1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com>.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
30 */
31
32#include "archive_platform.h"
33
34#include <stddef.h>
35
36#include "archive_rb.h"
37
38/* Keep in sync with archive_rb.h */
39#define	RB_DIR_LEFT		0
40#define	RB_DIR_RIGHT		1
41#define	RB_DIR_OTHER		1
42#define	rb_left			rb_nodes[RB_DIR_LEFT]
43#define	rb_right		rb_nodes[RB_DIR_RIGHT]
44
45#define	RB_FLAG_POSITION	0x2
46#define	RB_FLAG_RED		0x1
47#define	RB_FLAG_MASK		(RB_FLAG_POSITION|RB_FLAG_RED)
48#define	RB_FATHER(rb) \
49    ((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
50#define	RB_SET_FATHER(rb, father) \
51    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
52
53#define	RB_SENTINEL_P(rb)	((rb) == NULL)
54#define	RB_LEFT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_left)
55#define	RB_RIGHT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_right)
56#define	RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
57#define	RB_CHILDLESS_P(rb) \
58    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
59#define	RB_TWOCHILDREN_P(rb) \
60    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
61
62#define	RB_POSITION(rb)	\
63    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
64#define	RB_RIGHT_P(rb)		(RB_POSITION(rb) == RB_DIR_RIGHT)
65#define	RB_LEFT_P(rb)		(RB_POSITION(rb) == RB_DIR_LEFT)
66#define	RB_RED_P(rb) 		(!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
67#define	RB_BLACK_P(rb) 		(RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
68#define	RB_MARK_RED(rb) 	((void)((rb)->rb_info |= RB_FLAG_RED))
69#define	RB_MARK_BLACK(rb) 	((void)((rb)->rb_info &= ~RB_FLAG_RED))
70#define	RB_INVERT_COLOR(rb) 	((void)((rb)->rb_info ^= RB_FLAG_RED))
71#define	RB_ROOT_P(rbt, rb)	((rbt)->rbt_root == (rb))
72#define	RB_SET_POSITION(rb, position) \
73    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
74    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
75#define	RB_ZERO_PROPERTIES(rb)	((void)((rb)->rb_info &= ~RB_FLAG_MASK))
76#define	RB_COPY_PROPERTIES(dst, src) \
77    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
78#define RB_SWAP_PROPERTIES(a, b) do { \
79    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
80    (a)->rb_info ^= xorinfo; \
81    (b)->rb_info ^= xorinfo; \
82  } while (/*CONSTCOND*/ 0)
83
84static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
85    struct archive_rb_node *);
86static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
87    struct archive_rb_node *, unsigned int);
88
89#define	RB_SENTINEL_NODE	NULL
90
91#define T	1
92#define	F	0
93
94void
95__archive_rb_tree_init(struct archive_rb_tree *rbt,
96    const struct archive_rb_tree_ops *ops)
97{
98	rbt->rbt_ops = ops;
99	*((struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
100}
101
102struct archive_rb_node *
103__archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
104{
105	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
106	struct archive_rb_node *parent = rbt->rbt_root;
107
108	while (!RB_SENTINEL_P(parent)) {
109		const signed int diff = (*compare_key)(parent, key);
110		if (diff == 0)
111			return parent;
112		parent = parent->rb_nodes[diff > 0];
113	}
114
115	return NULL;
116}
117
118struct archive_rb_node *
119__archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
120{
121	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
122	struct archive_rb_node *parent = rbt->rbt_root;
123	struct archive_rb_node *last = NULL;
124
125	while (!RB_SENTINEL_P(parent)) {
126		const signed int diff = (*compare_key)(parent, key);
127		if (diff == 0)
128			return parent;
129		if (diff < 0)
130			last = parent;
131		parent = parent->rb_nodes[diff > 0];
132	}
133
134	return last;
135}
136
137struct archive_rb_node *
138__archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
139{
140	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
141	struct archive_rb_node *parent = rbt->rbt_root;
142	struct archive_rb_node *last = NULL;
143
144	while (!RB_SENTINEL_P(parent)) {
145		const signed int diff = (*compare_key)(parent, key);
146		if (diff == 0)
147			return parent;
148		if (diff > 0)
149			last = parent;
150		parent = parent->rb_nodes[diff > 0];
151	}
152
153	return last;
154}
155
156int
157__archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
158    struct archive_rb_node *self)
159{
160	archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
161	struct archive_rb_node *parent, *tmp;
162	unsigned int position;
163	int rebalance;
164
165	tmp = rbt->rbt_root;
166	/*
167	 * This is a hack.  Because rbt->rbt_root is just a
168	 * struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
169	 * we can use this fact to avoid a lot of tests for root and know
170	 * that even at root, updating
171	 * RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
172	 * update rbt->rbt_root.
173	 */
174	parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
175	position = RB_DIR_LEFT;
176
177	/*
178	 * Find out where to place this new leaf.
179	 */
180	while (!RB_SENTINEL_P(tmp)) {
181		const signed int diff = (*compare_nodes)(tmp, self);
182		if (diff == 0) {
183			/*
184			 * Node already exists; don't insert.
185			 */
186			return F;
187		}
188		parent = tmp;
189		position = (diff > 0);
190		tmp = parent->rb_nodes[position];
191	}
192
193	/*
194	 * Initialize the node and insert as a leaf into the tree.
195	 */
196	RB_SET_FATHER(self, parent);
197	RB_SET_POSITION(self, position);
198	if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
199		RB_MARK_BLACK(self);		/* root is always black */
200		rebalance = F;
201	} else {
202		/*
203		 * All new nodes are colored red.  We only need to rebalance
204		 * if our parent is also red.
205		 */
206		RB_MARK_RED(self);
207		rebalance = RB_RED_P(parent);
208	}
209	self->rb_left = parent->rb_nodes[position];
210	self->rb_right = parent->rb_nodes[position];
211	parent->rb_nodes[position] = self;
212
213	/*
214	 * Rebalance tree after insertion
215	 */
216	if (rebalance)
217		__archive_rb_tree_insert_rebalance(rbt, self);
218
219	return T;
220}
221
222/*
223 * Swap the location and colors of 'self' and its child @ which.  The child
224 * can not be a sentinel node.  This is our rotation function.  However,
225 * since it preserves coloring, it great simplifies both insertion and
226 * removal since rotation almost always involves the exchanging of colors
227 * as a separate step.
228 */
229/*ARGSUSED*/
230static void
231__archive_rb_tree_reparent_nodes(
232    struct archive_rb_node *old_father, const unsigned int which)
233{
234	const unsigned int other = which ^ RB_DIR_OTHER;
235	struct archive_rb_node * const grandpa = RB_FATHER(old_father);
236	struct archive_rb_node * const old_child = old_father->rb_nodes[which];
237	struct archive_rb_node * const new_father = old_child;
238	struct archive_rb_node * const new_child = old_father;
239
240	if (new_father == NULL)
241		return;
242	/*
243	 * Exchange descendant linkages.
244	 */
245	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
246	new_child->rb_nodes[which] = old_child->rb_nodes[other];
247	new_father->rb_nodes[other] = new_child;
248
249	/*
250	 * Update ancestor linkages
251	 */
252	RB_SET_FATHER(new_father, grandpa);
253	RB_SET_FATHER(new_child, new_father);
254
255	/*
256	 * Exchange properties between new_father and new_child.  The only
257	 * change is that new_child's position is now on the other side.
258	 */
259	RB_SWAP_PROPERTIES(new_father, new_child);
260	RB_SET_POSITION(new_child, other);
261
262	/*
263	 * Make sure to reparent the new child to ourself.
264	 */
265	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
266		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
267		RB_SET_POSITION(new_child->rb_nodes[which], which);
268	}
269
270}
271
272static void
273__archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
274    struct archive_rb_node *self)
275{
276	struct archive_rb_node * father = RB_FATHER(self);
277	struct archive_rb_node * grandpa;
278	struct archive_rb_node * uncle;
279	unsigned int which;
280	unsigned int other;
281
282	for (;;) {
283		/*
284		 * We are red and our parent is red, therefore we must have a
285		 * grandfather and he must be black.
286		 */
287		grandpa = RB_FATHER(father);
288		which = (father == grandpa->rb_right);
289		other = which ^ RB_DIR_OTHER;
290		uncle = grandpa->rb_nodes[other];
291
292		if (RB_BLACK_P(uncle))
293			break;
294
295		/*
296		 * Case 1: our uncle is red
297		 *   Simply invert the colors of our parent and
298		 *   uncle and make our grandparent red.  And
299		 *   then solve the problem up at his level.
300		 */
301		RB_MARK_BLACK(uncle);
302		RB_MARK_BLACK(father);
303		if (RB_ROOT_P(rbt, grandpa)) {
304			/*
305			 * If our grandpa is root, don't bother
306			 * setting him to red, just return.
307			 */
308			return;
309		}
310		RB_MARK_RED(grandpa);
311		self = grandpa;
312		father = RB_FATHER(self);
313		if (RB_BLACK_P(father)) {
314			/*
315			 * If our great-grandpa is black, we're done.
316			 */
317			return;
318		}
319	}
320
321	/*
322	 * Case 2&3: our uncle is black.
323	 */
324	if (self == father->rb_nodes[other]) {
325		/*
326		 * Case 2: we are on the same side as our uncle
327		 *   Swap ourselves with our parent so this case
328		 *   becomes case 3.  Basically our parent becomes our
329		 *   child.
330		 */
331		__archive_rb_tree_reparent_nodes(father, other);
332	}
333	/*
334	 * Case 3: we are opposite a child of a black uncle.
335	 *   Swap our parent and grandparent.  Since our grandfather
336	 *   is black, our father will become black and our new sibling
337	 *   (former grandparent) will become red.
338	 */
339	__archive_rb_tree_reparent_nodes(grandpa, which);
340
341	/*
342	 * Final step: Set the root to black.
343	 */
344	RB_MARK_BLACK(rbt->rbt_root);
345}
346
347static void
348__archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
349    struct archive_rb_node *self, int rebalance)
350{
351	const unsigned int which = RB_POSITION(self);
352	struct archive_rb_node *father = RB_FATHER(self);
353
354	/*
355	 * Since we are childless, we know that self->rb_left is pointing
356	 * to the sentinel node.
357	 */
358	father->rb_nodes[which] = self->rb_left;
359
360	/*
361	 * Rebalance if requested.
362	 */
363	if (rebalance)
364		__archive_rb_tree_removal_rebalance(rbt, father, which);
365}
366
367/*
368 * When deleting an interior node
369 */
370static void
371__archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
372    struct archive_rb_node *self, struct archive_rb_node *standin)
373{
374	const unsigned int standin_which = RB_POSITION(standin);
375	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
376	struct archive_rb_node *standin_son;
377	struct archive_rb_node *standin_father = RB_FATHER(standin);
378	int rebalance = RB_BLACK_P(standin);
379
380	if (standin_father == self) {
381		/*
382		 * As a child of self, any children would be opposite of
383		 * our parent.
384		 */
385		standin_son = standin->rb_nodes[standin_which];
386	} else {
387		/*
388		 * Since we aren't a child of self, any children would be
389		 * on the same side as our parent.
390		 */
391		standin_son = standin->rb_nodes[standin_other];
392	}
393
394	if (RB_RED_P(standin_son)) {
395		/*
396		 * We know we have a red child so if we flip it to black
397		 * we don't have to rebalance.
398		 */
399		RB_MARK_BLACK(standin_son);
400		rebalance = F;
401
402		if (standin_father != self) {
403			/*
404			 * Change the son's parentage to point to his grandpa.
405			 */
406			RB_SET_FATHER(standin_son, standin_father);
407			RB_SET_POSITION(standin_son, standin_which);
408		}
409	}
410
411	if (standin_father == self) {
412		/*
413		 * If we are about to delete the standin's father, then when
414		 * we call rebalance, we need to use ourselves as our father.
415		 * Otherwise remember our original father.  Also, since we are
416		 * our standin's father we only need to reparent the standin's
417		 * brother.
418		 *
419		 * |    R      -->     S    |
420		 * |  Q   S    -->   Q   T  |
421		 * |        t  -->          |
422		 *
423		 * Have our son/standin adopt his brother as his new son.
424		 */
425		standin_father = standin;
426	} else {
427		/*
428		 * |    R          -->    S       .  |
429		 * |   / \  |   T  -->   / \  |  /   |
430		 * |  ..... | S    -->  ..... | T    |
431		 *
432		 * Sever standin's connection to his father.
433		 */
434		standin_father->rb_nodes[standin_which] = standin_son;
435		/*
436		 * Adopt the far son.
437		 */
438		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
439		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
440		/*
441		 * Use standin_other because we need to preserve standin_which
442		 * for the removal_rebalance.
443		 */
444		standin_other = standin_which;
445	}
446
447	/*
448	 * Move the only remaining son to our standin.  If our standin is our
449	 * son, this will be the only son needed to be moved.
450	 */
451	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
452	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
453
454	/*
455	 * Now copy the result of self to standin and then replace
456	 * self with standin in the tree.
457	 */
458	RB_COPY_PROPERTIES(standin, self);
459	RB_SET_FATHER(standin, RB_FATHER(self));
460	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
461
462	if (rebalance)
463		__archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
464}
465
466/*
467 * We could do this by doing
468 *	__archive_rb_tree_node_swap(rbt, self, which);
469 *	__archive_rb_tree_prune_node(rbt, self, F);
470 *
471 * But it's more efficient to just evaluate and recolor the child.
472 */
473static void
474__archive_rb_tree_prune_blackred_branch(
475    struct archive_rb_node *self, unsigned int which)
476{
477	struct archive_rb_node *father = RB_FATHER(self);
478	struct archive_rb_node *son = self->rb_nodes[which];
479
480	/*
481	 * Remove ourselves from the tree and give our former child our
482	 * properties (position, color, root).
483	 */
484	RB_COPY_PROPERTIES(son, self);
485	father->rb_nodes[RB_POSITION(son)] = son;
486	RB_SET_FATHER(son, father);
487}
488/*
489 *
490 */
491void
492__archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
493    struct archive_rb_node *self)
494{
495	struct archive_rb_node *standin;
496	unsigned int which;
497
498	/*
499	 * In the following diagrams, we (the node to be removed) are S.  Red
500	 * nodes are lowercase.  T could be either red or black.
501	 *
502	 * Remember the major axiom of the red-black tree: the number of
503	 * black nodes from the root to each leaf is constant across all
504	 * leaves, only the number of red nodes varies.
505	 *
506	 * Thus removing a red leaf doesn't require any other changes to a
507	 * red-black tree.  So if we must remove a node, attempt to rearrange
508	 * the tree so we can remove a red node.
509	 *
510	 * The simplest case is a childless red node or a childless root node:
511	 *
512	 * |    T  -->    T  |    or    |  R  -->  *  |
513	 * |  s    -->  *    |
514	 */
515	if (RB_CHILDLESS_P(self)) {
516		const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
517		__archive_rb_tree_prune_node(rbt, self, rebalance);
518		return;
519	}
520	if (!RB_TWOCHILDREN_P(self)) {
521		/*
522		 * The next simplest case is the node we are deleting is
523		 * black and has one red child.
524		 *
525		 * |      T  -->      T  -->      T  |
526		 * |    S    -->  R      -->  R      |
527		 * |  r      -->    s    -->    *    |
528		 */
529		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
530		__archive_rb_tree_prune_blackred_branch(self, which);
531		return;
532	}
533
534	/*
535	 * We invert these because we prefer to remove from the inside of
536	 * the tree.
537	 */
538	which = RB_POSITION(self) ^ RB_DIR_OTHER;
539
540	/*
541	 * Let's find the node closes to us opposite of our parent
542	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
543	 */
544	standin = __archive_rb_tree_iterate(rbt, self, which);
545	__archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
546}
547
548static void
549__archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
550    struct archive_rb_node *parent, unsigned int which)
551{
552
553	while (RB_BLACK_P(parent->rb_nodes[which])) {
554		unsigned int other = which ^ RB_DIR_OTHER;
555		struct archive_rb_node *brother = parent->rb_nodes[other];
556
557		if (brother == NULL)
558			return;/* The tree may be broken. */
559		/*
560		 * For cases 1, 2a, and 2b, our brother's children must
561		 * be black and our father must be black
562		 */
563		if (RB_BLACK_P(parent)
564		    && RB_BLACK_P(brother->rb_left)
565		    && RB_BLACK_P(brother->rb_right)) {
566			if (RB_RED_P(brother)) {
567				/*
568				 * Case 1: Our brother is red, swap its
569				 * position (and colors) with our parent.
570				 * This should now be case 2b (unless C or E
571				 * has a red child which is case 3; thus no
572				 * explicit branch to case 2b).
573				 *
574				 *    B         ->        D
575				 *  A     d     ->    b     E
576				 *      C   E   ->  A   C
577				 */
578				__archive_rb_tree_reparent_nodes(parent, other);
579				brother = parent->rb_nodes[other];
580				if (brother == NULL)
581					return;/* The tree may be broken. */
582			} else {
583				/*
584				 * Both our parent and brother are black.
585				 * Change our brother to red, advance up rank
586				 * and go through the loop again.
587				 *
588				 *    B         ->   *B
589				 * *A     D     ->  A     d
590				 *      C   E   ->      C   E
591				 */
592				RB_MARK_RED(brother);
593				if (RB_ROOT_P(rbt, parent))
594					return;	/* root == parent == black */
595				which = RB_POSITION(parent);
596				parent = RB_FATHER(parent);
597				continue;
598			}
599		}
600		/*
601		 * Avoid an else here so that case 2a above can hit either
602		 * case 2b, 3, or 4.
603		 */
604		if (RB_RED_P(parent)
605		    && RB_BLACK_P(brother)
606		    && RB_BLACK_P(brother->rb_left)
607		    && RB_BLACK_P(brother->rb_right)) {
608			/*
609			 * We are black, our father is red, our brother and
610			 * both nephews are black.  Simply invert/exchange the
611			 * colors of our father and brother (to black and red
612			 * respectively).
613			 *
614			 *	|    f        -->    F        |
615			 *	|  *     B    -->  *     b    |
616			 *	|      N   N  -->      N   N  |
617			 */
618			RB_MARK_BLACK(parent);
619			RB_MARK_RED(brother);
620			break;		/* We're done! */
621		} else {
622			/*
623			 * Our brother must be black and have at least one
624			 * red child (it may have two).
625			 */
626			if (RB_BLACK_P(brother->rb_nodes[other])) {
627				/*
628				 * Case 3: our brother is black, our near
629				 * nephew is red, and our far nephew is black.
630				 * Swap our brother with our near nephew.
631				 * This result in a tree that matches case 4.
632				 * (Our father could be red or black).
633				 *
634				 *	|    F      -->    F      |
635				 *	|  x     B  -->  x   B    |
636				 *	|      n    -->        n  |
637				 */
638				__archive_rb_tree_reparent_nodes(brother, which);
639				brother = parent->rb_nodes[other];
640			}
641			/*
642			 * Case 4: our brother is black and our far nephew
643			 * is red.  Swap our father and brother locations and
644			 * change our far nephew to black.  (these can be
645			 * done in either order so we change the color first).
646			 * The result is a valid red-black tree and is a
647			 * terminal case.  (again we don't care about the
648			 * father's color)
649			 *
650			 * If the father is red, we will get a red-black-black
651			 * tree:
652			 *	|  f      ->  f      -->    b    |
653			 *	|    B    ->    B    -->  F   N  |
654			 *	|      n  ->      N  -->         |
655			 *
656			 * If the father is black, we will get an all black
657			 * tree:
658			 *	|  F      ->  F      -->    B    |
659			 *	|    B    ->    B    -->  F   N  |
660			 *	|      n  ->      N  -->         |
661			 *
662			 * If we had two red nephews, then after the swap,
663			 * our former father would have a red grandson.
664			 */
665			if (brother->rb_nodes[other] == NULL)
666				return;/* The tree may be broken. */
667			RB_MARK_BLACK(brother->rb_nodes[other]);
668			__archive_rb_tree_reparent_nodes(parent, other);
669			break;		/* We're done! */
670		}
671	}
672}
673
674struct archive_rb_node *
675__archive_rb_tree_iterate(struct archive_rb_tree *rbt,
676    struct archive_rb_node *self, const unsigned int direction)
677{
678	const unsigned int other = direction ^ RB_DIR_OTHER;
679
680	if (self == NULL) {
681		self = rbt->rbt_root;
682		if (RB_SENTINEL_P(self))
683			return NULL;
684		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
685			self = self->rb_nodes[direction];
686		return self;
687	}
688	/*
689	 * We can't go any further in this direction.  We proceed up in the
690	 * opposite direction until our parent is in direction we want to go.
691	 */
692	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
693		while (!RB_ROOT_P(rbt, self)) {
694			if (other == (unsigned int)RB_POSITION(self))
695				return RB_FATHER(self);
696			self = RB_FATHER(self);
697		}
698		return NULL;
699	}
700
701	/*
702	 * Advance down one in current direction and go down as far as possible
703	 * in the opposite direction.
704	 */
705	self = self->rb_nodes[direction];
706	while (!RB_SENTINEL_P(self->rb_nodes[other]))
707		self = self->rb_nodes[other];
708	return self;
709}
710