ItaniumMangle.cpp revision 218893
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/ErrorHandling.h"
30
31#define MANGLE_CHECKER 0
32
33#if MANGLE_CHECKER
34#include <cxxabi.h>
35#endif
36
37using namespace clang;
38
39namespace {
40
41static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
42  const DeclContext *DC = dyn_cast<DeclContext>(ND);
43  if (!DC)
44    DC = ND->getDeclContext();
45  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
46    if (isa<FunctionDecl>(DC->getParent()))
47      return dyn_cast<CXXRecordDecl>(DC);
48    DC = DC->getParent();
49  }
50  return 0;
51}
52
53static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
54  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
55         "Passed in decl is not a ctor or dtor!");
56
57  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
58    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
59
60    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
61           "Templated decl is not a ctor or dtor!");
62  }
63
64  return MD;
65}
66
67static const unsigned UnknownArity = ~0U;
68
69class ItaniumMangleContext : public MangleContext {
70  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
71  unsigned Discriminator;
72  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73
74public:
75  explicit ItaniumMangleContext(ASTContext &Context,
76                                Diagnostic &Diags)
77    : MangleContext(Context, Diags) { }
78
79  uint64_t getAnonymousStructId(const TagDecl *TD) {
80    std::pair<llvm::DenseMap<const TagDecl *,
81      uint64_t>::iterator, bool> Result =
82      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
83    return Result.first->second;
84  }
85
86  void startNewFunction() {
87    MangleContext::startNewFunction();
88    mangleInitDiscriminator();
89  }
90
91  /// @name Mangler Entry Points
92  /// @{
93
94  bool shouldMangleDeclName(const NamedDecl *D);
95  void mangleName(const NamedDecl *D, llvm::raw_ostream &);
96  void mangleThunk(const CXXMethodDecl *MD,
97                   const ThunkInfo &Thunk,
98                   llvm::raw_ostream &);
99  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
100                          const ThisAdjustment &ThisAdjustment,
101                          llvm::raw_ostream &);
102  void mangleReferenceTemporary(const VarDecl *D,
103                                llvm::raw_ostream &);
104  void mangleCXXVTable(const CXXRecordDecl *RD,
105                       llvm::raw_ostream &);
106  void mangleCXXVTT(const CXXRecordDecl *RD,
107                    llvm::raw_ostream &);
108  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109                           const CXXRecordDecl *Type,
110                           llvm::raw_ostream &);
111  void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
112  void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
113  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
114                     llvm::raw_ostream &);
115  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
116                     llvm::raw_ostream &);
117
118  void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  llvm::raw_ostream &Out;
140
141  const CXXMethodDecl *Structor;
142  unsigned StructorType;
143
144  /// SeqID - The next subsitution sequence number.
145  unsigned SeqID;
146
147  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
148
149  ASTContext &getASTContext() const { return Context.getASTContext(); }
150
151public:
152  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_)
153    : Context(C), Out(Out_), Structor(0), StructorType(0), SeqID(0) { }
154  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
155                 const CXXConstructorDecl *D, CXXCtorType Type)
156    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
157    SeqID(0) { }
158  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
159                 const CXXDestructorDecl *D, CXXDtorType Type)
160    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
161    SeqID(0) { }
162
163#if MANGLE_CHECKER
164  ~CXXNameMangler() {
165    if (Out.str()[0] == '\01')
166      return;
167
168    int status = 0;
169    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
170    assert(status == 0 && "Could not demangle mangled name!");
171    free(result);
172  }
173#endif
174  llvm::raw_ostream &getStream() { return Out; }
175
176  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
177  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
178  void mangleNumber(const llvm::APSInt &I);
179  void mangleNumber(int64_t Number);
180  void mangleFloat(const llvm::APFloat &F);
181  void mangleFunctionEncoding(const FunctionDecl *FD);
182  void mangleName(const NamedDecl *ND);
183  void mangleType(QualType T);
184  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
185
186private:
187  bool mangleSubstitution(const NamedDecl *ND);
188  bool mangleSubstitution(QualType T);
189  bool mangleSubstitution(TemplateName Template);
190  bool mangleSubstitution(uintptr_t Ptr);
191
192  bool mangleStandardSubstitution(const NamedDecl *ND);
193
194  void addSubstitution(const NamedDecl *ND) {
195    ND = cast<NamedDecl>(ND->getCanonicalDecl());
196
197    addSubstitution(reinterpret_cast<uintptr_t>(ND));
198  }
199  void addSubstitution(QualType T);
200  void addSubstitution(TemplateName Template);
201  void addSubstitution(uintptr_t Ptr);
202
203  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
204  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
205                            DeclarationName Name,
206                            unsigned KnownArity = UnknownArity);
207
208  void mangleName(const TemplateDecl *TD,
209                  const TemplateArgument *TemplateArgs,
210                  unsigned NumTemplateArgs);
211  void mangleUnqualifiedName(const NamedDecl *ND) {
212    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
213  }
214  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
215                             unsigned KnownArity);
216  void mangleUnscopedName(const NamedDecl *ND);
217  void mangleUnscopedTemplateName(const TemplateDecl *ND);
218  void mangleUnscopedTemplateName(TemplateName);
219  void mangleSourceName(const IdentifierInfo *II);
220  void mangleLocalName(const NamedDecl *ND);
221  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
222                        bool NoFunction=false);
223  void mangleNestedName(const TemplateDecl *TD,
224                        const TemplateArgument *TemplateArgs,
225                        unsigned NumTemplateArgs);
226  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
227  void mangleTemplatePrefix(const TemplateDecl *ND);
228  void mangleTemplatePrefix(TemplateName Template);
229  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
230  void mangleQualifiers(Qualifiers Quals);
231  void mangleRefQualifier(RefQualifierKind RefQualifier);
232
233  void mangleObjCMethodName(const ObjCMethodDecl *MD);
234
235  // Declare manglers for every type class.
236#define ABSTRACT_TYPE(CLASS, PARENT)
237#define NON_CANONICAL_TYPE(CLASS, PARENT)
238#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
239#include "clang/AST/TypeNodes.def"
240
241  void mangleType(const TagType*);
242  void mangleType(TemplateName);
243  void mangleBareFunctionType(const FunctionType *T,
244                              bool MangleReturnType);
245  void mangleNeonVectorType(const VectorType *T);
246
247  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
248  void mangleMemberExpr(const Expr *Base, bool IsArrow,
249                        NestedNameSpecifier *Qualifier,
250                        DeclarationName Name,
251                        unsigned KnownArity);
252  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
253  void mangleCXXCtorType(CXXCtorType T);
254  void mangleCXXDtorType(CXXDtorType T);
255
256  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
257  void mangleTemplateArgs(TemplateName Template,
258                          const TemplateArgument *TemplateArgs,
259                          unsigned NumTemplateArgs);
260  void mangleTemplateArgs(const TemplateParameterList &PL,
261                          const TemplateArgument *TemplateArgs,
262                          unsigned NumTemplateArgs);
263  void mangleTemplateArgs(const TemplateParameterList &PL,
264                          const TemplateArgumentList &AL);
265  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
266
267  void mangleTemplateParameter(unsigned Index);
268};
269
270}
271
272static bool isInCLinkageSpecification(const Decl *D) {
273  D = D->getCanonicalDecl();
274  for (const DeclContext *DC = D->getDeclContext();
275       !DC->isTranslationUnit(); DC = DC->getParent()) {
276    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
277      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
278  }
279
280  return false;
281}
282
283bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
284  // In C, functions with no attributes never need to be mangled. Fastpath them.
285  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
286    return false;
287
288  // Any decl can be declared with __asm("foo") on it, and this takes precedence
289  // over all other naming in the .o file.
290  if (D->hasAttr<AsmLabelAttr>())
291    return true;
292
293  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
294  // (always) as does passing a C++ member function and a function
295  // whose name is not a simple identifier.
296  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
297  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
298             !FD->getDeclName().isIdentifier()))
299    return true;
300
301  // Otherwise, no mangling is done outside C++ mode.
302  if (!getASTContext().getLangOptions().CPlusPlus)
303    return false;
304
305  // Variables at global scope with non-internal linkage are not mangled
306  if (!FD) {
307    const DeclContext *DC = D->getDeclContext();
308    // Check for extern variable declared locally.
309    if (DC->isFunctionOrMethod() && D->hasLinkage())
310      while (!DC->isNamespace() && !DC->isTranslationUnit())
311        DC = DC->getParent();
312    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
313      return false;
314  }
315
316  // Class members are always mangled.
317  if (D->getDeclContext()->isRecord())
318    return true;
319
320  // C functions and "main" are not mangled.
321  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
322    return false;
323
324  return true;
325}
326
327void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
328  // Any decl can be declared with __asm("foo") on it, and this takes precedence
329  // over all other naming in the .o file.
330  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
331    // If we have an asm name, then we use it as the mangling.
332
333    // Adding the prefix can cause problems when one file has a "foo" and
334    // another has a "\01foo". That is known to happen on ELF with the
335    // tricks normally used for producing aliases (PR9177). Fortunately the
336    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
337    // marker.
338    llvm::StringRef UserLabelPrefix =
339      getASTContext().Target.getUserLabelPrefix();
340    if (!UserLabelPrefix.empty())
341      Out << '\01';  // LLVM IR Marker for __asm("foo")
342
343    Out << ALA->getLabel();
344    return;
345  }
346
347  // <mangled-name> ::= _Z <encoding>
348  //            ::= <data name>
349  //            ::= <special-name>
350  Out << Prefix;
351  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
352    mangleFunctionEncoding(FD);
353  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
354    mangleName(VD);
355  else
356    mangleName(cast<FieldDecl>(D));
357}
358
359void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
360  // <encoding> ::= <function name> <bare-function-type>
361  mangleName(FD);
362
363  // Don't mangle in the type if this isn't a decl we should typically mangle.
364  if (!Context.shouldMangleDeclName(FD))
365    return;
366
367  // Whether the mangling of a function type includes the return type depends on
368  // the context and the nature of the function. The rules for deciding whether
369  // the return type is included are:
370  //
371  //   1. Template functions (names or types) have return types encoded, with
372  //   the exceptions listed below.
373  //   2. Function types not appearing as part of a function name mangling,
374  //   e.g. parameters, pointer types, etc., have return type encoded, with the
375  //   exceptions listed below.
376  //   3. Non-template function names do not have return types encoded.
377  //
378  // The exceptions mentioned in (1) and (2) above, for which the return type is
379  // never included, are
380  //   1. Constructors.
381  //   2. Destructors.
382  //   3. Conversion operator functions, e.g. operator int.
383  bool MangleReturnType = false;
384  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
385    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
386          isa<CXXConversionDecl>(FD)))
387      MangleReturnType = true;
388
389    // Mangle the type of the primary template.
390    FD = PrimaryTemplate->getTemplatedDecl();
391  }
392
393  // Do the canonicalization out here because parameter types can
394  // undergo additional canonicalization (e.g. array decay).
395  const FunctionType *FT
396    = cast<FunctionType>(Context.getASTContext()
397                                          .getCanonicalType(FD->getType()));
398
399  mangleBareFunctionType(FT, MangleReturnType);
400}
401
402static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
403  while (isa<LinkageSpecDecl>(DC)) {
404    DC = DC->getParent();
405  }
406
407  return DC;
408}
409
410/// isStd - Return whether a given namespace is the 'std' namespace.
411static bool isStd(const NamespaceDecl *NS) {
412  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
413    return false;
414
415  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
416  return II && II->isStr("std");
417}
418
419// isStdNamespace - Return whether a given decl context is a toplevel 'std'
420// namespace.
421static bool isStdNamespace(const DeclContext *DC) {
422  if (!DC->isNamespace())
423    return false;
424
425  return isStd(cast<NamespaceDecl>(DC));
426}
427
428static const TemplateDecl *
429isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
430  // Check if we have a function template.
431  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
432    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
433      TemplateArgs = FD->getTemplateSpecializationArgs();
434      return TD;
435    }
436  }
437
438  // Check if we have a class template.
439  if (const ClassTemplateSpecializationDecl *Spec =
440        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
441    TemplateArgs = &Spec->getTemplateArgs();
442    return Spec->getSpecializedTemplate();
443  }
444
445  return 0;
446}
447
448void CXXNameMangler::mangleName(const NamedDecl *ND) {
449  //  <name> ::= <nested-name>
450  //         ::= <unscoped-name>
451  //         ::= <unscoped-template-name> <template-args>
452  //         ::= <local-name>
453  //
454  const DeclContext *DC = ND->getDeclContext();
455
456  // If this is an extern variable declared locally, the relevant DeclContext
457  // is that of the containing namespace, or the translation unit.
458  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
459    while (!DC->isNamespace() && !DC->isTranslationUnit())
460      DC = DC->getParent();
461  else if (GetLocalClassDecl(ND)) {
462    mangleLocalName(ND);
463    return;
464  }
465
466  while (isa<LinkageSpecDecl>(DC))
467    DC = DC->getParent();
468
469  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
470    // Check if we have a template.
471    const TemplateArgumentList *TemplateArgs = 0;
472    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
473      mangleUnscopedTemplateName(TD);
474      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
475      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
476      return;
477    }
478
479    mangleUnscopedName(ND);
480    return;
481  }
482
483  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
484    mangleLocalName(ND);
485    return;
486  }
487
488  mangleNestedName(ND, DC);
489}
490void CXXNameMangler::mangleName(const TemplateDecl *TD,
491                                const TemplateArgument *TemplateArgs,
492                                unsigned NumTemplateArgs) {
493  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
494
495  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
496    mangleUnscopedTemplateName(TD);
497    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
498    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
499  } else {
500    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
501  }
502}
503
504void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
505  //  <unscoped-name> ::= <unqualified-name>
506  //                  ::= St <unqualified-name>   # ::std::
507  if (isStdNamespace(ND->getDeclContext()))
508    Out << "St";
509
510  mangleUnqualifiedName(ND);
511}
512
513void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
514  //     <unscoped-template-name> ::= <unscoped-name>
515  //                              ::= <substitution>
516  if (mangleSubstitution(ND))
517    return;
518
519  // <template-template-param> ::= <template-param>
520  if (const TemplateTemplateParmDecl *TTP
521                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
522    mangleTemplateParameter(TTP->getIndex());
523    return;
524  }
525
526  mangleUnscopedName(ND->getTemplatedDecl());
527  addSubstitution(ND);
528}
529
530void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
531  //     <unscoped-template-name> ::= <unscoped-name>
532  //                              ::= <substitution>
533  if (TemplateDecl *TD = Template.getAsTemplateDecl())
534    return mangleUnscopedTemplateName(TD);
535
536  if (mangleSubstitution(Template))
537    return;
538
539  // FIXME: How to cope with operators here?
540  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
541  assert(Dependent && "Not a dependent template name?");
542  if (!Dependent->isIdentifier()) {
543    // FIXME: We can't possibly know the arity of the operator here!
544    Diagnostic &Diags = Context.getDiags();
545    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
546                                      "cannot mangle dependent operator name");
547    Diags.Report(DiagID);
548    return;
549  }
550
551  mangleSourceName(Dependent->getIdentifier());
552  addSubstitution(Template);
553}
554
555void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
556  // TODO: avoid this copy with careful stream management.
557  llvm::SmallString<20> Buffer;
558  F.bitcastToAPInt().toString(Buffer, 16, false);
559  Out.write(Buffer.data(), Buffer.size());
560}
561
562void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
563  if (Value.isSigned() && Value.isNegative()) {
564    Out << 'n';
565    Value.abs().print(Out, true);
566  } else
567    Value.print(Out, Value.isSigned());
568}
569
570void CXXNameMangler::mangleNumber(int64_t Number) {
571  //  <number> ::= [n] <non-negative decimal integer>
572  if (Number < 0) {
573    Out << 'n';
574    Number = -Number;
575  }
576
577  Out << Number;
578}
579
580void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
581  //  <call-offset>  ::= h <nv-offset> _
582  //                 ::= v <v-offset> _
583  //  <nv-offset>    ::= <offset number>        # non-virtual base override
584  //  <v-offset>     ::= <offset number> _ <virtual offset number>
585  //                      # virtual base override, with vcall offset
586  if (!Virtual) {
587    Out << 'h';
588    mangleNumber(NonVirtual);
589    Out << '_';
590    return;
591  }
592
593  Out << 'v';
594  mangleNumber(NonVirtual);
595  Out << '_';
596  mangleNumber(Virtual);
597  Out << '_';
598}
599
600void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
601  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
602  switch (Qualifier->getKind()) {
603  case NestedNameSpecifier::Global:
604    // nothing
605    break;
606  case NestedNameSpecifier::Namespace:
607    mangleName(Qualifier->getAsNamespace());
608    break;
609  case NestedNameSpecifier::TypeSpec:
610  case NestedNameSpecifier::TypeSpecWithTemplate: {
611    const Type *QTy = Qualifier->getAsType();
612
613    if (const TemplateSpecializationType *TST =
614        dyn_cast<TemplateSpecializationType>(QTy)) {
615      if (!mangleSubstitution(QualType(TST, 0))) {
616        mangleTemplatePrefix(TST->getTemplateName());
617
618        // FIXME: GCC does not appear to mangle the template arguments when
619        // the template in question is a dependent template name. Should we
620        // emulate that badness?
621        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
622                           TST->getNumArgs());
623        addSubstitution(QualType(TST, 0));
624      }
625    } else {
626      // We use the QualType mangle type variant here because it handles
627      // substitutions.
628      mangleType(QualType(QTy, 0));
629    }
630  }
631    break;
632  case NestedNameSpecifier::Identifier:
633    // Member expressions can have these without prefixes.
634    if (Qualifier->getPrefix())
635      mangleUnresolvedScope(Qualifier->getPrefix());
636    mangleSourceName(Qualifier->getAsIdentifier());
637    break;
638  }
639}
640
641/// Mangles a name which was not resolved to a specific entity.
642void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
643                                          DeclarationName Name,
644                                          unsigned KnownArity) {
645  if (Qualifier)
646    mangleUnresolvedScope(Qualifier);
647  // FIXME: ambiguity of unqualified lookup with ::
648
649  mangleUnqualifiedName(0, Name, KnownArity);
650}
651
652static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
653  assert(RD->isAnonymousStructOrUnion() &&
654         "Expected anonymous struct or union!");
655
656  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
657       I != E; ++I) {
658    const FieldDecl *FD = *I;
659
660    if (FD->getIdentifier())
661      return FD;
662
663    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
664      if (const FieldDecl *NamedDataMember =
665          FindFirstNamedDataMember(RT->getDecl()))
666        return NamedDataMember;
667    }
668  }
669
670  // We didn't find a named data member.
671  return 0;
672}
673
674void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
675                                           DeclarationName Name,
676                                           unsigned KnownArity) {
677  //  <unqualified-name> ::= <operator-name>
678  //                     ::= <ctor-dtor-name>
679  //                     ::= <source-name>
680  switch (Name.getNameKind()) {
681  case DeclarationName::Identifier: {
682    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
683      // We must avoid conflicts between internally- and externally-
684      // linked variable declaration names in the same TU.
685      // This naming convention is the same as that followed by GCC, though it
686      // shouldn't actually matter.
687      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
688          ND->getDeclContext()->isFileContext())
689        Out << 'L';
690
691      mangleSourceName(II);
692      break;
693    }
694
695    // Otherwise, an anonymous entity.  We must have a declaration.
696    assert(ND && "mangling empty name without declaration");
697
698    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
699      if (NS->isAnonymousNamespace()) {
700        // This is how gcc mangles these names.
701        Out << "12_GLOBAL__N_1";
702        break;
703      }
704    }
705
706    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
707      // We must have an anonymous union or struct declaration.
708      const RecordDecl *RD =
709        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
710
711      // Itanium C++ ABI 5.1.2:
712      //
713      //   For the purposes of mangling, the name of an anonymous union is
714      //   considered to be the name of the first named data member found by a
715      //   pre-order, depth-first, declaration-order walk of the data members of
716      //   the anonymous union. If there is no such data member (i.e., if all of
717      //   the data members in the union are unnamed), then there is no way for
718      //   a program to refer to the anonymous union, and there is therefore no
719      //   need to mangle its name.
720      const FieldDecl *FD = FindFirstNamedDataMember(RD);
721
722      // It's actually possible for various reasons for us to get here
723      // with an empty anonymous struct / union.  Fortunately, it
724      // doesn't really matter what name we generate.
725      if (!FD) break;
726      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
727
728      mangleSourceName(FD->getIdentifier());
729      break;
730    }
731
732    // We must have an anonymous struct.
733    const TagDecl *TD = cast<TagDecl>(ND);
734    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
735      assert(TD->getDeclContext() == D->getDeclContext() &&
736             "Typedef should not be in another decl context!");
737      assert(D->getDeclName().getAsIdentifierInfo() &&
738             "Typedef was not named!");
739      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
740      break;
741    }
742
743    // Get a unique id for the anonymous struct.
744    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
745
746    // Mangle it as a source name in the form
747    // [n] $_<id>
748    // where n is the length of the string.
749    llvm::SmallString<8> Str;
750    Str += "$_";
751    Str += llvm::utostr(AnonStructId);
752
753    Out << Str.size();
754    Out << Str.str();
755    break;
756  }
757
758  case DeclarationName::ObjCZeroArgSelector:
759  case DeclarationName::ObjCOneArgSelector:
760  case DeclarationName::ObjCMultiArgSelector:
761    assert(false && "Can't mangle Objective-C selector names here!");
762    break;
763
764  case DeclarationName::CXXConstructorName:
765    if (ND == Structor)
766      // If the named decl is the C++ constructor we're mangling, use the type
767      // we were given.
768      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
769    else
770      // Otherwise, use the complete constructor name. This is relevant if a
771      // class with a constructor is declared within a constructor.
772      mangleCXXCtorType(Ctor_Complete);
773    break;
774
775  case DeclarationName::CXXDestructorName:
776    if (ND == Structor)
777      // If the named decl is the C++ destructor we're mangling, use the type we
778      // were given.
779      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
780    else
781      // Otherwise, use the complete destructor name. This is relevant if a
782      // class with a destructor is declared within a destructor.
783      mangleCXXDtorType(Dtor_Complete);
784    break;
785
786  case DeclarationName::CXXConversionFunctionName:
787    // <operator-name> ::= cv <type>    # (cast)
788    Out << "cv";
789    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
790    break;
791
792  case DeclarationName::CXXOperatorName: {
793    unsigned Arity;
794    if (ND) {
795      Arity = cast<FunctionDecl>(ND)->getNumParams();
796
797      // If we have a C++ member function, we need to include the 'this' pointer.
798      // FIXME: This does not make sense for operators that are static, but their
799      // names stay the same regardless of the arity (operator new for instance).
800      if (isa<CXXMethodDecl>(ND))
801        Arity++;
802    } else
803      Arity = KnownArity;
804
805    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
806    break;
807  }
808
809  case DeclarationName::CXXLiteralOperatorName:
810    // FIXME: This mangling is not yet official.
811    Out << "li";
812    mangleSourceName(Name.getCXXLiteralIdentifier());
813    break;
814
815  case DeclarationName::CXXUsingDirective:
816    assert(false && "Can't mangle a using directive name!");
817    break;
818  }
819}
820
821void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
822  // <source-name> ::= <positive length number> <identifier>
823  // <number> ::= [n] <non-negative decimal integer>
824  // <identifier> ::= <unqualified source code identifier>
825  Out << II->getLength() << II->getName();
826}
827
828void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
829                                      const DeclContext *DC,
830                                      bool NoFunction) {
831  // <nested-name>
832  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
833  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
834  //       <template-args> E
835
836  Out << 'N';
837  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
838    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
839    mangleRefQualifier(Method->getRefQualifier());
840  }
841
842  // Check if we have a template.
843  const TemplateArgumentList *TemplateArgs = 0;
844  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
845    mangleTemplatePrefix(TD);
846    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
847    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
848  }
849  else {
850    manglePrefix(DC, NoFunction);
851    mangleUnqualifiedName(ND);
852  }
853
854  Out << 'E';
855}
856void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
857                                      const TemplateArgument *TemplateArgs,
858                                      unsigned NumTemplateArgs) {
859  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
860
861  Out << 'N';
862
863  mangleTemplatePrefix(TD);
864  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
865  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
866
867  Out << 'E';
868}
869
870void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
871  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
872  //              := Z <function encoding> E s [<discriminator>]
873  // <discriminator> := _ <non-negative number>
874  const DeclContext *DC = ND->getDeclContext();
875  Out << 'Z';
876
877  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
878   mangleObjCMethodName(MD);
879  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
880    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
881    Out << 'E';
882
883    // Mangle the name relative to the closest enclosing function.
884    if (ND == RD) // equality ok because RD derived from ND above
885      mangleUnqualifiedName(ND);
886    else
887      mangleNestedName(ND, DC, true /*NoFunction*/);
888
889    unsigned disc;
890    if (Context.getNextDiscriminator(RD, disc)) {
891      if (disc < 10)
892        Out << '_' << disc;
893      else
894        Out << "__" << disc << '_';
895    }
896
897    return;
898  }
899  else
900    mangleFunctionEncoding(cast<FunctionDecl>(DC));
901
902  Out << 'E';
903  mangleUnqualifiedName(ND);
904}
905
906void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
907  //  <prefix> ::= <prefix> <unqualified-name>
908  //           ::= <template-prefix> <template-args>
909  //           ::= <template-param>
910  //           ::= # empty
911  //           ::= <substitution>
912
913  while (isa<LinkageSpecDecl>(DC))
914    DC = DC->getParent();
915
916  if (DC->isTranslationUnit())
917    return;
918
919  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
920    manglePrefix(DC->getParent(), NoFunction);
921    llvm::SmallString<64> Name;
922    llvm::raw_svector_ostream NameStream(Name);
923    Context.mangleBlock(Block, NameStream);
924    NameStream.flush();
925    Out << Name.size() << Name;
926    return;
927  }
928
929  if (mangleSubstitution(cast<NamedDecl>(DC)))
930    return;
931
932  // Check if we have a template.
933  const TemplateArgumentList *TemplateArgs = 0;
934  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
935    mangleTemplatePrefix(TD);
936    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
937    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
938  }
939  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
940    return;
941  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
942    mangleObjCMethodName(Method);
943  else {
944    manglePrefix(DC->getParent(), NoFunction);
945    mangleUnqualifiedName(cast<NamedDecl>(DC));
946  }
947
948  addSubstitution(cast<NamedDecl>(DC));
949}
950
951void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
952  // <template-prefix> ::= <prefix> <template unqualified-name>
953  //                   ::= <template-param>
954  //                   ::= <substitution>
955  if (TemplateDecl *TD = Template.getAsTemplateDecl())
956    return mangleTemplatePrefix(TD);
957
958  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
959    mangleUnresolvedScope(Qualified->getQualifier());
960
961  if (OverloadedTemplateStorage *Overloaded
962                                      = Template.getAsOverloadedTemplate()) {
963    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
964                          UnknownArity);
965    return;
966  }
967
968  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
969  assert(Dependent && "Unknown template name kind?");
970  mangleUnresolvedScope(Dependent->getQualifier());
971  mangleUnscopedTemplateName(Template);
972}
973
974void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
975  // <template-prefix> ::= <prefix> <template unqualified-name>
976  //                   ::= <template-param>
977  //                   ::= <substitution>
978  // <template-template-param> ::= <template-param>
979  //                               <substitution>
980
981  if (mangleSubstitution(ND))
982    return;
983
984  // <template-template-param> ::= <template-param>
985  if (const TemplateTemplateParmDecl *TTP
986                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
987    mangleTemplateParameter(TTP->getIndex());
988    return;
989  }
990
991  manglePrefix(ND->getDeclContext());
992  mangleUnqualifiedName(ND->getTemplatedDecl());
993  addSubstitution(ND);
994}
995
996/// Mangles a template name under the production <type>.  Required for
997/// template template arguments.
998///   <type> ::= <class-enum-type>
999///          ::= <template-param>
1000///          ::= <substitution>
1001void CXXNameMangler::mangleType(TemplateName TN) {
1002  if (mangleSubstitution(TN))
1003    return;
1004
1005  TemplateDecl *TD = 0;
1006
1007  switch (TN.getKind()) {
1008  case TemplateName::QualifiedTemplate:
1009    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1010    goto HaveDecl;
1011
1012  case TemplateName::Template:
1013    TD = TN.getAsTemplateDecl();
1014    goto HaveDecl;
1015
1016  HaveDecl:
1017    if (isa<TemplateTemplateParmDecl>(TD))
1018      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1019    else
1020      mangleName(TD);
1021    break;
1022
1023  case TemplateName::OverloadedTemplate:
1024    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1025    break;
1026
1027  case TemplateName::DependentTemplate: {
1028    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1029    assert(Dependent->isIdentifier());
1030
1031    // <class-enum-type> ::= <name>
1032    // <name> ::= <nested-name>
1033    mangleUnresolvedScope(Dependent->getQualifier());
1034    mangleSourceName(Dependent->getIdentifier());
1035    break;
1036  }
1037
1038  case TemplateName::SubstTemplateTemplateParmPack: {
1039    SubstTemplateTemplateParmPackStorage *SubstPack
1040      = TN.getAsSubstTemplateTemplateParmPack();
1041    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1042    break;
1043  }
1044  }
1045
1046  addSubstitution(TN);
1047}
1048
1049void
1050CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1051  switch (OO) {
1052  // <operator-name> ::= nw     # new
1053  case OO_New: Out << "nw"; break;
1054  //              ::= na        # new[]
1055  case OO_Array_New: Out << "na"; break;
1056  //              ::= dl        # delete
1057  case OO_Delete: Out << "dl"; break;
1058  //              ::= da        # delete[]
1059  case OO_Array_Delete: Out << "da"; break;
1060  //              ::= ps        # + (unary)
1061  //              ::= pl        # + (binary or unknown)
1062  case OO_Plus:
1063    Out << (Arity == 1? "ps" : "pl"); break;
1064  //              ::= ng        # - (unary)
1065  //              ::= mi        # - (binary or unknown)
1066  case OO_Minus:
1067    Out << (Arity == 1? "ng" : "mi"); break;
1068  //              ::= ad        # & (unary)
1069  //              ::= an        # & (binary or unknown)
1070  case OO_Amp:
1071    Out << (Arity == 1? "ad" : "an"); break;
1072  //              ::= de        # * (unary)
1073  //              ::= ml        # * (binary or unknown)
1074  case OO_Star:
1075    // Use binary when unknown.
1076    Out << (Arity == 1? "de" : "ml"); break;
1077  //              ::= co        # ~
1078  case OO_Tilde: Out << "co"; break;
1079  //              ::= dv        # /
1080  case OO_Slash: Out << "dv"; break;
1081  //              ::= rm        # %
1082  case OO_Percent: Out << "rm"; break;
1083  //              ::= or        # |
1084  case OO_Pipe: Out << "or"; break;
1085  //              ::= eo        # ^
1086  case OO_Caret: Out << "eo"; break;
1087  //              ::= aS        # =
1088  case OO_Equal: Out << "aS"; break;
1089  //              ::= pL        # +=
1090  case OO_PlusEqual: Out << "pL"; break;
1091  //              ::= mI        # -=
1092  case OO_MinusEqual: Out << "mI"; break;
1093  //              ::= mL        # *=
1094  case OO_StarEqual: Out << "mL"; break;
1095  //              ::= dV        # /=
1096  case OO_SlashEqual: Out << "dV"; break;
1097  //              ::= rM        # %=
1098  case OO_PercentEqual: Out << "rM"; break;
1099  //              ::= aN        # &=
1100  case OO_AmpEqual: Out << "aN"; break;
1101  //              ::= oR        # |=
1102  case OO_PipeEqual: Out << "oR"; break;
1103  //              ::= eO        # ^=
1104  case OO_CaretEqual: Out << "eO"; break;
1105  //              ::= ls        # <<
1106  case OO_LessLess: Out << "ls"; break;
1107  //              ::= rs        # >>
1108  case OO_GreaterGreater: Out << "rs"; break;
1109  //              ::= lS        # <<=
1110  case OO_LessLessEqual: Out << "lS"; break;
1111  //              ::= rS        # >>=
1112  case OO_GreaterGreaterEqual: Out << "rS"; break;
1113  //              ::= eq        # ==
1114  case OO_EqualEqual: Out << "eq"; break;
1115  //              ::= ne        # !=
1116  case OO_ExclaimEqual: Out << "ne"; break;
1117  //              ::= lt        # <
1118  case OO_Less: Out << "lt"; break;
1119  //              ::= gt        # >
1120  case OO_Greater: Out << "gt"; break;
1121  //              ::= le        # <=
1122  case OO_LessEqual: Out << "le"; break;
1123  //              ::= ge        # >=
1124  case OO_GreaterEqual: Out << "ge"; break;
1125  //              ::= nt        # !
1126  case OO_Exclaim: Out << "nt"; break;
1127  //              ::= aa        # &&
1128  case OO_AmpAmp: Out << "aa"; break;
1129  //              ::= oo        # ||
1130  case OO_PipePipe: Out << "oo"; break;
1131  //              ::= pp        # ++
1132  case OO_PlusPlus: Out << "pp"; break;
1133  //              ::= mm        # --
1134  case OO_MinusMinus: Out << "mm"; break;
1135  //              ::= cm        # ,
1136  case OO_Comma: Out << "cm"; break;
1137  //              ::= pm        # ->*
1138  case OO_ArrowStar: Out << "pm"; break;
1139  //              ::= pt        # ->
1140  case OO_Arrow: Out << "pt"; break;
1141  //              ::= cl        # ()
1142  case OO_Call: Out << "cl"; break;
1143  //              ::= ix        # []
1144  case OO_Subscript: Out << "ix"; break;
1145
1146  //              ::= qu        # ?
1147  // The conditional operator can't be overloaded, but we still handle it when
1148  // mangling expressions.
1149  case OO_Conditional: Out << "qu"; break;
1150
1151  case OO_None:
1152  case NUM_OVERLOADED_OPERATORS:
1153    assert(false && "Not an overloaded operator");
1154    break;
1155  }
1156}
1157
1158void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1159  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1160  if (Quals.hasRestrict())
1161    Out << 'r';
1162  if (Quals.hasVolatile())
1163    Out << 'V';
1164  if (Quals.hasConst())
1165    Out << 'K';
1166
1167  if (Quals.hasAddressSpace()) {
1168    // Extension:
1169    //
1170    //   <type> ::= U <address-space-number>
1171    //
1172    // where <address-space-number> is a source name consisting of 'AS'
1173    // followed by the address space <number>.
1174    llvm::SmallString<64> ASString;
1175    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1176    Out << 'U' << ASString.size() << ASString;
1177  }
1178
1179  // FIXME: For now, just drop all extension qualifiers on the floor.
1180}
1181
1182void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1183  // <ref-qualifier> ::= R                # lvalue reference
1184  //                 ::= O                # rvalue-reference
1185  // Proposal to Itanium C++ ABI list on 1/26/11
1186  switch (RefQualifier) {
1187  case RQ_None:
1188    break;
1189
1190  case RQ_LValue:
1191    Out << 'R';
1192    break;
1193
1194  case RQ_RValue:
1195    Out << 'O';
1196    break;
1197  }
1198}
1199
1200void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1201  Context.mangleObjCMethodName(MD, Out);
1202}
1203
1204void CXXNameMangler::mangleType(QualType nonCanon) {
1205  // Only operate on the canonical type!
1206  QualType canon = nonCanon.getCanonicalType();
1207
1208  SplitQualType split = canon.split();
1209  Qualifiers quals = split.second;
1210  const Type *ty = split.first;
1211
1212  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
1213  if (isSubstitutable && mangleSubstitution(canon))
1214    return;
1215
1216  // If we're mangling a qualified array type, push the qualifiers to
1217  // the element type.
1218  if (quals && isa<ArrayType>(ty)) {
1219    ty = Context.getASTContext().getAsArrayType(canon);
1220    quals = Qualifiers();
1221
1222    // Note that we don't update canon: we want to add the
1223    // substitution at the canonical type.
1224  }
1225
1226  if (quals) {
1227    mangleQualifiers(quals);
1228    // Recurse:  even if the qualified type isn't yet substitutable,
1229    // the unqualified type might be.
1230    mangleType(QualType(ty, 0));
1231  } else {
1232    switch (ty->getTypeClass()) {
1233#define ABSTRACT_TYPE(CLASS, PARENT)
1234#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1235    case Type::CLASS: \
1236      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1237      return;
1238#define TYPE(CLASS, PARENT) \
1239    case Type::CLASS: \
1240      mangleType(static_cast<const CLASS##Type*>(ty)); \
1241      break;
1242#include "clang/AST/TypeNodes.def"
1243    }
1244  }
1245
1246  // Add the substitution.
1247  if (isSubstitutable)
1248    addSubstitution(canon);
1249}
1250
1251void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1252  if (!mangleStandardSubstitution(ND))
1253    mangleName(ND);
1254}
1255
1256void CXXNameMangler::mangleType(const BuiltinType *T) {
1257  //  <type>         ::= <builtin-type>
1258  //  <builtin-type> ::= v  # void
1259  //                 ::= w  # wchar_t
1260  //                 ::= b  # bool
1261  //                 ::= c  # char
1262  //                 ::= a  # signed char
1263  //                 ::= h  # unsigned char
1264  //                 ::= s  # short
1265  //                 ::= t  # unsigned short
1266  //                 ::= i  # int
1267  //                 ::= j  # unsigned int
1268  //                 ::= l  # long
1269  //                 ::= m  # unsigned long
1270  //                 ::= x  # long long, __int64
1271  //                 ::= y  # unsigned long long, __int64
1272  //                 ::= n  # __int128
1273  // UNSUPPORTED:    ::= o  # unsigned __int128
1274  //                 ::= f  # float
1275  //                 ::= d  # double
1276  //                 ::= e  # long double, __float80
1277  // UNSUPPORTED:    ::= g  # __float128
1278  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1279  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1280  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1281  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1282  //                 ::= Di # char32_t
1283  //                 ::= Ds # char16_t
1284  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1285  //                 ::= u <source-name>    # vendor extended type
1286  switch (T->getKind()) {
1287  case BuiltinType::Void: Out << 'v'; break;
1288  case BuiltinType::Bool: Out << 'b'; break;
1289  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1290  case BuiltinType::UChar: Out << 'h'; break;
1291  case BuiltinType::UShort: Out << 't'; break;
1292  case BuiltinType::UInt: Out << 'j'; break;
1293  case BuiltinType::ULong: Out << 'm'; break;
1294  case BuiltinType::ULongLong: Out << 'y'; break;
1295  case BuiltinType::UInt128: Out << 'o'; break;
1296  case BuiltinType::SChar: Out << 'a'; break;
1297  case BuiltinType::WChar_S:
1298  case BuiltinType::WChar_U: Out << 'w'; break;
1299  case BuiltinType::Char16: Out << "Ds"; break;
1300  case BuiltinType::Char32: Out << "Di"; break;
1301  case BuiltinType::Short: Out << 's'; break;
1302  case BuiltinType::Int: Out << 'i'; break;
1303  case BuiltinType::Long: Out << 'l'; break;
1304  case BuiltinType::LongLong: Out << 'x'; break;
1305  case BuiltinType::Int128: Out << 'n'; break;
1306  case BuiltinType::Float: Out << 'f'; break;
1307  case BuiltinType::Double: Out << 'd'; break;
1308  case BuiltinType::LongDouble: Out << 'e'; break;
1309  case BuiltinType::NullPtr: Out << "Dn"; break;
1310
1311  case BuiltinType::Overload:
1312  case BuiltinType::Dependent:
1313    assert(false &&
1314           "Overloaded and dependent types shouldn't get to name mangling");
1315    break;
1316  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1317  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1318  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1319  }
1320}
1321
1322// <type>          ::= <function-type>
1323// <function-type> ::= F [Y] <bare-function-type> E
1324void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1325  Out << 'F';
1326  // FIXME: We don't have enough information in the AST to produce the 'Y'
1327  // encoding for extern "C" function types.
1328  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1329  Out << 'E';
1330}
1331void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1332  llvm_unreachable("Can't mangle K&R function prototypes");
1333}
1334void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1335                                            bool MangleReturnType) {
1336  // We should never be mangling something without a prototype.
1337  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1338
1339  // <bare-function-type> ::= <signature type>+
1340  if (MangleReturnType)
1341    mangleType(Proto->getResultType());
1342
1343  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1344    //   <builtin-type> ::= v   # void
1345    Out << 'v';
1346    return;
1347  }
1348
1349  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1350                                         ArgEnd = Proto->arg_type_end();
1351       Arg != ArgEnd; ++Arg)
1352    mangleType(*Arg);
1353
1354  // <builtin-type>      ::= z  # ellipsis
1355  if (Proto->isVariadic())
1356    Out << 'z';
1357}
1358
1359// <type>            ::= <class-enum-type>
1360// <class-enum-type> ::= <name>
1361void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1362  mangleName(T->getDecl());
1363}
1364
1365// <type>            ::= <class-enum-type>
1366// <class-enum-type> ::= <name>
1367void CXXNameMangler::mangleType(const EnumType *T) {
1368  mangleType(static_cast<const TagType*>(T));
1369}
1370void CXXNameMangler::mangleType(const RecordType *T) {
1371  mangleType(static_cast<const TagType*>(T));
1372}
1373void CXXNameMangler::mangleType(const TagType *T) {
1374  mangleName(T->getDecl());
1375}
1376
1377// <type>       ::= <array-type>
1378// <array-type> ::= A <positive dimension number> _ <element type>
1379//              ::= A [<dimension expression>] _ <element type>
1380void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1381  Out << 'A' << T->getSize() << '_';
1382  mangleType(T->getElementType());
1383}
1384void CXXNameMangler::mangleType(const VariableArrayType *T) {
1385  Out << 'A';
1386  // decayed vla types (size 0) will just be skipped.
1387  if (T->getSizeExpr())
1388    mangleExpression(T->getSizeExpr());
1389  Out << '_';
1390  mangleType(T->getElementType());
1391}
1392void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1393  Out << 'A';
1394  mangleExpression(T->getSizeExpr());
1395  Out << '_';
1396  mangleType(T->getElementType());
1397}
1398void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1399  Out << "A_";
1400  mangleType(T->getElementType());
1401}
1402
1403// <type>                   ::= <pointer-to-member-type>
1404// <pointer-to-member-type> ::= M <class type> <member type>
1405void CXXNameMangler::mangleType(const MemberPointerType *T) {
1406  Out << 'M';
1407  mangleType(QualType(T->getClass(), 0));
1408  QualType PointeeType = T->getPointeeType();
1409  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1410    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1411    mangleRefQualifier(FPT->getRefQualifier());
1412    mangleType(FPT);
1413
1414    // Itanium C++ ABI 5.1.8:
1415    //
1416    //   The type of a non-static member function is considered to be different,
1417    //   for the purposes of substitution, from the type of a namespace-scope or
1418    //   static member function whose type appears similar. The types of two
1419    //   non-static member functions are considered to be different, for the
1420    //   purposes of substitution, if the functions are members of different
1421    //   classes. In other words, for the purposes of substitution, the class of
1422    //   which the function is a member is considered part of the type of
1423    //   function.
1424
1425    // We increment the SeqID here to emulate adding an entry to the
1426    // substitution table. We can't actually add it because we don't want this
1427    // particular function type to be substituted.
1428    ++SeqID;
1429  } else
1430    mangleType(PointeeType);
1431}
1432
1433// <type>           ::= <template-param>
1434void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1435  mangleTemplateParameter(T->getIndex());
1436}
1437
1438// <type>           ::= <template-param>
1439void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1440  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1441}
1442
1443// <type> ::= P <type>   # pointer-to
1444void CXXNameMangler::mangleType(const PointerType *T) {
1445  Out << 'P';
1446  mangleType(T->getPointeeType());
1447}
1448void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1449  Out << 'P';
1450  mangleType(T->getPointeeType());
1451}
1452
1453// <type> ::= R <type>   # reference-to
1454void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1455  Out << 'R';
1456  mangleType(T->getPointeeType());
1457}
1458
1459// <type> ::= O <type>   # rvalue reference-to (C++0x)
1460void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1461  Out << 'O';
1462  mangleType(T->getPointeeType());
1463}
1464
1465// <type> ::= C <type>   # complex pair (C 2000)
1466void CXXNameMangler::mangleType(const ComplexType *T) {
1467  Out << 'C';
1468  mangleType(T->getElementType());
1469}
1470
1471// ARM's ABI for Neon vector types specifies that they should be mangled as
1472// if they are structs (to match ARM's initial implementation).  The
1473// vector type must be one of the special types predefined by ARM.
1474void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1475  QualType EltType = T->getElementType();
1476  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1477  const char *EltName = 0;
1478  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1479    switch (cast<BuiltinType>(EltType)->getKind()) {
1480    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1481    case BuiltinType::Short:     EltName = "poly16_t"; break;
1482    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1483    }
1484  } else {
1485    switch (cast<BuiltinType>(EltType)->getKind()) {
1486    case BuiltinType::SChar:     EltName = "int8_t"; break;
1487    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1488    case BuiltinType::Short:     EltName = "int16_t"; break;
1489    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1490    case BuiltinType::Int:       EltName = "int32_t"; break;
1491    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1492    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1493    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1494    case BuiltinType::Float:     EltName = "float32_t"; break;
1495    default: llvm_unreachable("unexpected Neon vector element type");
1496    }
1497  }
1498  const char *BaseName = 0;
1499  unsigned BitSize = (T->getNumElements() *
1500                      getASTContext().getTypeSize(EltType));
1501  if (BitSize == 64)
1502    BaseName = "__simd64_";
1503  else {
1504    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1505    BaseName = "__simd128_";
1506  }
1507  Out << strlen(BaseName) + strlen(EltName);
1508  Out << BaseName << EltName;
1509}
1510
1511// GNU extension: vector types
1512// <type>                  ::= <vector-type>
1513// <vector-type>           ::= Dv <positive dimension number> _
1514//                                    <extended element type>
1515//                         ::= Dv [<dimension expression>] _ <element type>
1516// <extended element type> ::= <element type>
1517//                         ::= p # AltiVec vector pixel
1518void CXXNameMangler::mangleType(const VectorType *T) {
1519  if ((T->getVectorKind() == VectorType::NeonVector ||
1520       T->getVectorKind() == VectorType::NeonPolyVector)) {
1521    mangleNeonVectorType(T);
1522    return;
1523  }
1524  Out << "Dv" << T->getNumElements() << '_';
1525  if (T->getVectorKind() == VectorType::AltiVecPixel)
1526    Out << 'p';
1527  else if (T->getVectorKind() == VectorType::AltiVecBool)
1528    Out << 'b';
1529  else
1530    mangleType(T->getElementType());
1531}
1532void CXXNameMangler::mangleType(const ExtVectorType *T) {
1533  mangleType(static_cast<const VectorType*>(T));
1534}
1535void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1536  Out << "Dv";
1537  mangleExpression(T->getSizeExpr());
1538  Out << '_';
1539  mangleType(T->getElementType());
1540}
1541
1542void CXXNameMangler::mangleType(const PackExpansionType *T) {
1543  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1544  Out << "Dp";
1545  mangleType(T->getPattern());
1546}
1547
1548void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1549  mangleSourceName(T->getDecl()->getIdentifier());
1550}
1551
1552void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1553  // We don't allow overloading by different protocol qualification,
1554  // so mangling them isn't necessary.
1555  mangleType(T->getBaseType());
1556}
1557
1558void CXXNameMangler::mangleType(const BlockPointerType *T) {
1559  Out << "U13block_pointer";
1560  mangleType(T->getPointeeType());
1561}
1562
1563void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1564  // Mangle injected class name types as if the user had written the
1565  // specialization out fully.  It may not actually be possible to see
1566  // this mangling, though.
1567  mangleType(T->getInjectedSpecializationType());
1568}
1569
1570void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1571  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1572    mangleName(TD, T->getArgs(), T->getNumArgs());
1573  } else {
1574    if (mangleSubstitution(QualType(T, 0)))
1575      return;
1576
1577    mangleTemplatePrefix(T->getTemplateName());
1578
1579    // FIXME: GCC does not appear to mangle the template arguments when
1580    // the template in question is a dependent template name. Should we
1581    // emulate that badness?
1582    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1583    addSubstitution(QualType(T, 0));
1584  }
1585}
1586
1587void CXXNameMangler::mangleType(const DependentNameType *T) {
1588  // Typename types are always nested
1589  Out << 'N';
1590  mangleUnresolvedScope(T->getQualifier());
1591  mangleSourceName(T->getIdentifier());
1592  Out << 'E';
1593}
1594
1595void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1596  // Dependently-scoped template types are always nested
1597  Out << 'N';
1598
1599  // TODO: avoid making this TemplateName.
1600  TemplateName Prefix =
1601    getASTContext().getDependentTemplateName(T->getQualifier(),
1602                                             T->getIdentifier());
1603  mangleTemplatePrefix(Prefix);
1604
1605  // FIXME: GCC does not appear to mangle the template arguments when
1606  // the template in question is a dependent template name. Should we
1607  // emulate that badness?
1608  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1609  Out << 'E';
1610}
1611
1612void CXXNameMangler::mangleType(const TypeOfType *T) {
1613  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1614  // "extension with parameters" mangling.
1615  Out << "u6typeof";
1616}
1617
1618void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1619  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1620  // "extension with parameters" mangling.
1621  Out << "u6typeof";
1622}
1623
1624void CXXNameMangler::mangleType(const DecltypeType *T) {
1625  Expr *E = T->getUnderlyingExpr();
1626
1627  // type ::= Dt <expression> E  # decltype of an id-expression
1628  //                             #   or class member access
1629  //      ::= DT <expression> E  # decltype of an expression
1630
1631  // This purports to be an exhaustive list of id-expressions and
1632  // class member accesses.  Note that we do not ignore parentheses;
1633  // parentheses change the semantics of decltype for these
1634  // expressions (and cause the mangler to use the other form).
1635  if (isa<DeclRefExpr>(E) ||
1636      isa<MemberExpr>(E) ||
1637      isa<UnresolvedLookupExpr>(E) ||
1638      isa<DependentScopeDeclRefExpr>(E) ||
1639      isa<CXXDependentScopeMemberExpr>(E) ||
1640      isa<UnresolvedMemberExpr>(E))
1641    Out << "Dt";
1642  else
1643    Out << "DT";
1644  mangleExpression(E);
1645  Out << 'E';
1646}
1647
1648void CXXNameMangler::mangleType(const AutoType *T) {
1649  QualType D = T->getDeducedType();
1650  assert(!D.isNull() && "can't mangle undeduced auto type");
1651  mangleType(D);
1652}
1653
1654void CXXNameMangler::mangleIntegerLiteral(QualType T,
1655                                          const llvm::APSInt &Value) {
1656  //  <expr-primary> ::= L <type> <value number> E # integer literal
1657  Out << 'L';
1658
1659  mangleType(T);
1660  if (T->isBooleanType()) {
1661    // Boolean values are encoded as 0/1.
1662    Out << (Value.getBoolValue() ? '1' : '0');
1663  } else {
1664    mangleNumber(Value);
1665  }
1666  Out << 'E';
1667
1668}
1669
1670/// Mangles a member expression.  Implicit accesses are not handled,
1671/// but that should be okay, because you shouldn't be able to
1672/// make an implicit access in a function template declaration.
1673void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1674                                      bool IsArrow,
1675                                      NestedNameSpecifier *Qualifier,
1676                                      DeclarationName Member,
1677                                      unsigned Arity) {
1678  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1679  // OTOH, gcc also mangles the name as an expression.
1680  Out << (IsArrow ? "pt" : "dt");
1681  mangleExpression(Base);
1682  mangleUnresolvedName(Qualifier, Member, Arity);
1683}
1684
1685void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1686  // <expression> ::= <unary operator-name> <expression>
1687  //              ::= <binary operator-name> <expression> <expression>
1688  //              ::= <trinary operator-name> <expression> <expression> <expression>
1689  //              ::= cl <expression>* E             # call
1690  //              ::= cv <type> expression           # conversion with one argument
1691  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1692  //              ::= st <type>                      # sizeof (a type)
1693  //              ::= at <type>                      # alignof (a type)
1694  //              ::= <template-param>
1695  //              ::= <function-param>
1696  //              ::= sr <type> <unqualified-name>                   # dependent name
1697  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1698  //              ::= sZ <template-param>                            # size of a parameter pack
1699  //              ::= sZ <function-param>    # size of a function parameter pack
1700  //              ::= <expr-primary>
1701  // <expr-primary> ::= L <type> <value number> E    # integer literal
1702  //                ::= L <type <value float> E      # floating literal
1703  //                ::= L <mangled-name> E           # external name
1704  switch (E->getStmtClass()) {
1705  case Expr::NoStmtClass:
1706#define ABSTRACT_STMT(Type)
1707#define EXPR(Type, Base)
1708#define STMT(Type, Base) \
1709  case Expr::Type##Class:
1710#include "clang/AST/StmtNodes.inc"
1711    // fallthrough
1712
1713  // These all can only appear in local or variable-initialization
1714  // contexts and so should never appear in a mangling.
1715  case Expr::AddrLabelExprClass:
1716  case Expr::BlockDeclRefExprClass:
1717  case Expr::CXXThisExprClass:
1718  case Expr::DesignatedInitExprClass:
1719  case Expr::ImplicitValueInitExprClass:
1720  case Expr::InitListExprClass:
1721  case Expr::ParenListExprClass:
1722  case Expr::CXXScalarValueInitExprClass:
1723    llvm_unreachable("unexpected statement kind");
1724    break;
1725
1726  // FIXME: invent manglings for all these.
1727  case Expr::BlockExprClass:
1728  case Expr::CXXPseudoDestructorExprClass:
1729  case Expr::ChooseExprClass:
1730  case Expr::CompoundLiteralExprClass:
1731  case Expr::ExtVectorElementExprClass:
1732  case Expr::ObjCEncodeExprClass:
1733  case Expr::ObjCIsaExprClass:
1734  case Expr::ObjCIvarRefExprClass:
1735  case Expr::ObjCMessageExprClass:
1736  case Expr::ObjCPropertyRefExprClass:
1737  case Expr::ObjCProtocolExprClass:
1738  case Expr::ObjCSelectorExprClass:
1739  case Expr::ObjCStringLiteralClass:
1740  case Expr::OffsetOfExprClass:
1741  case Expr::PredefinedExprClass:
1742  case Expr::ShuffleVectorExprClass:
1743  case Expr::StmtExprClass:
1744  case Expr::UnaryTypeTraitExprClass:
1745  case Expr::BinaryTypeTraitExprClass:
1746  case Expr::VAArgExprClass:
1747  case Expr::CXXUuidofExprClass:
1748  case Expr::CXXNoexceptExprClass:
1749  case Expr::CUDAKernelCallExprClass: {
1750    // As bad as this diagnostic is, it's better than crashing.
1751    Diagnostic &Diags = Context.getDiags();
1752    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1753                                     "cannot yet mangle expression type %0");
1754    Diags.Report(E->getExprLoc(), DiagID)
1755      << E->getStmtClassName() << E->getSourceRange();
1756    break;
1757  }
1758
1759  // Even gcc-4.5 doesn't mangle this.
1760  case Expr::BinaryConditionalOperatorClass: {
1761    Diagnostic &Diags = Context.getDiags();
1762    unsigned DiagID =
1763      Diags.getCustomDiagID(Diagnostic::Error,
1764                "?: operator with omitted middle operand cannot be mangled");
1765    Diags.Report(E->getExprLoc(), DiagID)
1766      << E->getStmtClassName() << E->getSourceRange();
1767    break;
1768  }
1769
1770  // These are used for internal purposes and cannot be meaningfully mangled.
1771  case Expr::OpaqueValueExprClass:
1772    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1773
1774  case Expr::CXXDefaultArgExprClass:
1775    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1776    break;
1777
1778  case Expr::CXXMemberCallExprClass: // fallthrough
1779  case Expr::CallExprClass: {
1780    const CallExpr *CE = cast<CallExpr>(E);
1781    Out << "cl";
1782    mangleExpression(CE->getCallee(), CE->getNumArgs());
1783    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1784      mangleExpression(CE->getArg(I));
1785    Out << 'E';
1786    break;
1787  }
1788
1789  case Expr::CXXNewExprClass: {
1790    // Proposal from David Vandervoorde, 2010.06.30
1791    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1792    if (New->isGlobalNew()) Out << "gs";
1793    Out << (New->isArray() ? "na" : "nw");
1794    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1795           E = New->placement_arg_end(); I != E; ++I)
1796      mangleExpression(*I);
1797    Out << '_';
1798    mangleType(New->getAllocatedType());
1799    if (New->hasInitializer()) {
1800      Out << "pi";
1801      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1802             E = New->constructor_arg_end(); I != E; ++I)
1803        mangleExpression(*I);
1804    }
1805    Out << 'E';
1806    break;
1807  }
1808
1809  case Expr::MemberExprClass: {
1810    const MemberExpr *ME = cast<MemberExpr>(E);
1811    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1812                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1813                     Arity);
1814    break;
1815  }
1816
1817  case Expr::UnresolvedMemberExprClass: {
1818    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1819    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1820                     ME->getQualifier(), ME->getMemberName(),
1821                     Arity);
1822    if (ME->hasExplicitTemplateArgs())
1823      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1824    break;
1825  }
1826
1827  case Expr::CXXDependentScopeMemberExprClass: {
1828    const CXXDependentScopeMemberExpr *ME
1829      = cast<CXXDependentScopeMemberExpr>(E);
1830    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1831                     ME->getQualifier(), ME->getMember(),
1832                     Arity);
1833    if (ME->hasExplicitTemplateArgs())
1834      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1835    break;
1836  }
1837
1838  case Expr::UnresolvedLookupExprClass: {
1839    // The ABI doesn't cover how to mangle overload sets, so we mangle
1840    // using something as close as possible to the original lookup
1841    // expression.
1842    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1843    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1844    if (ULE->hasExplicitTemplateArgs())
1845      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1846    break;
1847  }
1848
1849  case Expr::CXXUnresolvedConstructExprClass: {
1850    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1851    unsigned N = CE->arg_size();
1852
1853    Out << "cv";
1854    mangleType(CE->getType());
1855    if (N != 1) Out << '_';
1856    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1857    if (N != 1) Out << 'E';
1858    break;
1859  }
1860
1861  case Expr::CXXTemporaryObjectExprClass:
1862  case Expr::CXXConstructExprClass: {
1863    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1864    unsigned N = CE->getNumArgs();
1865
1866    Out << "cv";
1867    mangleType(CE->getType());
1868    if (N != 1) Out << '_';
1869    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1870    if (N != 1) Out << 'E';
1871    break;
1872  }
1873
1874  case Expr::SizeOfAlignOfExprClass: {
1875    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1876    if (SAE->isSizeOf()) Out << 's';
1877    else Out << 'a';
1878    if (SAE->isArgumentType()) {
1879      Out << 't';
1880      mangleType(SAE->getArgumentType());
1881    } else {
1882      Out << 'z';
1883      mangleExpression(SAE->getArgumentExpr());
1884    }
1885    break;
1886  }
1887
1888  case Expr::CXXThrowExprClass: {
1889    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1890
1891    // Proposal from David Vandervoorde, 2010.06.30
1892    if (TE->getSubExpr()) {
1893      Out << "tw";
1894      mangleExpression(TE->getSubExpr());
1895    } else {
1896      Out << "tr";
1897    }
1898    break;
1899  }
1900
1901  case Expr::CXXTypeidExprClass: {
1902    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1903
1904    // Proposal from David Vandervoorde, 2010.06.30
1905    if (TIE->isTypeOperand()) {
1906      Out << "ti";
1907      mangleType(TIE->getTypeOperand());
1908    } else {
1909      Out << "te";
1910      mangleExpression(TIE->getExprOperand());
1911    }
1912    break;
1913  }
1914
1915  case Expr::CXXDeleteExprClass: {
1916    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1917
1918    // Proposal from David Vandervoorde, 2010.06.30
1919    if (DE->isGlobalDelete()) Out << "gs";
1920    Out << (DE->isArrayForm() ? "da" : "dl");
1921    mangleExpression(DE->getArgument());
1922    break;
1923  }
1924
1925  case Expr::UnaryOperatorClass: {
1926    const UnaryOperator *UO = cast<UnaryOperator>(E);
1927    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1928                       /*Arity=*/1);
1929    mangleExpression(UO->getSubExpr());
1930    break;
1931  }
1932
1933  case Expr::ArraySubscriptExprClass: {
1934    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1935
1936    // Array subscript is treated as a syntactically wierd form of
1937    // binary operator.
1938    Out << "ix";
1939    mangleExpression(AE->getLHS());
1940    mangleExpression(AE->getRHS());
1941    break;
1942  }
1943
1944  case Expr::CompoundAssignOperatorClass: // fallthrough
1945  case Expr::BinaryOperatorClass: {
1946    const BinaryOperator *BO = cast<BinaryOperator>(E);
1947    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1948                       /*Arity=*/2);
1949    mangleExpression(BO->getLHS());
1950    mangleExpression(BO->getRHS());
1951    break;
1952  }
1953
1954  case Expr::ConditionalOperatorClass: {
1955    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1956    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1957    mangleExpression(CO->getCond());
1958    mangleExpression(CO->getLHS(), Arity);
1959    mangleExpression(CO->getRHS(), Arity);
1960    break;
1961  }
1962
1963  case Expr::ImplicitCastExprClass: {
1964    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1965    break;
1966  }
1967
1968  case Expr::CStyleCastExprClass:
1969  case Expr::CXXStaticCastExprClass:
1970  case Expr::CXXDynamicCastExprClass:
1971  case Expr::CXXReinterpretCastExprClass:
1972  case Expr::CXXConstCastExprClass:
1973  case Expr::CXXFunctionalCastExprClass: {
1974    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1975    Out << "cv";
1976    mangleType(ECE->getType());
1977    mangleExpression(ECE->getSubExpr());
1978    break;
1979  }
1980
1981  case Expr::CXXOperatorCallExprClass: {
1982    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1983    unsigned NumArgs = CE->getNumArgs();
1984    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1985    // Mangle the arguments.
1986    for (unsigned i = 0; i != NumArgs; ++i)
1987      mangleExpression(CE->getArg(i));
1988    break;
1989  }
1990
1991  case Expr::ParenExprClass:
1992    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1993    break;
1994
1995  case Expr::DeclRefExprClass: {
1996    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1997
1998    switch (D->getKind()) {
1999    default:
2000      //  <expr-primary> ::= L <mangled-name> E # external name
2001      Out << 'L';
2002      mangle(D, "_Z");
2003      Out << 'E';
2004      break;
2005
2006    case Decl::EnumConstant: {
2007      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2008      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2009      break;
2010    }
2011
2012    case Decl::NonTypeTemplateParm: {
2013      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2014      mangleTemplateParameter(PD->getIndex());
2015      break;
2016    }
2017
2018    }
2019
2020    break;
2021  }
2022
2023  case Expr::SubstNonTypeTemplateParmPackExprClass:
2024    mangleTemplateParameter(
2025     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
2026    break;
2027
2028  case Expr::DependentScopeDeclRefExprClass: {
2029    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2030    NestedNameSpecifier *NNS = DRE->getQualifier();
2031    const Type *QTy = NNS->getAsType();
2032
2033    // When we're dealing with a nested-name-specifier that has just a
2034    // dependent identifier in it, mangle that as a typename.  FIXME:
2035    // It isn't clear that we ever actually want to have such a
2036    // nested-name-specifier; why not just represent it as a typename type?
2037    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
2038      QTy = getASTContext().getDependentNameType(ETK_Typename,
2039                                                 NNS->getPrefix(),
2040                                                 NNS->getAsIdentifier())
2041              .getTypePtr();
2042    }
2043    assert(QTy && "Qualifier was not type!");
2044
2045    // ::= sr <type> <unqualified-name>                  # dependent name
2046    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
2047    Out << "sr";
2048    mangleType(QualType(QTy, 0));
2049    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
2050    if (DRE->hasExplicitTemplateArgs())
2051      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2052
2053    break;
2054  }
2055
2056  case Expr::CXXBindTemporaryExprClass:
2057    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2058    break;
2059
2060  case Expr::ExprWithCleanupsClass:
2061    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2062    break;
2063
2064  case Expr::FloatingLiteralClass: {
2065    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2066    Out << 'L';
2067    mangleType(FL->getType());
2068    mangleFloat(FL->getValue());
2069    Out << 'E';
2070    break;
2071  }
2072
2073  case Expr::CharacterLiteralClass:
2074    Out << 'L';
2075    mangleType(E->getType());
2076    Out << cast<CharacterLiteral>(E)->getValue();
2077    Out << 'E';
2078    break;
2079
2080  case Expr::CXXBoolLiteralExprClass:
2081    Out << "Lb";
2082    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2083    Out << 'E';
2084    break;
2085
2086  case Expr::IntegerLiteralClass: {
2087    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2088    if (E->getType()->isSignedIntegerType())
2089      Value.setIsSigned(true);
2090    mangleIntegerLiteral(E->getType(), Value);
2091    break;
2092  }
2093
2094  case Expr::ImaginaryLiteralClass: {
2095    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2096    // Mangle as if a complex literal.
2097    // Proposal from David Vandevoorde, 2010.06.30.
2098    Out << 'L';
2099    mangleType(E->getType());
2100    if (const FloatingLiteral *Imag =
2101          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2102      // Mangle a floating-point zero of the appropriate type.
2103      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2104      Out << '_';
2105      mangleFloat(Imag->getValue());
2106    } else {
2107      Out << "0_";
2108      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2109      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2110        Value.setIsSigned(true);
2111      mangleNumber(Value);
2112    }
2113    Out << 'E';
2114    break;
2115  }
2116
2117  case Expr::StringLiteralClass: {
2118    // Revised proposal from David Vandervoorde, 2010.07.15.
2119    Out << 'L';
2120    assert(isa<ConstantArrayType>(E->getType()));
2121    mangleType(E->getType());
2122    Out << 'E';
2123    break;
2124  }
2125
2126  case Expr::GNUNullExprClass:
2127    // FIXME: should this really be mangled the same as nullptr?
2128    // fallthrough
2129
2130  case Expr::CXXNullPtrLiteralExprClass: {
2131    // Proposal from David Vandervoorde, 2010.06.30, as
2132    // modified by ABI list discussion.
2133    Out << "LDnE";
2134    break;
2135  }
2136
2137  case Expr::PackExpansionExprClass:
2138    Out << "sp";
2139    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2140    break;
2141
2142  case Expr::SizeOfPackExprClass: {
2143    Out << "sZ";
2144    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2145    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2146      mangleTemplateParameter(TTP->getIndex());
2147    else if (const NonTypeTemplateParmDecl *NTTP
2148                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2149      mangleTemplateParameter(NTTP->getIndex());
2150    else if (const TemplateTemplateParmDecl *TempTP
2151                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2152      mangleTemplateParameter(TempTP->getIndex());
2153    else {
2154      // Note: proposed by Mike Herrick on 11/30/10
2155      // <expression> ::= sZ <function-param>  # size of function parameter pack
2156      Diagnostic &Diags = Context.getDiags();
2157      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2158                            "cannot mangle sizeof...(function parameter pack)");
2159      Diags.Report(DiagID);
2160      return;
2161    }
2162  }
2163  }
2164}
2165
2166void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2167  // <ctor-dtor-name> ::= C1  # complete object constructor
2168  //                  ::= C2  # base object constructor
2169  //                  ::= C3  # complete object allocating constructor
2170  //
2171  switch (T) {
2172  case Ctor_Complete:
2173    Out << "C1";
2174    break;
2175  case Ctor_Base:
2176    Out << "C2";
2177    break;
2178  case Ctor_CompleteAllocating:
2179    Out << "C3";
2180    break;
2181  }
2182}
2183
2184void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2185  // <ctor-dtor-name> ::= D0  # deleting destructor
2186  //                  ::= D1  # complete object destructor
2187  //                  ::= D2  # base object destructor
2188  //
2189  switch (T) {
2190  case Dtor_Deleting:
2191    Out << "D0";
2192    break;
2193  case Dtor_Complete:
2194    Out << "D1";
2195    break;
2196  case Dtor_Base:
2197    Out << "D2";
2198    break;
2199  }
2200}
2201
2202void CXXNameMangler::mangleTemplateArgs(
2203                          const ExplicitTemplateArgumentList &TemplateArgs) {
2204  // <template-args> ::= I <template-arg>+ E
2205  Out << 'I';
2206  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2207    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2208  Out << 'E';
2209}
2210
2211void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2212                                        const TemplateArgument *TemplateArgs,
2213                                        unsigned NumTemplateArgs) {
2214  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2215    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2216                              NumTemplateArgs);
2217
2218  // <template-args> ::= I <template-arg>+ E
2219  Out << 'I';
2220  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2221    mangleTemplateArg(0, TemplateArgs[i]);
2222  Out << 'E';
2223}
2224
2225void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2226                                        const TemplateArgumentList &AL) {
2227  // <template-args> ::= I <template-arg>+ E
2228  Out << 'I';
2229  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2230    mangleTemplateArg(PL.getParam(i), AL[i]);
2231  Out << 'E';
2232}
2233
2234void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2235                                        const TemplateArgument *TemplateArgs,
2236                                        unsigned NumTemplateArgs) {
2237  // <template-args> ::= I <template-arg>+ E
2238  Out << 'I';
2239  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2240    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2241  Out << 'E';
2242}
2243
2244void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2245                                       const TemplateArgument &A) {
2246  // <template-arg> ::= <type>              # type or template
2247  //                ::= X <expression> E    # expression
2248  //                ::= <expr-primary>      # simple expressions
2249  //                ::= J <template-arg>* E # argument pack
2250  //                ::= sp <expression>     # pack expansion of (C++0x)
2251  switch (A.getKind()) {
2252  case TemplateArgument::Null:
2253    llvm_unreachable("Cannot mangle NULL template argument");
2254
2255  case TemplateArgument::Type:
2256    mangleType(A.getAsType());
2257    break;
2258  case TemplateArgument::Template:
2259    // This is mangled as <type>.
2260    mangleType(A.getAsTemplate());
2261    break;
2262  case TemplateArgument::TemplateExpansion:
2263    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2264    Out << "Dp";
2265    mangleType(A.getAsTemplateOrTemplatePattern());
2266    break;
2267  case TemplateArgument::Expression:
2268    Out << 'X';
2269    mangleExpression(A.getAsExpr());
2270    Out << 'E';
2271    break;
2272  case TemplateArgument::Integral:
2273    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2274    break;
2275  case TemplateArgument::Declaration: {
2276    assert(P && "Missing template parameter for declaration argument");
2277    //  <expr-primary> ::= L <mangled-name> E # external name
2278
2279    // Clang produces AST's where pointer-to-member-function expressions
2280    // and pointer-to-function expressions are represented as a declaration not
2281    // an expression. We compensate for it here to produce the correct mangling.
2282    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2283    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2284    bool compensateMangling = D->isCXXClassMember() &&
2285      !Parameter->getType()->isReferenceType();
2286    if (compensateMangling) {
2287      Out << 'X';
2288      mangleOperatorName(OO_Amp, 1);
2289    }
2290
2291    Out << 'L';
2292    // References to external entities use the mangled name; if the name would
2293    // not normally be manged then mangle it as unqualified.
2294    //
2295    // FIXME: The ABI specifies that external names here should have _Z, but
2296    // gcc leaves this off.
2297    if (compensateMangling)
2298      mangle(D, "_Z");
2299    else
2300      mangle(D, "Z");
2301    Out << 'E';
2302
2303    if (compensateMangling)
2304      Out << 'E';
2305
2306    break;
2307  }
2308
2309  case TemplateArgument::Pack: {
2310    // Note: proposal by Mike Herrick on 12/20/10
2311    Out << 'J';
2312    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2313                                      PAEnd = A.pack_end();
2314         PA != PAEnd; ++PA)
2315      mangleTemplateArg(P, *PA);
2316    Out << 'E';
2317  }
2318  }
2319}
2320
2321void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2322  // <template-param> ::= T_    # first template parameter
2323  //                  ::= T <parameter-2 non-negative number> _
2324  if (Index == 0)
2325    Out << "T_";
2326  else
2327    Out << 'T' << (Index - 1) << '_';
2328}
2329
2330// <substitution> ::= S <seq-id> _
2331//                ::= S_
2332bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2333  // Try one of the standard substitutions first.
2334  if (mangleStandardSubstitution(ND))
2335    return true;
2336
2337  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2338  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2339}
2340
2341bool CXXNameMangler::mangleSubstitution(QualType T) {
2342  if (!T.getCVRQualifiers()) {
2343    if (const RecordType *RT = T->getAs<RecordType>())
2344      return mangleSubstitution(RT->getDecl());
2345  }
2346
2347  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2348
2349  return mangleSubstitution(TypePtr);
2350}
2351
2352bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2353  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2354    return mangleSubstitution(TD);
2355
2356  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2357  return mangleSubstitution(
2358                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2359}
2360
2361bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2362  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2363  if (I == Substitutions.end())
2364    return false;
2365
2366  unsigned SeqID = I->second;
2367  if (SeqID == 0)
2368    Out << "S_";
2369  else {
2370    SeqID--;
2371
2372    // <seq-id> is encoded in base-36, using digits and upper case letters.
2373    char Buffer[10];
2374    char *BufferPtr = llvm::array_endof(Buffer);
2375
2376    if (SeqID == 0) *--BufferPtr = '0';
2377
2378    while (SeqID) {
2379      assert(BufferPtr > Buffer && "Buffer overflow!");
2380
2381      char c = static_cast<char>(SeqID % 36);
2382
2383      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2384      SeqID /= 36;
2385    }
2386
2387    Out << 'S'
2388        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2389        << '_';
2390  }
2391
2392  return true;
2393}
2394
2395static bool isCharType(QualType T) {
2396  if (T.isNull())
2397    return false;
2398
2399  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2400    T->isSpecificBuiltinType(BuiltinType::Char_U);
2401}
2402
2403/// isCharSpecialization - Returns whether a given type is a template
2404/// specialization of a given name with a single argument of type char.
2405static bool isCharSpecialization(QualType T, const char *Name) {
2406  if (T.isNull())
2407    return false;
2408
2409  const RecordType *RT = T->getAs<RecordType>();
2410  if (!RT)
2411    return false;
2412
2413  const ClassTemplateSpecializationDecl *SD =
2414    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2415  if (!SD)
2416    return false;
2417
2418  if (!isStdNamespace(SD->getDeclContext()))
2419    return false;
2420
2421  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2422  if (TemplateArgs.size() != 1)
2423    return false;
2424
2425  if (!isCharType(TemplateArgs[0].getAsType()))
2426    return false;
2427
2428  return SD->getIdentifier()->getName() == Name;
2429}
2430
2431template <std::size_t StrLen>
2432static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2433                                       const char (&Str)[StrLen]) {
2434  if (!SD->getIdentifier()->isStr(Str))
2435    return false;
2436
2437  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2438  if (TemplateArgs.size() != 2)
2439    return false;
2440
2441  if (!isCharType(TemplateArgs[0].getAsType()))
2442    return false;
2443
2444  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2445    return false;
2446
2447  return true;
2448}
2449
2450bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2451  // <substitution> ::= St # ::std::
2452  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2453    if (isStd(NS)) {
2454      Out << "St";
2455      return true;
2456    }
2457  }
2458
2459  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2460    if (!isStdNamespace(TD->getDeclContext()))
2461      return false;
2462
2463    // <substitution> ::= Sa # ::std::allocator
2464    if (TD->getIdentifier()->isStr("allocator")) {
2465      Out << "Sa";
2466      return true;
2467    }
2468
2469    // <<substitution> ::= Sb # ::std::basic_string
2470    if (TD->getIdentifier()->isStr("basic_string")) {
2471      Out << "Sb";
2472      return true;
2473    }
2474  }
2475
2476  if (const ClassTemplateSpecializationDecl *SD =
2477        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2478    if (!isStdNamespace(SD->getDeclContext()))
2479      return false;
2480
2481    //    <substitution> ::= Ss # ::std::basic_string<char,
2482    //                            ::std::char_traits<char>,
2483    //                            ::std::allocator<char> >
2484    if (SD->getIdentifier()->isStr("basic_string")) {
2485      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2486
2487      if (TemplateArgs.size() != 3)
2488        return false;
2489
2490      if (!isCharType(TemplateArgs[0].getAsType()))
2491        return false;
2492
2493      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2494        return false;
2495
2496      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2497        return false;
2498
2499      Out << "Ss";
2500      return true;
2501    }
2502
2503    //    <substitution> ::= Si # ::std::basic_istream<char,
2504    //                            ::std::char_traits<char> >
2505    if (isStreamCharSpecialization(SD, "basic_istream")) {
2506      Out << "Si";
2507      return true;
2508    }
2509
2510    //    <substitution> ::= So # ::std::basic_ostream<char,
2511    //                            ::std::char_traits<char> >
2512    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2513      Out << "So";
2514      return true;
2515    }
2516
2517    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2518    //                            ::std::char_traits<char> >
2519    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2520      Out << "Sd";
2521      return true;
2522    }
2523  }
2524  return false;
2525}
2526
2527void CXXNameMangler::addSubstitution(QualType T) {
2528  if (!T.getCVRQualifiers()) {
2529    if (const RecordType *RT = T->getAs<RecordType>()) {
2530      addSubstitution(RT->getDecl());
2531      return;
2532    }
2533  }
2534
2535  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2536  addSubstitution(TypePtr);
2537}
2538
2539void CXXNameMangler::addSubstitution(TemplateName Template) {
2540  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2541    return addSubstitution(TD);
2542
2543  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2544  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2545}
2546
2547void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2548  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2549  Substitutions[Ptr] = SeqID++;
2550}
2551
2552//
2553
2554/// \brief Mangles the name of the declaration D and emits that name to the
2555/// given output stream.
2556///
2557/// If the declaration D requires a mangled name, this routine will emit that
2558/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2559/// and this routine will return false. In this case, the caller should just
2560/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2561/// name.
2562void ItaniumMangleContext::mangleName(const NamedDecl *D,
2563                                      llvm::raw_ostream &Out) {
2564  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2565          "Invalid mangleName() call, argument is not a variable or function!");
2566  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2567         "Invalid mangleName() call on 'structor decl!");
2568
2569  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2570                                 getASTContext().getSourceManager(),
2571                                 "Mangling declaration");
2572
2573  CXXNameMangler Mangler(*this, Out);
2574  return Mangler.mangle(D);
2575}
2576
2577void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2578                                         CXXCtorType Type,
2579                                         llvm::raw_ostream &Out) {
2580  CXXNameMangler Mangler(*this, Out, D, Type);
2581  Mangler.mangle(D);
2582}
2583
2584void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2585                                         CXXDtorType Type,
2586                                         llvm::raw_ostream &Out) {
2587  CXXNameMangler Mangler(*this, Out, D, Type);
2588  Mangler.mangle(D);
2589}
2590
2591void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2592                                       const ThunkInfo &Thunk,
2593                                       llvm::raw_ostream &Out) {
2594  //  <special-name> ::= T <call-offset> <base encoding>
2595  //                      # base is the nominal target function of thunk
2596  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2597  //                      # base is the nominal target function of thunk
2598  //                      # first call-offset is 'this' adjustment
2599  //                      # second call-offset is result adjustment
2600
2601  assert(!isa<CXXDestructorDecl>(MD) &&
2602         "Use mangleCXXDtor for destructor decls!");
2603  CXXNameMangler Mangler(*this, Out);
2604  Mangler.getStream() << "_ZT";
2605  if (!Thunk.Return.isEmpty())
2606    Mangler.getStream() << 'c';
2607
2608  // Mangle the 'this' pointer adjustment.
2609  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2610
2611  // Mangle the return pointer adjustment if there is one.
2612  if (!Thunk.Return.isEmpty())
2613    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2614                             Thunk.Return.VBaseOffsetOffset);
2615
2616  Mangler.mangleFunctionEncoding(MD);
2617}
2618
2619void
2620ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2621                                         CXXDtorType Type,
2622                                         const ThisAdjustment &ThisAdjustment,
2623                                         llvm::raw_ostream &Out) {
2624  //  <special-name> ::= T <call-offset> <base encoding>
2625  //                      # base is the nominal target function of thunk
2626  CXXNameMangler Mangler(*this, Out, DD, Type);
2627  Mangler.getStream() << "_ZT";
2628
2629  // Mangle the 'this' pointer adjustment.
2630  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2631                           ThisAdjustment.VCallOffsetOffset);
2632
2633  Mangler.mangleFunctionEncoding(DD);
2634}
2635
2636/// mangleGuardVariable - Returns the mangled name for a guard variable
2637/// for the passed in VarDecl.
2638void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2639                                                      llvm::raw_ostream &Out) {
2640  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2641  //                                            # initialization
2642  CXXNameMangler Mangler(*this, Out);
2643  Mangler.getStream() << "_ZGV";
2644  Mangler.mangleName(D);
2645}
2646
2647void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2648                                                    llvm::raw_ostream &Out) {
2649  // We match the GCC mangling here.
2650  //  <special-name> ::= GR <object name>
2651  CXXNameMangler Mangler(*this, Out);
2652  Mangler.getStream() << "_ZGR";
2653  Mangler.mangleName(D);
2654}
2655
2656void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2657                                           llvm::raw_ostream &Out) {
2658  // <special-name> ::= TV <type>  # virtual table
2659  CXXNameMangler Mangler(*this, Out);
2660  Mangler.getStream() << "_ZTV";
2661  Mangler.mangleNameOrStandardSubstitution(RD);
2662}
2663
2664void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2665                                        llvm::raw_ostream &Out) {
2666  // <special-name> ::= TT <type>  # VTT structure
2667  CXXNameMangler Mangler(*this, Out);
2668  Mangler.getStream() << "_ZTT";
2669  Mangler.mangleNameOrStandardSubstitution(RD);
2670}
2671
2672void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2673                                               int64_t Offset,
2674                                               const CXXRecordDecl *Type,
2675                                               llvm::raw_ostream &Out) {
2676  // <special-name> ::= TC <type> <offset number> _ <base type>
2677  CXXNameMangler Mangler(*this, Out);
2678  Mangler.getStream() << "_ZTC";
2679  Mangler.mangleNameOrStandardSubstitution(RD);
2680  Mangler.getStream() << Offset;
2681  Mangler.getStream() << '_';
2682  Mangler.mangleNameOrStandardSubstitution(Type);
2683}
2684
2685void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2686                                         llvm::raw_ostream &Out) {
2687  // <special-name> ::= TI <type>  # typeinfo structure
2688  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2689  CXXNameMangler Mangler(*this, Out);
2690  Mangler.getStream() << "_ZTI";
2691  Mangler.mangleType(Ty);
2692}
2693
2694void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2695                                             llvm::raw_ostream &Out) {
2696  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2697  CXXNameMangler Mangler(*this, Out);
2698  Mangler.getStream() << "_ZTS";
2699  Mangler.mangleType(Ty);
2700}
2701
2702MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2703                                                 Diagnostic &Diags) {
2704  return new ItaniumMangleContext(Context, Diags);
2705}
2706