util.c revision 246854
1/*
2 * util.c
3 *
4 * some general memory functions
5 *
6 * a Net::DNS like library for C
7 *
8 * (c) NLnet Labs, 2004-2006
9 *
10 * See the file LICENSE for the license
11 */
12
13#include <ldns/config.h>
14
15#include <ldns/rdata.h>
16#include <ldns/rr.h>
17#include <ldns/util.h>
18#include <strings.h>
19#include <stdlib.h>
20#include <stdio.h>
21#include <sys/time.h>
22#include <time.h>
23
24#ifdef HAVE_SSL
25#include <openssl/rand.h>
26#endif
27
28/* put this here tmp. for debugging */
29static void
30xprintf_rdf(ldns_rdf *rd)
31{
32	/* assume printable string */
33	fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
34	fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
35	fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
36			(char*)ldns_rdf_data(rd));
37}
38
39static void
40xprintf_rr(ldns_rr *rr)
41{
42	/* assume printable string */
43	uint16_t count, i;
44
45	count = ldns_rr_rd_count(rr);
46
47	for(i = 0; i < count; i++) {
48		fprintf(stderr, "print rd %u\n", (unsigned int) i);
49		xprintf_rdf(rr->_rdata_fields[i]);
50	}
51}
52
53static void
54xprintf_hex(uint8_t *data, size_t len)
55{
56	size_t i;
57	for (i = 0; i < len; i++) {
58		if (i > 0 && i % 20 == 0) {
59			printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
60		}
61		printf("%02x ", (unsigned int) data[i]);
62	}
63	printf("\n");
64}
65
66ldns_lookup_table *
67ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
68{
69	while (table->name != NULL) {
70		if (strcasecmp(name, table->name) == 0)
71			return table;
72		table++;
73	}
74	return NULL;
75}
76
77ldns_lookup_table *
78ldns_lookup_by_id(ldns_lookup_table *table, int id)
79{
80	while (table->name != NULL) {
81		if (table->id == id)
82			return table;
83		table++;
84	}
85	return NULL;
86}
87
88int
89ldns_get_bit(uint8_t bits[], size_t index)
90{
91	/*
92	 * The bits are counted from left to right, so bit #0 is the
93	 * left most bit.
94	 */
95	return (int) (bits[index / 8] & (1 << (7 - index % 8)));
96}
97
98int
99ldns_get_bit_r(uint8_t bits[], size_t index)
100{
101	/*
102	 * The bits are counted from right to left, so bit #0 is the
103	 * right most bit.
104	 */
105	return (int) bits[index / 8] & (1 << (index % 8));
106}
107
108void
109ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
110{
111	/*
112	 * The bits are counted from right to left, so bit #0 is the
113	 * right most bit.
114	 */
115	if (bit_nr >= 0 && bit_nr < 8) {
116		if (value) {
117			*byte = *byte | (0x01 << bit_nr);
118		} else {
119			*byte = *byte & ~(0x01 << bit_nr);
120		}
121	}
122}
123
124int
125ldns_hexdigit_to_int(char ch)
126{
127	switch (ch) {
128	case '0': return 0;
129	case '1': return 1;
130	case '2': return 2;
131	case '3': return 3;
132	case '4': return 4;
133	case '5': return 5;
134	case '6': return 6;
135	case '7': return 7;
136	case '8': return 8;
137	case '9': return 9;
138	case 'a': case 'A': return 10;
139	case 'b': case 'B': return 11;
140	case 'c': case 'C': return 12;
141	case 'd': case 'D': return 13;
142	case 'e': case 'E': return 14;
143	case 'f': case 'F': return 15;
144	default:
145		return -1;
146	}
147}
148
149char
150ldns_int_to_hexdigit(int i)
151{
152	switch (i) {
153	case 0: return '0';
154	case 1: return '1';
155	case 2: return '2';
156	case 3: return '3';
157	case 4: return '4';
158	case 5: return '5';
159	case 6: return '6';
160	case 7: return '7';
161	case 8: return '8';
162	case 9: return '9';
163	case 10: return 'a';
164	case 11: return 'b';
165	case 12: return 'c';
166	case 13: return 'd';
167	case 14: return 'e';
168	case 15: return 'f';
169	default:
170		abort();
171	}
172}
173
174int
175ldns_hexstring_to_data(uint8_t *data, const char *str)
176{
177	size_t i;
178
179	if (!str || !data) {
180		return -1;
181	}
182
183	if (strlen(str) % 2 != 0) {
184		return -2;
185	}
186
187	for (i = 0; i < strlen(str) / 2; i++) {
188		data[i] =
189			16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
190			(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
191	}
192
193	return (int) i;
194}
195
196const char *
197ldns_version(void)
198{
199	return (char*)LDNS_VERSION;
200}
201
202/* Number of days per month (except for February in leap years). */
203static const int mdays[] = {
204	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
205};
206
207#define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
208#define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
209
210static int
211is_leap_year(int year)
212{
213	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
214	    || LDNS_MOD(year, 400) == 0);
215}
216
217static int
218leap_days(int y1, int y2)
219{
220	--y1;
221	--y2;
222	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
223	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
224	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
225}
226
227/*
228 * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
229 */
230time_t
231ldns_mktime_from_utc(const struct tm *tm)
232{
233	int year = 1900 + tm->tm_year;
234	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
235	time_t hours;
236	time_t minutes;
237	time_t seconds;
238	int i;
239
240	for (i = 0; i < tm->tm_mon; ++i) {
241		days += mdays[i];
242	}
243	if (tm->tm_mon > 1 && is_leap_year(year)) {
244		++days;
245	}
246	days += tm->tm_mday - 1;
247
248	hours = days * 24 + tm->tm_hour;
249	minutes = hours * 60 + tm->tm_min;
250	seconds = minutes * 60 + tm->tm_sec;
251
252	return seconds;
253}
254
255time_t
256mktime_from_utc(const struct tm *tm)
257{
258	return ldns_mktime_from_utc(tm);
259}
260
261#if SIZEOF_TIME_T <= 4
262
263static void
264ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
265{
266	int year = 1970;
267	int new_year;
268
269	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
270		new_year = year + (int) LDNS_DIV(days, 365);
271		days -= (new_year - year) * 365;
272		days -= leap_days(year, new_year);
273		year  = new_year;
274	}
275	result->tm_year = year;
276	result->tm_yday = (int) days;
277}
278
279/* Number of days per month in a leap year. */
280static const int leap_year_mdays[] = {
281	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
282};
283
284static void
285ldns_mon_and_mday_from_year_and_yday(struct tm *result)
286{
287	int idays = result->tm_yday;
288	const int *mon_lengths = is_leap_year(result->tm_year) ?
289					leap_year_mdays : mdays;
290
291	result->tm_mon = 0;
292	while  (idays >= mon_lengths[result->tm_mon]) {
293		idays -= mon_lengths[result->tm_mon++];
294	}
295	result->tm_mday = idays + 1;
296}
297
298static void
299ldns_wday_from_year_and_yday(struct tm *result)
300{
301	result->tm_wday = 4 /* 1-1-1970 was a thursday */
302			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
303			+ leap_days(1970, result->tm_year)
304			+ result->tm_yday;
305	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
306	if (result->tm_wday < 0) {
307		result->tm_wday += 7;
308	}
309}
310
311static struct tm *
312ldns_gmtime64_r(int64_t clock, struct tm *result)
313{
314	result->tm_isdst = 0;
315	result->tm_sec   = (int) LDNS_MOD(clock, 60);
316	clock            =       LDNS_DIV(clock, 60);
317	result->tm_min   = (int) LDNS_MOD(clock, 60);
318	clock            =       LDNS_DIV(clock, 60);
319	result->tm_hour  = (int) LDNS_MOD(clock, 24);
320	clock            =       LDNS_DIV(clock, 24);
321
322	ldns_year_and_yday_from_days_since_epoch(clock, result);
323	ldns_mon_and_mday_from_year_and_yday(result);
324	ldns_wday_from_year_and_yday(result);
325	result->tm_year -= 1900;
326
327	return result;
328}
329
330#endif /* SIZEOF_TIME_T <= 4 */
331
332static int64_t
333ldns_serial_arithmitics_time(int32_t time, time_t now)
334{
335	int32_t offset = time - (int32_t) now;
336	return (int64_t) now + offset;
337}
338
339
340struct tm *
341ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
342{
343#if SIZEOF_TIME_T <= 4
344	int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
345	return  ldns_gmtime64_r(secs_since_epoch, result);
346#else
347	time_t  secs_since_epoch = ldns_serial_arithmitics_time(time, now);
348	return  gmtime_r(&secs_since_epoch, result);
349#endif
350}
351
352/**
353 * Init the random source
354 * applications should call this if they need entropy data within ldns
355 * If openSSL is available, it is automatically seeded from /dev/urandom
356 * or /dev/random
357 *
358 * If you need more entropy, or have no openssl available, this function
359 * MUST be called at the start of the program
360 *
361 * If openssl *is* available, this function just adds more entropy
362 **/
363int
364ldns_init_random(FILE *fd, unsigned int size)
365{
366	/* if fp is given, seed srandom with data from file
367	   otherwise use /dev/urandom */
368	FILE *rand_f;
369	uint8_t *seed;
370	size_t read = 0;
371	unsigned int seed_i;
372	struct timeval tv;
373
374	/* we'll need at least sizeof(unsigned int) bytes for the
375	   standard prng seed */
376	if (size < (unsigned int) sizeof(seed_i)){
377		size = (unsigned int) sizeof(seed_i);
378	}
379
380	seed = LDNS_XMALLOC(uint8_t, size);
381        if(!seed) {
382		return 1;
383        }
384
385	if (!fd) {
386		if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
387			/* no readable /dev/urandom, try /dev/random */
388			if ((rand_f = fopen("/dev/random", "r")) == NULL) {
389				/* no readable /dev/random either, and no entropy
390				   source given. we'll have to improvise */
391				for (read = 0; read < size; read++) {
392					gettimeofday(&tv, NULL);
393					seed[read] = (uint8_t) (tv.tv_usec % 256);
394				}
395			} else {
396				read = fread(seed, 1, size, rand_f);
397			}
398		} else {
399			read = fread(seed, 1, size, rand_f);
400		}
401	} else {
402		rand_f = fd;
403		read = fread(seed, 1, size, rand_f);
404	}
405
406	if (read < size) {
407		LDNS_FREE(seed);
408		if (!fd) fclose(rand_f);
409		return 1;
410	} else {
411#ifdef HAVE_SSL
412		/* Seed the OpenSSL prng (most systems have it seeded
413		   automatically, in that case this call just adds entropy */
414		RAND_seed(seed, (int) size);
415#else
416		/* Seed the standard prng, only uses the first
417		 * unsigned sizeof(unsiged int) bytes found in the entropy pool
418		 */
419		memcpy(&seed_i, seed, sizeof(seed_i));
420		srandom(seed_i);
421#endif
422		LDNS_FREE(seed);
423	}
424
425	if (!fd) {
426                if (rand_f) fclose(rand_f);
427	}
428
429	return 0;
430}
431
432/**
433 * Get random number.
434 *
435 */
436uint16_t
437ldns_get_random(void)
438{
439        uint16_t rid = 0;
440#ifdef HAVE_SSL
441        if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
442                rid = (uint16_t) random();
443        }
444#else
445        rid = (uint16_t) random();
446#endif
447	return rid;
448}
449
450/*
451 * BubbleBabble code taken from OpenSSH
452 * Copyright (c) 2001 Carsten Raskgaard.  All rights reserved.
453 */
454char *
455ldns_bubblebabble(uint8_t *data, size_t len)
456{
457	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
458	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
459	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
460	size_t i, j = 0, rounds, seed = 1;
461	char *retval;
462
463	rounds = (len / 2) + 1;
464	retval = LDNS_XMALLOC(char, rounds * 6);
465	if(!retval) return NULL;
466	retval[j++] = 'x';
467	for (i = 0; i < rounds; i++) {
468		size_t idx0, idx1, idx2, idx3, idx4;
469		if ((i + 1 < rounds) || (len % 2 != 0)) {
470			idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
471			    seed) % 6;
472			idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
473			idx2 = ((((size_t)(data[2 * i])) & 3) +
474			    (seed / 6)) % 6;
475			retval[j++] = vowels[idx0];
476			retval[j++] = consonants[idx1];
477			retval[j++] = vowels[idx2];
478			if ((i + 1) < rounds) {
479				idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
480				idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
481				retval[j++] = consonants[idx3];
482				retval[j++] = '-';
483				retval[j++] = consonants[idx4];
484				seed = ((seed * 5) +
485				    ((((size_t)(data[2 * i])) * 7) +
486				    ((size_t)(data[(2 * i) + 1])))) % 36;
487			}
488		} else {
489			idx0 = seed % 6;
490			idx1 = 16;
491			idx2 = seed / 6;
492			retval[j++] = vowels[idx0];
493			retval[j++] = consonants[idx1];
494			retval[j++] = vowels[idx2];
495		}
496	}
497	retval[j++] = 'x';
498	retval[j++] = '\0';
499	return retval;
500}
501