1/*
2 * util.c
3 *
4 * some general memory functions
5 *
6 * a Net::DNS like library for C
7 *
8 * (c) NLnet Labs, 2004-2006
9 *
10 * See the file LICENSE for the license
11 */
12
13#include <ldns/config.h>
14
15#include <ldns/rdata.h>
16#include <ldns/rr.h>
17#include <ldns/util.h>
18#include <strings.h>
19#include <stdlib.h>
20#include <stdio.h>
21#include <sys/time.h>
22#include <time.h>
23#include <ctype.h>
24
25#ifdef HAVE_SSL
26#include <openssl/rand.h>
27#endif
28
29ldns_lookup_table *
30ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
31{
32	while (table->name != NULL) {
33		if (strcasecmp(name, table->name) == 0)
34			return table;
35		table++;
36	}
37	return NULL;
38}
39
40ldns_lookup_table *
41ldns_lookup_by_id(ldns_lookup_table *table, int id)
42{
43	while (table->name != NULL) {
44		if (table->id == id)
45			return table;
46		table++;
47	}
48	return NULL;
49}
50
51int
52ldns_get_bit(uint8_t bits[], size_t index)
53{
54	/*
55	 * The bits are counted from left to right, so bit #0 is the
56	 * left most bit.
57	 */
58	return (int) (bits[index / 8] & (1 << (7 - index % 8)));
59}
60
61int
62ldns_get_bit_r(uint8_t bits[], size_t index)
63{
64	/*
65	 * The bits are counted from right to left, so bit #0 is the
66	 * right most bit.
67	 */
68	return (int) bits[index / 8] & (1 << (index % 8));
69}
70
71void
72ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
73{
74	/*
75	 * The bits are counted from right to left, so bit #0 is the
76	 * right most bit.
77	 */
78	if (bit_nr >= 0 && bit_nr < 8) {
79		if (value) {
80			*byte = *byte | (0x01 << bit_nr);
81		} else {
82			*byte = *byte & ~(0x01 << bit_nr);
83		}
84	}
85}
86
87int
88ldns_hexdigit_to_int(char ch)
89{
90	switch (ch) {
91	case '0': return 0;
92	case '1': return 1;
93	case '2': return 2;
94	case '3': return 3;
95	case '4': return 4;
96	case '5': return 5;
97	case '6': return 6;
98	case '7': return 7;
99	case '8': return 8;
100	case '9': return 9;
101	case 'a': case 'A': return 10;
102	case 'b': case 'B': return 11;
103	case 'c': case 'C': return 12;
104	case 'd': case 'D': return 13;
105	case 'e': case 'E': return 14;
106	case 'f': case 'F': return 15;
107	default:
108		return -1;
109	}
110}
111
112char
113ldns_int_to_hexdigit(int i)
114{
115	switch (i) {
116	case 0: return '0';
117	case 1: return '1';
118	case 2: return '2';
119	case 3: return '3';
120	case 4: return '4';
121	case 5: return '5';
122	case 6: return '6';
123	case 7: return '7';
124	case 8: return '8';
125	case 9: return '9';
126	case 10: return 'a';
127	case 11: return 'b';
128	case 12: return 'c';
129	case 13: return 'd';
130	case 14: return 'e';
131	case 15: return 'f';
132	default:
133		abort();
134	}
135}
136
137int
138ldns_hexstring_to_data(uint8_t *data, const char *str)
139{
140	size_t i;
141
142	if (!str || !data) {
143		return -1;
144	}
145
146	if (strlen(str) % 2 != 0) {
147		return -2;
148	}
149
150	for (i = 0; i < strlen(str) / 2; i++) {
151		data[i] =
152			16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
153			(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
154	}
155
156	return (int) i;
157}
158
159const char *
160ldns_version(void)
161{
162	return (char*)LDNS_VERSION;
163}
164
165/* Number of days per month (except for February in leap years). */
166static const int mdays[] = {
167	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
168};
169
170#define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
171#define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
172
173static int
174is_leap_year(int year)
175{
176	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
177	    || LDNS_MOD(year, 400) == 0);
178}
179
180static int
181leap_days(int y1, int y2)
182{
183	--y1;
184	--y2;
185	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
186	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
187	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
188}
189
190/*
191 * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
192 */
193time_t
194ldns_mktime_from_utc(const struct tm *tm)
195{
196	int year = 1900 + tm->tm_year;
197	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
198	time_t hours;
199	time_t minutes;
200	time_t seconds;
201	int i;
202
203	for (i = 0; i < tm->tm_mon; ++i) {
204		days += mdays[i];
205	}
206	if (tm->tm_mon > 1 && is_leap_year(year)) {
207		++days;
208	}
209	days += tm->tm_mday - 1;
210
211	hours = days * 24 + tm->tm_hour;
212	minutes = hours * 60 + tm->tm_min;
213	seconds = minutes * 60 + tm->tm_sec;
214
215	return seconds;
216}
217
218time_t
219mktime_from_utc(const struct tm *tm)
220{
221	return ldns_mktime_from_utc(tm);
222}
223
224#if SIZEOF_TIME_T <= 4
225
226static void
227ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
228{
229	int year = 1970;
230	int new_year;
231
232	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
233		new_year = year + (int) LDNS_DIV(days, 365);
234		days -= (new_year - year) * 365;
235		days -= leap_days(year, new_year);
236		year  = new_year;
237	}
238	result->tm_year = year;
239	result->tm_yday = (int) days;
240}
241
242/* Number of days per month in a leap year. */
243static const int leap_year_mdays[] = {
244	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
245};
246
247static void
248ldns_mon_and_mday_from_year_and_yday(struct tm *result)
249{
250	int idays = result->tm_yday;
251	const int *mon_lengths = is_leap_year(result->tm_year) ?
252					leap_year_mdays : mdays;
253
254	result->tm_mon = 0;
255	while  (idays >= mon_lengths[result->tm_mon]) {
256		idays -= mon_lengths[result->tm_mon++];
257	}
258	result->tm_mday = idays + 1;
259}
260
261static void
262ldns_wday_from_year_and_yday(struct tm *result)
263{
264	result->tm_wday = 4 /* 1-1-1970 was a thursday */
265			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
266			+ leap_days(1970, result->tm_year)
267			+ result->tm_yday;
268	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
269	if (result->tm_wday < 0) {
270		result->tm_wday += 7;
271	}
272}
273
274static struct tm *
275ldns_gmtime64_r(int64_t clock, struct tm *result)
276{
277	result->tm_isdst = 0;
278	result->tm_sec   = (int) LDNS_MOD(clock, 60);
279	clock            =       LDNS_DIV(clock, 60);
280	result->tm_min   = (int) LDNS_MOD(clock, 60);
281	clock            =       LDNS_DIV(clock, 60);
282	result->tm_hour  = (int) LDNS_MOD(clock, 24);
283	clock            =       LDNS_DIV(clock, 24);
284
285	ldns_year_and_yday_from_days_since_epoch(clock, result);
286	ldns_mon_and_mday_from_year_and_yday(result);
287	ldns_wday_from_year_and_yday(result);
288	result->tm_year -= 1900;
289
290	return result;
291}
292
293#endif /* SIZEOF_TIME_T <= 4 */
294
295static int64_t
296ldns_serial_arithmitics_time(int32_t time, time_t now)
297{
298	int32_t offset = time - (int32_t) now;
299	return (int64_t) now + offset;
300}
301
302
303struct tm *
304ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
305{
306#if SIZEOF_TIME_T <= 4
307	int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
308	return  ldns_gmtime64_r(secs_since_epoch, result);
309#else
310	time_t  secs_since_epoch = ldns_serial_arithmitics_time(time, now);
311	return  gmtime_r(&secs_since_epoch, result);
312#endif
313}
314
315/**
316 * Init the random source
317 * applications should call this if they need entropy data within ldns
318 * If openSSL is available, it is automatically seeded from /dev/urandom
319 * or /dev/random
320 *
321 * If you need more entropy, or have no openssl available, this function
322 * MUST be called at the start of the program
323 *
324 * If openssl *is* available, this function just adds more entropy
325 **/
326int
327ldns_init_random(FILE *fd, unsigned int size)
328{
329	/* if fp is given, seed srandom with data from file
330	   otherwise use /dev/urandom */
331	FILE *rand_f;
332	uint8_t *seed;
333	size_t read = 0;
334	unsigned int seed_i;
335	struct timeval tv;
336
337	/* we'll need at least sizeof(unsigned int) bytes for the
338	   standard prng seed */
339	if (size < (unsigned int) sizeof(seed_i)){
340		size = (unsigned int) sizeof(seed_i);
341	}
342
343	seed = LDNS_XMALLOC(uint8_t, size);
344        if(!seed) {
345		return 1;
346        }
347
348	if (!fd) {
349		if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
350			/* no readable /dev/urandom, try /dev/random */
351			if ((rand_f = fopen("/dev/random", "r")) == NULL) {
352				/* no readable /dev/random either, and no entropy
353				   source given. we'll have to improvise */
354				for (read = 0; read < size; read++) {
355					gettimeofday(&tv, NULL);
356					seed[read] = (uint8_t) (tv.tv_usec % 256);
357				}
358			} else {
359				read = fread(seed, 1, size, rand_f);
360			}
361		} else {
362			read = fread(seed, 1, size, rand_f);
363		}
364	} else {
365		rand_f = fd;
366		read = fread(seed, 1, size, rand_f);
367	}
368
369	if (read < size) {
370		LDNS_FREE(seed);
371		if (!fd) fclose(rand_f);
372		return 1;
373	} else {
374#ifdef HAVE_SSL
375		/* Seed the OpenSSL prng (most systems have it seeded
376		   automatically, in that case this call just adds entropy */
377		RAND_seed(seed, (int) size);
378#else
379		/* Seed the standard prng, only uses the first
380		 * unsigned sizeof(unsiged int) bytes found in the entropy pool
381		 */
382		memcpy(&seed_i, seed, sizeof(seed_i));
383		srandom(seed_i);
384#endif
385		LDNS_FREE(seed);
386	}
387
388	if (!fd) {
389                if (rand_f) fclose(rand_f);
390	}
391
392	return 0;
393}
394
395/**
396 * Get random number.
397 *
398 */
399uint16_t
400ldns_get_random(void)
401{
402        uint16_t rid = 0;
403#ifdef HAVE_SSL
404        if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
405                rid = (uint16_t) random();
406        }
407#else
408        rid = (uint16_t) random();
409#endif
410	return rid;
411}
412
413/*
414 * BubbleBabble code taken from OpenSSH
415 * Copyright (c) 2001 Carsten Raskgaard.  All rights reserved.
416 */
417char *
418ldns_bubblebabble(uint8_t *data, size_t len)
419{
420	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
421	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
422	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
423	size_t i, j = 0, rounds, seed = 1;
424	char *retval;
425
426	rounds = (len / 2) + 1;
427	retval = LDNS_XMALLOC(char, rounds * 6);
428	if(!retval) return NULL;
429	retval[j++] = 'x';
430	for (i = 0; i < rounds; i++) {
431		size_t idx0, idx1, idx2, idx3, idx4;
432		if ((i + 1 < rounds) || (len % 2 != 0)) {
433			idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
434			    seed) % 6;
435			idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
436			idx2 = ((((size_t)(data[2 * i])) & 3) +
437			    (seed / 6)) % 6;
438			retval[j++] = vowels[idx0];
439			retval[j++] = consonants[idx1];
440			retval[j++] = vowels[idx2];
441			if ((i + 1) < rounds) {
442				idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
443				idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
444				retval[j++] = consonants[idx3];
445				retval[j++] = '-';
446				retval[j++] = consonants[idx4];
447				seed = ((seed * 5) +
448				    ((((size_t)(data[2 * i])) * 7) +
449				    ((size_t)(data[(2 * i) + 1])))) % 36;
450			}
451		} else {
452			idx0 = seed % 6;
453			idx1 = 16;
454			idx2 = seed / 6;
455			retval[j++] = vowels[idx0];
456			retval[j++] = consonants[idx1];
457			retval[j++] = vowels[idx2];
458		}
459	}
460	retval[j++] = 'x';
461	retval[j++] = '\0';
462	return retval;
463}
464
465/*
466 * For backwards compatibility, because we have always exported this symbol.
467 */
468#ifdef HAVE_B64_NTOP
469int ldns_b64_ntop(const uint8_t* src, size_t srclength,
470		char *target, size_t targsize);
471{
472	return b64_ntop(src, srclength, target, targsize);
473}
474#endif
475
476/*
477 * For backwards compatibility, because we have always exported this symbol.
478 */
479#ifdef HAVE_B64_PTON
480int ldns_b64_pton(const char* src, uint8_t *target, size_t targsize)
481{
482	return b64_pton(src, target, targsize);
483}
484#endif
485
486
487static int
488ldns_b32_ntop_base(const uint8_t* src, size_t src_sz,
489		char* dst, size_t dst_sz,
490		bool extended_hex, bool add_padding)
491{
492	size_t ret_sz;
493	const char* b32 = extended_hex ? "0123456789abcdefghijklmnopqrstuv"
494	                               : "abcdefghijklmnopqrstuvwxyz234567";
495
496	size_t c = 0; /* c is used to carry partial base32 character over
497	               * byte boundaries for sizes with a remainder.
498		       * (i.e. src_sz % 5 != 0)
499		       */
500
501	ret_sz = add_padding ? ldns_b32_ntop_calculate_size(src_sz)
502	                     : ldns_b32_ntop_calculate_size_no_padding(src_sz);
503
504	/* Do we have enough space? */
505	if (dst_sz < ret_sz + 1)
506		return -1;
507
508	/* We know the size; terminate the string */
509	dst[ret_sz] = '\0';
510
511	/* First process all chunks of five */
512	while (src_sz >= 5) {
513		/* 00000... ........ ........ ........ ........ */
514		dst[0] = b32[(src[0]       ) >> 3];
515
516		/* .....111 11...... ........ ........ ........ */
517		dst[1] = b32[(src[0] & 0x07) << 2 | src[1] >> 6];
518
519		/* ........ ..22222. ........ ........ ........ */
520		dst[2] = b32[(src[1] & 0x3e) >> 1];
521
522		/* ........ .......3 3333.... ........ ........ */
523		dst[3] = b32[(src[1] & 0x01) << 4 | src[2] >> 4];
524
525		/* ........ ........ ....4444 4....... ........ */
526		dst[4] = b32[(src[2] & 0x0f) << 1 | src[3] >> 7];
527
528		/* ........ ........ ........ .55555.. ........ */
529		dst[5] = b32[(src[3] & 0x7c) >> 2];
530
531		/* ........ ........ ........ ......66 666..... */
532		dst[6] = b32[(src[3] & 0x03) << 3 | src[4] >> 5];
533
534		/* ........ ........ ........ ........ ...77777 */
535		dst[7] = b32[(src[4] & 0x1f)     ];
536
537		src_sz -= 5;
538		src    += 5;
539		dst    += 8;
540	}
541	/* Process what remains */
542	switch (src_sz) {
543	case 4: /* ........ ........ ........ ......66 666..... */
544		dst[6] = b32[(src[3] & 0x03) << 3];
545
546		/* ........ ........ ........ .55555.. ........ */
547		dst[5] = b32[(src[3] & 0x7c) >> 2];
548
549		/* ........ ........ ....4444 4....... ........ */
550		         c =  src[3]         >> 7 ;
551	case 3: dst[4] = b32[(src[2] & 0x0f) << 1 | c];
552
553		/* ........ .......3 3333.... ........ ........ */
554			 c =  src[2]         >> 4 ;
555	case 2:	dst[3] = b32[(src[1] & 0x01) << 4 | c];
556
557		/* ........ ..22222. ........ ........ ........ */
558		dst[2] = b32[(src[1] & 0x3e) >> 1];
559
560		/* .....111 11...... ........ ........ ........ */
561	                 c =  src[1]         >> 6 ;
562	case 1:	dst[1] = b32[(src[0] & 0x07) << 2 | c];
563
564		/* 00000... ........ ........ ........ ........ */
565		dst[0] = b32[ src[0]         >> 3];
566	}
567	/* Add padding */
568	if (add_padding) {
569		switch (src_sz) {
570			case 1: dst[2] = '=';
571				dst[3] = '=';
572			case 2: dst[4] = '=';
573			case 3: dst[5] = '=';
574				dst[6] = '=';
575			case 4: dst[7] = '=';
576		}
577	}
578	return (int)ret_sz;
579}
580
581int
582ldns_b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz)
583{
584	return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true);
585}
586
587int
588ldns_b32_ntop_extended_hex(const uint8_t* src, size_t src_sz,
589		char* dst, size_t dst_sz)
590{
591	return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true);
592}
593
594#ifndef HAVE_B32_NTOP
595
596int
597b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz)
598{
599	return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true);
600}
601
602int
603b32_ntop_extended_hex(const uint8_t* src, size_t src_sz,
604		char* dst, size_t dst_sz)
605{
606	return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true);
607}
608
609#endif /* ! HAVE_B32_NTOP */
610
611static int
612ldns_b32_pton_base(const char* src, size_t src_sz,
613		uint8_t* dst, size_t dst_sz,
614		bool extended_hex, bool check_padding)
615{
616	size_t i = 0;
617	char ch = '\0';
618	uint8_t buf[8];
619	uint8_t* start = dst;
620
621	while (src_sz) {
622		/* Collect 8 characters in buf (if possible) */
623		for (i = 0; i < 8; i++) {
624
625			do {
626				ch = *src++;
627				--src_sz;
628
629			} while (isspace(ch) && src_sz > 0);
630
631			if (ch == '=' || ch == '\0')
632				break;
633
634			else if (extended_hex)
635
636				if (ch >= '0' && ch <= '9')
637					buf[i] = (uint8_t)ch - '0';
638				else if (ch >= 'a' && ch <= 'v')
639					buf[i] = (uint8_t)ch - 'a' + 10;
640				else if (ch >= 'A' && ch <= 'V')
641					buf[i] = (uint8_t)ch - 'A' + 10;
642				else
643					return -1;
644
645			else if (ch >= 'a' && ch <= 'z')
646				buf[i] = (uint8_t)ch - 'a';
647			else if (ch >= 'A' && ch <= 'Z')
648				buf[i] = (uint8_t)ch - 'A';
649			else if (ch >= '2' && ch <= '7')
650				buf[i] = (uint8_t)ch - '2' + 26;
651			else
652				return -1;
653		}
654		/* Less that 8 characters. We're done. */
655		if (i < 8)
656			break;
657
658		/* Enough space available at the destination? */
659		if (dst_sz < 5)
660			return -1;
661
662		/* 00000... ........ ........ ........ ........ */
663		/* .....111 11...... ........ ........ ........ */
664		dst[0] = buf[0] << 3 | buf[1] >> 2;
665
666		/* .....111 11...... ........ ........ ........ */
667		/* ........ ..22222. ........ ........ ........ */
668		/* ........ .......3 3333.... ........ ........ */
669		dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
670
671		/* ........ .......3 3333.... ........ ........ */
672		/* ........ ........ ....4444 4....... ........ */
673		dst[2] = buf[3] << 4 | buf[4] >> 1;
674
675		/* ........ ........ ....4444 4....... ........ */
676		/* ........ ........ ........ .55555.. ........ */
677		/* ........ ........ ........ ......66 666..... */
678		dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
679
680		/* ........ ........ ........ ......66 666..... */
681		/* ........ ........ ........ ........ ...77777 */
682		dst[4] = buf[6] << 5 | buf[7];
683
684		dst += 5;
685		dst_sz -= 5;
686	}
687	/* Not ending on a eight byte boundary? */
688	if (i > 0 && i < 8) {
689
690		/* Enough space available at the destination? */
691		if (dst_sz < (i + 1) / 2)
692			return -1;
693
694		switch (i) {
695		case 7: /* ........ ........ ........ ......66 666..... */
696			/* ........ ........ ........ .55555.. ........ */
697			/* ........ ........ ....4444 4....... ........ */
698			dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
699
700		case 5: /* ........ ........ ....4444 4....... ........ */
701			/* ........ .......3 3333.... ........ ........ */
702			dst[2] = buf[3] << 4 | buf[4] >> 1;
703
704		case 4: /* ........ .......3 3333.... ........ ........ */
705			/* ........ ..22222. ........ ........ ........ */
706			/* .....111 11...... ........ ........ ........ */
707			dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
708
709		case 2: /* .....111 11...... ........ ........ ........ */
710			/* 00000... ........ ........ ........ ........ */
711			dst[0] = buf[0] << 3 | buf[1] >> 2;
712
713			break;
714
715		default:
716			return -1;
717		}
718		dst += (i + 1) / 2;
719
720		if (check_padding) {
721			/* Check remaining padding characters */
722			if (ch != '=')
723				return -1;
724
725			/* One down, 8 - i - 1 more to come... */
726			for (i = 8 - i - 1; i > 0; i--) {
727
728				do {
729					if (src_sz == 0)
730						return -1;
731					ch = *src++;
732					src_sz--;
733
734				} while (isspace(ch));
735
736				if (ch != '=')
737					return -1;
738			}
739		}
740	}
741	return dst - start;
742}
743
744int
745ldns_b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz)
746{
747	return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true);
748}
749
750int
751ldns_b32_pton_extended_hex(const char* src, size_t src_sz,
752		uint8_t* dst, size_t dst_sz)
753{
754	return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true);
755}
756
757#ifndef HAVE_B32_PTON
758
759int
760b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz)
761{
762	return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true);
763}
764
765int
766b32_pton_extended_hex(const char* src, size_t src_sz,
767		uint8_t* dst, size_t dst_sz)
768{
769	return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true);
770}
771
772#endif /* ! HAVE_B32_PTON */
773
774