1// Reference-counted versatile string base -*- C++ -*-
2
3// Copyright (C) 2005, 2006 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/** @file ext/rc_string_base.h
31 *  This file is a GNU extension to the Standard C++ Library.
32 *  This is an internal header file, included by other library headers.
33 *  You should not attempt to use it directly.
34 */
35
36#ifndef _RC_STRING_BASE_H
37#define _RC_STRING_BASE_H 1
38
39#include <ext/atomicity.h>
40
41_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
42
43  /**
44   *  @if maint
45   *  Documentation?  What's that?
46   *  Nathan Myers <ncm@cantrip.org>.
47   *
48   *  A string looks like this:
49   *
50   *  @code
51   *                                        [_Rep]
52   *                                        _M_length
53   *   [__rc_string_base<char_type>]        _M_capacity
54   *   _M_dataplus                          _M_refcount
55   *   _M_p ---------------->               unnamed array of char_type
56   *  @endcode
57   *
58   *  Where the _M_p points to the first character in the string, and
59   *  you cast it to a pointer-to-_Rep and subtract 1 to get a
60   *  pointer to the header.
61   *
62   *  This approach has the enormous advantage that a string object
63   *  requires only one allocation.  All the ugliness is confined
64   *  within a single pair of inline functions, which each compile to
65   *  a single "add" instruction: _Rep::_M_refdata(), and
66   *  __rc_string_base::_M_rep(); and the allocation function which gets a
67   *  block of raw bytes and with room enough and constructs a _Rep
68   *  object at the front.
69   *
70   *  The reason you want _M_data pointing to the character array and
71   *  not the _Rep is so that the debugger can see the string
72   *  contents. (Probably we should add a non-inline member to get
73   *  the _Rep for the debugger to use, so users can check the actual
74   *  string length.)
75   *
76   *  Note that the _Rep object is a POD so that you can have a
77   *  static "empty string" _Rep object already "constructed" before
78   *  static constructors have run.  The reference-count encoding is
79   *  chosen so that a 0 indicates one reference, so you never try to
80   *  destroy the empty-string _Rep object.
81   *
82   *  All but the last paragraph is considered pretty conventional
83   *  for a C++ string implementation.
84   *  @endif
85  */
86 template<typename _CharT, typename _Traits, typename _Alloc>
87    class __rc_string_base
88    : protected __vstring_utility<_CharT, _Traits, _Alloc>
89    {
90    public:
91      typedef _Traits					    traits_type;
92      typedef typename _Traits::char_type		    value_type;
93      typedef _Alloc					    allocator_type;
94
95      typedef __vstring_utility<_CharT, _Traits, _Alloc>    _Util_Base;
96      typedef typename _Util_Base::_CharT_alloc_type        _CharT_alloc_type;
97      typedef typename _CharT_alloc_type::size_type	    size_type;
98
99    private:
100      // _Rep: string representation
101      //   Invariants:
102      //   1. String really contains _M_length + 1 characters: due to 21.3.4
103      //      must be kept null-terminated.
104      //   2. _M_capacity >= _M_length
105      //      Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
106      //   3. _M_refcount has three states:
107      //      -1: leaked, one reference, no ref-copies allowed, non-const.
108      //       0: one reference, non-const.
109      //     n>0: n + 1 references, operations require a lock, const.
110      //   4. All fields == 0 is an empty string, given the extra storage
111      //      beyond-the-end for a null terminator; thus, the shared
112      //      empty string representation needs no constructor.
113      struct _Rep
114      {
115	union
116	{
117	  struct
118	  {
119	    size_type	    _M_length;
120	    size_type	    _M_capacity;
121	    _Atomic_word    _M_refcount;
122	  }                 _M_info;
123
124	  // Only for alignment purposes.
125	  _CharT            _M_align;
126	};
127
128	typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;
129
130 	_CharT*
131	_M_refdata() throw()
132	{ return reinterpret_cast<_CharT*>(this + 1); }
133
134	_CharT*
135	_M_refcopy() throw()
136	{
137	  __atomic_add_dispatch(&_M_info._M_refcount, 1);
138	  return _M_refdata();
139	}  // XXX MT
140
141	void
142	_M_set_length(size_type __n)
143	{
144	  _M_info._M_refcount = 0;  // One reference.
145	  _M_info._M_length = __n;
146	  // grrr. (per 21.3.4)
147	  // You cannot leave those LWG people alone for a second.
148	  traits_type::assign(_M_refdata()[__n], _CharT());
149	}
150
151	// Create & Destroy
152	static _Rep*
153	_S_create(size_type, size_type, const _Alloc&);
154
155	void
156	_M_destroy(const _Alloc&) throw();
157
158	_CharT*
159	_M_clone(const _Alloc&, size_type __res = 0);
160      };
161
162      struct _Rep_empty
163      : public _Rep
164      {
165	_CharT              _M_terminal;
166      };
167
168      static _Rep_empty     _S_empty_rep;
169
170      // The maximum number of individual char_type elements of an
171      // individual string is determined by _S_max_size. This is the
172      // value that will be returned by max_size().  (Whereas npos
173      // is the maximum number of bytes the allocator can allocate.)
174      // If one was to divvy up the theoretical largest size string,
175      // with a terminating character and m _CharT elements, it'd
176      // look like this:
177      // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
178      //        + sizeof(_Rep) - 1
179      // (NB: last two terms for rounding reasons, see _M_create below)
180      // Solving for m:
181      // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
182      // In addition, this implementation halfs this amount.
183      enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
184			      + 1) / sizeof(_CharT)) - 1) / 2 };
185
186      // Data Member (private):
187      mutable typename _Util_Base::template _Alloc_hider<_Alloc>  _M_dataplus;
188
189      void
190      _M_data(_CharT* __p)
191      { _M_dataplus._M_p = __p; }
192
193      _Rep*
194      _M_rep() const
195      { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }
196
197      _CharT*
198      _M_grab(const _Alloc& __alloc) const
199      {
200	return (!_M_is_leaked() && _M_get_allocator() == __alloc)
201	        ? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
202      }
203
204      void
205      _M_dispose()
206      {
207	if (__exchange_and_add_dispatch(&_M_rep()->_M_info._M_refcount,
208					-1) <= 0)
209	  _M_rep()->_M_destroy(_M_get_allocator());
210      }  // XXX MT
211
212      bool
213      _M_is_leaked() const
214      { return _M_rep()->_M_info._M_refcount < 0; }
215
216      void
217      _M_set_sharable()
218      { _M_rep()->_M_info._M_refcount = 0; }
219
220      void
221      _M_leak_hard();
222
223      // _S_construct_aux is used to implement the 21.3.1 para 15 which
224      // requires special behaviour if _InIterator is an integral type
225      template<typename _InIterator>
226        static _CharT*
227        _S_construct_aux(_InIterator __beg, _InIterator __end,
228			 const _Alloc& __a, std::__false_type)
229	{
230          typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
231          return _S_construct(__beg, __end, __a, _Tag());
232	}
233
234      template<typename _InIterator>
235        static _CharT*
236        _S_construct_aux(_InIterator __beg, _InIterator __end,
237			 const _Alloc& __a, std::__true_type)
238	{ return _S_construct(static_cast<size_type>(__beg),
239			      static_cast<value_type>(__end), __a); }
240
241      template<typename _InIterator>
242        static _CharT*
243        _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
244	{
245	  typedef typename std::__is_integer<_InIterator>::__type _Integral;
246	  return _S_construct_aux(__beg, __end, __a, _Integral());
247        }
248
249      // For Input Iterators, used in istreambuf_iterators, etc.
250      template<typename _InIterator>
251        static _CharT*
252         _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
253		      std::input_iterator_tag);
254
255      // For forward_iterators up to random_access_iterators, used for
256      // string::iterator, _CharT*, etc.
257      template<typename _FwdIterator>
258        static _CharT*
259        _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
260		     std::forward_iterator_tag);
261
262      static _CharT*
263      _S_construct(size_type __req, _CharT __c, const _Alloc& __a);
264
265    public:
266      size_type
267      _M_max_size() const
268      { return size_type(_S_max_size); }
269
270      _CharT*
271      _M_data() const
272      { return _M_dataplus._M_p; }
273
274      size_type
275      _M_length() const
276      { return _M_rep()->_M_info._M_length; }
277
278      size_type
279      _M_capacity() const
280      { return _M_rep()->_M_info._M_capacity; }
281
282      bool
283      _M_is_shared() const
284      { return _M_rep()->_M_info._M_refcount > 0; }
285
286      void
287      _M_set_leaked()
288      { _M_rep()->_M_info._M_refcount = -1; }
289
290      void
291      _M_leak()    // for use in begin() & non-const op[]
292      {
293	if (!_M_is_leaked())
294	  _M_leak_hard();
295      }
296
297      void
298      _M_set_length(size_type __n)
299      { _M_rep()->_M_set_length(__n); }
300
301      __rc_string_base()
302      : _M_dataplus(_Alloc(), _S_empty_rep._M_refcopy()) { }
303
304      __rc_string_base(const _Alloc& __a);
305
306      __rc_string_base(const __rc_string_base& __rcs);
307
308      __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);
309
310      template<typename _InputIterator>
311        __rc_string_base(_InputIterator __beg, _InputIterator __end,
312			 const _Alloc& __a);
313
314      ~__rc_string_base()
315      { _M_dispose(); }
316
317      allocator_type&
318      _M_get_allocator()
319      { return _M_dataplus; }
320
321      const allocator_type&
322      _M_get_allocator() const
323      { return _M_dataplus; }
324
325      void
326      _M_swap(__rc_string_base& __rcs);
327
328      void
329      _M_assign(const __rc_string_base& __rcs);
330
331      void
332      _M_reserve(size_type __res);
333
334      void
335      _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
336		size_type __len2);
337
338      void
339      _M_erase(size_type __pos, size_type __n);
340
341      void
342      _M_clear()
343      { _M_erase(size_type(0), _M_length()); }
344
345      bool
346      _M_compare(const __rc_string_base&) const
347      { return false; }
348    };
349
350  template<typename _CharT, typename _Traits, typename _Alloc>
351    typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
352    __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;
353
354  template<typename _CharT, typename _Traits, typename _Alloc>
355    typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
356    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
357    _S_create(size_type __capacity, size_type __old_capacity,
358	      const _Alloc& __alloc)
359    {
360      // _GLIBCXX_RESOLVE_LIB_DEFECTS
361      // 83.  String::npos vs. string::max_size()
362      if (__capacity > size_type(_S_max_size))
363	std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));
364
365      // The standard places no restriction on allocating more memory
366      // than is strictly needed within this layer at the moment or as
367      // requested by an explicit application call to reserve().
368
369      // Many malloc implementations perform quite poorly when an
370      // application attempts to allocate memory in a stepwise fashion
371      // growing each allocation size by only 1 char.  Additionally,
372      // it makes little sense to allocate less linear memory than the
373      // natural blocking size of the malloc implementation.
374      // Unfortunately, we would need a somewhat low-level calculation
375      // with tuned parameters to get this perfect for any particular
376      // malloc implementation.  Fortunately, generalizations about
377      // common features seen among implementations seems to suffice.
378
379      // __pagesize need not match the actual VM page size for good
380      // results in practice, thus we pick a common value on the low
381      // side.  __malloc_header_size is an estimate of the amount of
382      // overhead per memory allocation (in practice seen N * sizeof
383      // (void*) where N is 0, 2 or 4).  According to folklore,
384      // picking this value on the high side is better than
385      // low-balling it (especially when this algorithm is used with
386      // malloc implementations that allocate memory blocks rounded up
387      // to a size which is a power of 2).
388      const size_type __pagesize = 4096;
389      const size_type __malloc_header_size = 4 * sizeof(void*);
390
391      // The below implements an exponential growth policy, necessary to
392      // meet amortized linear time requirements of the library: see
393      // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
394      if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
395	{
396	  __capacity = 2 * __old_capacity;
397	  // Never allocate a string bigger than _S_max_size.
398	  if (__capacity > size_type(_S_max_size))
399	    __capacity = size_type(_S_max_size);
400	}
401
402      // NB: Need an array of char_type[__capacity], plus a terminating
403      // null char_type() element, plus enough for the _Rep data structure,
404      // plus sizeof(_Rep) - 1 to upper round to a size multiple of
405      // sizeof(_Rep).
406      // Whew. Seemingly so needy, yet so elemental.
407      size_type __size = ((__capacity + 1) * sizeof(_CharT)
408			  + 2 * sizeof(_Rep) - 1);
409
410      const size_type __adj_size = __size + __malloc_header_size;
411      if (__adj_size > __pagesize && __capacity > __old_capacity)
412	{
413	  const size_type __extra = __pagesize - __adj_size % __pagesize;
414	  __capacity += __extra / sizeof(_CharT);
415	  if (__capacity > size_type(_S_max_size))
416	    __capacity = size_type(_S_max_size);
417	  __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
418	}
419
420      // NB: Might throw, but no worries about a leak, mate: _Rep()
421      // does not throw.
422      _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
423      _Rep* __p = new (__place) _Rep;
424      __p->_M_info._M_capacity = __capacity;
425      return __p;
426    }
427
428  template<typename _CharT, typename _Traits, typename _Alloc>
429    void
430    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
431    _M_destroy(const _Alloc& __a) throw ()
432    {
433      const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
434				+ 2 * sizeof(_Rep) - 1);
435      _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
436    }
437
438  template<typename _CharT, typename _Traits, typename _Alloc>
439    _CharT*
440    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
441    _M_clone(const _Alloc& __alloc, size_type __res)
442    {
443      // Requested capacity of the clone.
444      const size_type __requested_cap = _M_info._M_length + __res;
445      _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
446				  __alloc);
447
448      if (_M_info._M_length)
449	_S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);
450
451      __r->_M_set_length(_M_info._M_length);
452      return __r->_M_refdata();
453    }
454
455  template<typename _CharT, typename _Traits, typename _Alloc>
456    __rc_string_base<_CharT, _Traits, _Alloc>::
457    __rc_string_base(const _Alloc& __a)
458    : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }
459
460  template<typename _CharT, typename _Traits, typename _Alloc>
461    __rc_string_base<_CharT, _Traits, _Alloc>::
462    __rc_string_base(const __rc_string_base& __rcs)
463    : _M_dataplus(__rcs._M_get_allocator(),
464		  __rcs._M_grab(__rcs._M_get_allocator())) { }
465
466  template<typename _CharT, typename _Traits, typename _Alloc>
467    __rc_string_base<_CharT, _Traits, _Alloc>::
468    __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
469    : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }
470
471  template<typename _CharT, typename _Traits, typename _Alloc>
472    template<typename _InputIterator>
473    __rc_string_base<_CharT, _Traits, _Alloc>::
474    __rc_string_base(_InputIterator __beg, _InputIterator __end,
475		     const _Alloc& __a)
476    : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }
477
478  template<typename _CharT, typename _Traits, typename _Alloc>
479    void
480    __rc_string_base<_CharT, _Traits, _Alloc>::
481    _M_leak_hard()
482    {
483      if (_M_is_shared())
484	_M_erase(0, 0);
485      _M_set_leaked();
486    }
487
488  // NB: This is the special case for Input Iterators, used in
489  // istreambuf_iterators, etc.
490  // Input Iterators have a cost structure very different from
491  // pointers, calling for a different coding style.
492  template<typename _CharT, typename _Traits, typename _Alloc>
493    template<typename _InIterator>
494      _CharT*
495      __rc_string_base<_CharT, _Traits, _Alloc>::
496      _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
497		   std::input_iterator_tag)
498      {
499	if (__beg == __end && __a == _Alloc())
500	  return _S_empty_rep._M_refcopy();
501
502	// Avoid reallocation for common case.
503	_CharT __buf[128];
504	size_type __len = 0;
505	while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
506	  {
507	    __buf[__len++] = *__beg;
508	    ++__beg;
509	  }
510	_Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
511	_S_copy(__r->_M_refdata(), __buf, __len);
512	try
513	  {
514	    while (__beg != __end)
515	      {
516		if (__len == __r->_M_info._M_capacity)
517		  {
518		    // Allocate more space.
519		    _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
520		    _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
521		    __r->_M_destroy(__a);
522		    __r = __another;
523		  }
524		__r->_M_refdata()[__len++] = *__beg;
525		++__beg;
526	      }
527	  }
528	catch(...)
529	  {
530	    __r->_M_destroy(__a);
531	    __throw_exception_again;
532	  }
533	__r->_M_set_length(__len);
534	return __r->_M_refdata();
535      }
536
537  template<typename _CharT, typename _Traits, typename _Alloc>
538    template<typename _InIterator>
539      _CharT*
540      __rc_string_base<_CharT, _Traits, _Alloc>::
541      _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
542		   std::forward_iterator_tag)
543      {
544	if (__beg == __end && __a == _Alloc())
545	  return _S_empty_rep._M_refcopy();
546
547	// NB: Not required, but considered best practice.
548	if (__builtin_expect(_S_is_null_pointer(__beg) && __beg != __end, 0))
549	  std::__throw_logic_error(__N("__rc_string_base::"
550				       "_S_construct NULL not valid"));
551
552	const size_type __dnew = static_cast<size_type>(std::distance(__beg,
553								      __end));
554	// Check for out_of_range and length_error exceptions.
555	_Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
556	try
557	  { _S_copy_chars(__r->_M_refdata(), __beg, __end); }
558	catch(...)
559	  {
560	    __r->_M_destroy(__a);
561	    __throw_exception_again;
562	  }
563	__r->_M_set_length(__dnew);
564	return __r->_M_refdata();
565      }
566
567  template<typename _CharT, typename _Traits, typename _Alloc>
568    _CharT*
569    __rc_string_base<_CharT, _Traits, _Alloc>::
570    _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
571    {
572      if (__n == 0 && __a == _Alloc())
573	return _S_empty_rep._M_refcopy();
574
575      // Check for out_of_range and length_error exceptions.
576      _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
577      if (__n)
578	_S_assign(__r->_M_refdata(), __n, __c);
579
580      __r->_M_set_length(__n);
581      return __r->_M_refdata();
582    }
583
584  template<typename _CharT, typename _Traits, typename _Alloc>
585    void
586    __rc_string_base<_CharT, _Traits, _Alloc>::
587    _M_swap(__rc_string_base& __rcs)
588    {
589      if (_M_is_leaked())
590	_M_set_sharable();
591      if (__rcs._M_is_leaked())
592	__rcs._M_set_sharable();
593
594      _CharT* __tmp = _M_data();
595      _M_data(__rcs._M_data());
596      __rcs._M_data(__tmp);
597
598      // _GLIBCXX_RESOLVE_LIB_DEFECTS
599      // 431. Swapping containers with unequal allocators.
600      std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
601						  __rcs._M_get_allocator());
602    }
603
604  template<typename _CharT, typename _Traits, typename _Alloc>
605    void
606    __rc_string_base<_CharT, _Traits, _Alloc>::
607    _M_assign(const __rc_string_base& __rcs)
608    {
609      if (_M_rep() != __rcs._M_rep())
610	{
611	  _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
612	  _M_dispose();
613	  _M_data(__tmp);
614	}
615    }
616
617  template<typename _CharT, typename _Traits, typename _Alloc>
618    void
619    __rc_string_base<_CharT, _Traits, _Alloc>::
620    _M_reserve(size_type __res)
621    {
622      // Make sure we don't shrink below the current size.
623      if (__res < _M_length())
624	__res = _M_length();
625
626      if (__res != _M_capacity() || _M_is_shared())
627	{
628	  _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
629					     __res - _M_length());
630	  _M_dispose();
631	  _M_data(__tmp);
632	}
633    }
634
635  template<typename _CharT, typename _Traits, typename _Alloc>
636    void
637    __rc_string_base<_CharT, _Traits, _Alloc>::
638    _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
639	      size_type __len2)
640    {
641      const size_type __how_much = _M_length() - __pos - __len1;
642
643      _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
644				  _M_capacity(), _M_get_allocator());
645
646      if (__pos)
647	_S_copy(__r->_M_refdata(), _M_data(), __pos);
648      if (__s && __len2)
649	_S_copy(__r->_M_refdata() + __pos, __s, __len2);
650      if (__how_much)
651	_S_copy(__r->_M_refdata() + __pos + __len2,
652		_M_data() + __pos + __len1, __how_much);
653
654      _M_dispose();
655      _M_data(__r->_M_refdata());
656    }
657
658  template<typename _CharT, typename _Traits, typename _Alloc>
659    void
660    __rc_string_base<_CharT, _Traits, _Alloc>::
661    _M_erase(size_type __pos, size_type __n)
662    {
663      const size_type __new_size = _M_length() - __n;
664      const size_type __how_much = _M_length() - __pos - __n;
665
666      if (_M_is_shared())
667	{
668	  // Must reallocate.
669	  _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
670				      _M_get_allocator());
671
672	  if (__pos)
673	    _S_copy(__r->_M_refdata(), _M_data(), __pos);
674	  if (__how_much)
675	    _S_copy(__r->_M_refdata() + __pos,
676		    _M_data() + __pos + __n, __how_much);
677
678	  _M_dispose();
679	  _M_data(__r->_M_refdata());
680	}
681      else if (__how_much && __n)
682	{
683	  // Work in-place.
684	  _S_move(_M_data() + __pos,
685		  _M_data() + __pos + __n, __how_much);
686	}
687
688      _M_rep()->_M_set_length(__new_size);
689    }
690
691  template<>
692    inline bool
693    __rc_string_base<char, std::char_traits<char>,
694		     std::allocator<char> >::
695    _M_compare(const __rc_string_base& __rcs) const
696    {
697      if (_M_rep() == __rcs._M_rep())
698	return true;
699      return false;
700    }
701
702#ifdef _GLIBCXX_USE_WCHAR_T
703  template<>
704    inline bool
705    __rc_string_base<wchar_t, std::char_traits<wchar_t>,
706		     std::allocator<wchar_t> >::
707    _M_compare(const __rc_string_base& __rcs) const
708    {
709      if (_M_rep() == __rcs._M_rep())
710	return true;
711      return false;
712    }
713#endif
714
715_GLIBCXX_END_NAMESPACE
716
717#endif /* _RC_STRING_BASE_H */
718