1//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines FunctionScopeInfo and its subclasses, which contain
10// information about a single function, block, lambda, or method body.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15#define LLVM_CLANG_SEMA_SCOPEINFO_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/Type.h"
20#include "clang/Basic/CapturedStmt.h"
21#include "clang/Basic/LLVM.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/SourceLocation.h"
24#include "clang/Sema/CleanupInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseMapInfo.h"
28#include "llvm/ADT/MapVector.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/ADT/StringSwitch.h"
35#include "llvm/ADT/TinyPtrVector.h"
36#include "llvm/Support/Casting.h"
37#include "llvm/Support/ErrorHandling.h"
38#include <algorithm>
39#include <cassert>
40#include <utility>
41
42namespace clang {
43
44class BlockDecl;
45class CapturedDecl;
46class CXXMethodDecl;
47class CXXRecordDecl;
48class ImplicitParamDecl;
49class NamedDecl;
50class ObjCIvarRefExpr;
51class ObjCMessageExpr;
52class ObjCPropertyDecl;
53class ObjCPropertyRefExpr;
54class ParmVarDecl;
55class RecordDecl;
56class ReturnStmt;
57class Scope;
58class Stmt;
59class SwitchStmt;
60class TemplateParameterList;
61class TemplateTypeParmDecl;
62class VarDecl;
63
64namespace sema {
65
66/// Contains information about the compound statement currently being
67/// parsed.
68class CompoundScopeInfo {
69public:
70  /// Whether this compound stamement contains `for' or `while' loops
71  /// with empty bodies.
72  bool HasEmptyLoopBodies = false;
73
74  /// Whether this compound statement corresponds to a GNU statement
75  /// expression.
76  bool IsStmtExpr;
77
78  CompoundScopeInfo(bool IsStmtExpr) : IsStmtExpr(IsStmtExpr) {}
79
80  void setHasEmptyLoopBodies() {
81    HasEmptyLoopBodies = true;
82  }
83};
84
85class PossiblyUnreachableDiag {
86public:
87  PartialDiagnostic PD;
88  SourceLocation Loc;
89  llvm::TinyPtrVector<const Stmt*> Stmts;
90
91  PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
92                          ArrayRef<const Stmt *> Stmts)
93      : PD(PD), Loc(Loc), Stmts(Stmts) {}
94};
95
96/// Retains information about a function, method, or block that is
97/// currently being parsed.
98class FunctionScopeInfo {
99protected:
100  enum ScopeKind {
101    SK_Function,
102    SK_Block,
103    SK_Lambda,
104    SK_CapturedRegion
105  };
106
107public:
108  /// What kind of scope we are describing.
109  ScopeKind Kind : 3;
110
111  /// Whether this function contains a VLA, \@try, try, C++
112  /// initializer, or anything else that can't be jumped past.
113  bool HasBranchProtectedScope : 1;
114
115  /// Whether this function contains any switches or direct gotos.
116  bool HasBranchIntoScope : 1;
117
118  /// Whether this function contains any indirect gotos.
119  bool HasIndirectGoto : 1;
120
121  /// Whether a statement was dropped because it was invalid.
122  bool HasDroppedStmt : 1;
123
124  /// True if current scope is for OpenMP declare reduction combiner.
125  bool HasOMPDeclareReductionCombiner : 1;
126
127  /// Whether there is a fallthrough statement in this function.
128  bool HasFallthroughStmt : 1;
129
130  /// Whether we make reference to a declaration that could be
131  /// unavailable.
132  bool HasPotentialAvailabilityViolations : 1;
133
134  /// A flag that is set when parsing a method that must call super's
135  /// implementation, such as \c -dealloc, \c -finalize, or any method marked
136  /// with \c __attribute__((objc_requires_super)).
137  bool ObjCShouldCallSuper : 1;
138
139  /// True when this is a method marked as a designated initializer.
140  bool ObjCIsDesignatedInit : 1;
141
142  /// This starts true for a method marked as designated initializer and will
143  /// be set to false if there is an invocation to a designated initializer of
144  /// the super class.
145  bool ObjCWarnForNoDesignatedInitChain : 1;
146
147  /// True when this is an initializer method not marked as a designated
148  /// initializer within a class that has at least one initializer marked as a
149  /// designated initializer.
150  bool ObjCIsSecondaryInit : 1;
151
152  /// This starts true for a secondary initializer method and will be set to
153  /// false if there is an invocation of an initializer on 'self'.
154  bool ObjCWarnForNoInitDelegation : 1;
155
156  /// True only when this function has not already built, or attempted
157  /// to build, the initial and final coroutine suspend points
158  bool NeedsCoroutineSuspends : 1;
159
160  /// An enumeration represeting the kind of the first coroutine statement
161  /// in the function. One of co_return, co_await, or co_yield.
162  unsigned char FirstCoroutineStmtKind : 2;
163
164  /// First coroutine statement in the current function.
165  /// (ex co_return, co_await, co_yield)
166  SourceLocation FirstCoroutineStmtLoc;
167
168  /// First 'return' statement in the current function.
169  SourceLocation FirstReturnLoc;
170
171  /// First C++ 'try' statement in the current function.
172  SourceLocation FirstCXXTryLoc;
173
174  /// First SEH '__try' statement in the current function.
175  SourceLocation FirstSEHTryLoc;
176
177  /// Used to determine if errors occurred in this function or block.
178  DiagnosticErrorTrap ErrorTrap;
179
180  /// A SwitchStmt, along with a flag indicating if its list of case statements
181  /// is incomplete (because we dropped an invalid one while parsing).
182  using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
183
184  /// SwitchStack - This is the current set of active switch statements in the
185  /// block.
186  SmallVector<SwitchInfo, 8> SwitchStack;
187
188  /// The list of return statements that occur within the function or
189  /// block, if there is any chance of applying the named return value
190  /// optimization, or if we need to infer a return type.
191  SmallVector<ReturnStmt*, 4> Returns;
192
193  /// The promise object for this coroutine, if any.
194  VarDecl *CoroutinePromise = nullptr;
195
196  /// A mapping between the coroutine function parameters that were moved
197  /// to the coroutine frame, and their move statements.
198  llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
199
200  /// The initial and final coroutine suspend points.
201  std::pair<Stmt *, Stmt *> CoroutineSuspends;
202
203  /// The stack of currently active compound stamement scopes in the
204  /// function.
205  SmallVector<CompoundScopeInfo, 4> CompoundScopes;
206
207  /// The set of blocks that are introduced in this function.
208  llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
209
210  /// The set of __block variables that are introduced in this function.
211  llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
212
213  /// A list of PartialDiagnostics created but delayed within the
214  /// current function scope.  These diagnostics are vetted for reachability
215  /// prior to being emitted.
216  SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
217
218  /// A list of parameters which have the nonnull attribute and are
219  /// modified in the function.
220  llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
221
222public:
223  /// Represents a simple identification of a weak object.
224  ///
225  /// Part of the implementation of -Wrepeated-use-of-weak.
226  ///
227  /// This is used to determine if two weak accesses refer to the same object.
228  /// Here are some examples of how various accesses are "profiled":
229  ///
230  /// Access Expression |     "Base" Decl     |          "Property" Decl
231  /// :---------------: | :-----------------: | :------------------------------:
232  /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
233  /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
234  /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
235  /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
236  /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
237  /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
238  /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
239  /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
240  /// weakVar           | 0 (known)           | weakVar (VarDecl)
241  /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
242  ///
243  /// Objects are identified with only two Decls to make it reasonably fast to
244  /// compare them.
245  class WeakObjectProfileTy {
246    /// The base object decl, as described in the class documentation.
247    ///
248    /// The extra flag is "true" if the Base and Property are enough to uniquely
249    /// identify the object in memory.
250    ///
251    /// \sa isExactProfile()
252    using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
253    BaseInfoTy Base;
254
255    /// The "property" decl, as described in the class documentation.
256    ///
257    /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
258    /// case of "implicit" properties (regular methods accessed via dot syntax).
259    const NamedDecl *Property = nullptr;
260
261    /// Used to find the proper base profile for a given base expression.
262    static BaseInfoTy getBaseInfo(const Expr *BaseE);
263
264    inline WeakObjectProfileTy();
265    static inline WeakObjectProfileTy getSentinel();
266
267  public:
268    WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
269    WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
270    WeakObjectProfileTy(const DeclRefExpr *RE);
271    WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
272
273    const NamedDecl *getBase() const { return Base.getPointer(); }
274    const NamedDecl *getProperty() const { return Property; }
275
276    /// Returns true if the object base specifies a known object in memory,
277    /// rather than, say, an instance variable or property of another object.
278    ///
279    /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
280    /// considered an exact profile if \c foo is a local variable, even if
281    /// another variable \c foo2 refers to the same object as \c foo.
282    ///
283    /// For increased precision, accesses with base variables that are
284    /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
285    /// be exact, though this is not true for arbitrary variables
286    /// (foo.prop1.prop2).
287    bool isExactProfile() const {
288      return Base.getInt();
289    }
290
291    bool operator==(const WeakObjectProfileTy &Other) const {
292      return Base == Other.Base && Property == Other.Property;
293    }
294
295    // For use in DenseMap.
296    // We can't specialize the usual llvm::DenseMapInfo at the end of the file
297    // because by that point the DenseMap in FunctionScopeInfo has already been
298    // instantiated.
299    class DenseMapInfo {
300    public:
301      static inline WeakObjectProfileTy getEmptyKey() {
302        return WeakObjectProfileTy();
303      }
304
305      static inline WeakObjectProfileTy getTombstoneKey() {
306        return WeakObjectProfileTy::getSentinel();
307      }
308
309      static unsigned getHashValue(const WeakObjectProfileTy &Val) {
310        using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
311
312        return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
313                                                           Val.Property));
314      }
315
316      static bool isEqual(const WeakObjectProfileTy &LHS,
317                          const WeakObjectProfileTy &RHS) {
318        return LHS == RHS;
319      }
320    };
321  };
322
323  /// Represents a single use of a weak object.
324  ///
325  /// Stores both the expression and whether the access is potentially unsafe
326  /// (i.e. it could potentially be warned about).
327  ///
328  /// Part of the implementation of -Wrepeated-use-of-weak.
329  class WeakUseTy {
330    llvm::PointerIntPair<const Expr *, 1, bool> Rep;
331
332  public:
333    WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
334
335    const Expr *getUseExpr() const { return Rep.getPointer(); }
336    bool isUnsafe() const { return Rep.getInt(); }
337    void markSafe() { Rep.setInt(false); }
338
339    bool operator==(const WeakUseTy &Other) const {
340      return Rep == Other.Rep;
341    }
342  };
343
344  /// Used to collect uses of a particular weak object in a function body.
345  ///
346  /// Part of the implementation of -Wrepeated-use-of-weak.
347  using WeakUseVector = SmallVector<WeakUseTy, 4>;
348
349  /// Used to collect all uses of weak objects in a function body.
350  ///
351  /// Part of the implementation of -Wrepeated-use-of-weak.
352  using WeakObjectUseMap =
353      llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
354                          WeakObjectProfileTy::DenseMapInfo>;
355
356private:
357  /// Used to collect all uses of weak objects in this function body.
358  ///
359  /// Part of the implementation of -Wrepeated-use-of-weak.
360  WeakObjectUseMap WeakObjectUses;
361
362protected:
363  FunctionScopeInfo(const FunctionScopeInfo&) = default;
364
365public:
366  FunctionScopeInfo(DiagnosticsEngine &Diag)
367      : Kind(SK_Function), HasBranchProtectedScope(false),
368        HasBranchIntoScope(false), HasIndirectGoto(false),
369        HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
370        HasFallthroughStmt(false), HasPotentialAvailabilityViolations(false),
371        ObjCShouldCallSuper(false), ObjCIsDesignatedInit(false),
372        ObjCWarnForNoDesignatedInitChain(false), ObjCIsSecondaryInit(false),
373        ObjCWarnForNoInitDelegation(false), NeedsCoroutineSuspends(true),
374        ErrorTrap(Diag) {}
375
376  virtual ~FunctionScopeInfo();
377
378  /// Record that a weak object was accessed.
379  ///
380  /// Part of the implementation of -Wrepeated-use-of-weak.
381  template <typename ExprT>
382  inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
383
384  void recordUseOfWeak(const ObjCMessageExpr *Msg,
385                       const ObjCPropertyDecl *Prop);
386
387  /// Record that a given expression is a "safe" access of a weak object (e.g.
388  /// assigning it to a strong variable.)
389  ///
390  /// Part of the implementation of -Wrepeated-use-of-weak.
391  void markSafeWeakUse(const Expr *E);
392
393  const WeakObjectUseMap &getWeakObjectUses() const {
394    return WeakObjectUses;
395  }
396
397  void setHasBranchIntoScope() {
398    HasBranchIntoScope = true;
399  }
400
401  void setHasBranchProtectedScope() {
402    HasBranchProtectedScope = true;
403  }
404
405  void setHasIndirectGoto() {
406    HasIndirectGoto = true;
407  }
408
409  void setHasDroppedStmt() {
410    HasDroppedStmt = true;
411  }
412
413  void setHasOMPDeclareReductionCombiner() {
414    HasOMPDeclareReductionCombiner = true;
415  }
416
417  void setHasFallthroughStmt() {
418    HasFallthroughStmt = true;
419  }
420
421  void setHasCXXTry(SourceLocation TryLoc) {
422    setHasBranchProtectedScope();
423    FirstCXXTryLoc = TryLoc;
424  }
425
426  void setHasSEHTry(SourceLocation TryLoc) {
427    setHasBranchProtectedScope();
428    FirstSEHTryLoc = TryLoc;
429  }
430
431  bool NeedsScopeChecking() const {
432    return !HasDroppedStmt &&
433        (HasIndirectGoto ||
434          (HasBranchProtectedScope && HasBranchIntoScope));
435  }
436
437  // Add a block introduced in this function.
438  void addBlock(const BlockDecl *BD) {
439    Blocks.insert(BD);
440  }
441
442  // Add a __block variable introduced in this function.
443  void addByrefBlockVar(VarDecl *VD) {
444    ByrefBlockVars.push_back(VD);
445  }
446
447  bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
448
449  void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
450    assert(FirstCoroutineStmtLoc.isInvalid() &&
451                   "first coroutine statement location already set");
452    FirstCoroutineStmtLoc = Loc;
453    FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
454            .Case("co_return", 0)
455            .Case("co_await", 1)
456            .Case("co_yield", 2);
457  }
458
459  StringRef getFirstCoroutineStmtKeyword() const {
460    assert(FirstCoroutineStmtLoc.isValid()
461                   && "no coroutine statement available");
462    switch (FirstCoroutineStmtKind) {
463    case 0: return "co_return";
464    case 1: return "co_await";
465    case 2: return "co_yield";
466    default:
467      llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
468    };
469  }
470
471  void setNeedsCoroutineSuspends(bool value = true) {
472    assert((!value || CoroutineSuspends.first == nullptr) &&
473            "we already have valid suspend points");
474    NeedsCoroutineSuspends = value;
475  }
476
477  bool hasInvalidCoroutineSuspends() const {
478    return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
479  }
480
481  void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
482    assert(Initial && Final && "suspend points cannot be null");
483    assert(CoroutineSuspends.first == nullptr && "suspend points already set");
484    NeedsCoroutineSuspends = false;
485    CoroutineSuspends.first = Initial;
486    CoroutineSuspends.second = Final;
487  }
488
489  /// Clear out the information in this function scope, making it
490  /// suitable for reuse.
491  void Clear();
492
493  bool isPlainFunction() const { return Kind == SK_Function; }
494};
495
496class Capture {
497  // There are three categories of capture: capturing 'this', capturing
498  // local variables, and C++1y initialized captures (which can have an
499  // arbitrary initializer, and don't really capture in the traditional
500  // sense at all).
501  //
502  // There are three ways to capture a local variable:
503  //  - capture by copy in the C++11 sense,
504  //  - capture by reference in the C++11 sense, and
505  //  - __block capture.
506  // Lambdas explicitly specify capture by copy or capture by reference.
507  // For blocks, __block capture applies to variables with that annotation,
508  // variables of reference type are captured by reference, and other
509  // variables are captured by copy.
510  enum CaptureKind {
511    Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
512  };
513
514  union {
515    /// If Kind == Cap_VLA, the captured type.
516    const VariableArrayType *CapturedVLA;
517
518    /// Otherwise, the captured variable (if any).
519    VarDecl *CapturedVar;
520  };
521
522  /// The source location at which the first capture occurred.
523  SourceLocation Loc;
524
525  /// The location of the ellipsis that expands a parameter pack.
526  SourceLocation EllipsisLoc;
527
528  /// The type as it was captured, which is the type of the non-static data
529  /// member that would hold the capture.
530  QualType CaptureType;
531
532  /// The CaptureKind of this capture.
533  unsigned Kind : 2;
534
535  /// Whether this is a nested capture (a capture of an enclosing capturing
536  /// scope's capture).
537  unsigned Nested : 1;
538
539  /// Whether this is a capture of '*this'.
540  unsigned CapturesThis : 1;
541
542  /// Whether an explicit capture has been odr-used in the body of the
543  /// lambda.
544  unsigned ODRUsed : 1;
545
546  /// Whether an explicit capture has been non-odr-used in the body of
547  /// the lambda.
548  unsigned NonODRUsed : 1;
549
550  /// Whether the capture is invalid (a capture was required but the entity is
551  /// non-capturable).
552  unsigned Invalid : 1;
553
554public:
555  Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
556          SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
557          bool Invalid)
558      : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
559        CaptureType(CaptureType),
560        Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy),
561        Nested(IsNested), CapturesThis(false), ODRUsed(false),
562        NonODRUsed(false), Invalid(Invalid) {}
563
564  enum IsThisCapture { ThisCapture };
565  Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
566          QualType CaptureType, const bool ByCopy, bool Invalid)
567      : Loc(Loc), CaptureType(CaptureType),
568        Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
569        CapturesThis(true), ODRUsed(false), NonODRUsed(false),
570        Invalid(Invalid) {}
571
572  enum IsVLACapture { VLACapture };
573  Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
574          SourceLocation Loc, QualType CaptureType)
575      : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
576        Nested(IsNested), CapturesThis(false), ODRUsed(false),
577        NonODRUsed(false), Invalid(false) {}
578
579  bool isThisCapture() const { return CapturesThis; }
580  bool isVariableCapture() const {
581    return !isThisCapture() && !isVLATypeCapture();
582  }
583
584  bool isCopyCapture() const { return Kind == Cap_ByCopy; }
585  bool isReferenceCapture() const { return Kind == Cap_ByRef; }
586  bool isBlockCapture() const { return Kind == Cap_Block; }
587  bool isVLATypeCapture() const { return Kind == Cap_VLA; }
588
589  bool isNested() const { return Nested; }
590
591  bool isInvalid() const { return Invalid; }
592
593  /// Determine whether this capture is an init-capture.
594  bool isInitCapture() const;
595
596  bool isODRUsed() const { return ODRUsed; }
597  bool isNonODRUsed() const { return NonODRUsed; }
598  void markUsed(bool IsODRUse) {
599    if (IsODRUse)
600      ODRUsed = true;
601    else
602      NonODRUsed = true;
603  }
604
605  VarDecl *getVariable() const {
606    assert(isVariableCapture());
607    return CapturedVar;
608  }
609
610  const VariableArrayType *getCapturedVLAType() const {
611    assert(isVLATypeCapture());
612    return CapturedVLA;
613  }
614
615  /// Retrieve the location at which this variable was captured.
616  SourceLocation getLocation() const { return Loc; }
617
618  /// Retrieve the source location of the ellipsis, whose presence
619  /// indicates that the capture is a pack expansion.
620  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
621
622  /// Retrieve the capture type for this capture, which is effectively
623  /// the type of the non-static data member in the lambda/block structure
624  /// that would store this capture.
625  QualType getCaptureType() const { return CaptureType; }
626};
627
628class CapturingScopeInfo : public FunctionScopeInfo {
629protected:
630  CapturingScopeInfo(const CapturingScopeInfo&) = default;
631
632public:
633  enum ImplicitCaptureStyle {
634    ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
635    ImpCap_CapturedRegion
636  };
637
638  ImplicitCaptureStyle ImpCaptureStyle;
639
640  CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
641      : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
642
643  /// CaptureMap - A map of captured variables to (index+1) into Captures.
644  llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
645
646  /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
647  /// zero if 'this' is not captured.
648  unsigned CXXThisCaptureIndex = 0;
649
650  /// Captures - The captures.
651  SmallVector<Capture, 4> Captures;
652
653  /// - Whether the target type of return statements in this context
654  /// is deduced (e.g. a lambda or block with omitted return type).
655  bool HasImplicitReturnType = false;
656
657  /// ReturnType - The target type of return statements in this context,
658  /// or null if unknown.
659  QualType ReturnType;
660
661  void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
662                  SourceLocation Loc, SourceLocation EllipsisLoc,
663                  QualType CaptureType, bool Invalid) {
664    Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
665                               EllipsisLoc, CaptureType, Invalid));
666    CaptureMap[Var] = Captures.size();
667  }
668
669  void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
670                         QualType CaptureType) {
671    Captures.push_back(Capture(Capture::VLACapture, VLAType,
672                               /*FIXME: IsNested*/ false, Loc, CaptureType));
673  }
674
675  void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
676                      bool ByCopy);
677
678  /// Determine whether the C++ 'this' is captured.
679  bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
680
681  /// Retrieve the capture of C++ 'this', if it has been captured.
682  Capture &getCXXThisCapture() {
683    assert(isCXXThisCaptured() && "this has not been captured");
684    return Captures[CXXThisCaptureIndex - 1];
685  }
686
687  /// Determine whether the given variable has been captured.
688  bool isCaptured(VarDecl *Var) const {
689    return CaptureMap.count(Var);
690  }
691
692  /// Determine whether the given variable-array type has been captured.
693  bool isVLATypeCaptured(const VariableArrayType *VAT) const;
694
695  /// Retrieve the capture of the given variable, if it has been
696  /// captured already.
697  Capture &getCapture(VarDecl *Var) {
698    assert(isCaptured(Var) && "Variable has not been captured");
699    return Captures[CaptureMap[Var] - 1];
700  }
701
702  const Capture &getCapture(VarDecl *Var) const {
703    llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
704      = CaptureMap.find(Var);
705    assert(Known != CaptureMap.end() && "Variable has not been captured");
706    return Captures[Known->second - 1];
707  }
708
709  static bool classof(const FunctionScopeInfo *FSI) {
710    return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
711                                 || FSI->Kind == SK_CapturedRegion;
712  }
713};
714
715/// Retains information about a block that is currently being parsed.
716class BlockScopeInfo final : public CapturingScopeInfo {
717public:
718  BlockDecl *TheDecl;
719
720  /// TheScope - This is the scope for the block itself, which contains
721  /// arguments etc.
722  Scope *TheScope;
723
724  /// BlockType - The function type of the block, if one was given.
725  /// Its return type may be BuiltinType::Dependent.
726  QualType FunctionType;
727
728  BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
729      : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
730        TheScope(BlockScope) {
731    Kind = SK_Block;
732  }
733
734  ~BlockScopeInfo() override;
735
736  static bool classof(const FunctionScopeInfo *FSI) {
737    return FSI->Kind == SK_Block;
738  }
739};
740
741/// Retains information about a captured region.
742class CapturedRegionScopeInfo final : public CapturingScopeInfo {
743public:
744  /// The CapturedDecl for this statement.
745  CapturedDecl *TheCapturedDecl;
746
747  /// The captured record type.
748  RecordDecl *TheRecordDecl;
749
750  /// This is the enclosing scope of the captured region.
751  Scope *TheScope;
752
753  /// The implicit parameter for the captured variables.
754  ImplicitParamDecl *ContextParam;
755
756  /// The kind of captured region.
757  unsigned short CapRegionKind;
758
759  unsigned short OpenMPLevel;
760  unsigned short OpenMPCaptureLevel;
761
762  CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
763                          RecordDecl *RD, ImplicitParamDecl *Context,
764                          CapturedRegionKind K, unsigned OpenMPLevel,
765                          unsigned OpenMPCaptureLevel)
766      : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
767        TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
768        ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
769        OpenMPCaptureLevel(OpenMPCaptureLevel) {
770    Kind = SK_CapturedRegion;
771  }
772
773  ~CapturedRegionScopeInfo() override;
774
775  /// A descriptive name for the kind of captured region this is.
776  StringRef getRegionName() const {
777    switch (CapRegionKind) {
778    case CR_Default:
779      return "default captured statement";
780    case CR_ObjCAtFinally:
781      return "Objective-C @finally statement";
782    case CR_OpenMP:
783      return "OpenMP region";
784    }
785    llvm_unreachable("Invalid captured region kind!");
786  }
787
788  static bool classof(const FunctionScopeInfo *FSI) {
789    return FSI->Kind == SK_CapturedRegion;
790  }
791};
792
793class LambdaScopeInfo final :
794    public CapturingScopeInfo, public InventedTemplateParameterInfo {
795public:
796  /// The class that describes the lambda.
797  CXXRecordDecl *Lambda = nullptr;
798
799  /// The lambda's compiler-generated \c operator().
800  CXXMethodDecl *CallOperator = nullptr;
801
802  /// Source range covering the lambda introducer [...].
803  SourceRange IntroducerRange;
804
805  /// Source location of the '&' or '=' specifying the default capture
806  /// type, if any.
807  SourceLocation CaptureDefaultLoc;
808
809  /// The number of captures in the \c Captures list that are
810  /// explicit captures.
811  unsigned NumExplicitCaptures = 0;
812
813  /// Whether this is a mutable lambda.
814  bool Mutable = false;
815
816  /// Whether the (empty) parameter list is explicit.
817  bool ExplicitParams = false;
818
819  /// Whether any of the capture expressions requires cleanups.
820  CleanupInfo Cleanup;
821
822  /// Whether the lambda contains an unexpanded parameter pack.
823  bool ContainsUnexpandedParameterPack = false;
824
825  /// Packs introduced by this lambda, if any.
826  SmallVector<NamedDecl*, 4> LocalPacks;
827
828  /// Source range covering the explicit template parameter list (if it exists).
829  SourceRange ExplicitTemplateParamsRange;
830
831  /// If this is a generic lambda, and the template parameter
832  /// list has been created (from the TemplateParams) then store
833  /// a reference to it (cache it to avoid reconstructing it).
834  TemplateParameterList *GLTemplateParameterList = nullptr;
835
836  /// Contains all variable-referring-expressions (i.e. DeclRefExprs
837  ///  or MemberExprs) that refer to local variables in a generic lambda
838  ///  or a lambda in a potentially-evaluated-if-used context.
839  ///
840  ///  Potentially capturable variables of a nested lambda that might need
841  ///   to be captured by the lambda are housed here.
842  ///  This is specifically useful for generic lambdas or
843  ///  lambdas within a potentially evaluated-if-used context.
844  ///  If an enclosing variable is named in an expression of a lambda nested
845  ///  within a generic lambda, we don't always know know whether the variable
846  ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
847  ///  until its instantiation. But we still need to capture it in the
848  ///  enclosing lambda if all intervening lambdas can capture the variable.
849  llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
850
851  /// Contains all variable-referring-expressions that refer
852  ///  to local variables that are usable as constant expressions and
853  ///  do not involve an odr-use (they may still need to be captured
854  ///  if the enclosing full-expression is instantiation dependent).
855  llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
856
857  /// A map of explicit capture indices to their introducer source ranges.
858  llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
859
860  /// Contains all of the variables defined in this lambda that shadow variables
861  /// that were defined in parent contexts. Used to avoid warnings when the
862  /// shadowed variables are uncaptured by this lambda.
863  struct ShadowedOuterDecl {
864    const VarDecl *VD;
865    const VarDecl *ShadowedDecl;
866  };
867  llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
868
869  SourceLocation PotentialThisCaptureLocation;
870
871  LambdaScopeInfo(DiagnosticsEngine &Diag)
872      : CapturingScopeInfo(Diag, ImpCap_None) {
873    Kind = SK_Lambda;
874  }
875
876  /// Note when all explicit captures have been added.
877  void finishedExplicitCaptures() {
878    NumExplicitCaptures = Captures.size();
879  }
880
881  static bool classof(const FunctionScopeInfo *FSI) {
882    return FSI->Kind == SK_Lambda;
883  }
884
885  /// Is this scope known to be for a generic lambda? (This will be false until
886  /// we parse a template parameter list or the first 'auto'-typed parameter).
887  bool isGenericLambda() const {
888    return !TemplateParams.empty() || GLTemplateParameterList;
889  }
890
891  /// Add a variable that might potentially be captured by the
892  /// lambda and therefore the enclosing lambdas.
893  ///
894  /// This is also used by enclosing lambda's to speculatively capture
895  /// variables that nested lambda's - depending on their enclosing
896  /// specialization - might need to capture.
897  /// Consider:
898  /// void f(int, int); <-- don't capture
899  /// void f(const int&, double); <-- capture
900  /// void foo() {
901  ///   const int x = 10;
902  ///   auto L = [=](auto a) { // capture 'x'
903  ///      return [=](auto b) {
904  ///        f(x, a);  // we may or may not need to capture 'x'
905  ///      };
906  ///   };
907  /// }
908  void addPotentialCapture(Expr *VarExpr) {
909    assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
910           isa<FunctionParmPackExpr>(VarExpr));
911    PotentiallyCapturingExprs.push_back(VarExpr);
912  }
913
914  void addPotentialThisCapture(SourceLocation Loc) {
915    PotentialThisCaptureLocation = Loc;
916  }
917
918  bool hasPotentialThisCapture() const {
919    return PotentialThisCaptureLocation.isValid();
920  }
921
922  /// Mark a variable's reference in a lambda as non-odr using.
923  ///
924  /// For generic lambdas, if a variable is named in a potentially evaluated
925  /// expression, where the enclosing full expression is dependent then we
926  /// must capture the variable (given a default capture).
927  /// This is accomplished by recording all references to variables
928  /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
929  /// PotentialCaptures. All such variables have to be captured by that lambda,
930  /// except for as described below.
931  /// If that variable is usable as a constant expression and is named in a
932  /// manner that does not involve its odr-use (e.g. undergoes
933  /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
934  /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
935  /// if we can determine that the full expression is not instantiation-
936  /// dependent, then we can entirely avoid its capture.
937  ///
938  ///   const int n = 0;
939  ///   [&] (auto x) {
940  ///     (void)+n + x;
941  ///   };
942  /// Interestingly, this strategy would involve a capture of n, even though
943  /// it's obviously not odr-used here, because the full-expression is
944  /// instantiation-dependent.  It could be useful to avoid capturing such
945  /// variables, even when they are referred to in an instantiation-dependent
946  /// expression, if we can unambiguously determine that they shall never be
947  /// odr-used.  This would involve removal of the variable-referring-expression
948  /// from the array of PotentialCaptures during the lvalue-to-rvalue
949  /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
950  /// capture such variables.
951  /// Before anyone is tempted to implement a strategy for not-capturing 'n',
952  /// consider the insightful warning in:
953  ///    /cfe-commits/Week-of-Mon-20131104/092596.html
954  /// "The problem is that the set of captures for a lambda is part of the ABI
955  ///  (since lambda layout can be made visible through inline functions and the
956  ///  like), and there are no guarantees as to which cases we'll manage to build
957  ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
958  ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
959  ///  building such a node. So we need a rule that anyone can implement and get
960  ///  exactly the same result".
961  void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
962    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
963           isa<MemberExpr>(CapturingVarExpr) ||
964           isa<FunctionParmPackExpr>(CapturingVarExpr));
965    NonODRUsedCapturingExprs.insert(CapturingVarExpr);
966  }
967  bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
968    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
969           isa<MemberExpr>(CapturingVarExpr) ||
970           isa<FunctionParmPackExpr>(CapturingVarExpr));
971    return NonODRUsedCapturingExprs.count(CapturingVarExpr);
972  }
973  void removePotentialCapture(Expr *E) {
974    PotentiallyCapturingExprs.erase(
975        std::remove(PotentiallyCapturingExprs.begin(),
976            PotentiallyCapturingExprs.end(), E),
977        PotentiallyCapturingExprs.end());
978  }
979  void clearPotentialCaptures() {
980    PotentiallyCapturingExprs.clear();
981    PotentialThisCaptureLocation = SourceLocation();
982  }
983  unsigned getNumPotentialVariableCaptures() const {
984    return PotentiallyCapturingExprs.size();
985  }
986
987  bool hasPotentialCaptures() const {
988    return getNumPotentialVariableCaptures() ||
989                                  PotentialThisCaptureLocation.isValid();
990  }
991
992  void visitPotentialCaptures(
993      llvm::function_ref<void(VarDecl *, Expr *)> Callback) const;
994};
995
996FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
997    : Base(nullptr, false) {}
998
999FunctionScopeInfo::WeakObjectProfileTy
1000FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1001  FunctionScopeInfo::WeakObjectProfileTy Result;
1002  Result.Base.setInt(true);
1003  return Result;
1004}
1005
1006template <typename ExprT>
1007void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1008  assert(E);
1009  WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1010  Uses.push_back(WeakUseTy(E, IsRead));
1011}
1012
1013inline void CapturingScopeInfo::addThisCapture(bool isNested,
1014                                               SourceLocation Loc,
1015                                               QualType CaptureType,
1016                                               bool ByCopy) {
1017  Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1018                             ByCopy, /*Invalid*/ false));
1019  CXXThisCaptureIndex = Captures.size();
1020}
1021
1022} // namespace sema
1023
1024} // namespace clang
1025
1026#endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1027