1/* GDB-specific functions for operating on agent expressions.
2
3   Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4   Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330,
21   Boston, MA 02111-1307, USA.  */
22
23#include "defs.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "expression.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "frame.h"
32#include "target.h"
33#include "ax.h"
34#include "ax-gdb.h"
35#include "gdb_string.h"
36#include "block.h"
37#include "regcache.h"
38
39/* To make sense of this file, you should read doc/agentexpr.texi.
40   Then look at the types and enums in ax-gdb.h.  For the code itself,
41   look at gen_expr, towards the bottom; that's the main function that
42   looks at the GDB expressions and calls everything else to generate
43   code.
44
45   I'm beginning to wonder whether it wouldn't be nicer to internally
46   generate trees, with types, and then spit out the bytecode in
47   linear form afterwards; we could generate fewer `swap', `ext', and
48   `zero_ext' bytecodes that way; it would make good constant folding
49   easier, too.  But at the moment, I think we should be willing to
50   pay for the simplicity of this code with less-than-optimal bytecode
51   strings.
52
53   Remember, "GBD" stands for "Great Britain, Dammit!"  So be careful.  */
54
55
56
57/* Prototypes for local functions. */
58
59/* There's a standard order to the arguments of these functions:
60   union exp_element ** --- pointer into expression
61   struct agent_expr * --- agent expression buffer to generate code into
62   struct axs_value * --- describes value left on top of stack  */
63
64static struct value *const_var_ref (struct symbol *var);
65static struct value *const_expr (union exp_element **pc);
66static struct value *maybe_const_expr (union exp_element **pc);
67
68static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69
70static void gen_sign_extend (struct agent_expr *, struct type *);
71static void gen_extend (struct agent_expr *, struct type *);
72static void gen_fetch (struct agent_expr *, struct type *);
73static void gen_left_shift (struct agent_expr *, int);
74
75
76static void gen_frame_args_address (struct agent_expr *);
77static void gen_frame_locals_address (struct agent_expr *);
78static void gen_offset (struct agent_expr *ax, int offset);
79static void gen_sym_offset (struct agent_expr *, struct symbol *);
80static void gen_var_ref (struct agent_expr *ax,
81			 struct axs_value *value, struct symbol *var);
82
83
84static void gen_int_literal (struct agent_expr *ax,
85			     struct axs_value *value,
86			     LONGEST k, struct type *type);
87
88
89static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
91static int type_wider_than (struct type *type1, struct type *type2);
92static struct type *max_type (struct type *type1, struct type *type2);
93static void gen_conversion (struct agent_expr *ax,
94			    struct type *from, struct type *to);
95static int is_nontrivial_conversion (struct type *from, struct type *to);
96static void gen_usual_arithmetic (struct agent_expr *ax,
97				  struct axs_value *value1,
98				  struct axs_value *value2);
99static void gen_integral_promotions (struct agent_expr *ax,
100				     struct axs_value *value);
101static void gen_cast (struct agent_expr *ax,
102		      struct axs_value *value, struct type *type);
103static void gen_scale (struct agent_expr *ax,
104		       enum agent_op op, struct type *type);
105static void gen_add (struct agent_expr *ax,
106		     struct axs_value *value,
107		     struct axs_value *value1,
108		     struct axs_value *value2, char *name);
109static void gen_sub (struct agent_expr *ax,
110		     struct axs_value *value,
111		     struct axs_value *value1, struct axs_value *value2);
112static void gen_binop (struct agent_expr *ax,
113		       struct axs_value *value,
114		       struct axs_value *value1,
115		       struct axs_value *value2,
116		       enum agent_op op,
117		       enum agent_op op_unsigned, int may_carry, char *name);
118static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
119static void gen_complement (struct agent_expr *ax, struct axs_value *value);
120static void gen_deref (struct agent_expr *, struct axs_value *);
121static void gen_address_of (struct agent_expr *, struct axs_value *);
122static int find_field (struct type *type, char *name);
123static void gen_bitfield_ref (struct agent_expr *ax,
124			      struct axs_value *value,
125			      struct type *type, int start, int end);
126static void gen_struct_ref (struct agent_expr *ax,
127			    struct axs_value *value,
128			    char *field,
129			    char *operator_name, char *operand_name);
130static void gen_repeat (union exp_element **pc,
131			struct agent_expr *ax, struct axs_value *value);
132static void gen_sizeof (union exp_element **pc,
133			struct agent_expr *ax, struct axs_value *value);
134static void gen_expr (union exp_element **pc,
135		      struct agent_expr *ax, struct axs_value *value);
136
137static void agent_command (char *exp, int from_tty);
138
139
140/* Detecting constant expressions.  */
141
142/* If the variable reference at *PC is a constant, return its value.
143   Otherwise, return zero.
144
145   Hey, Wally!  How can a variable reference be a constant?
146
147   Well, Beav, this function really handles the OP_VAR_VALUE operator,
148   not specifically variable references.  GDB uses OP_VAR_VALUE to
149   refer to any kind of symbolic reference: function names, enum
150   elements, and goto labels are all handled through the OP_VAR_VALUE
151   operator, even though they're constants.  It makes sense given the
152   situation.
153
154   Gee, Wally, don'cha wonder sometimes if data representations that
155   subvert commonly accepted definitions of terms in favor of heavily
156   context-specific interpretations are really just a tool of the
157   programming hegemony to preserve their power and exclude the
158   proletariat?  */
159
160static struct value *
161const_var_ref (struct symbol *var)
162{
163  struct type *type = SYMBOL_TYPE (var);
164
165  switch (SYMBOL_CLASS (var))
166    {
167    case LOC_CONST:
168      return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
169
170    case LOC_LABEL:
171      return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
172
173    default:
174      return 0;
175    }
176}
177
178
179/* If the expression starting at *PC has a constant value, return it.
180   Otherwise, return zero.  If we return a value, then *PC will be
181   advanced to the end of it.  If we return zero, *PC could be
182   anywhere.  */
183static struct value *
184const_expr (union exp_element **pc)
185{
186  enum exp_opcode op = (*pc)->opcode;
187  struct value *v1;
188
189  switch (op)
190    {
191    case OP_LONG:
192      {
193	struct type *type = (*pc)[1].type;
194	LONGEST k = (*pc)[2].longconst;
195	(*pc) += 4;
196	return value_from_longest (type, k);
197      }
198
199    case OP_VAR_VALUE:
200      {
201	struct value *v = const_var_ref ((*pc)[2].symbol);
202	(*pc) += 4;
203	return v;
204      }
205
206      /* We could add more operators in here.  */
207
208    case UNOP_NEG:
209      (*pc)++;
210      v1 = const_expr (pc);
211      if (v1)
212	return value_neg (v1);
213      else
214	return 0;
215
216    default:
217      return 0;
218    }
219}
220
221
222/* Like const_expr, but guarantee also that *PC is undisturbed if the
223   expression is not constant.  */
224static struct value *
225maybe_const_expr (union exp_element **pc)
226{
227  union exp_element *tentative_pc = *pc;
228  struct value *v = const_expr (&tentative_pc);
229
230  /* If we got a value, then update the real PC.  */
231  if (v)
232    *pc = tentative_pc;
233
234  return v;
235}
236
237
238/* Generating bytecode from GDB expressions: general assumptions */
239
240/* Here are a few general assumptions made throughout the code; if you
241   want to make a change that contradicts one of these, then you'd
242   better scan things pretty thoroughly.
243
244   - We assume that all values occupy one stack element.  For example,
245   sometimes we'll swap to get at the left argument to a binary
246   operator.  If we decide that void values should occupy no stack
247   elements, or that synthetic arrays (whose size is determined at
248   run time, created by the `@' operator) should occupy two stack
249   elements (address and length), then this will cause trouble.
250
251   - We assume the stack elements are infinitely wide, and that we
252   don't have to worry what happens if the user requests an
253   operation that is wider than the actual interpreter's stack.
254   That is, it's up to the interpreter to handle directly all the
255   integer widths the user has access to.  (Woe betide the language
256   with bignums!)
257
258   - We don't support side effects.  Thus, we don't have to worry about
259   GCC's generalized lvalues, function calls, etc.
260
261   - We don't support floating point.  Many places where we switch on
262   some type don't bother to include cases for floating point; there
263   may be even more subtle ways this assumption exists.  For
264   example, the arguments to % must be integers.
265
266   - We assume all subexpressions have a static, unchanging type.  If
267   we tried to support convenience variables, this would be a
268   problem.
269
270   - All values on the stack should always be fully zero- or
271   sign-extended.
272
273   (I wasn't sure whether to choose this or its opposite --- that
274   only addresses are assumed extended --- but it turns out that
275   neither convention completely eliminates spurious extend
276   operations (if everything is always extended, then you have to
277   extend after add, because it could overflow; if nothing is
278   extended, then you end up producing extends whenever you change
279   sizes), and this is simpler.)  */
280
281
282/* Generating bytecode from GDB expressions: the `trace' kludge  */
283
284/* The compiler in this file is a general-purpose mechanism for
285   translating GDB expressions into bytecode.  One ought to be able to
286   find a million and one uses for it.
287
288   However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
289   of expediency.  Let he who is without sin cast the first stone.
290
291   For the data tracing facility, we need to insert `trace' bytecodes
292   before each data fetch; this records all the memory that the
293   expression touches in the course of evaluation, so that memory will
294   be available when the user later tries to evaluate the expression
295   in GDB.
296
297   This should be done (I think) in a post-processing pass, that walks
298   an arbitrary agent expression and inserts `trace' operations at the
299   appropriate points.  But it's much faster to just hack them
300   directly into the code.  And since we're in a crunch, that's what
301   I've done.
302
303   Setting the flag trace_kludge to non-zero enables the code that
304   emits the trace bytecodes at the appropriate points.  */
305static int trace_kludge;
306
307/* Trace the lvalue on the stack, if it needs it.  In either case, pop
308   the value.  Useful on the left side of a comma, and at the end of
309   an expression being used for tracing.  */
310static void
311gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
312{
313  if (trace_kludge)
314    switch (value->kind)
315      {
316      case axs_rvalue:
317	/* We don't trace rvalues, just the lvalues necessary to
318	   produce them.  So just dispose of this value.  */
319	ax_simple (ax, aop_pop);
320	break;
321
322      case axs_lvalue_memory:
323	{
324	  int length = TYPE_LENGTH (value->type);
325
326	  /* There's no point in trying to use a trace_quick bytecode
327	     here, since "trace_quick SIZE pop" is three bytes, whereas
328	     "const8 SIZE trace" is also three bytes, does the same
329	     thing, and the simplest code which generates that will also
330	     work correctly for objects with large sizes.  */
331	  ax_const_l (ax, length);
332	  ax_simple (ax, aop_trace);
333	}
334	break;
335
336      case axs_lvalue_register:
337	/* We need to mention the register somewhere in the bytecode,
338	   so ax_reqs will pick it up and add it to the mask of
339	   registers used.  */
340	ax_reg (ax, value->u.reg);
341	ax_simple (ax, aop_pop);
342	break;
343      }
344  else
345    /* If we're not tracing, just pop the value.  */
346    ax_simple (ax, aop_pop);
347}
348
349
350
351/* Generating bytecode from GDB expressions: helper functions */
352
353/* Assume that the lower bits of the top of the stack is a value of
354   type TYPE, and the upper bits are zero.  Sign-extend if necessary.  */
355static void
356gen_sign_extend (struct agent_expr *ax, struct type *type)
357{
358  /* Do we need to sign-extend this?  */
359  if (!TYPE_UNSIGNED (type))
360    ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
361}
362
363
364/* Assume the lower bits of the top of the stack hold a value of type
365   TYPE, and the upper bits are garbage.  Sign-extend or truncate as
366   needed.  */
367static void
368gen_extend (struct agent_expr *ax, struct type *type)
369{
370  int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
371  /* I just had to.  */
372  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
373}
374
375
376/* Assume that the top of the stack contains a value of type "pointer
377   to TYPE"; generate code to fetch its value.  Note that TYPE is the
378   target type, not the pointer type.  */
379static void
380gen_fetch (struct agent_expr *ax, struct type *type)
381{
382  if (trace_kludge)
383    {
384      /* Record the area of memory we're about to fetch.  */
385      ax_trace_quick (ax, TYPE_LENGTH (type));
386    }
387
388  switch (TYPE_CODE (type))
389    {
390    case TYPE_CODE_PTR:
391    case TYPE_CODE_ENUM:
392    case TYPE_CODE_INT:
393    case TYPE_CODE_CHAR:
394      /* It's a scalar value, so we know how to dereference it.  How
395         many bytes long is it?  */
396      switch (TYPE_LENGTH (type))
397	{
398	case 8 / TARGET_CHAR_BIT:
399	  ax_simple (ax, aop_ref8);
400	  break;
401	case 16 / TARGET_CHAR_BIT:
402	  ax_simple (ax, aop_ref16);
403	  break;
404	case 32 / TARGET_CHAR_BIT:
405	  ax_simple (ax, aop_ref32);
406	  break;
407	case 64 / TARGET_CHAR_BIT:
408	  ax_simple (ax, aop_ref64);
409	  break;
410
411	  /* Either our caller shouldn't have asked us to dereference
412	     that pointer (other code's fault), or we're not
413	     implementing something we should be (this code's fault).
414	     In any case, it's a bug the user shouldn't see.  */
415	default:
416	  internal_error (__FILE__, __LINE__,
417			  "gen_fetch: strange size");
418	}
419
420      gen_sign_extend (ax, type);
421      break;
422
423    default:
424      /* Either our caller shouldn't have asked us to dereference that
425         pointer (other code's fault), or we're not implementing
426         something we should be (this code's fault).  In any case,
427         it's a bug the user shouldn't see.  */
428      internal_error (__FILE__, __LINE__,
429		      "gen_fetch: bad type code");
430    }
431}
432
433
434/* Generate code to left shift the top of the stack by DISTANCE bits, or
435   right shift it by -DISTANCE bits if DISTANCE < 0.  This generates
436   unsigned (logical) right shifts.  */
437static void
438gen_left_shift (struct agent_expr *ax, int distance)
439{
440  if (distance > 0)
441    {
442      ax_const_l (ax, distance);
443      ax_simple (ax, aop_lsh);
444    }
445  else if (distance < 0)
446    {
447      ax_const_l (ax, -distance);
448      ax_simple (ax, aop_rsh_unsigned);
449    }
450}
451
452
453
454/* Generating bytecode from GDB expressions: symbol references */
455
456/* Generate code to push the base address of the argument portion of
457   the top stack frame.  */
458static void
459gen_frame_args_address (struct agent_expr *ax)
460{
461  int frame_reg;
462  LONGEST frame_offset;
463
464  TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
465  ax_reg (ax, frame_reg);
466  gen_offset (ax, frame_offset);
467}
468
469
470/* Generate code to push the base address of the locals portion of the
471   top stack frame.  */
472static void
473gen_frame_locals_address (struct agent_expr *ax)
474{
475  int frame_reg;
476  LONGEST frame_offset;
477
478  TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
479  ax_reg (ax, frame_reg);
480  gen_offset (ax, frame_offset);
481}
482
483
484/* Generate code to add OFFSET to the top of the stack.  Try to
485   generate short and readable code.  We use this for getting to
486   variables on the stack, and structure members.  If we were
487   programming in ML, it would be clearer why these are the same
488   thing.  */
489static void
490gen_offset (struct agent_expr *ax, int offset)
491{
492  /* It would suffice to simply push the offset and add it, but this
493     makes it easier to read positive and negative offsets in the
494     bytecode.  */
495  if (offset > 0)
496    {
497      ax_const_l (ax, offset);
498      ax_simple (ax, aop_add);
499    }
500  else if (offset < 0)
501    {
502      ax_const_l (ax, -offset);
503      ax_simple (ax, aop_sub);
504    }
505}
506
507
508/* In many cases, a symbol's value is the offset from some other
509   address (stack frame, base register, etc.)  Generate code to add
510   VAR's value to the top of the stack.  */
511static void
512gen_sym_offset (struct agent_expr *ax, struct symbol *var)
513{
514  gen_offset (ax, SYMBOL_VALUE (var));
515}
516
517
518/* Generate code for a variable reference to AX.  The variable is the
519   symbol VAR.  Set VALUE to describe the result.  */
520
521static void
522gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
523{
524  /* Dereference any typedefs. */
525  value->type = check_typedef (SYMBOL_TYPE (var));
526
527  /* I'm imitating the code in read_var_value.  */
528  switch (SYMBOL_CLASS (var))
529    {
530    case LOC_CONST:		/* A constant, like an enum value.  */
531      ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532      value->kind = axs_rvalue;
533      break;
534
535    case LOC_LABEL:		/* A goto label, being used as a value.  */
536      ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537      value->kind = axs_rvalue;
538      break;
539
540    case LOC_CONST_BYTES:
541      internal_error (__FILE__, __LINE__,
542		      "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
543
544      /* Variable at a fixed location in memory.  Easy.  */
545    case LOC_STATIC:
546      /* Push the address of the variable.  */
547      ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548      value->kind = axs_lvalue_memory;
549      break;
550
551    case LOC_ARG:		/* var lives in argument area of frame */
552      gen_frame_args_address (ax);
553      gen_sym_offset (ax, var);
554      value->kind = axs_lvalue_memory;
555      break;
556
557    case LOC_REF_ARG:		/* As above, but the frame slot really
558				   holds the address of the variable.  */
559      gen_frame_args_address (ax);
560      gen_sym_offset (ax, var);
561      /* Don't assume any particular pointer size.  */
562      gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563      value->kind = axs_lvalue_memory;
564      break;
565
566    case LOC_LOCAL:		/* var lives in locals area of frame */
567    case LOC_LOCAL_ARG:
568      gen_frame_locals_address (ax);
569      gen_sym_offset (ax, var);
570      value->kind = axs_lvalue_memory;
571      break;
572
573    case LOC_BASEREG:		/* relative to some base register */
574    case LOC_BASEREG_ARG:
575      ax_reg (ax, SYMBOL_BASEREG (var));
576      gen_sym_offset (ax, var);
577      value->kind = axs_lvalue_memory;
578      break;
579
580    case LOC_TYPEDEF:
581      error ("Cannot compute value of typedef `%s'.",
582	     SYMBOL_PRINT_NAME (var));
583      break;
584
585    case LOC_BLOCK:
586      ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587      value->kind = axs_rvalue;
588      break;
589
590    case LOC_REGISTER:
591    case LOC_REGPARM:
592      /* Don't generate any code at all; in the process of treating
593         this as an lvalue or rvalue, the caller will generate the
594         right code.  */
595      value->kind = axs_lvalue_register;
596      value->u.reg = SYMBOL_VALUE (var);
597      break;
598
599      /* A lot like LOC_REF_ARG, but the pointer lives directly in a
600         register, not on the stack.  Simpler than LOC_REGISTER and
601         LOC_REGPARM, because it's just like any other case where the
602         thing has a real address.  */
603    case LOC_REGPARM_ADDR:
604      ax_reg (ax, SYMBOL_VALUE (var));
605      value->kind = axs_lvalue_memory;
606      break;
607
608    case LOC_UNRESOLVED:
609      {
610	struct minimal_symbol *msym
611	= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
612	if (!msym)
613	  error ("Couldn't resolve symbol `%s'.", SYMBOL_PRINT_NAME (var));
614
615	/* Push the address of the variable.  */
616	ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
617	value->kind = axs_lvalue_memory;
618      }
619      break;
620
621    case LOC_COMPUTED:
622    case LOC_COMPUTED_ARG:
623      /* FIXME: cagney/2004-01-26: It should be possible to
624	 unconditionally call the SYMBOL_OPS method when available.
625	 Unfortunately DWARF 2 stores the frame-base (instead of the
626	 function) location in a function's symbol.  Oops!  For the
627	 moment enable this when/where applicable.  */
628      SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
629      break;
630
631    case LOC_OPTIMIZED_OUT:
632      error ("The variable `%s' has been optimized out.",
633	     SYMBOL_PRINT_NAME (var));
634      break;
635
636    default:
637      error ("Cannot find value of botched symbol `%s'.",
638	     SYMBOL_PRINT_NAME (var));
639      break;
640    }
641}
642
643
644
645/* Generating bytecode from GDB expressions: literals */
646
647static void
648gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
649		 struct type *type)
650{
651  ax_const_l (ax, k);
652  value->kind = axs_rvalue;
653  value->type = type;
654}
655
656
657
658/* Generating bytecode from GDB expressions: unary conversions, casts */
659
660/* Take what's on the top of the stack (as described by VALUE), and
661   try to make an rvalue out of it.  Signal an error if we can't do
662   that.  */
663static void
664require_rvalue (struct agent_expr *ax, struct axs_value *value)
665{
666  switch (value->kind)
667    {
668    case axs_rvalue:
669      /* It's already an rvalue.  */
670      break;
671
672    case axs_lvalue_memory:
673      /* The top of stack is the address of the object.  Dereference.  */
674      gen_fetch (ax, value->type);
675      break;
676
677    case axs_lvalue_register:
678      /* There's nothing on the stack, but value->u.reg is the
679         register number containing the value.
680
681         When we add floating-point support, this is going to have to
682         change.  What about SPARC register pairs, for example?  */
683      ax_reg (ax, value->u.reg);
684      gen_extend (ax, value->type);
685      break;
686    }
687
688  value->kind = axs_rvalue;
689}
690
691
692/* Assume the top of the stack is described by VALUE, and perform the
693   usual unary conversions.  This is motivated by ANSI 6.2.2, but of
694   course GDB expressions are not ANSI; they're the mishmash union of
695   a bunch of languages.  Rah.
696
697   NOTE!  This function promises to produce an rvalue only when the
698   incoming value is of an appropriate type.  In other words, the
699   consumer of the value this function produces may assume the value
700   is an rvalue only after checking its type.
701
702   The immediate issue is that if the user tries to use a structure or
703   union as an operand of, say, the `+' operator, we don't want to try
704   to convert that structure to an rvalue; require_rvalue will bomb on
705   structs and unions.  Rather, we want to simply pass the struct
706   lvalue through unchanged, and let `+' raise an error.  */
707
708static void
709gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
710{
711  /* We don't have to generate any code for the usual integral
712     conversions, since values are always represented as full-width on
713     the stack.  Should we tweak the type?  */
714
715  /* Some types require special handling.  */
716  switch (TYPE_CODE (value->type))
717    {
718      /* Functions get converted to a pointer to the function.  */
719    case TYPE_CODE_FUNC:
720      value->type = lookup_pointer_type (value->type);
721      value->kind = axs_rvalue;	/* Should always be true, but just in case.  */
722      break;
723
724      /* Arrays get converted to a pointer to their first element, and
725         are no longer an lvalue.  */
726    case TYPE_CODE_ARRAY:
727      {
728	struct type *elements = TYPE_TARGET_TYPE (value->type);
729	value->type = lookup_pointer_type (elements);
730	value->kind = axs_rvalue;
731	/* We don't need to generate any code; the address of the array
732	   is also the address of its first element.  */
733      }
734      break;
735
736      /* Don't try to convert structures and unions to rvalues.  Let the
737         consumer signal an error.  */
738    case TYPE_CODE_STRUCT:
739    case TYPE_CODE_UNION:
740      return;
741
742      /* If the value is an enum, call it an integer.  */
743    case TYPE_CODE_ENUM:
744      value->type = builtin_type_int;
745      break;
746    }
747
748  /* If the value is an lvalue, dereference it.  */
749  require_rvalue (ax, value);
750}
751
752
753/* Return non-zero iff the type TYPE1 is considered "wider" than the
754   type TYPE2, according to the rules described in gen_usual_arithmetic.  */
755static int
756type_wider_than (struct type *type1, struct type *type2)
757{
758  return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
759	  || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
760	      && TYPE_UNSIGNED (type1)
761	      && !TYPE_UNSIGNED (type2)));
762}
763
764
765/* Return the "wider" of the two types TYPE1 and TYPE2.  */
766static struct type *
767max_type (struct type *type1, struct type *type2)
768{
769  return type_wider_than (type1, type2) ? type1 : type2;
770}
771
772
773/* Generate code to convert a scalar value of type FROM to type TO.  */
774static void
775gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
776{
777  /* Perhaps there is a more graceful way to state these rules.  */
778
779  /* If we're converting to a narrower type, then we need to clear out
780     the upper bits.  */
781  if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
782    gen_extend (ax, from);
783
784  /* If the two values have equal width, but different signednesses,
785     then we need to extend.  */
786  else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
787    {
788      if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
789	gen_extend (ax, to);
790    }
791
792  /* If we're converting to a wider type, and becoming unsigned, then
793     we need to zero out any possible sign bits.  */
794  else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
795    {
796      if (TYPE_UNSIGNED (to))
797	gen_extend (ax, to);
798    }
799}
800
801
802/* Return non-zero iff the type FROM will require any bytecodes to be
803   emitted to be converted to the type TO.  */
804static int
805is_nontrivial_conversion (struct type *from, struct type *to)
806{
807  struct agent_expr *ax = new_agent_expr (0);
808  int nontrivial;
809
810  /* Actually generate the code, and see if anything came out.  At the
811     moment, it would be trivial to replicate the code in
812     gen_conversion here, but in the future, when we're supporting
813     floating point and the like, it may not be.  Doing things this
814     way allows this function to be independent of the logic in
815     gen_conversion.  */
816  gen_conversion (ax, from, to);
817  nontrivial = ax->len > 0;
818  free_agent_expr (ax);
819  return nontrivial;
820}
821
822
823/* Generate code to perform the "usual arithmetic conversions" (ANSI C
824   6.2.1.5) for the two operands of an arithmetic operator.  This
825   effectively finds a "least upper bound" type for the two arguments,
826   and promotes each argument to that type.  *VALUE1 and *VALUE2
827   describe the values as they are passed in, and as they are left.  */
828static void
829gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
830		      struct axs_value *value2)
831{
832  /* Do the usual binary conversions.  */
833  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
834      && TYPE_CODE (value2->type) == TYPE_CODE_INT)
835    {
836      /* The ANSI integral promotions seem to work this way: Order the
837         integer types by size, and then by signedness: an n-bit
838         unsigned type is considered "wider" than an n-bit signed
839         type.  Promote to the "wider" of the two types, and always
840         promote at least to int.  */
841      struct type *target = max_type (builtin_type_int,
842				      max_type (value1->type, value2->type));
843
844      /* Deal with value2, on the top of the stack.  */
845      gen_conversion (ax, value2->type, target);
846
847      /* Deal with value1, not on the top of the stack.  Don't
848         generate the `swap' instructions if we're not actually going
849         to do anything.  */
850      if (is_nontrivial_conversion (value1->type, target))
851	{
852	  ax_simple (ax, aop_swap);
853	  gen_conversion (ax, value1->type, target);
854	  ax_simple (ax, aop_swap);
855	}
856
857      value1->type = value2->type = target;
858    }
859}
860
861
862/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
863   the value on the top of the stack, as described by VALUE.  Assume
864   the value has integral type.  */
865static void
866gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
867{
868  if (!type_wider_than (value->type, builtin_type_int))
869    {
870      gen_conversion (ax, value->type, builtin_type_int);
871      value->type = builtin_type_int;
872    }
873  else if (!type_wider_than (value->type, builtin_type_unsigned_int))
874    {
875      gen_conversion (ax, value->type, builtin_type_unsigned_int);
876      value->type = builtin_type_unsigned_int;
877    }
878}
879
880
881/* Generate code for a cast to TYPE.  */
882static void
883gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
884{
885  /* GCC does allow casts to yield lvalues, so this should be fixed
886     before merging these changes into the trunk.  */
887  require_rvalue (ax, value);
888  /* Dereference typedefs. */
889  type = check_typedef (type);
890
891  switch (TYPE_CODE (type))
892    {
893    case TYPE_CODE_PTR:
894      /* It's implementation-defined, and I'll bet this is what GCC
895         does.  */
896      break;
897
898    case TYPE_CODE_ARRAY:
899    case TYPE_CODE_STRUCT:
900    case TYPE_CODE_UNION:
901    case TYPE_CODE_FUNC:
902      error ("Illegal type cast: intended type must be scalar.");
903
904    case TYPE_CODE_ENUM:
905      /* We don't have to worry about the size of the value, because
906         all our integral values are fully sign-extended, and when
907         casting pointers we can do anything we like.  Is there any
908         way for us to actually know what GCC actually does with a
909         cast like this?  */
910      value->type = type;
911      break;
912
913    case TYPE_CODE_INT:
914      gen_conversion (ax, value->type, type);
915      break;
916
917    case TYPE_CODE_VOID:
918      /* We could pop the value, and rely on everyone else to check
919         the type and notice that this value doesn't occupy a stack
920         slot.  But for now, leave the value on the stack, and
921         preserve the "value == stack element" assumption.  */
922      break;
923
924    default:
925      error ("Casts to requested type are not yet implemented.");
926    }
927
928  value->type = type;
929}
930
931
932
933/* Generating bytecode from GDB expressions: arithmetic */
934
935/* Scale the integer on the top of the stack by the size of the target
936   of the pointer type TYPE.  */
937static void
938gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
939{
940  struct type *element = TYPE_TARGET_TYPE (type);
941
942  if (TYPE_LENGTH (element) != 1)
943    {
944      ax_const_l (ax, TYPE_LENGTH (element));
945      ax_simple (ax, op);
946    }
947}
948
949
950/* Generate code for an addition; non-trivial because we deal with
951   pointer arithmetic.  We set VALUE to describe the result value; we
952   assume VALUE1 and VALUE2 describe the two operands, and that
953   they've undergone the usual binary conversions.  Used by both
954   BINOP_ADD and BINOP_SUBSCRIPT.  NAME is used in error messages.  */
955static void
956gen_add (struct agent_expr *ax, struct axs_value *value,
957	 struct axs_value *value1, struct axs_value *value2, char *name)
958{
959  /* Is it INT+PTR?  */
960  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
961      && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
962    {
963      /* Swap the values and proceed normally.  */
964      ax_simple (ax, aop_swap);
965      gen_scale (ax, aop_mul, value2->type);
966      ax_simple (ax, aop_add);
967      gen_extend (ax, value2->type);	/* Catch overflow.  */
968      value->type = value2->type;
969    }
970
971  /* Is it PTR+INT?  */
972  else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
973	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
974    {
975      gen_scale (ax, aop_mul, value1->type);
976      ax_simple (ax, aop_add);
977      gen_extend (ax, value1->type);	/* Catch overflow.  */
978      value->type = value1->type;
979    }
980
981  /* Must be number + number; the usual binary conversions will have
982     brought them both to the same width.  */
983  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
984	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
985    {
986      ax_simple (ax, aop_add);
987      gen_extend (ax, value1->type);	/* Catch overflow.  */
988      value->type = value1->type;
989    }
990
991  else
992    error ("Illegal combination of types in %s.", name);
993
994  value->kind = axs_rvalue;
995}
996
997
998/* Generate code for an addition; non-trivial because we have to deal
999   with pointer arithmetic.  We set VALUE to describe the result
1000   value; we assume VALUE1 and VALUE2 describe the two operands, and
1001   that they've undergone the usual binary conversions.  */
1002static void
1003gen_sub (struct agent_expr *ax, struct axs_value *value,
1004	 struct axs_value *value1, struct axs_value *value2)
1005{
1006  if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
1007    {
1008      /* Is it PTR - INT?  */
1009      if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
1010	{
1011	  gen_scale (ax, aop_mul, value1->type);
1012	  ax_simple (ax, aop_sub);
1013	  gen_extend (ax, value1->type);	/* Catch overflow.  */
1014	  value->type = value1->type;
1015	}
1016
1017      /* Is it PTR - PTR?  Strictly speaking, the types ought to
1018         match, but this is what the normal GDB expression evaluator
1019         tests for.  */
1020      else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1021	       && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1022		   == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1023	{
1024	  ax_simple (ax, aop_sub);
1025	  gen_scale (ax, aop_div_unsigned, value1->type);
1026	  value->type = builtin_type_long;	/* FIXME --- should be ptrdiff_t */
1027	}
1028      else
1029	error ("\
1030First argument of `-' is a pointer, but second argument is neither\n\
1031an integer nor a pointer of the same type.");
1032    }
1033
1034  /* Must be number + number.  */
1035  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1036	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1037    {
1038      ax_simple (ax, aop_sub);
1039      gen_extend (ax, value1->type);	/* Catch overflow.  */
1040      value->type = value1->type;
1041    }
1042
1043  else
1044    error ("Illegal combination of types in subtraction.");
1045
1046  value->kind = axs_rvalue;
1047}
1048
1049/* Generate code for a binary operator that doesn't do pointer magic.
1050   We set VALUE to describe the result value; we assume VALUE1 and
1051   VALUE2 describe the two operands, and that they've undergone the
1052   usual binary conversions.  MAY_CARRY should be non-zero iff the
1053   result needs to be extended.  NAME is the English name of the
1054   operator, used in error messages */
1055static void
1056gen_binop (struct agent_expr *ax, struct axs_value *value,
1057	   struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1058	   enum agent_op op_unsigned, int may_carry, char *name)
1059{
1060  /* We only handle INT op INT.  */
1061  if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1062      || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1063    error ("Illegal combination of types in %s.", name);
1064
1065  ax_simple (ax,
1066	     TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1067  if (may_carry)
1068    gen_extend (ax, value1->type);	/* catch overflow */
1069  value->type = value1->type;
1070  value->kind = axs_rvalue;
1071}
1072
1073
1074static void
1075gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1076{
1077  if (TYPE_CODE (value->type) != TYPE_CODE_INT
1078      && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1079    error ("Illegal type of operand to `!'.");
1080
1081  gen_usual_unary (ax, value);
1082  ax_simple (ax, aop_log_not);
1083  value->type = builtin_type_int;
1084}
1085
1086
1087static void
1088gen_complement (struct agent_expr *ax, struct axs_value *value)
1089{
1090  if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1091    error ("Illegal type of operand to `~'.");
1092
1093  gen_usual_unary (ax, value);
1094  gen_integral_promotions (ax, value);
1095  ax_simple (ax, aop_bit_not);
1096  gen_extend (ax, value->type);
1097}
1098
1099
1100
1101/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1102
1103/* Dereference the value on the top of the stack.  */
1104static void
1105gen_deref (struct agent_expr *ax, struct axs_value *value)
1106{
1107  /* The caller should check the type, because several operators use
1108     this, and we don't know what error message to generate.  */
1109  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1110    internal_error (__FILE__, __LINE__,
1111		    "gen_deref: expected a pointer");
1112
1113  /* We've got an rvalue now, which is a pointer.  We want to yield an
1114     lvalue, whose address is exactly that pointer.  So we don't
1115     actually emit any code; we just change the type from "Pointer to
1116     T" to "T", and mark the value as an lvalue in memory.  Leave it
1117     to the consumer to actually dereference it.  */
1118  value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1119  value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1120		 ? axs_rvalue : axs_lvalue_memory);
1121}
1122
1123
1124/* Produce the address of the lvalue on the top of the stack.  */
1125static void
1126gen_address_of (struct agent_expr *ax, struct axs_value *value)
1127{
1128  /* Special case for taking the address of a function.  The ANSI
1129     standard describes this as a special case, too, so this
1130     arrangement is not without motivation.  */
1131  if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1132    /* The value's already an rvalue on the stack, so we just need to
1133       change the type.  */
1134    value->type = lookup_pointer_type (value->type);
1135  else
1136    switch (value->kind)
1137      {
1138      case axs_rvalue:
1139	error ("Operand of `&' is an rvalue, which has no address.");
1140
1141      case axs_lvalue_register:
1142	error ("Operand of `&' is in a register, and has no address.");
1143
1144      case axs_lvalue_memory:
1145	value->kind = axs_rvalue;
1146	value->type = lookup_pointer_type (value->type);
1147	break;
1148      }
1149}
1150
1151
1152/* A lot of this stuff will have to change to support C++.  But we're
1153   not going to deal with that at the moment.  */
1154
1155/* Find the field in the structure type TYPE named NAME, and return
1156   its index in TYPE's field array.  */
1157static int
1158find_field (struct type *type, char *name)
1159{
1160  int i;
1161
1162  CHECK_TYPEDEF (type);
1163
1164  /* Make sure this isn't C++.  */
1165  if (TYPE_N_BASECLASSES (type) != 0)
1166    internal_error (__FILE__, __LINE__,
1167		    "find_field: derived classes supported");
1168
1169  for (i = 0; i < TYPE_NFIELDS (type); i++)
1170    {
1171      char *this_name = TYPE_FIELD_NAME (type, i);
1172
1173      if (this_name && strcmp (name, this_name) == 0)
1174	return i;
1175
1176      if (this_name[0] == '\0')
1177	internal_error (__FILE__, __LINE__,
1178			"find_field: anonymous unions not supported");
1179    }
1180
1181  error ("Couldn't find member named `%s' in struct/union `%s'",
1182	 name, TYPE_TAG_NAME (type));
1183
1184  return 0;
1185}
1186
1187
1188/* Generate code to push the value of a bitfield of a structure whose
1189   address is on the top of the stack.  START and END give the
1190   starting and one-past-ending *bit* numbers of the field within the
1191   structure.  */
1192static void
1193gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1194		  struct type *type, int start, int end)
1195{
1196  /* Note that ops[i] fetches 8 << i bits.  */
1197  static enum agent_op ops[]
1198  =
1199  {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1200  static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1201
1202  /* We don't want to touch any byte that the bitfield doesn't
1203     actually occupy; we shouldn't make any accesses we're not
1204     explicitly permitted to.  We rely here on the fact that the
1205     bytecode `ref' operators work on unaligned addresses.
1206
1207     It takes some fancy footwork to get the stack to work the way
1208     we'd like.  Say we're retrieving a bitfield that requires three
1209     fetches.  Initially, the stack just contains the address:
1210     addr
1211     For the first fetch, we duplicate the address
1212     addr addr
1213     then add the byte offset, do the fetch, and shift and mask as
1214     needed, yielding a fragment of the value, properly aligned for
1215     the final bitwise or:
1216     addr frag1
1217     then we swap, and repeat the process:
1218     frag1 addr                    --- address on top
1219     frag1 addr addr               --- duplicate it
1220     frag1 addr frag2              --- get second fragment
1221     frag1 frag2 addr              --- swap again
1222     frag1 frag2 frag3             --- get third fragment
1223     Notice that, since the third fragment is the last one, we don't
1224     bother duplicating the address this time.  Now we have all the
1225     fragments on the stack, and we can simply `or' them together,
1226     yielding the final value of the bitfield.  */
1227
1228  /* The first and one-after-last bits in the field, but rounded down
1229     and up to byte boundaries.  */
1230  int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1231  int bound_end = (((end + TARGET_CHAR_BIT - 1)
1232		    / TARGET_CHAR_BIT)
1233		   * TARGET_CHAR_BIT);
1234
1235  /* current bit offset within the structure */
1236  int offset;
1237
1238  /* The index in ops of the opcode we're considering.  */
1239  int op;
1240
1241  /* The number of fragments we generated in the process.  Probably
1242     equal to the number of `one' bits in bytesize, but who cares?  */
1243  int fragment_count;
1244
1245  /* Dereference any typedefs. */
1246  type = check_typedef (type);
1247
1248  /* Can we fetch the number of bits requested at all?  */
1249  if ((end - start) > ((1 << num_ops) * 8))
1250    internal_error (__FILE__, __LINE__,
1251		    "gen_bitfield_ref: bitfield too wide");
1252
1253  /* Note that we know here that we only need to try each opcode once.
1254     That may not be true on machines with weird byte sizes.  */
1255  offset = bound_start;
1256  fragment_count = 0;
1257  for (op = num_ops - 1; op >= 0; op--)
1258    {
1259      /* number of bits that ops[op] would fetch */
1260      int op_size = 8 << op;
1261
1262      /* The stack at this point, from bottom to top, contains zero or
1263         more fragments, then the address.  */
1264
1265      /* Does this fetch fit within the bitfield?  */
1266      if (offset + op_size <= bound_end)
1267	{
1268	  /* Is this the last fragment?  */
1269	  int last_frag = (offset + op_size == bound_end);
1270
1271	  if (!last_frag)
1272	    ax_simple (ax, aop_dup);	/* keep a copy of the address */
1273
1274	  /* Add the offset.  */
1275	  gen_offset (ax, offset / TARGET_CHAR_BIT);
1276
1277	  if (trace_kludge)
1278	    {
1279	      /* Record the area of memory we're about to fetch.  */
1280	      ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1281	    }
1282
1283	  /* Perform the fetch.  */
1284	  ax_simple (ax, ops[op]);
1285
1286	  /* Shift the bits we have to their proper position.
1287	     gen_left_shift will generate right shifts when the operand
1288	     is negative.
1289
1290	     A big-endian field diagram to ponder:
1291	     byte 0  byte 1  byte 2  byte 3  byte 4  byte 5  byte 6  byte 7
1292	     +------++------++------++------++------++------++------++------+
1293	     xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1294	     ^               ^               ^    ^
1295	     bit number      16              32              48   53
1296	     These are bit numbers as supplied by GDB.  Note that the
1297	     bit numbers run from right to left once you've fetched the
1298	     value!
1299
1300	     A little-endian field diagram to ponder:
1301	     byte 7  byte 6  byte 5  byte 4  byte 3  byte 2  byte 1  byte 0
1302	     +------++------++------++------++------++------++------++------+
1303	     xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1304	     ^               ^               ^           ^   ^
1305	     bit number     48              32              16          4   0
1306
1307	     In both cases, the most significant end is on the left
1308	     (i.e. normal numeric writing order), which means that you
1309	     don't go crazy thinking about `left' and `right' shifts.
1310
1311	     We don't have to worry about masking yet:
1312	     - If they contain garbage off the least significant end, then we
1313	     must be looking at the low end of the field, and the right
1314	     shift will wipe them out.
1315	     - If they contain garbage off the most significant end, then we
1316	     must be looking at the most significant end of the word, and
1317	     the sign/zero extension will wipe them out.
1318	     - If we're in the interior of the word, then there is no garbage
1319	     on either end, because the ref operators zero-extend.  */
1320	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1321	    gen_left_shift (ax, end - (offset + op_size));
1322	  else
1323	    gen_left_shift (ax, offset - start);
1324
1325	  if (!last_frag)
1326	    /* Bring the copy of the address up to the top.  */
1327	    ax_simple (ax, aop_swap);
1328
1329	  offset += op_size;
1330	  fragment_count++;
1331	}
1332    }
1333
1334  /* Generate enough bitwise `or' operations to combine all the
1335     fragments we left on the stack.  */
1336  while (fragment_count-- > 1)
1337    ax_simple (ax, aop_bit_or);
1338
1339  /* Sign- or zero-extend the value as appropriate.  */
1340  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1341
1342  /* This is *not* an lvalue.  Ugh.  */
1343  value->kind = axs_rvalue;
1344  value->type = type;
1345}
1346
1347
1348/* Generate code to reference the member named FIELD of a structure or
1349   union.  The top of the stack, as described by VALUE, should have
1350   type (pointer to a)* struct/union.  OPERATOR_NAME is the name of
1351   the operator being compiled, and OPERAND_NAME is the kind of thing
1352   it operates on; we use them in error messages.  */
1353static void
1354gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1355		char *operator_name, char *operand_name)
1356{
1357  struct type *type;
1358  int i;
1359
1360  /* Follow pointers until we reach a non-pointer.  These aren't the C
1361     semantics, but they're what the normal GDB evaluator does, so we
1362     should at least be consistent.  */
1363  while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1364    {
1365      gen_usual_unary (ax, value);
1366      gen_deref (ax, value);
1367    }
1368  type = check_typedef (value->type);
1369
1370  /* This must yield a structure or a union.  */
1371  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1372      && TYPE_CODE (type) != TYPE_CODE_UNION)
1373    error ("The left operand of `%s' is not a %s.",
1374	   operator_name, operand_name);
1375
1376  /* And it must be in memory; we don't deal with structure rvalues,
1377     or structures living in registers.  */
1378  if (value->kind != axs_lvalue_memory)
1379    error ("Structure does not live in memory.");
1380
1381  i = find_field (type, field);
1382
1383  /* Is this a bitfield?  */
1384  if (TYPE_FIELD_PACKED (type, i))
1385    gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1386		      TYPE_FIELD_BITPOS (type, i),
1387		      (TYPE_FIELD_BITPOS (type, i)
1388		       + TYPE_FIELD_BITSIZE (type, i)));
1389  else
1390    {
1391      gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1392      value->kind = axs_lvalue_memory;
1393      value->type = TYPE_FIELD_TYPE (type, i);
1394    }
1395}
1396
1397
1398/* Generate code for GDB's magical `repeat' operator.
1399   LVALUE @ INT creates an array INT elements long, and whose elements
1400   have the same type as LVALUE, located in memory so that LVALUE is
1401   its first element.  For example, argv[0]@argc gives you the array
1402   of command-line arguments.
1403
1404   Unfortunately, because we have to know the types before we actually
1405   have a value for the expression, we can't implement this perfectly
1406   without changing the type system, having values that occupy two
1407   stack slots, doing weird things with sizeof, etc.  So we require
1408   the right operand to be a constant expression.  */
1409static void
1410gen_repeat (union exp_element **pc, struct agent_expr *ax,
1411	    struct axs_value *value)
1412{
1413  struct axs_value value1;
1414  /* We don't want to turn this into an rvalue, so no conversions
1415     here.  */
1416  gen_expr (pc, ax, &value1);
1417  if (value1.kind != axs_lvalue_memory)
1418    error ("Left operand of `@' must be an object in memory.");
1419
1420  /* Evaluate the length; it had better be a constant.  */
1421  {
1422    struct value *v = const_expr (pc);
1423    int length;
1424
1425    if (!v)
1426      error ("Right operand of `@' must be a constant, in agent expressions.");
1427    if (TYPE_CODE (v->type) != TYPE_CODE_INT)
1428      error ("Right operand of `@' must be an integer.");
1429    length = value_as_long (v);
1430    if (length <= 0)
1431      error ("Right operand of `@' must be positive.");
1432
1433    /* The top of the stack is already the address of the object, so
1434       all we need to do is frob the type of the lvalue.  */
1435    {
1436      /* FIXME-type-allocation: need a way to free this type when we are
1437         done with it.  */
1438      struct type *range
1439      = create_range_type (0, builtin_type_int, 0, length - 1);
1440      struct type *array = create_array_type (0, value1.type, range);
1441
1442      value->kind = axs_lvalue_memory;
1443      value->type = array;
1444    }
1445  }
1446}
1447
1448
1449/* Emit code for the `sizeof' operator.
1450   *PC should point at the start of the operand expression; we advance it
1451   to the first instruction after the operand.  */
1452static void
1453gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1454	    struct axs_value *value)
1455{
1456  /* We don't care about the value of the operand expression; we only
1457     care about its type.  However, in the current arrangement, the
1458     only way to find an expression's type is to generate code for it.
1459     So we generate code for the operand, and then throw it away,
1460     replacing it with code that simply pushes its size.  */
1461  int start = ax->len;
1462  gen_expr (pc, ax, value);
1463
1464  /* Throw away the code we just generated.  */
1465  ax->len = start;
1466
1467  ax_const_l (ax, TYPE_LENGTH (value->type));
1468  value->kind = axs_rvalue;
1469  value->type = builtin_type_int;
1470}
1471
1472
1473/* Generating bytecode from GDB expressions: general recursive thingy  */
1474
1475/* A gen_expr function written by a Gen-X'er guy.
1476   Append code for the subexpression of EXPR starting at *POS_P to AX.  */
1477static void
1478gen_expr (union exp_element **pc, struct agent_expr *ax,
1479	  struct axs_value *value)
1480{
1481  /* Used to hold the descriptions of operand expressions.  */
1482  struct axs_value value1, value2;
1483  enum exp_opcode op = (*pc)[0].opcode;
1484
1485  /* If we're looking at a constant expression, just push its value.  */
1486  {
1487    struct value *v = maybe_const_expr (pc);
1488
1489    if (v)
1490      {
1491	ax_const_l (ax, value_as_long (v));
1492	value->kind = axs_rvalue;
1493	value->type = check_typedef (VALUE_TYPE (v));
1494	return;
1495      }
1496  }
1497
1498  /* Otherwise, go ahead and generate code for it.  */
1499  switch (op)
1500    {
1501      /* Binary arithmetic operators.  */
1502    case BINOP_ADD:
1503    case BINOP_SUB:
1504    case BINOP_MUL:
1505    case BINOP_DIV:
1506    case BINOP_REM:
1507    case BINOP_SUBSCRIPT:
1508    case BINOP_BITWISE_AND:
1509    case BINOP_BITWISE_IOR:
1510    case BINOP_BITWISE_XOR:
1511      (*pc)++;
1512      gen_expr (pc, ax, &value1);
1513      gen_usual_unary (ax, &value1);
1514      gen_expr (pc, ax, &value2);
1515      gen_usual_unary (ax, &value2);
1516      gen_usual_arithmetic (ax, &value1, &value2);
1517      switch (op)
1518	{
1519	case BINOP_ADD:
1520	  gen_add (ax, value, &value1, &value2, "addition");
1521	  break;
1522	case BINOP_SUB:
1523	  gen_sub (ax, value, &value1, &value2);
1524	  break;
1525	case BINOP_MUL:
1526	  gen_binop (ax, value, &value1, &value2,
1527		     aop_mul, aop_mul, 1, "multiplication");
1528	  break;
1529	case BINOP_DIV:
1530	  gen_binop (ax, value, &value1, &value2,
1531		     aop_div_signed, aop_div_unsigned, 1, "division");
1532	  break;
1533	case BINOP_REM:
1534	  gen_binop (ax, value, &value1, &value2,
1535		     aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1536	  break;
1537	case BINOP_SUBSCRIPT:
1538	  gen_add (ax, value, &value1, &value2, "array subscripting");
1539	  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1540	    error ("Illegal combination of types in array subscripting.");
1541	  gen_deref (ax, value);
1542	  break;
1543	case BINOP_BITWISE_AND:
1544	  gen_binop (ax, value, &value1, &value2,
1545		     aop_bit_and, aop_bit_and, 0, "bitwise and");
1546	  break;
1547
1548	case BINOP_BITWISE_IOR:
1549	  gen_binop (ax, value, &value1, &value2,
1550		     aop_bit_or, aop_bit_or, 0, "bitwise or");
1551	  break;
1552
1553	case BINOP_BITWISE_XOR:
1554	  gen_binop (ax, value, &value1, &value2,
1555		     aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1556	  break;
1557
1558	default:
1559	  /* We should only list operators in the outer case statement
1560	     that we actually handle in the inner case statement.  */
1561	  internal_error (__FILE__, __LINE__,
1562			  "gen_expr: op case sets don't match");
1563	}
1564      break;
1565
1566      /* Note that we need to be a little subtle about generating code
1567         for comma.  In C, we can do some optimizations here because
1568         we know the left operand is only being evaluated for effect.
1569         However, if the tracing kludge is in effect, then we always
1570         need to evaluate the left hand side fully, so that all the
1571         variables it mentions get traced.  */
1572    case BINOP_COMMA:
1573      (*pc)++;
1574      gen_expr (pc, ax, &value1);
1575      /* Don't just dispose of the left operand.  We might be tracing,
1576         in which case we want to emit code to trace it if it's an
1577         lvalue.  */
1578      gen_traced_pop (ax, &value1);
1579      gen_expr (pc, ax, value);
1580      /* It's the consumer's responsibility to trace the right operand.  */
1581      break;
1582
1583    case OP_LONG:		/* some integer constant */
1584      {
1585	struct type *type = (*pc)[1].type;
1586	LONGEST k = (*pc)[2].longconst;
1587	(*pc) += 4;
1588	gen_int_literal (ax, value, k, type);
1589      }
1590      break;
1591
1592    case OP_VAR_VALUE:
1593      gen_var_ref (ax, value, (*pc)[2].symbol);
1594      (*pc) += 4;
1595      break;
1596
1597    case OP_REGISTER:
1598      {
1599	int reg = (int) (*pc)[1].longconst;
1600	(*pc) += 3;
1601	value->kind = axs_lvalue_register;
1602	value->u.reg = reg;
1603	value->type = register_type (current_gdbarch, reg);
1604      }
1605      break;
1606
1607    case OP_INTERNALVAR:
1608      error ("GDB agent expressions cannot use convenience variables.");
1609
1610      /* Weirdo operator: see comments for gen_repeat for details.  */
1611    case BINOP_REPEAT:
1612      /* Note that gen_repeat handles its own argument evaluation.  */
1613      (*pc)++;
1614      gen_repeat (pc, ax, value);
1615      break;
1616
1617    case UNOP_CAST:
1618      {
1619	struct type *type = (*pc)[1].type;
1620	(*pc) += 3;
1621	gen_expr (pc, ax, value);
1622	gen_cast (ax, value, type);
1623      }
1624      break;
1625
1626    case UNOP_MEMVAL:
1627      {
1628	struct type *type = check_typedef ((*pc)[1].type);
1629	(*pc) += 3;
1630	gen_expr (pc, ax, value);
1631	/* I'm not sure I understand UNOP_MEMVAL entirely.  I think
1632	   it's just a hack for dealing with minsyms; you take some
1633	   integer constant, pretend it's the address of an lvalue of
1634	   the given type, and dereference it.  */
1635	if (value->kind != axs_rvalue)
1636	  /* This would be weird.  */
1637	  internal_error (__FILE__, __LINE__,
1638			  "gen_expr: OP_MEMVAL operand isn't an rvalue???");
1639	value->type = type;
1640	value->kind = axs_lvalue_memory;
1641      }
1642      break;
1643
1644    case UNOP_NEG:
1645      (*pc)++;
1646      /* -FOO is equivalent to 0 - FOO.  */
1647      gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1648      gen_usual_unary (ax, &value1);	/* shouldn't do much */
1649      gen_expr (pc, ax, &value2);
1650      gen_usual_unary (ax, &value2);
1651      gen_usual_arithmetic (ax, &value1, &value2);
1652      gen_sub (ax, value, &value1, &value2);
1653      break;
1654
1655    case UNOP_LOGICAL_NOT:
1656      (*pc)++;
1657      gen_expr (pc, ax, value);
1658      gen_logical_not (ax, value);
1659      break;
1660
1661    case UNOP_COMPLEMENT:
1662      (*pc)++;
1663      gen_expr (pc, ax, value);
1664      gen_complement (ax, value);
1665      break;
1666
1667    case UNOP_IND:
1668      (*pc)++;
1669      gen_expr (pc, ax, value);
1670      gen_usual_unary (ax, value);
1671      if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1672	error ("Argument of unary `*' is not a pointer.");
1673      gen_deref (ax, value);
1674      break;
1675
1676    case UNOP_ADDR:
1677      (*pc)++;
1678      gen_expr (pc, ax, value);
1679      gen_address_of (ax, value);
1680      break;
1681
1682    case UNOP_SIZEOF:
1683      (*pc)++;
1684      /* Notice that gen_sizeof handles its own operand, unlike most
1685         of the other unary operator functions.  This is because we
1686         have to throw away the code we generate.  */
1687      gen_sizeof (pc, ax, value);
1688      break;
1689
1690    case STRUCTOP_STRUCT:
1691    case STRUCTOP_PTR:
1692      {
1693	int length = (*pc)[1].longconst;
1694	char *name = &(*pc)[2].string;
1695
1696	(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1697	gen_expr (pc, ax, value);
1698	if (op == STRUCTOP_STRUCT)
1699	  gen_struct_ref (ax, value, name, ".", "structure or union");
1700	else if (op == STRUCTOP_PTR)
1701	  gen_struct_ref (ax, value, name, "->",
1702			  "pointer to a structure or union");
1703	else
1704	  /* If this `if' chain doesn't handle it, then the case list
1705	     shouldn't mention it, and we shouldn't be here.  */
1706	  internal_error (__FILE__, __LINE__,
1707			  "gen_expr: unhandled struct case");
1708      }
1709      break;
1710
1711    case OP_TYPE:
1712      error ("Attempt to use a type name as an expression.");
1713
1714    default:
1715      error ("Unsupported operator in expression.");
1716    }
1717}
1718
1719
1720
1721/* Generating bytecode from GDB expressions: driver */
1722
1723/* Given a GDB expression EXPR, produce a string of agent bytecode
1724   which computes its value.  Return the agent expression, and set
1725   *VALUE to describe its type, and whether it's an lvalue or rvalue.  */
1726struct agent_expr *
1727expr_to_agent (struct expression *expr, struct axs_value *value)
1728{
1729  struct cleanup *old_chain = 0;
1730  struct agent_expr *ax = new_agent_expr (0);
1731  union exp_element *pc;
1732
1733  old_chain = make_cleanup_free_agent_expr (ax);
1734
1735  pc = expr->elts;
1736  trace_kludge = 0;
1737  gen_expr (&pc, ax, value);
1738
1739  /* We have successfully built the agent expr, so cancel the cleanup
1740     request.  If we add more cleanups that we always want done, this
1741     will have to get more complicated.  */
1742  discard_cleanups (old_chain);
1743  return ax;
1744}
1745
1746
1747#if 0				/* not used */
1748/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1749   string of agent bytecode which will leave its address and size on
1750   the top of stack.  Return the agent expression.
1751
1752   Not sure this function is useful at all.  */
1753struct agent_expr *
1754expr_to_address_and_size (struct expression *expr)
1755{
1756  struct axs_value value;
1757  struct agent_expr *ax = expr_to_agent (expr, &value);
1758
1759  /* Complain if the result is not a memory lvalue.  */
1760  if (value.kind != axs_lvalue_memory)
1761    {
1762      free_agent_expr (ax);
1763      error ("Expression does not denote an object in memory.");
1764    }
1765
1766  /* Push the object's size on the stack.  */
1767  ax_const_l (ax, TYPE_LENGTH (value.type));
1768
1769  return ax;
1770}
1771#endif
1772
1773/* Given a GDB expression EXPR, return bytecode to trace its value.
1774   The result will use the `trace' and `trace_quick' bytecodes to
1775   record the value of all memory touched by the expression.  The
1776   caller can then use the ax_reqs function to discover which
1777   registers it relies upon.  */
1778struct agent_expr *
1779gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1780{
1781  struct cleanup *old_chain = 0;
1782  struct agent_expr *ax = new_agent_expr (scope);
1783  union exp_element *pc;
1784  struct axs_value value;
1785
1786  old_chain = make_cleanup_free_agent_expr (ax);
1787
1788  pc = expr->elts;
1789  trace_kludge = 1;
1790  gen_expr (&pc, ax, &value);
1791
1792  /* Make sure we record the final object, and get rid of it.  */
1793  gen_traced_pop (ax, &value);
1794
1795  /* Oh, and terminate.  */
1796  ax_simple (ax, aop_end);
1797
1798  /* We have successfully built the agent expr, so cancel the cleanup
1799     request.  If we add more cleanups that we always want done, this
1800     will have to get more complicated.  */
1801  discard_cleanups (old_chain);
1802  return ax;
1803}
1804
1805static void
1806agent_command (char *exp, int from_tty)
1807{
1808  struct cleanup *old_chain = 0;
1809  struct expression *expr;
1810  struct agent_expr *agent;
1811  struct frame_info *fi = get_current_frame ();	/* need current scope */
1812
1813  /* We don't deal with overlay debugging at the moment.  We need to
1814     think more carefully about this.  If you copy this code into
1815     another command, change the error message; the user shouldn't
1816     have to know anything about agent expressions.  */
1817  if (overlay_debugging)
1818    error ("GDB can't do agent expression translation with overlays.");
1819
1820  if (exp == 0)
1821    error_no_arg ("expression to translate");
1822
1823  expr = parse_expression (exp);
1824  old_chain = make_cleanup (free_current_contents, &expr);
1825  agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1826  make_cleanup_free_agent_expr (agent);
1827  ax_print (gdb_stdout, agent);
1828
1829  /* It would be nice to call ax_reqs here to gather some general info
1830     about the expression, and then print out the result.  */
1831
1832  do_cleanups (old_chain);
1833  dont_repeat ();
1834}
1835
1836
1837/* Initialization code.  */
1838
1839void _initialize_ax_gdb (void);
1840void
1841_initialize_ax_gdb (void)
1842{
1843  add_cmd ("agent", class_maintenance, agent_command,
1844	   "Translate an expression into remote agent bytecode.",
1845	   &maintenancelist);
1846}
1847