    BaseName = "__simd64_";
2098  else {
2099    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2100    BaseName = "__simd128_";
2101  }
2102  Out << strlen(BaseName) + strlen(EltName);
2103  Out << BaseName << EltName;
2104}
2105
2106// GNU extension: vector types
2107// <type>                  ::= <vector-type>
2108// <vector-type>           ::= Dv <positive dimension number> _
2109//                                    <extended element type>
2110//                         ::= Dv [<dimension expression>] _ <element type>
2111// <extended element type> ::= <element type>
2112//                         ::= p # AltiVec vector pixel
2113void CXXNameMangler::mangleType(const VectorType *T) {
2114  if ((T->getVectorKind() == VectorType::NeonVector ||
2115       T->getVectorKind() == VectorType::NeonPolyVector)) {
2116    mangleNeonVectorType(T);
2117    return;
2118  }
2119  Out << "Dv" << T->getNumElements() << '_';
2120  if (T->getVectorKind() == VectorType::AltiVecPixel)
2121    Out << 'p';
2122  else if (T->getVectorKind() == VectorType::AltiVecBool)
2123    Out << 'b';
2124  else
2125    mangleType(T->getElementType());
2126}
2127void CXXNameMangler::mangleType(const ExtVectorType *T) {
2128  mangleType(static_cast<const VectorType*>(T));
2129}
2130void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2131  Out << "Dv";
2132  mangleExpression(T->getSizeExpr());
2133  Out << '_';
2134  mangleType(T->getElementType());
2135}
2136
2137void CXXNameMangler::mangleType(const PackExpansionType *T) {
2138  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2139  Out << "Dp";
2140  mangleType(T->getPattern());
2141}
2142
2143void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2144  mangleSourceName(T->getDecl()->getIdentifier());
2145}
2146
2147void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2148  // We don't allow overloading by different protocol qualification,
2149  // so mangling them isn't necessary.
2150  mangleType(T->getBaseType());
2151}
2152
2153void CXXNameMangler::mangleType(const BlockPointerType *T) {
2154  Out << "U13block_pointer";
2155  mangleType(T->getPointeeType());
2156}
2157
2158void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2159  // Mangle injected class name types as if the user had written the
2160  // specialization out fully.  It may not actually be possible to see
2161  // this mangling, though.
2162  mangleType(T->getInjectedSpecializationType());
2163}
2164
2165void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2166  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2167    mangleName(TD, T->getArgs(), T->getNumArgs());
2168  } else {
2169    if (mangleSubstitution(QualType(T, 0)))
2170      return;
2171
2172    mangleTemplatePrefix(T->getTemplateName());
2173
2174    // FIXME: GCC does not appear to mangle the template arguments when
2175    // the template in question is a dependent template name. Should we
2176    // emulate that badness?
2177    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2178    addSubstitution(QualType(T, 0));
2179  }
2180}
2181
2182void CXXNameMangler::mangleType(const DependentNameType *T) {
2183  // Typename types are always nested
2184  Out << 'N';
2185  manglePrefix(T->getQualifier());
2186  mangleSourceName(T->getIdentifier());
2187  Out << 'E';
2188}
2189
2190void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2191  // Dependently-scoped template types are nested if they have a prefix.
2192  Out << 'N';
2193
2194  // TODO: avoid making this TemplateName.
2195  TemplateName Prefix =
2196    getASTContext().getDependentTemplateName(T->getQualifier(),
2197                                             T->getIdentifier());
2198  mangleTemplatePrefix(Prefix);
2199
2200  // FIXME: GCC does not appear to mangle the template arguments when
2201  // the template in question is a dependent template name. Should we
2202  // emulate that badness?
2203  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2204  Out << 'E';
2205}
2206
2207void CXXNameMangler::mangleType(const TypeOfType *T) {
2208  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2209  // "extension with parameters" mangling.
2210  Out << "u6typeof";
2211}
2212
2213void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2214  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2215  // "extension with parameters" mangling.
2216  Out << "u6typeof";
2217}
2218
2219void CXXNameMangler::mangleType(const DecltypeType *T) {
2220  Expr *E = T->getUnderlyingExpr();
2221
2222  // type ::= Dt <expression> E  # decltype of an id-expression
2223  //                             #   or class member access
2224  //      ::= DT <expression> E  # decltype of an expression
2225
2226  // This purports to be an exhaustive list of id-expressions and
2227  // class member accesses.  Note that we do not ignore parentheses;
2228  // parentheses change the semantics of decltype for these
2229  // expressions (and cause the mangler to use the other form).
2230  if (isa<DeclRefExpr>(E) ||
2231      isa<MemberExpr>(E) ||
2232      isa<UnresolvedLookupExpr>(E) ||
2233      isa<DependentScopeDeclRefExpr>(E) ||
2234      isa<CXXDependentScopeMemberExpr>(E) ||
2235      isa<UnresolvedMemberExpr>(E))
2236    Out << "Dt";
2237  else
2238    Out << "DT";
2239  mangleExpression(E);
2240  Out << 'E';
2241}
2242
2243void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2244  // If this is dependent, we need to record that. If not, we simply
2245  // mangle it as the underlying type since they are equivalent.
2246  if (T->isDependentType()) {
2247    Out << 'U';
2248
2249    switch (T->getUTTKind()) {
2250      case UnaryTransformType::EnumUnderlyingType:
2251        Out << "3eut";
2252        break;
2253    }
2254  }
2255
2256  mangleType(T->getUnderlyingType());
2257}
2258
2259void CXXNameMangler::mangleType(const AutoType *T) {
2260  QualType D = T->getDeducedType();
2261  // <builtin-type> ::= Da  # dependent auto
2262  if (D.isNull())
2263    Out << "Da";
2264  else
2265    mangleType(D);
2266}
2267
2268void CXXNameMangler::mangleType(const AtomicType *T) {
2269  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2270  // (Until there's a standardized mangling...)
2271  Out << "U7_Atomic";
2272  mangleType(T->getValueType());
2273}
2274
2275void CXXNameMangler::mangleIntegerLiteral(QualType T,
2276                                          const llvm::APSInt &Value) {
2277  //  <expr-primary> ::= L <type> <value number> E # integer literal
2278  Out << 'L';
2279
2280  mangleType(T);
2281  if (T->isBooleanType()) {
2282    // Boolean values are encoded as 0/1.
2283    Out << (Value.getBoolValue() ? '1' : '0');
2284  } else {
2285    mangleNumber(Value);
2286  }
2287  Out << 'E';
2288
2289}
2290
2291/// Mangles a member expression.
2292void CXXNameMangler::mangleMemberExpr(const Expr *base,
2293                                      bool isArrow,
2294                                      NestedNameSpecifier *qualifier,
2295                                      NamedDecl *firstQualifierLookup,
2296                                      DeclarationName member,
2297                                      unsigned arity) {
2298  // <expression> ::= dt <expression> <unresolved-name>
2299  //              ::= pt <expression> <unresolved-name>
2300  if (base) {
2301    if (base->isImplicitCXXThis()) {
2302      // Note: GCC mangles member expressions to the implicit 'this' as
2303      // *this., whereas we represent them as this->. The Itanium C++ ABI
2304      // does not specify anything here, so we follow GCC.
2305      Out << "dtdefpT";
2306    } else {
2307      Out << (isArrow ? "pt" : "dt");
2308      mangleExpression(base);
2309    }
2310  }
2311  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2312}
2313
2314/// Look at the callee of the given call expression and determine if
2315/// it's a parenthesized id-expression which would have triggered ADL
2316/// otherwise.
2317static bool isParenthesizedADLCallee(const CallExpr *call) {
2318  const Expr *callee = call->getCallee();
2319  const Expr *fn = callee->IgnoreParens();
2320
2321  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2322  // too, but for those to appear in the callee, it would have to be
2323  // parenthesized.
2324  if (callee == fn) return false;
2325
2326  // Must be an unresolved lookup.
2327  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2328  if (!lookup) return false;
2329
2330  assert(!lookup->requiresADL());
2331
2332  // Must be an unqualified lookup.
2333  if (lookup->getQualifier()) return false;
2334
2335  // Must not have found a class member.  Note that if one is a class
2336  // member, they're all class members.
2337  if (lookup->getNumDecls() > 0 &&
2338      (*lookup->decls_begin())->isCXXClassMember())
2339    return false;
2340
2341  // Otherwise, ADL would have been triggered.
2342  return true;
2343}
2344
2345void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2346  // <expression> ::= <unary operator-name> <expression>
2347  //              ::= <binary operator-name> <expression> <expression>
2348  //              ::= <trinary operator-name> <expression> <expression> <expression>
2349  //              ::= cv <type> expression           # conversion with one argument
2350  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2351  //              ::= st <type>                      # sizeof (a type)
2352  //              ::= at <type>                      # alignof (a type)
2353  //              ::= <template-param>
2354  //              ::= <function-param>
2355  //              ::= sr <type> <unqualified-name>                   # dependent name
2356  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2357  //              ::= ds <expression> <expression>                   # expr.*expr
2358  //              ::= sZ <template-param>                            # size of a parameter pack
2359  //              ::= sZ <function-param>    # size of a function parameter pack
2360  //              ::= <expr-primary>
2361  // <expr-primary> ::= L <type> <value number> E    # integer literal
2362  //                ::= L <type <value float> E      # floating literal
2363  //                ::= L <mangled-name> E           # external name
2364  //                ::= fpT                          # 'this' expression
2365  QualType ImplicitlyConvertedToType;
2366
2367recurse:
2368  switch (E->getStmtClass()) {
2369  case Expr::NoStmtClass:
2370#define ABSTRACT_STMT(Type)
2371#define EXPR(Type, Base)
2372#define STMT(Type, Base) \
2373  case Expr::Type##Class:
2374#include "clang/AST/StmtNodes.inc"
2375    // fallthrough
2376
2377  // These all can only appear in local or variable-initialization
2378  // contexts and so should never appear in a mangling.
2379  case Expr::AddrLabelExprClass:
2380  case Expr::DesignatedInitExprClass:
2381  case Expr::ImplicitValueInitExprClass:
2382  case Expr::ParenListExprClass:
2383  case Expr::LambdaExprClass:
2384    llvm_unreachable("unexpected statement kind");
2385
2386  // FIXME: invent manglings for all these.
2387  case Expr::BlockExprClass:
2388  case Expr::CXXPseudoDestructorExprClass:
2389  case Expr::ChooseExprClass:
2390  case Expr::CompoundLiteralExprClass:
2391  case Expr::ExtVectorElementExprClass:
2392  case Expr::GenericSelectionExprClass:
2393  case Expr::ObjCEncodeExprClass:
2394  case Expr::ObjCIsaExprClass:
2395  case Expr::ObjCIvarRefExprClass:
2396  case Expr::ObjCMessageExprClass:
2397  case Expr::ObjCPropertyRefExprClass:
2398  case Expr::ObjCProtocolExprClass:
2399  case Expr::ObjCSelectorExprClass:
2400  case Expr::ObjCStringLiteralClass:
2401  case Expr::ObjCBoxedExprClass:
2402  case Expr::ObjCArrayLiteralClass:
2403  case Expr::ObjCDictionaryLiteralClass:
2404  case Expr::ObjCSubscriptRefExprClass:
2405  case Expr::ObjCIndirectCopyRestoreExprClass:
2406  case Expr::OffsetOfExprClass:
2407  case Expr::PredefinedExprClass:
2408  case Expr::ShuffleVectorExprClass:
2409  case Expr::StmtExprClass:
2410  case Expr::UnaryTypeTraitExprClass:
2411  case Expr::BinaryTypeTraitExprClass:
2412  case Expr::TypeTraitExprClass:
2413  case Expr::ArrayTypeTraitExprClass:
2414  case Expr::ExpressionTraitExprClass:
2415  case Expr::VAArgExprClass:
2416  case Expr::CXXUuidofExprClass:
2417  case Expr::CXXNoexceptExprClass:
2418  case Expr::CUDAKernelCallExprClass:
2419  case Expr::AsTypeExprClass:
2420  case Expr::PseudoObjectExprClass:
2421  case Expr::AtomicExprClass:
2422  {
2423    // As bad as this diagnostic is, it's better than crashing.
2424    DiagnosticsEngine &Diags = Context.getDiags();
2425    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2426                                     "cannot yet mangle expression type %0");
2427    Diags.Report(E->getExprLoc(), DiagID)
2428      << E->getStmtClassName() << E->getSourceRange();
2429    break;
2430  }
2431
2432  // Even gcc-4.5 doesn't mangle this.
2433  case Expr::BinaryConditionalOperatorClass: {
2434    DiagnosticsEngine &Diags = Context.getDiags();
2435    unsigned DiagID =
2436      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2437                "?: operator with omitted middle operand cannot be mangled");
2438    Diags.Report(E->getExprLoc(), DiagID)
2439      << E->getStmtClassName() << E->getSourceRange();
2440    break;
2441  }
2442
2443  // These are used for internal purposes and cannot be meaningfully mangled.
2444  case Expr::OpaqueValueExprClass:
2445    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2446
2447  case Expr::InitListExprClass: {
2448    // Proposal by Jason Merrill, 2012-01-03
2449    Out << "il";
2450    const InitListExpr *InitList = cast<InitListExpr>(E);
2451    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2452      mangleExpression(InitList->getInit(i));
2453    Out << "E";
2454    break;
2455  }
2456
2457  case Expr::CXXDefaultArgExprClass:
2458    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2459    break;
2460
2461  case Expr::SubstNonTypeTemplateParmExprClass:
2462    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2463                     Arity);
2464    break;
2465
2466  case Expr::UserDefinedLiteralClass:
2467    // We follow g++'s approach of mangling a UDL as a call to the literal
2468    // operator.
2469  case Expr::CXXMemberCallExprClass: // fallthrough
2470  case Expr::CallExprClass: {
2471    const CallExpr *CE = cast<CallExpr>(E);
2472
2473    // <expression> ::= cp <simple-id> <expression>* E
2474    // We use this mangling only when the call would use ADL except
2475    // for being parenthesized.  Per discussion with David
2476    // Vandervoorde, 2011.04.25.
2477    if (isParenthesizedADLCallee(CE)) {
2478      Out << "cp";
2479      // The callee here is a parenthesized UnresolvedLookupExpr with
2480      // no qualifier and should always get mangled as a <simple-id>
2481      // anyway.
2482
2483    // <expression> ::= cl <expression>* E
2484    } else {
2485      Out << "cl";
2486    }
2487
2488    mangleExpression(CE->getCallee(), CE->getNumArgs());
2489    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2490      mangleExpression(CE->getArg(I));
2491    Out << 'E';
2492    break;
2493  }
2494
2495  case Expr::CXXNewExprClass: {
2496    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2497    if (New->isGlobalNew()) Out << "gs";
2498    Out << (New->isArray() ? "na" : "nw");
2499    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2500           E = New->placement_arg_end(); I != E; ++I)
2501      mangleExpression(*I);
2502    Out << '_';
2503    mangleType(New->getAllocatedType());
2504    if (New->hasInitializer()) {
2505      // Proposal by Jason Merrill, 2012-01-03
2506      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2507        Out << "il";
2508      else
2509        Out << "pi";
2510      const Expr *Init = New->getInitializer();
2511      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2512        // Directly inline the initializers.
2513        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2514                                                  E = CCE->arg_end();
2515             I != E; ++I)
2516          mangleExpression(*I);
2517      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2518        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2519          mangleExpression(PLE->getExpr(i));
2520      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2521                 isa<InitListExpr>(Init)) {
2522        // Only take InitListExprs apart for list-initialization.
2523        const InitListExpr *InitList = cast<InitListExpr>(Init);
2524        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2525          mangleExpression(InitList->getInit(i));
2526      } else
2527        mangleExpression(Init);
2528    }
2529    Out << 'E';
2530    break;
2531  }
2532
2533  case Expr::MemberExprClass: {
2534    const MemberExpr *ME = cast<MemberExpr>(E);
2535    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2536                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2537                     Arity);
2538    break;
2539  }
2540
2541  case Expr::UnresolvedMemberExprClass: {
2542    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2543    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2544                     ME->getQualifier(), 0, ME->getMemberName(),
2545                     Arity);
2546    if (ME->hasExplicitTemplateArgs())
2547      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2548    break;
2549  }
2550
2551  case Expr::CXXDependentScopeMemberExprClass: {
2552    const CXXDependentScopeMemberExpr *ME
2553      = cast<CXXDependentScopeMemberExpr>(E);
2554    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2555                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2556                     ME->getMember(), Arity);
2557    if (ME->hasExplicitTemplateArgs())
2558      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2559    break;
2560  }
2561
2562  case Expr::UnresolvedLookupExprClass: {
2563    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2564    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2565
2566    // All the <unresolved-name> productions end in a
2567    // base-unresolved-name, where <template-args> are just tacked
2568    // onto the end.
2569    if (ULE->hasExplicitTemplateArgs())
2570      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2571    break;
2572  }
2573
2574  case Expr::CXXUnresolvedConstructExprClass: {
2575    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2576    unsigned N = CE->arg_size();
2577
2578    Out << "cv";
2579    mangleType(CE->getType());
2580    if (N != 1) Out << '_';
2581    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2582    if (N != 1) Out << 'E';
2583    break;
2584  }
2585
2586  case Expr::CXXTemporaryObjectExprClass:
2587  case Expr::CXXConstructExprClass: {
2588    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2589    unsigned N = CE->getNumArgs();
2590
2591    // Proposal by Jason Merrill, 2012-01-03
2592    if (CE->isListInitialization())
2593      Out << "tl";
2594    else
2595      Out << "cv";
2596    mangleType(CE->getType());
2597    if (N != 1) Out << '_';
2598    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2599    if (N != 1) Out << 'E';
2600    break;
2601  }
2602
2603  case Expr::CXXScalarValueInitExprClass:
2604    Out <<"cv";
2605    mangleType(E->getType());
2606    Out <<"_E";
2607    break;
2608
2609  case Expr::UnaryExprOrTypeTraitExprClass: {
2610    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2611
2612    if (!SAE->isInstantiationDependent()) {
2613      // Itanium C++ ABI:
2614      //   If the operand of a sizeof or alignof operator is not
2615      //   instantiation-dependent it is encoded as an integer literal
2616      //   reflecting the result of the operator.
2617      //
2618      //   If the result of the operator is implicitly converted to a known
2619      //   integer type, that type is used for the literal; otherwise, the type
2620      //   of std::size_t or std::ptrdiff_t is used.
2621      QualType T = (ImplicitlyConvertedToType.isNull() ||
2622                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2623                                                    : ImplicitlyConvertedToType;
2624      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2625      mangleIntegerLiteral(T, V);
2626      break;
2627    }
2628
2629    switch(SAE->getKind()) {
2630    case UETT_SizeOf:
2631      Out << 's';
2632      break;
2633    case UETT_AlignOf:
2634      Out << 'a';
2635      break;
2636    case UETT_VecStep:
2637      DiagnosticsEngine &Diags = Context.getDiags();
2638      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2639                                     "cannot yet mangle vec_step expression");
2640      Diags.Report(DiagID);
2641      return;
2642    }
2643    if (SAE->isArgumentType()) {
2644      Out << 't';
2645      mangleType(SAE->getArgumentType());
2646    } else {
2647      Out << 'z';
2648      mangleExpression(SAE->getArgumentExpr());
2649    }
2650    break;
2651  }
2652
2653  case Expr::CXXThrowExprClass: {
2654    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2655
2656    // Proposal from David Vandervoorde, 2010.06.30
2657    if (TE->getSubExpr()) {
2658      Out << "tw";
2659      mangleExpression(TE->getSubExpr());
2660    } else {
2661      Out << "tr";
2662    }
2663    break;
2664  }
2665
2666  case Expr::CXXTypeidExprClass: {
2667    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2668
2669    // Proposal from David Vandervoorde, 2010.06.30
2670    if (TIE->isTypeOperand()) {
2671      Out << "ti";
2672      mangleType(TIE->getTypeOperand());
2673    } else {
2674      Out << "te";
2675      mangleExpression(TIE->getExprOperand());
2676    }
2677    break;
2678  }
2679
2680  case Expr::CXXDeleteExprClass: {
2681    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2682
2683    // Proposal from David Vandervoorde, 2010.06.30
2684    if (DE->isGlobalDelete()) Out << "gs";
2685    Out << (DE->isArrayForm() ? "da" : "dl");
2686    mangleExpression(DE->getArgument());
2687    break;
2688  }
2689
2690  case Expr::UnaryOperatorClass: {
2691    const UnaryOperator *UO = cast<UnaryOperator>(E);
2692    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2693                       /*Arity=*/1);
2694    mangleExpression(UO->getSubExpr());
2695    break;
2696  }
2697
2698  case Expr::ArraySubscriptExprClass: {
2699    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2700
2701    // Array subscript is treated as a syntactically weird form of
2702    // binary operator.
2703    Out << "ix";
2704    mangleExpression(AE->getLHS());
2705    mangleExpression(AE->getRHS());
2706    break;
2707  }
2708
2709  case Expr::CompoundAssignOperatorClass: // fallthrough
2710  case Expr::BinaryOperatorClass: {
2711    const BinaryOperator *BO = cast<BinaryOperator>(E);
2712    if (BO->getOpcode() == BO_PtrMemD)
2713      Out << "ds";
2714    else
2715      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2716                         /*Arity=*/2);
2717    mangleExpression(BO->getLHS());
2718    mangleExpression(BO->getRHS());
2719    break;
2720  }
2721
2722  case Expr::ConditionalOperatorClass: {
2723    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2724    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2725    mangleExpression(CO->getCond());
2726    mangleExpression(CO->getLHS(), Arity);
2727    mangleExpression(CO->getRHS(), Arity);
2728    break;
2729  }
2730
2731  case Expr::ImplicitCastExprClass: {
2732    ImplicitlyConvertedToType = E->getType();
2733    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2734    goto recurse;
2735  }
2736
2737  case Expr::ObjCBridgedCastExprClass: {
2738    // Mangle ownership casts as a vendor extended operator __bridge,
2739    // __bridge_transfer, or __bridge_retain.
2740    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2741    Out << "v1U" << Kind.size() << Kind;
2742  }
2743  // Fall through to mangle the cast itself.
2744
2745  case Expr::CStyleCastExprClass:
2746  case Expr::CXXStaticCastExprClass:
2747  case Expr::CXXDynamicCastExprClass:
2748  case Expr::CXXReinterpretCastExprClass:
2749  case Expr::CXXConstCastExprClass:
2750  case Expr::CXXFunctionalCastExprClass: {
2751    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2752    Out << "cv";
2753    mangleType(ECE->getType());
2754    mangleExpression(ECE->getSubExpr());
2755    break;
2756  }
2757
2758  case Expr::CXXOperatorCallExprClass: {
2759    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2760    unsigned NumArgs = CE->getNumArgs();
2761    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2762    // Mangle the arguments.
2763    for (unsigned i = 0; i != NumArgs; ++i)
2764      mangleExpression(CE->getArg(i));
2765    break;
2766  }
2767
2768  case Expr::ParenExprClass:
2769    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2770    break;
2771
2772  case Expr::DeclRefExprClass: {
2773    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2774
2775    switch (D->getKind()) {
2776    default:
2777      //  <expr-primary> ::= L <mangled-name> E # external name
2778      Out << 'L';
2779      mangle(D, "_Z");
2780      Out << 'E';
2781      break;
2782
2783    case Decl::ParmVar:
2784      mangleFunctionParam(cast<ParmVarDecl>(D));
2785      break;
2786
2787    case Decl::EnumConstant: {
2788      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2789      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2790      break;
2791    }
2792
2793    case Decl::NonTypeTemplateParm: {
2794      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2795      mangleTemplateParameter(PD->getIndex());
2796      break;
2797    }
2798
2799    }
2800
2801    break;
2802  }
2803
2804  case Expr::SubstNonTypeTemplateParmPackExprClass:
2805    // FIXME: not clear how to mangle this!
2806    // template <unsigned N...> class A {
2807    //   template <class U...> void foo(U (&x)[N]...);
2808    // };
2809    Out << "_SUBSTPACK_";
2810    break;
2811
2812  case Expr::DependentScopeDeclRefExprClass: {
2813    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2814    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2815
2816    // All the <unresolved-name> productions end in a
2817    // base-unresolved-name, where <template-args> are just tacked
2818    // onto the end.
2819    if (DRE->hasExplicitTemplateArgs())
2820      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2821    break;
2822  }
2823
2824  case Expr::CXXBindTemporaryExprClass:
2825    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2826    break;
2827
2828  case Expr::ExprWithCleanupsClass:
2829    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2830    break;
2831
2832  case Expr::FloatingLiteralClass: {
2833    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2834    Out << 'L';
2835    mangleType(FL->getType());
2836    mangleFloat(FL->getValue());
2837    Out << 'E';
2838    break;
2839  }
2840
2841  case Expr::CharacterLiteralClass:
2842    Out << 'L';
2843    mangleType(E->getType());
2844    Out << cast<CharacterLiteral>(E)->getValue();
2845    Out << 'E';
2846    break;
2847
2848  // FIXME. __objc_yes/__objc_no are mangled same as true/false
2849  case Expr::ObjCBoolLiteralExprClass:
2850    Out << "Lb";
2851    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2852    Out << 'E';
2853    break;
2854
2855  case Expr::CXXBoolLiteralExprClass:
2856    Out << "Lb";
2857    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2858    Out << 'E';
2859    break;
2860
2861  case Expr::IntegerLiteralClass: {
2862    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2863    if (E->getType()->isSignedIntegerType())
2864      Value.setIsSigned(true);
2865    mangleIntegerLiteral(E->getType(), Value);
2866    break;
2867  }
2868
2869  case Expr::ImaginaryLiteralClass: {
2870    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2871    // Mangle as if a complex literal.
2872    // Proposal from David Vandevoorde, 2010.06.30.
2873    Out << 'L';
2874    mangleType(E->getType());
2875    if (const FloatingLiteral *Imag =
2876          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2877      // Mangle a floating-point zero of the appropriate type.
2878      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2879      Out << '_';
2880      mangleFloat(Imag->getValue());
2881    } else {
2882      Out << "0_";
2883      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2884      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2885        Value.setIsSigned(true);
2886      mangleNumber(Value);
2887    }
2888    Out << 'E';
2889    break;
2890  }
2891
2892  case Expr::StringLiteralClass: {
2893    // Revised proposal from David Vandervoorde, 2010.07.15.
2894    Out << 'L';
2895    assert(isa<ConstantArrayType>(E->getType()));
2896    mangleType(E->getType());
2897    Out << 'E';
2898    break;
2899  }
2900
2901  case Expr::GNUNullExprClass:
2902    // FIXME: should this really be mangled the same as nullptr?
2903    // fallthrough
2904
2905  case Expr::CXXNullPtrLiteralExprClass: {
2906    // Proposal from David Vandervoorde, 2010.06.30, as
2907    // modified by ABI list discussion.
2908    Out << "LDnE";
2909    break;
2910  }
2911
2912  case Expr::PackExpansionExprClass:
2913    Out << "sp";
2914    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2915    break;
2916
2917  case Expr::SizeOfPackExprClass: {
2918    Out << "sZ";
2919    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2920    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2921      mangleTemplateParameter(TTP->getIndex());
2922    else if (const NonTypeTemplateParmDecl *NTTP
2923                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2924      mangleTemplateParameter(NTTP->getIndex());
2925    else if (const TemplateTemplateParmDecl *TempTP
2926                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2927      mangleTemplateParameter(TempTP->getIndex());
2928    else
2929      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2930    break;
2931  }
2932
2933  case Expr::MaterializeTemporaryExprClass: {
2934    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2935    break;
2936  }
2937
2938  case Expr::CXXThisExprClass:
2939    Out << "fpT";
2940    break;
2941  }
2942}
2943
2944/// Mangle an expression which refers to a parameter variable.
2945///
2946/// <expression>     ::= <function-param>
2947/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2948/// <function-param> ::= fp <top-level CV-qualifiers>
2949///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2950/// <function-param> ::= fL <L-1 non-negative number>
2951///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2952/// <function-param> ::= fL <L-1 non-negative number>
2953///                      p <top-level CV-qualifiers>
2954///                      <I-1 non-negative number> _         # L > 0, I > 0
2955///
2956/// L is the nesting depth of the parameter, defined as 1 if the
2957/// parameter comes from the innermost function prototype scope
2958/// enclosing the current context, 2 if from the next enclosing
2959/// function prototype scope, and so on, with one special case: if
2960/// we've processed the full parameter clause for the innermost
2961/// function type, then L is one less.  This definition conveniently
2962/// makes it irrelevant whether a function's result type was written
2963/// trailing or leading, but is otherwise overly complicated; the
2964/// numbering was first designed without considering references to
2965/// parameter in locations other than return types, and then the
2966/// mangling had to be generalized without changing the existing
2967/// manglings.
2968///
2969/// I is the zero-based index of the parameter within its parameter
2970/// declaration clause.  Note that the original ABI document describes
2971/// this using 1-based ordinals.
2972void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2973  unsigned parmDepth = parm->getFunctionScopeDepth();
2974  unsigned parmIndex = parm->getFunctionScopeIndex();
2975
2976  // Compute 'L'.
2977  // parmDepth does not include the declaring function prototype.
2978  // FunctionTypeDepth does account for that.
2979  assert(parmDepth < FunctionTypeDepth.getDepth());
2980  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2981  if (FunctionTypeDepth.isInResultType())
2982    nestingDepth--;
2983
2984  if (nestingDepth == 0) {
2985    Out << "fp";
2986  } else {
2987    Out << "fL" << (nestingDepth - 1) << 'p';
2988  }
2989
2990  // Top-level qualifiers.  We don't have to worry about arrays here,
2991  // because parameters declared as arrays should already have been
2992  // transformed to have pointer type. FIXME: apparently these don't
2993  // get mangled if used as an rvalue of a known non-class type?
2994  assert(!parm->getType()->isArrayType()
2995         && "parameter's type is still an array type?");
2996  mangleQualifiers(parm->getType().getQualifiers());
2997
2998  // Parameter index.
2999  if (parmIndex != 0) {
3000    Out << (parmIndex - 1);
3001  }
3002  Out << '_';
3003}
3004
3005void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3006  // <ctor-dtor-name> ::= C1  # complete object constructor
3007  //                  ::= C2  # base object constructor
3008  //                  ::= C3  # complete object allocating constructor
3009  //
3010  switch (T) {
3011  case Ctor_Complete:
3012    Out << "C1";
3013    break;
3014  case Ctor_Base:
3015    Out << "C2";
3016    break;
3017  case Ctor_CompleteAllocating:
3018    Out << "C3";
3019    break;
3020  }
3021}
3022
3023void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3024  // <ctor-dtor-name> ::= D0  # deleting destructor
3025  //                  ::= D1  # complete object destructor
3026  //                  ::= D2  # base object destructor
3027  //
3028  switch (T) {
3029  case Dtor_Deleting:
3030    Out << "D0";
3031    break;
3032  case Dtor_Complete:
3033    Out << "D1";
3034    break;
3035  case Dtor_Base:
3036    Out << "D2";
3037    break;
3038  }
3039}
3040
3041void CXXNameMangler::mangleTemplateArgs(
3042                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3043  // <template-args> ::= I <template-arg>+ E
3044  Out << 'I';
3045  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3046    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3047  Out << 'E';
3048}
3049
3050void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3051                                        const TemplateArgument *TemplateArgs,
3052                                        unsigned NumTemplateArgs) {
3053  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3054    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3055                              NumTemplateArgs);
3056
3057  mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3058}
3059
3060void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3061                                                  unsigned numArgs) {
3062  // <template-args> ::= I <template-arg>+ E
3063  Out << 'I';
3064  for (unsigned i = 0; i != numArgs; ++i)
3065    mangleTemplateArg(0, args[i]);
3066  Out << 'E';
3067}
3068
3069void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3070                                        const TemplateArgumentList &AL) {
3071  // <template-args> ::= I <template-arg>+ E
3072  Out << 'I';
3073  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3074    mangleTemplateArg(PL.getParam(i), AL[i]);
3075  Out << 'E';
3076}
3077
3078void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3079                                        const TemplateArgument *TemplateArgs,
3080                                        unsigned NumTemplateArgs) {
3081  // <template-args> ::= I <template-arg>+ E
3082  Out << 'I';
3083  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3084    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3085  Out << 'E';
3086}
3087
3088void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3089                                       TemplateArgument A) {
3090  // <template-arg> ::= <type>              # type or template
3091  //                ::= X <expression> E    # expression
3092  //                ::= <expr-primary>      # simple expressions
3093  //                ::= J <template-arg>* E # argument pack
3094  //                ::= sp <expression>     # pack expansion of (C++0x)
3095  if (!A.isInstantiationDependent() || A.isDependent())
3096    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3097
3098  switch (A.getKind()) {
3099  case TemplateArgument::Null:
3100    llvm_unreachable("Cannot mangle NULL template argument");
3101
3102  case TemplateArgument::Type:
3103    mangleType(A.getAsType());
3104    break;
3105  case TemplateArgument::Template:
3106    // This is mangled as <type>.
3107    mangleType(A.getAsTemplate());
3108    break;
3109  case TemplateArgument::TemplateExpansion:
3110    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3111    Out << "Dp";
3112    mangleType(A.getAsTemplateOrTemplatePattern());
3113    break;
3114  case TemplateArgument::Expression: {
3115    // It's possible to end up with a DeclRefExpr here in certain
3116    // dependent cases, in which case we should mangle as a
3117    // declaration.
3118    const Expr *E = A.getAsExpr()->IgnoreParens();
3119    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3120      const ValueDecl *D = DRE->getDecl();
3121      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3122        Out << "L";
3123        mangle(D, "_Z");
3124        Out << 'E';
3125        break;
3126      }
3127    }
3128
3129    Out << 'X';
3130    mangleExpression(E);
3131    Out << 'E';
3132    break;
3133  }
3134  case TemplateArgument::Integral:
3135    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3136    break;
3137  case TemplateArgument::Declaration: {
3138    assert(P && "Missing template parameter for declaration argument");
3139    //  <expr-primary> ::= L <mangled-name> E # external name
3140    //  <expr-primary> ::= L <type> 0 E
3141    // Clang produces AST's where pointer-to-member-function expressions
3142    // and pointer-to-function expressions are represented as a declaration not
3143    // an expression. We compensate for it here to produce the correct mangling.
3144    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3145
3146    // Handle NULL pointer arguments.
3147    if (!A.getAsDecl()) {
3148      Out << "L";
3149      mangleType(Parameter->getType());
3150      Out << "0E";
3151      break;
3152    }
3153
3154
3155    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3156    bool compensateMangling = !Parameter->getType()->isReferenceType();
3157    if (compensateMangling) {
3158      Out << 'X';
3159      mangleOperatorName(OO_Amp, 1);
3160    }
3161
3162    Out << 'L';
3163    // References to external entities use the mangled name; if the name would
3164    // not normally be manged then mangle it as unqualified.
3165    //
3166    // FIXME: The ABI specifies that external names here should have _Z, but
3167    // gcc leaves this off.
3168    if (compensateMangling)
3169      mangle(D, "_Z");
3170    else
3171      mangle(D, "Z");
3172    Out << 'E';
3173
3174    if (compensateMangling)
3175      Out << 'E';
3176
3177    break;
3178  }
3179
3180  case TemplateArgument::Pack: {
3181    // Note: proposal by Mike Herrick on 12/20/10
3182    Out << 'J';
3183    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3184                                      PAEnd = A.pack_end();
3185         PA != PAEnd; ++PA)
3186      mangleTemplateArg(P, *PA);
3187    Out << 'E';
3188  }
3189  }
3190}
3191
3192void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3193  // <template-param> ::= T_    # first template parameter
3194  //                  ::= T <parameter-2 non-negative number> _
3195  if (Index == 0)
3196    Out << "T_";
3197  else
3198    Out << 'T' << (Index - 1) << '_';
3199}
3200
3201void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3202  bool result = mangleSubstitution(type);
3203  assert(result && "no existing substitution for type");
3204  (void) result;
3205}
3206
3207void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3208  bool result = mangleSubstitution(tname);
3209  assert(result && "no existing substitution for template name");
3210  (void) result;
3211}
3212
3213// <substitution> ::= S <seq-id> _
3214//                ::= S_
3215bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3216  // Try one of the standard substitutions first.
3217  if (mangleStandardSubstitution(ND))
3218    return true;
3219
3220  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3221  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3222}
3223
3224/// \brief Determine whether the given type has any qualifiers that are
3225/// relevant for substitutions.
3226static bool hasMangledSubstitutionQualifiers(QualType T) {
3227  Qualifiers Qs = T.getQualifiers();
3228  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3229}
3230
3231bool CXXNameMangler::mangleSubstitution(QualType T) {
3232  if (!hasMangledSubstitutionQualifiers(T)) {
3233    if (const RecordType *RT = T->getAs<RecordType>())
3234      return mangleSubstitution(RT->getDecl());
3235  }
3236
3237  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3238
3239  return mangleSubstitution(TypePtr);
3240}
3241
3242bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3243  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3244    return mangleSubstitution(TD);
3245
3246  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3247  return mangleSubstitution(
3248                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3249}
3250
3251bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3252  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3253  if (I == Substitutions.end())
3254    return false;
3255
3256  unsigned SeqID = I->second;
3257  if (SeqID == 0)
3258    Out << "S_";
3259  else {
3260    SeqID--;
3261
3262    // <seq-id> is encoded in base-36, using digits and upper case letters.
3263    char Buffer[10];
3264    char *BufferPtr = llvm::array_endof(Buffer);
3265
3266    if (SeqID == 0) *--BufferPtr = '0';
3267
3268    while (SeqID) {
3269      assert(BufferPtr > Buffer && "Buffer overflow!");
3270
3271      char c = static_cast<char>(SeqID % 36);
3272
3273      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3274      SeqID /= 36;
3275    }
3276
3277    Out << 'S'
3278        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3279        << '_';
3280  }
3281
3282  return true;
3283}
3284
3285static bool isCharType(QualType T) {
3286  if (T.isNull())
3287    return false;
3288
3289  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3290    T->isSpecificBuiltinType(BuiltinType::Char_U);
3291}
3292
3293/// isCharSpecialization - Returns whether a given type is a template
3294/// specialization of a given name with a single argument of type char.
3295static bool isCharSpecialization(QualType T, const char *Name) {
3296  if (T.isNull())
3297    return false;
3298
3299  const RecordType *RT = T->getAs<RecordType>();
3300  if (!RT)
3301    return false;
3302
3303  const ClassTemplateSpecializationDecl *SD =
3304    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3305  if (!SD)
3306    return false;
3307
3308  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3309    return false;
3310
3311  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3312  if (TemplateArgs.size() != 1)
3313    return false;
3314
3315  if (!isCharType(TemplateArgs[0].getAsType()))
3316    return false;
3317
3318  return SD->getIdentifier()->getName() == Name;
3319}
3320
3321template <std::size_t StrLen>
3322static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3323                                       const char (&Str)[StrLen]) {
3324  if (!SD->getIdentifier()->isStr(Str))
3325    return false;
3326
3327  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3328  if (TemplateArgs.size() != 2)
3329    return false;
3330
3331  if (!isCharType(TemplateArgs[0].getAsType()))
3332    return false;
3333
3334  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3335    return false;
3336
3337  return true;
3338}
3339
3340bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3341  // <substitution> ::= St # ::std::
3342  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3343    if (isStd(NS)) {
3344      Out << "St";
3345      return true;
3346    }
3347  }
3348
3349  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3350    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3351      return false;
3352
3353    // <substitution> ::= Sa # ::std::allocator
3354    if (TD->getIdentifier()->isStr("allocator")) {
3355      Out << "Sa";
3356      return true;
3357    }
3358
3359    // <<substitution> ::= Sb # ::std::basic_string
3360    if (TD->getIdentifier()->isStr("basic_string")) {
3361      Out << "Sb";
3362      return true;
3363    }
3364  }
3365
3366  if (const ClassTemplateSpecializationDecl *SD =
3367        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3368    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3369      return false;
3370
3371    //    <substitution> ::= Ss # ::std::basic_string<char,
3372    //                            ::std::char_traits<char>,
3373    //                            ::std::allocator<char> >
3374    if (SD->getIdentifier()->isStr("basic_string")) {
3375      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3376
3377      if (TemplateArgs.size() != 3)
3378        return false;
3379
3380      if (!isCharType(TemplateArgs[0].getAsType()))
3381        return false;
3382
3383      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3384        return false;
3385
3386      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3387        return false;
3388
3389      Out << "Ss";
3390      return true;
3391    }
3392
3393    //    <substitution> ::= Si # ::std::basic_istream<char,
3394    //                            ::std::char_traits<char> >
3395    if (isStreamCharSpecialization(SD, "basic_istream")) {
3396      Out << "Si";
3397      return true;
3398    }
3399
3400    //    <substitution> ::= So # ::std::basic_ostream<char,
3401    //                            ::std::char_traits<char> >
3402    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3403      Out << "So";
3404      return true;
3405    }
3406
3407    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3408    //                            ::std::char_traits<char> >
3409    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3410      Out << "Sd";
3411      return true;
3412    }
3413  }
3414  return false;
3415}
3416
3417void CXXNameMangler::addSubstitution(QualType T) {
3418  if (!hasMangledSubstitutionQualifiers(T)) {
3419    if (const RecordType *RT = T->getAs<RecordType>()) {
3420      addSubstitution(RT->getDecl());
3421      return;
3422    }
3423  }
3424
3425  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3426  addSubstitution(TypePtr);
3427}
3428
3429void CXXNameMangler::addSubstitution(TemplateName Template) {
3430  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3431    return addSubstitution(TD);
3432
3433  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3434  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3435}
3436
3437void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3438  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3439  Substitutions[Ptr] = SeqID++;
3440}
3441
3442//
3443
3444/// \brief Mangles the name of the declaration D and emits that name to the
3445/// given output stream.
3446///
3447/// If the declaration D requires a mangled name, this routine will emit that
3448/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3449/// and this routine will return false. In this case, the caller should just
3450/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3451/// name.
3452void ItaniumMangleContext::mangleName(const NamedDecl *D,
3453                                      raw_ostream &Out) {
3454  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3455          "Invalid mangleName() call, argument is not a variable or function!");
3456  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3457         "Invalid mangleName() call on 'structor decl!");
3458
3459  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3460                                 getASTContext().getSourceManager(),
3461                                 "Mangling declaration");
3462
3463  CXXNameMangler Mangler(*this, Out, D);
3464  return Mangler.mangle(D);
3465}
3466
3467void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3468                                         CXXCtorType Type,
3469                                         raw_ostream &Out) {
3470  CXXNameMangler Mangler(*this, Out, D, Type);
3471  Mangler.mangle(D);
3472}
3473
3474void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3475                                         CXXDtorType Type,
3476                                         raw_ostream &Out) {
3477  CXXNameMangler Mangler(*this, Out, D, Type);
3478  Mangler.mangle(D);
3479}
3480
3481void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3482                                       const ThunkInfo &Thunk,
3483                                       raw_ostream &Out) {
3484  //  <special-name> ::= T <call-offset> <base encoding>
3485  //                      # base is the nominal target function of thunk
3486  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3487  //                      # base is the nominal target function of thunk
3488  //                      # first call-offset is 'this' adjustment
3489  //                      # second call-offset is result adjustment
3490
3491  assert(!isa<CXXDestructorDecl>(MD) &&
3492         "Use mangleCXXDtor for destructor decls!");
3493  CXXNameMangler Mangler(*this, Out);
3494  Mangler.getStream() << "_ZT";
3495  if (!Thunk.Return.isEmpty())
3496    Mangler.getStream() << 'c';
3497
3498  // Mangle the 'this' pointer adjustment.
3499  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3500
3501  // Mangle the return pointer adjustment if there is one.
3502  if (!Thunk.Return.isEmpty())
3503    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3504                             Thunk.Return.VBaseOffsetOffset);
3505
3506  Mangler.mangleFunctionEncoding(MD);
3507}
3508
3509void
3510ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3511                                         CXXDtorType Type,
3512                                         const ThisAdjustment &ThisAdjustment,
3513                                         raw_ostream &Out) {
3514  //  <special-name> ::= T <call-offset> <base encoding>
3515  //                      # base is the nominal target function of thunk
3516  CXXNameMangler Mangler(*this, Out, DD, Type);
3517  Mangler.getStream() << "_ZT";
3518
3519  // Mangle the 'this' pointer adjustment.
3520  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3521                           ThisAdjustment.VCallOffsetOffset);
3522
3523  Mangler.mangleFunctionEncoding(DD);
3524}
3525
3526/// mangleGuardVariable - Returns the mangled name for a guard variable
3527/// for the passed in VarDecl.
3528void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3529                                                      raw_ostream &Out) {
3530  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3531  //                                            # initialization
3532  CXXNameMangler Mangler(*this, Out);
3533  Mangler.getStream() << "_ZGV";
3534  Mangler.mangleName(D);
3535}
3536
3537void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3538                                                    raw_ostream &Out) {
3539  // We match the GCC mangling here.
3540  //  <special-name> ::= GR <object name>
3541  CXXNameMangler Mangler(*this, Out);
3542  Mangler.getStream() << "_ZGR";
3543  Mangler.mangleName(D);
3544}
3545
3546void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3547                                           raw_ostream &Out) {
3548  // <special-name> ::= TV <type>  # virtual table
3549  CXXNameMangler Mangler(*this, Out);
3550  Mangler.getStream() << "_ZTV";
3551  Mangler.mangleNameOrStandardSubstitution(RD);
3552}
3553
3554void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3555                                        raw_ostream &Out) {
3556  // <special-name> ::= TT <type>  # VTT structure
3557  CXXNameMangler Mangler(*this, Out);
3558  Mangler.getStream() << "_ZTT";
3559  Mangler.mangleNameOrStandardSubstitution(RD);
3560}
3561
3562void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3563                                               int64_t Offset,
3564                                               const CXXRecordDecl *Type,
3565                                               raw_ostream &Out) {
3566  // <special-name> ::= TC <type> <offset number> _ <base type>
3567  CXXNameMangler Mangler(*this, Out);
3568  Mangler.getStream() << "_ZTC";
3569  Mangler.mangleNameOrStandardSubstitution(RD);
3570  Mangler.getStream() << Offset;
3571  Mangler.getStream() << '_';
3572  Mangler.mangleNameOrStandardSubstitution(Type);
3573}
3574
3575void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3576                                         raw_ostream &Out) {
3577  // <special-name> ::= TI <type>  # typeinfo structure
3578  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3579  CXXNameMangler Mangler(*this, Out);
3580  Mangler.getStream() << "_ZTI";
3581  Mangler.mangleType(Ty);
3582}
3583
3584void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3585                                             raw_ostream &Out) {
3586  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3587  CXXNameMangler Mangler(*this, Out);
3588  Mangler.getStream() << "_ZTS";
3589  Mangler.mangleType(Ty);
3590}
3591
3592MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3593                                                 DiagnosticsEngine &Diags) {
3594  return new ItaniumMangleContext(Context, Diags);
3595}
3596