archive_rb.c revision 231200
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com>.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
30 */
31
32#include "archive_platform.h"
33
34#include <stddef.h>
35
36#include "archive_rb.h"
37
38/* Keep in sync with archive_rb.h */
39#define	RB_DIR_LEFT		0
40#define	RB_DIR_RIGHT		1
41#define	RB_DIR_OTHER		1
42#define	rb_left			rb_nodes[RB_DIR_LEFT]
43#define	rb_right		rb_nodes[RB_DIR_RIGHT]
44
45#define	RB_FLAG_POSITION	0x2
46#define	RB_FLAG_RED		0x1
47#define	RB_FLAG_MASK		(RB_FLAG_POSITION|RB_FLAG_RED)
48#define	RB_FATHER(rb) \
49    ((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
50#define	RB_SET_FATHER(rb, father) \
51    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
52
53#define	RB_SENTINEL_P(rb)	((rb) == NULL)
54#define	RB_LEFT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_left)
55#define	RB_RIGHT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_right)
56#define	RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
57#define	RB_CHILDLESS_P(rb) \
58    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
59#define	RB_TWOCHILDREN_P(rb) \
60    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
61
62#define	RB_POSITION(rb)	\
63    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
64#define	RB_RIGHT_P(rb)		(RB_POSITION(rb) == RB_DIR_RIGHT)
65#define	RB_LEFT_P(rb)		(RB_POSITION(rb) == RB_DIR_LEFT)
66#define	RB_RED_P(rb) 		(!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
67#define	RB_BLACK_P(rb) 		(RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
68#define	RB_MARK_RED(rb) 	((void)((rb)->rb_info |= RB_FLAG_RED))
69#define	RB_MARK_BLACK(rb) 	((void)((rb)->rb_info &= ~RB_FLAG_RED))
70#define	RB_INVERT_COLOR(rb) 	((void)((rb)->rb_info ^= RB_FLAG_RED))
71#define	RB_ROOT_P(rbt, rb)	((rbt)->rbt_root == (rb))
72#define	RB_SET_POSITION(rb, position) \
73    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
74    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
75#define	RB_ZERO_PROPERTIES(rb)	((void)((rb)->rb_info &= ~RB_FLAG_MASK))
76#define	RB_COPY_PROPERTIES(dst, src) \
77    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
78#define RB_SWAP_PROPERTIES(a, b) do { \
79    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
80    (a)->rb_info ^= xorinfo; \
81    (b)->rb_info ^= xorinfo; \
82  } while (/*CONSTCOND*/ 0)
83
84static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
85    struct archive_rb_node *);
86static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
87    struct archive_rb_node *, unsigned int);
88
89#define	RB_SENTINEL_NODE	NULL
90
91#define T	1
92#define	F	0
93
94void
95__archive_rb_tree_init(struct archive_rb_tree *rbt,
96    const struct archive_rb_tree_ops *ops)
97{
98	rbt->rbt_ops = ops;
99	*((const struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
100}
101
102struct archive_rb_node *
103__archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
104{
105	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
106	struct archive_rb_node *parent = rbt->rbt_root;
107
108	while (!RB_SENTINEL_P(parent)) {
109		const signed int diff = (*compare_key)(parent, key);
110		if (diff == 0)
111			return parent;
112		parent = parent->rb_nodes[diff > 0];
113	}
114
115	return NULL;
116}
117
118struct archive_rb_node *
119__archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
120{
121	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
122	struct archive_rb_node *parent = rbt->rbt_root;
123	struct archive_rb_node *last = NULL;
124
125	while (!RB_SENTINEL_P(parent)) {
126		const signed int diff = (*compare_key)(parent, key);
127		if (diff == 0)
128			return parent;
129		if (diff < 0)
130			last = parent;
131		parent = parent->rb_nodes[diff > 0];
132	}
133
134	return last;
135}
136
137struct archive_rb_node *
138__archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
139{
140	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
141	struct archive_rb_node *parent = rbt->rbt_root;
142	struct archive_rb_node *last = NULL;
143
144	while (!RB_SENTINEL_P(parent)) {
145		const signed int diff = (*compare_key)(parent, key);
146		if (diff == 0)
147			return parent;
148		if (diff > 0)
149			last = parent;
150		parent = parent->rb_nodes[diff > 0];
151	}
152
153	return last;
154}
155
156int
157__archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
158    struct archive_rb_node *self)
159{
160	archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
161	struct archive_rb_node *parent, *tmp;
162	unsigned int position;
163	int rebalance;
164
165	tmp = rbt->rbt_root;
166	/*
167	 * This is a hack.  Because rbt->rbt_root is just a
168	 * struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
169	 * we can use this fact to avoid a lot of tests for root and know
170	 * that even at root, updating
171	 * RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
172	 * update rbt->rbt_root.
173	 */
174	parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
175	position = RB_DIR_LEFT;
176
177	/*
178	 * Find out where to place this new leaf.
179	 */
180	while (!RB_SENTINEL_P(tmp)) {
181		const signed int diff = (*compare_nodes)(tmp, self);
182		if (diff == 0) {
183			/*
184			 * Node already exists; don't insert.
185			 */
186			return F;
187		}
188		parent = tmp;
189		position = (diff > 0);
190		tmp = parent->rb_nodes[position];
191	}
192
193	/*
194	 * Initialize the node and insert as a leaf into the tree.
195	 */
196	RB_SET_FATHER(self, parent);
197	RB_SET_POSITION(self, position);
198	if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
199		RB_MARK_BLACK(self);		/* root is always black */
200		rebalance = F;
201	} else {
202		/*
203		 * All new nodes are colored red.  We only need to rebalance
204		 * if our parent is also red.
205		 */
206		RB_MARK_RED(self);
207		rebalance = RB_RED_P(parent);
208	}
209	self->rb_left = parent->rb_nodes[position];
210	self->rb_right = parent->rb_nodes[position];
211	parent->rb_nodes[position] = self;
212
213	/*
214	 * Rebalance tree after insertion
215	 */
216	if (rebalance)
217		__archive_rb_tree_insert_rebalance(rbt, self);
218
219	return T;
220}
221
222/*
223 * Swap the location and colors of 'self' and its child @ which.  The child
224 * can not be a sentinel node.  This is our rotation function.  However,
225 * since it preserves coloring, it great simplifies both insertion and
226 * removal since rotation almost always involves the exchanging of colors
227 * as a separate step.
228 */
229/*ARGSUSED*/
230static void
231__archive_rb_tree_reparent_nodes(
232    struct archive_rb_node *old_father, const unsigned int which)
233{
234	const unsigned int other = which ^ RB_DIR_OTHER;
235	struct archive_rb_node * const grandpa = RB_FATHER(old_father);
236	struct archive_rb_node * const old_child = old_father->rb_nodes[which];
237	struct archive_rb_node * const new_father = old_child;
238	struct archive_rb_node * const new_child = old_father;
239
240	/*
241	 * Exchange descendant linkages.
242	 */
243	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
244	new_child->rb_nodes[which] = old_child->rb_nodes[other];
245	new_father->rb_nodes[other] = new_child;
246
247	/*
248	 * Update ancestor linkages
249	 */
250	RB_SET_FATHER(new_father, grandpa);
251	RB_SET_FATHER(new_child, new_father);
252
253	/*
254	 * Exchange properties between new_father and new_child.  The only
255	 * change is that new_child's position is now on the other side.
256	 */
257	RB_SWAP_PROPERTIES(new_father, new_child);
258	RB_SET_POSITION(new_child, other);
259
260	/*
261	 * Make sure to reparent the new child to ourself.
262	 */
263	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
264		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
265		RB_SET_POSITION(new_child->rb_nodes[which], which);
266	}
267
268}
269
270static void
271__archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
272    struct archive_rb_node *self)
273{
274	struct archive_rb_node * father = RB_FATHER(self);
275	struct archive_rb_node * grandpa;
276	struct archive_rb_node * uncle;
277	unsigned int which;
278	unsigned int other;
279
280	for (;;) {
281		/*
282		 * We are red and our parent is red, therefore we must have a
283		 * grandfather and he must be black.
284		 */
285		grandpa = RB_FATHER(father);
286		which = (father == grandpa->rb_right);
287		other = which ^ RB_DIR_OTHER;
288		uncle = grandpa->rb_nodes[other];
289
290		if (RB_BLACK_P(uncle))
291			break;
292
293		/*
294		 * Case 1: our uncle is red
295		 *   Simply invert the colors of our parent and
296		 *   uncle and make our grandparent red.  And
297		 *   then solve the problem up at his level.
298		 */
299		RB_MARK_BLACK(uncle);
300		RB_MARK_BLACK(father);
301		if (RB_ROOT_P(rbt, grandpa)) {
302			/*
303			 * If our grandpa is root, don't bother
304			 * setting him to red, just return.
305			 */
306			return;
307		}
308		RB_MARK_RED(grandpa);
309		self = grandpa;
310		father = RB_FATHER(self);
311		if (RB_BLACK_P(father)) {
312			/*
313			 * If our greatgrandpa is black, we're done.
314			 */
315			return;
316		}
317	}
318
319	/*
320	 * Case 2&3: our uncle is black.
321	 */
322	if (self == father->rb_nodes[other]) {
323		/*
324		 * Case 2: we are on the same side as our uncle
325		 *   Swap ourselves with our parent so this case
326		 *   becomes case 3.  Basically our parent becomes our
327		 *   child.
328		 */
329		__archive_rb_tree_reparent_nodes(father, other);
330	}
331	/*
332	 * Case 3: we are opposite a child of a black uncle.
333	 *   Swap our parent and grandparent.  Since our grandfather
334	 *   is black, our father will become black and our new sibling
335	 *   (former grandparent) will become red.
336	 */
337	__archive_rb_tree_reparent_nodes(grandpa, which);
338
339	/*
340	 * Final step: Set the root to black.
341	 */
342	RB_MARK_BLACK(rbt->rbt_root);
343}
344
345static void
346__archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
347    struct archive_rb_node *self, int rebalance)
348{
349	const unsigned int which = RB_POSITION(self);
350	struct archive_rb_node *father = RB_FATHER(self);
351
352	/*
353	 * Since we are childless, we know that self->rb_left is pointing
354	 * to the sentinel node.
355	 */
356	father->rb_nodes[which] = self->rb_left;
357
358	/*
359	 * Rebalance if requested.
360	 */
361	if (rebalance)
362		__archive_rb_tree_removal_rebalance(rbt, father, which);
363}
364
365/*
366 * When deleting an interior node
367 */
368static void
369__archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
370    struct archive_rb_node *self, struct archive_rb_node *standin)
371{
372	const unsigned int standin_which = RB_POSITION(standin);
373	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
374	struct archive_rb_node *standin_son;
375	struct archive_rb_node *standin_father = RB_FATHER(standin);
376	int rebalance = RB_BLACK_P(standin);
377
378	if (standin_father == self) {
379		/*
380		 * As a child of self, any children would be opposite of
381		 * our parent.
382		 */
383		standin_son = standin->rb_nodes[standin_which];
384	} else {
385		/*
386		 * Since we aren't a child of self, any children would be
387		 * on the same side as our parent.
388		 */
389		standin_son = standin->rb_nodes[standin_other];
390	}
391
392	if (RB_RED_P(standin_son)) {
393		/*
394		 * We know we have a red child so if we flip it to black
395		 * we don't have to rebalance.
396		 */
397		RB_MARK_BLACK(standin_son);
398		rebalance = F;
399
400		if (standin_father != self) {
401			/*
402			 * Change the son's parentage to point to his grandpa.
403			 */
404			RB_SET_FATHER(standin_son, standin_father);
405			RB_SET_POSITION(standin_son, standin_which);
406		}
407	}
408
409	if (standin_father == self) {
410		/*
411		 * If we are about to delete the standin's father, then when
412		 * we call rebalance, we need to use ourselves as our father.
413		 * Otherwise remember our original father.  Also, since we are
414		 * our standin's father we only need to reparent the standin's
415		 * brother.
416		 *
417		 * |    R      -->     S    |
418		 * |  Q   S    -->   Q   T  |
419		 * |        t  -->          |
420		 *
421		 * Have our son/standin adopt his brother as his new son.
422		 */
423		standin_father = standin;
424	} else {
425		/*
426		 * |    R          -->    S       .  |
427		 * |   / \  |   T  -->   / \  |  /   |
428		 * |  ..... | S    -->  ..... | T    |
429		 *
430		 * Sever standin's connection to his father.
431		 */
432		standin_father->rb_nodes[standin_which] = standin_son;
433		/*
434		 * Adopt the far son.
435		 */
436		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
437		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
438		/*
439		 * Use standin_other because we need to preserve standin_which
440		 * for the removal_rebalance.
441		 */
442		standin_other = standin_which;
443	}
444
445	/*
446	 * Move the only remaining son to our standin.  If our standin is our
447	 * son, this will be the only son needed to be moved.
448	 */
449	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
450	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
451
452	/*
453	 * Now copy the result of self to standin and then replace
454	 * self with standin in the tree.
455	 */
456	RB_COPY_PROPERTIES(standin, self);
457	RB_SET_FATHER(standin, RB_FATHER(self));
458	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
459
460	if (rebalance)
461		__archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
462}
463
464/*
465 * We could do this by doing
466 *	__archive_rb_tree_node_swap(rbt, self, which);
467 *	__archive_rb_tree_prune_node(rbt, self, F);
468 *
469 * But it's more efficient to just evaluate and recolor the child.
470 */
471static void
472__archive_rb_tree_prune_blackred_branch(
473    struct archive_rb_node *self, unsigned int which)
474{
475	struct archive_rb_node *father = RB_FATHER(self);
476	struct archive_rb_node *son = self->rb_nodes[which];
477
478	/*
479	 * Remove ourselves from the tree and give our former child our
480	 * properties (position, color, root).
481	 */
482	RB_COPY_PROPERTIES(son, self);
483	father->rb_nodes[RB_POSITION(son)] = son;
484	RB_SET_FATHER(son, father);
485}
486/*
487 *
488 */
489void
490__archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
491    struct archive_rb_node *self)
492{
493	struct archive_rb_node *standin;
494	unsigned int which;
495
496	/*
497	 * In the following diagrams, we (the node to be removed) are S.  Red
498	 * nodes are lowercase.  T could be either red or black.
499	 *
500	 * Remember the major axiom of the red-black tree: the number of
501	 * black nodes from the root to each leaf is constant across all
502	 * leaves, only the number of red nodes varies.
503	 *
504	 * Thus removing a red leaf doesn't require any other changes to a
505	 * red-black tree.  So if we must remove a node, attempt to rearrange
506	 * the tree so we can remove a red node.
507	 *
508	 * The simplest case is a childless red node or a childless root node:
509	 *
510	 * |    T  -->    T  |    or    |  R  -->  *  |
511	 * |  s    -->  *    |
512	 */
513	if (RB_CHILDLESS_P(self)) {
514		const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
515		__archive_rb_tree_prune_node(rbt, self, rebalance);
516		return;
517	}
518	if (!RB_TWOCHILDREN_P(self)) {
519		/*
520		 * The next simplest case is the node we are deleting is
521		 * black and has one red child.
522		 *
523		 * |      T  -->      T  -->      T  |
524		 * |    S    -->  R      -->  R      |
525		 * |  r      -->    s    -->    *    |
526		 */
527		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
528		__archive_rb_tree_prune_blackred_branch(self, which);
529		return;
530	}
531
532	/*
533	 * We invert these because we prefer to remove from the inside of
534	 * the tree.
535	 */
536	which = RB_POSITION(self) ^ RB_DIR_OTHER;
537
538	/*
539	 * Let's find the node closes to us opposite of our parent
540	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
541	 */
542	standin = __archive_rb_tree_iterate(rbt, self, which);
543	__archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
544}
545
546static void
547__archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
548    struct archive_rb_node *parent, unsigned int which)
549{
550
551	while (RB_BLACK_P(parent->rb_nodes[which])) {
552		unsigned int other = which ^ RB_DIR_OTHER;
553		struct archive_rb_node *brother = parent->rb_nodes[other];
554
555		/*
556		 * For cases 1, 2a, and 2b, our brother's children must
557		 * be black and our father must be black
558		 */
559		if (RB_BLACK_P(parent)
560		    && RB_BLACK_P(brother->rb_left)
561		    && RB_BLACK_P(brother->rb_right)) {
562			if (RB_RED_P(brother)) {
563				/*
564				 * Case 1: Our brother is red, swap its
565				 * position (and colors) with our parent.
566				 * This should now be case 2b (unless C or E
567				 * has a red child which is case 3; thus no
568				 * explicit branch to case 2b).
569				 *
570				 *    B         ->        D
571				 *  A     d     ->    b     E
572				 *      C   E   ->  A   C
573				 */
574				__archive_rb_tree_reparent_nodes(parent, other);
575				brother = parent->rb_nodes[other];
576			} else {
577				/*
578				 * Both our parent and brother are black.
579				 * Change our brother to red, advance up rank
580				 * and go through the loop again.
581				 *
582				 *    B         ->   *B
583				 * *A     D     ->  A     d
584				 *      C   E   ->      C   E
585				 */
586				RB_MARK_RED(brother);
587				if (RB_ROOT_P(rbt, parent))
588					return;	/* root == parent == black */
589				which = RB_POSITION(parent);
590				parent = RB_FATHER(parent);
591				continue;
592			}
593		}
594		/*
595		 * Avoid an else here so that case 2a above can hit either
596		 * case 2b, 3, or 4.
597		 */
598		if (RB_RED_P(parent)
599		    && RB_BLACK_P(brother)
600		    && RB_BLACK_P(brother->rb_left)
601		    && RB_BLACK_P(brother->rb_right)) {
602			/*
603			 * We are black, our father is red, our brother and
604			 * both nephews are black.  Simply invert/exchange the
605			 * colors of our father and brother (to black and red
606			 * respectively).
607			 *
608			 *	|    f        -->    F        |
609			 *	|  *     B    -->  *     b    |
610			 *	|      N   N  -->      N   N  |
611			 */
612			RB_MARK_BLACK(parent);
613			RB_MARK_RED(brother);
614			break;		/* We're done! */
615		} else {
616			/*
617			 * Our brother must be black and have at least one
618			 * red child (it may have two).
619			 */
620			if (RB_BLACK_P(brother->rb_nodes[other])) {
621				/*
622				 * Case 3: our brother is black, our near
623				 * nephew is red, and our far nephew is black.
624				 * Swap our brother with our near nephew.
625				 * This result in a tree that matches case 4.
626				 * (Our father could be red or black).
627				 *
628				 *	|    F      -->    F      |
629				 *	|  x     B  -->  x   B    |
630				 *	|      n    -->        n  |
631				 */
632				__archive_rb_tree_reparent_nodes(brother, which);
633				brother = parent->rb_nodes[other];
634			}
635			/*
636			 * Case 4: our brother is black and our far nephew
637			 * is red.  Swap our father and brother locations and
638			 * change our far nephew to black.  (these can be
639			 * done in either order so we change the color first).
640			 * The result is a valid red-black tree and is a
641			 * terminal case.  (again we don't care about the
642			 * father's color)
643			 *
644			 * If the father is red, we will get a red-black-black
645			 * tree:
646			 *	|  f      ->  f      -->    b    |
647			 *	|    B    ->    B    -->  F   N  |
648			 *	|      n  ->      N  -->         |
649			 *
650			 * If the father is black, we will get an all black
651			 * tree:
652			 *	|  F      ->  F      -->    B    |
653			 *	|    B    ->    B    -->  F   N  |
654			 *	|      n  ->      N  -->         |
655			 *
656			 * If we had two red nephews, then after the swap,
657			 * our former father would have a red grandson.
658			 */
659			RB_MARK_BLACK(brother->rb_nodes[other]);
660			__archive_rb_tree_reparent_nodes(parent, other);
661			break;		/* We're done! */
662		}
663	}
664}
665
666struct archive_rb_node *
667__archive_rb_tree_iterate(struct archive_rb_tree *rbt,
668    struct archive_rb_node *self, const unsigned int direction)
669{
670	const unsigned int other = direction ^ RB_DIR_OTHER;
671
672	if (self == NULL) {
673		self = rbt->rbt_root;
674		if (RB_SENTINEL_P(self))
675			return NULL;
676		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
677			self = self->rb_nodes[direction];
678		return self;
679	}
680	/*
681	 * We can't go any further in this direction.  We proceed up in the
682	 * opposite direction until our parent is in direction we want to go.
683	 */
684	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
685		while (!RB_ROOT_P(rbt, self)) {
686			if (other == RB_POSITION(self))
687				return RB_FATHER(self);
688			self = RB_FATHER(self);
689		}
690		return NULL;
691	}
692
693	/*
694	 * Advance down one in current direction and go down as far as possible
695	 * in the opposite direction.
696	 */
697	self = self->rb_nodes[direction];
698	while (!RB_SENTINEL_P(self->rb_nodes[other]))
699		self = self->rb_nodes[other];
700	return self;
701}
702