1/* Caching code for GDB, the GNU debugger.
2
3   Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003 Free
4   Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330,
21   Boston, MA 02111-1307, USA.  */
22
23#include "defs.h"
24#include "dcache.h"
25#include "gdbcmd.h"
26#include "gdb_string.h"
27#include "gdbcore.h"
28#include "target.h"
29
30/* The data cache could lead to incorrect results because it doesn't
31   know about volatile variables, thus making it impossible to debug
32   functions which use memory mapped I/O devices.  Set the nocache
33   memory region attribute in those cases.
34
35   In general the dcache speeds up performance, some speed improvement
36   comes from the actual caching mechanism, but the major gain is in
37   the reduction of the remote protocol overhead; instead of reading
38   or writing a large area of memory in 4 byte requests, the cache
39   bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
40   Reducing the overhead to an eighth of what it was.  This is very
41   obvious when displaying a large amount of data,
42
43   eg, x/200x 0
44
45   caching     |   no    yes
46   ----------------------------
47   first time  |   4 sec  2 sec improvement due to chunking
48   second time |   4 sec  0 sec improvement due to caching
49
50   The cache structure is unusual, we keep a number of cache blocks
51   (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
52   Within each line we remember the address of the line (always a
53   multiple of the LINE_SIZE) and a vector of bytes over the range.
54   There's another vector which contains the state of the bytes.
55
56   ENTRY_BAD means that the byte is just plain wrong, and has no
57   correspondence with anything else (as it would when the cache is
58   turned on, but nothing has been done to it.
59
60   ENTRY_DIRTY means that the byte has some data in it which should be
61   written out to the remote target one day, but contains correct
62   data.
63
64   ENTRY_OK means that the data is the same in the cache as it is in
65   remote memory.
66
67
68   The ENTRY_DIRTY state is necessary because GDB likes to write large
69   lumps of memory in small bits.  If the caching mechanism didn't
70   maintain the DIRTY information, then something like a two byte
71   write would mean that the entire cache line would have to be read,
72   the two bytes modified and then written out again.  The alternative
73   would be to not read in the cache line in the first place, and just
74   write the two bytes directly into target memory.  The trouble with
75   that is that it really nails performance, because of the remote
76   protocol overhead.  This way, all those little writes are bundled
77   up into an entire cache line write in one go, without having to
78   read the cache line in the first place.
79 */
80
81/* NOTE: Interaction of dcache and memory region attributes
82
83   As there is no requirement that memory region attributes be aligned
84   to or be a multiple of the dcache page size, dcache_read_line() and
85   dcache_write_line() must break up the page by memory region.  If a
86   chunk does not have the cache attribute set, an invalid memory type
87   is set, etc., then the chunk is skipped.  Those chunks are handled
88   in target_xfer_memory() (or target_xfer_memory_partial()).
89
90   This doesn't occur very often.  The most common occurance is when
91   the last bit of the .text segment and the first bit of the .data
92   segment fall within the same dcache page with a ro/cacheable memory
93   region defined for the .text segment and a rw/non-cacheable memory
94   region defined for the .data segment. */
95
96/* This value regulates the number of cache blocks stored.
97   Smaller values reduce the time spent searching for a cache
98   line, and reduce memory requirements, but increase the risk
99   of a line not being in memory */
100
101#define DCACHE_SIZE 64
102
103/* This value regulates the size of a cache line.  Smaller values
104   reduce the time taken to read a single byte, but reduce overall
105   throughput.  */
106
107#define LINE_SIZE_POWER (5)
108#define LINE_SIZE (1 << LINE_SIZE_POWER)
109
110/* Each cache block holds LINE_SIZE bytes of data
111   starting at a multiple-of-LINE_SIZE address.  */
112
113#define LINE_SIZE_MASK  ((LINE_SIZE - 1))
114#define XFORM(x) 	((x) & LINE_SIZE_MASK)
115#define MASK(x)         ((x) & ~LINE_SIZE_MASK)
116
117
118#define ENTRY_BAD   0		/* data at this byte is wrong */
119#define ENTRY_DIRTY 1		/* data at this byte needs to be written back */
120#define ENTRY_OK    2		/* data at this byte is same as in memory */
121
122
123struct dcache_block
124  {
125    struct dcache_block *p;	/* next in list */
126    CORE_ADDR addr;		/* Address for which data is recorded.  */
127    char data[LINE_SIZE];	/* bytes at given address */
128    unsigned char state[LINE_SIZE];	/* what state the data is in */
129
130    /* whether anything in state is dirty - used to speed up the
131       dirty scan. */
132    int anydirty;
133
134    int refs;
135  };
136
137
138/* FIXME: dcache_struct used to have a cache_has_stuff field that was
139   used to record whether the cache had been accessed.  This was used
140   to invalidate the cache whenever caching was (re-)enabled (if the
141   cache was disabled and later re-enabled, it could contain stale
142   data).  This was not needed because the cache is write through and
143   the code that enables, disables, and deletes memory region all
144   invalidate the cache.
145
146   This is overkill, since it also invalidates cache lines from
147   unrelated regions.  One way this could be addressed by adding a
148   new function that takes an address and a length and invalidates
149   only those cache lines that match. */
150
151struct dcache_struct
152  {
153    /* free list */
154    struct dcache_block *free_head;
155    struct dcache_block *free_tail;
156
157    /* in use list */
158    struct dcache_block *valid_head;
159    struct dcache_block *valid_tail;
160
161    /* The cache itself. */
162    struct dcache_block *the_cache;
163  };
164
165static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
166
167static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
168
169static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
170
171static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
172
173static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
174
175static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
176
177static int dcache_writeback (DCACHE *dcache);
178
179static void dcache_info (char *exp, int tty);
180
181void _initialize_dcache (void);
182
183static int dcache_enabled_p = 0;
184
185DCACHE *last_cache;		/* Used by info dcache */
186
187
188/* Free all the data cache blocks, thus discarding all cached data.  */
189
190void
191dcache_invalidate (DCACHE *dcache)
192{
193  int i;
194  dcache->valid_head = 0;
195  dcache->valid_tail = 0;
196
197  dcache->free_head = 0;
198  dcache->free_tail = 0;
199
200  for (i = 0; i < DCACHE_SIZE; i++)
201    {
202      struct dcache_block *db = dcache->the_cache + i;
203
204      if (!dcache->free_head)
205	dcache->free_head = db;
206      else
207	dcache->free_tail->p = db;
208      dcache->free_tail = db;
209      db->p = 0;
210    }
211
212  return;
213}
214
215/* If addr is present in the dcache, return the address of the block
216   containing it. */
217
218static struct dcache_block *
219dcache_hit (DCACHE *dcache, CORE_ADDR addr)
220{
221  struct dcache_block *db;
222
223  /* Search all cache blocks for one that is at this address.  */
224  db = dcache->valid_head;
225
226  while (db)
227    {
228      if (MASK (addr) == db->addr)
229	{
230	  db->refs++;
231	  return db;
232	}
233      db = db->p;
234    }
235
236  return NULL;
237}
238
239/* Make sure that anything in this line which needs to
240   be written is. */
241
242static int
243dcache_write_line (DCACHE *dcache, struct dcache_block *db)
244{
245  CORE_ADDR memaddr;
246  char *myaddr;
247  int len;
248  int res;
249  int reg_len;
250  struct mem_region *region;
251
252  if (!db->anydirty)
253    return 1;
254
255  len = LINE_SIZE;
256  memaddr = db->addr;
257  myaddr  = db->data;
258
259  while (len > 0)
260    {
261      int s;
262      int e;
263      int dirty_len;
264
265      region = lookup_mem_region(memaddr);
266      if (memaddr + len < region->hi)
267	reg_len = len;
268      else
269	reg_len = region->hi - memaddr;
270
271      if (!region->attrib.cache || region->attrib.mode == MEM_RO)
272	{
273	  memaddr += reg_len;
274	  myaddr  += reg_len;
275	  len     -= reg_len;
276	  continue;
277	}
278
279      while (reg_len > 0)
280	{
281	  s = XFORM(memaddr);
282	  while (reg_len > 0) {
283	    if (db->state[s] == ENTRY_DIRTY)
284	      break;
285	    s++;
286	    reg_len--;
287
288	    memaddr++;
289	    myaddr++;
290	    len--;
291	  }
292
293	  e = s;
294	  while (reg_len > 0) {
295	    if (db->state[e] != ENTRY_DIRTY)
296	      break;
297	    e++;
298	    reg_len--;
299	  }
300
301	  dirty_len = e - s;
302	  while (dirty_len > 0)
303	    {
304	      res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
305				   &region->attrib);
306	      if (res <= 0)
307		return 0;
308
309	      memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
310	      memaddr   += res;
311	      myaddr    += res;
312	      len       -= res;
313	      dirty_len -= res;
314	    }
315	}
316    }
317
318  db->anydirty = 0;
319  return 1;
320}
321
322/* Read cache line */
323static int
324dcache_read_line (DCACHE *dcache, struct dcache_block *db)
325{
326  CORE_ADDR memaddr;
327  char *myaddr;
328  int len;
329  int res;
330  int reg_len;
331  struct mem_region *region;
332
333  /* If there are any dirty bytes in the line, it must be written
334     before a new line can be read */
335  if (db->anydirty)
336    {
337      if (!dcache_write_line (dcache, db))
338	return 0;
339    }
340
341  len = LINE_SIZE;
342  memaddr = db->addr;
343  myaddr  = db->data;
344
345  while (len > 0)
346    {
347      region = lookup_mem_region(memaddr);
348      if (memaddr + len < region->hi)
349	reg_len = len;
350      else
351	reg_len = region->hi - memaddr;
352
353      if (!region->attrib.cache || region->attrib.mode == MEM_WO)
354	{
355	  memaddr += reg_len;
356	  myaddr  += reg_len;
357	  len     -= reg_len;
358	  continue;
359	}
360
361      while (reg_len > 0)
362	{
363	  res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
364				&region->attrib);
365	  if (res <= 0)
366	    return 0;
367
368	  memaddr += res;
369	  myaddr  += res;
370	  len     -= res;
371	  reg_len -= res;
372	}
373    }
374
375  memset (db->state, ENTRY_OK, sizeof (db->data));
376  db->anydirty = 0;
377
378  return 1;
379}
380
381/* Get a free cache block, put or keep it on the valid list,
382   and return its address.  */
383
384static struct dcache_block *
385dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
386{
387  struct dcache_block *db;
388
389  /* Take something from the free list */
390  db = dcache->free_head;
391  if (db)
392    {
393      dcache->free_head = db->p;
394    }
395  else
396    {
397      /* Nothing left on free list, so grab one from the valid list */
398      db = dcache->valid_head;
399
400      if (!dcache_write_line (dcache, db))
401	return NULL;
402
403      dcache->valid_head = db->p;
404    }
405
406  db->addr = MASK(addr);
407  db->refs = 0;
408  db->anydirty = 0;
409  memset (db->state, ENTRY_BAD, sizeof (db->data));
410
411  /* append this line to end of valid list */
412  if (!dcache->valid_head)
413    dcache->valid_head = db;
414  else
415    dcache->valid_tail->p = db;
416  dcache->valid_tail = db;
417  db->p = 0;
418
419  return db;
420}
421
422/* Writeback any dirty lines. */
423static int
424dcache_writeback (DCACHE *dcache)
425{
426  struct dcache_block *db;
427
428  db = dcache->valid_head;
429
430  while (db)
431    {
432      if (!dcache_write_line (dcache, db))
433	return 0;
434      db = db->p;
435    }
436  return 1;
437}
438
439
440/* Using the data cache DCACHE return the contents of the byte at
441   address ADDR in the remote machine.
442
443   Returns 0 on error. */
444
445static int
446dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
447{
448  struct dcache_block *db = dcache_hit (dcache, addr);
449
450  if (!db)
451    {
452      db = dcache_alloc (dcache, addr);
453      if (!db)
454	return 0;
455    }
456
457  if (db->state[XFORM (addr)] == ENTRY_BAD)
458    {
459      if (!dcache_read_line(dcache, db))
460         return 0;
461    }
462
463  *ptr = db->data[XFORM (addr)];
464  return 1;
465}
466
467
468/* Write the byte at PTR into ADDR in the data cache.
469   Return zero on write error.
470 */
471
472static int
473dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
474{
475  struct dcache_block *db = dcache_hit (dcache, addr);
476
477  if (!db)
478    {
479      db = dcache_alloc (dcache, addr);
480      if (!db)
481	return 0;
482    }
483
484  db->data[XFORM (addr)] = *ptr;
485  db->state[XFORM (addr)] = ENTRY_DIRTY;
486  db->anydirty = 1;
487  return 1;
488}
489
490/* Initialize the data cache.  */
491DCACHE *
492dcache_init (void)
493{
494  int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
495  DCACHE *dcache;
496
497  dcache = (DCACHE *) xmalloc (sizeof (*dcache));
498
499  dcache->the_cache = (struct dcache_block *) xmalloc (csize);
500  memset (dcache->the_cache, 0, csize);
501
502  dcache_invalidate (dcache);
503
504  last_cache = dcache;
505  return dcache;
506}
507
508/* Free a data cache */
509void
510dcache_free (DCACHE *dcache)
511{
512  if (last_cache == dcache)
513    last_cache = NULL;
514
515  xfree (dcache->the_cache);
516  xfree (dcache);
517}
518
519/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
520   to or from debugger address MYADDR.  Write to inferior if SHOULD_WRITE is
521   nonzero.
522
523   Returns length of data written or read; 0 for error.
524
525   This routine is indended to be called by remote_xfer_ functions. */
526
527int
528dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
529		    int should_write)
530{
531  int i;
532  int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
533  xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
534
535  for (i = 0; i < len; i++)
536    {
537      if (!xfunc (dcache, memaddr + i, myaddr + i))
538	return 0;
539    }
540
541  /* FIXME: There may be some benefit from moving the cache writeback
542     to a higher layer, as it could occur after a sequence of smaller
543     writes have been completed (as when a stack frame is constructed
544     for an inferior function call).  Note that only moving it up one
545     level to target_xfer_memory() (also target_xfer_memory_partial())
546     is not sufficent, since we want to coalesce memory transfers that
547     are "logically" connected but not actually a single call to one
548     of the memory transfer functions. */
549
550  if (should_write)
551    dcache_writeback (dcache);
552
553  return len;
554}
555
556static void
557dcache_info (char *exp, int tty)
558{
559  struct dcache_block *p;
560
561  printf_filtered ("Dcache line width %d, depth %d\n",
562		   LINE_SIZE, DCACHE_SIZE);
563
564  if (last_cache)
565    {
566      printf_filtered ("Cache state:\n");
567
568      for (p = last_cache->valid_head; p; p = p->p)
569	{
570	  int j;
571	  printf_filtered ("Line at %s, referenced %d times\n",
572			   paddr (p->addr), p->refs);
573
574	  for (j = 0; j < LINE_SIZE; j++)
575	    printf_filtered ("%02x", p->data[j] & 0xFF);
576	  printf_filtered ("\n");
577
578	  for (j = 0; j < LINE_SIZE; j++)
579	    printf_filtered ("%2x", p->state[j]);
580	  printf_filtered ("\n");
581	}
582    }
583}
584
585void
586_initialize_dcache (void)
587{
588  add_show_from_set
589    (add_set_cmd ("remotecache", class_support, var_boolean,
590		  (char *) &dcache_enabled_p,
591		  "\
592Set cache use for remote targets.\n\
593When on, use data caching for remote targets.  For many remote targets\n\
594this option can offer better throughput for reading target memory.\n\
595Unfortunately, gdb does not currently know anything about volatile\n\
596registers and thus data caching will produce incorrect results with\n\
597volatile registers are in use.  By default, this option is off.",
598		  &setlist),
599     &showlist);
600
601  add_info ("dcache", dcache_info,
602	    "Print information on the dcache performance.");
603
604}
605