1/* A splay-tree datatype.
2   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3   Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* For an easily readable description of splay-trees, see:
23
24     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25     Algorithms.  Harper-Collins, Inc.  1991.  */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34
35#include <stdio.h>
36
37#include "libiberty.h"
38#include "splay-tree.h"
39
40static void splay_tree_delete_helper (splay_tree, splay_tree_node);
41static inline void rotate_left (splay_tree_node *,
42				splay_tree_node, splay_tree_node);
43static inline void rotate_right (splay_tree_node *,
44				splay_tree_node, splay_tree_node);
45static void splay_tree_splay (splay_tree, splay_tree_key);
46static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
47                                      splay_tree_foreach_fn, void*);
48
49/* Deallocate NODE (a member of SP), and all its sub-trees.  */
50
51static void
52splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
53{
54  splay_tree_node pending = 0;
55  splay_tree_node active = 0;
56
57  if (!node)
58    return;
59
60#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
61#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
62
63  KDEL (node->key);
64  VDEL (node->value);
65
66  /* We use the "key" field to hold the "next" pointer.  */
67  node->key = (splay_tree_key)pending;
68  pending = (splay_tree_node)node;
69
70  /* Now, keep processing the pending list until there aren't any
71     more.  This is a little more complicated than just recursing, but
72     it doesn't toast the stack for large trees.  */
73
74  while (pending)
75    {
76      active = pending;
77      pending = 0;
78      while (active)
79	{
80	  splay_tree_node temp;
81
82	  /* active points to a node which has its key and value
83	     deallocated, we just need to process left and right.  */
84
85	  if (active->left)
86	    {
87	      KDEL (active->left->key);
88	      VDEL (active->left->value);
89	      active->left->key = (splay_tree_key)pending;
90	      pending = (splay_tree_node)(active->left);
91	    }
92	  if (active->right)
93	    {
94	      KDEL (active->right->key);
95	      VDEL (active->right->value);
96	      active->right->key = (splay_tree_key)pending;
97	      pending = (splay_tree_node)(active->right);
98	    }
99
100	  temp = active;
101	  active = (splay_tree_node)(temp->key);
102	  (*sp->deallocate) ((char*) temp, sp->allocate_data);
103	}
104    }
105#undef KDEL
106#undef VDEL
107}
108
109/* Rotate the edge joining the left child N with its parent P.  PP is the
110   grandparents pointer to P.  */
111
112static inline void
113rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
114{
115  splay_tree_node tmp;
116  tmp = n->right;
117  n->right = p;
118  p->left = tmp;
119  *pp = n;
120}
121
122/* Rotate the edge joining the right child N with its parent P.  PP is the
123   grandparents pointer to P.  */
124
125static inline void
126rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127{
128  splay_tree_node tmp;
129  tmp = n->left;
130  n->left = p;
131  p->right = tmp;
132  *pp = n;
133}
134
135/* Bottom up splay of key.  */
136
137static void
138splay_tree_splay (splay_tree sp, splay_tree_key key)
139{
140  if (sp->root == 0)
141    return;
142
143  do {
144    int cmp1, cmp2;
145    splay_tree_node n, c;
146
147    n = sp->root;
148    cmp1 = (*sp->comp) (key, n->key);
149
150    /* Found.  */
151    if (cmp1 == 0)
152      return;
153
154    /* Left or right?  If no child, then we're done.  */
155    if (cmp1 < 0)
156      c = n->left;
157    else
158      c = n->right;
159    if (!c)
160      return;
161
162    /* Next one left or right?  If found or no child, we're done
163       after one rotation.  */
164    cmp2 = (*sp->comp) (key, c->key);
165    if (cmp2 == 0
166        || (cmp2 < 0 && !c->left)
167        || (cmp2 > 0 && !c->right))
168      {
169	if (cmp1 < 0)
170	  rotate_left (&sp->root, n, c);
171	else
172	  rotate_right (&sp->root, n, c);
173        return;
174      }
175
176    /* Now we have the four cases of double-rotation.  */
177    if (cmp1 < 0 && cmp2 < 0)
178      {
179	rotate_left (&n->left, c, c->left);
180	rotate_left (&sp->root, n, n->left);
181      }
182    else if (cmp1 > 0 && cmp2 > 0)
183      {
184	rotate_right (&n->right, c, c->right);
185	rotate_right (&sp->root, n, n->right);
186      }
187    else if (cmp1 < 0 && cmp2 > 0)
188      {
189	rotate_right (&n->left, c, c->right);
190	rotate_left (&sp->root, n, n->left);
191      }
192    else if (cmp1 > 0 && cmp2 < 0)
193      {
194	rotate_left (&n->right, c, c->left);
195	rotate_right (&sp->root, n, n->right);
196      }
197  } while (1);
198}
199
200/* Call FN, passing it the DATA, for every node below NODE, all of
201   which are from SP, following an in-order traversal.  If FN every
202   returns a non-zero value, the iteration ceases immediately, and the
203   value is returned.  Otherwise, this function returns 0.  */
204
205static int
206splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
207                           splay_tree_foreach_fn fn, void *data)
208{
209  int val;
210
211  if (!node)
212    return 0;
213
214  val = splay_tree_foreach_helper (sp, node->left, fn, data);
215  if (val)
216    return val;
217
218  val = (*fn)(node, data);
219  if (val)
220    return val;
221
222  return splay_tree_foreach_helper (sp, node->right, fn, data);
223}
224
225
226/* An allocator and deallocator based on xmalloc.  */
227static void *
228splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
229{
230  return (void *) xmalloc (size);
231}
232
233static void
234splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
235{
236  free (object);
237}
238
239
240/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
241   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
242   values.  Use xmalloc to allocate the splay tree structure, and any
243   nodes added.  */
244
245splay_tree
246splay_tree_new (splay_tree_compare_fn compare_fn,
247                splay_tree_delete_key_fn delete_key_fn,
248                splay_tree_delete_value_fn delete_value_fn)
249{
250  return (splay_tree_new_with_allocator
251          (compare_fn, delete_key_fn, delete_value_fn,
252           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
253}
254
255
256/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
257   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
258   values.  */
259
260splay_tree
261splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
262                               splay_tree_delete_key_fn delete_key_fn,
263                               splay_tree_delete_value_fn delete_value_fn,
264                               splay_tree_allocate_fn allocate_fn,
265                               splay_tree_deallocate_fn deallocate_fn,
266                               void *allocate_data)
267{
268  splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
269                                               allocate_data);
270  sp->root = 0;
271  sp->comp = compare_fn;
272  sp->delete_key = delete_key_fn;
273  sp->delete_value = delete_value_fn;
274  sp->allocate = allocate_fn;
275  sp->deallocate = deallocate_fn;
276  sp->allocate_data = allocate_data;
277
278  return sp;
279}
280
281/* Deallocate SP.  */
282
283void
284splay_tree_delete (splay_tree sp)
285{
286  splay_tree_delete_helper (sp, sp->root);
287  (*sp->deallocate) ((char*) sp, sp->allocate_data);
288}
289
290/* Insert a new node (associating KEY with DATA) into SP.  If a
291   previous node with the indicated KEY exists, its data is replaced
292   with the new value.  Returns the new node.  */
293
294splay_tree_node
295splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
296{
297  int comparison = 0;
298
299  splay_tree_splay (sp, key);
300
301  if (sp->root)
302    comparison = (*sp->comp)(sp->root->key, key);
303
304  if (sp->root && comparison == 0)
305    {
306      /* If the root of the tree already has the indicated KEY, just
307	 replace the value with VALUE.  */
308      if (sp->delete_value)
309	(*sp->delete_value)(sp->root->value);
310      sp->root->value = value;
311    }
312  else
313    {
314      /* Create a new node, and insert it at the root.  */
315      splay_tree_node node;
316
317      node = ((splay_tree_node)
318              (*sp->allocate) (sizeof (struct splay_tree_node_s),
319                               sp->allocate_data));
320      node->key = key;
321      node->value = value;
322
323      if (!sp->root)
324	node->left = node->right = 0;
325      else if (comparison < 0)
326	{
327	  node->left = sp->root;
328	  node->right = node->left->right;
329	  node->left->right = 0;
330	}
331      else
332	{
333	  node->right = sp->root;
334	  node->left = node->right->left;
335	  node->right->left = 0;
336	}
337
338      sp->root = node;
339    }
340
341  return sp->root;
342}
343
344/* Remove KEY from SP.  It is not an error if it did not exist.  */
345
346void
347splay_tree_remove (splay_tree sp, splay_tree_key key)
348{
349  splay_tree_splay (sp, key);
350
351  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
352    {
353      splay_tree_node left, right;
354
355      left = sp->root->left;
356      right = sp->root->right;
357
358      /* Delete the root node itself.  */
359      if (sp->delete_value)
360	(*sp->delete_value) (sp->root->value);
361      (*sp->deallocate) (sp->root, sp->allocate_data);
362
363      /* One of the children is now the root.  Doesn't matter much
364	 which, so long as we preserve the properties of the tree.  */
365      if (left)
366	{
367	  sp->root = left;
368
369	  /* If there was a right child as well, hang it off the
370	     right-most leaf of the left child.  */
371	  if (right)
372	    {
373	      while (left->right)
374		left = left->right;
375	      left->right = right;
376	    }
377	}
378      else
379	sp->root = right;
380    }
381}
382
383/* Lookup KEY in SP, returning VALUE if present, and NULL
384   otherwise.  */
385
386splay_tree_node
387splay_tree_lookup (splay_tree sp, splay_tree_key key)
388{
389  splay_tree_splay (sp, key);
390
391  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
392    return sp->root;
393  else
394    return 0;
395}
396
397/* Return the node in SP with the greatest key.  */
398
399splay_tree_node
400splay_tree_max (splay_tree sp)
401{
402  splay_tree_node n = sp->root;
403
404  if (!n)
405    return NULL;
406
407  while (n->right)
408    n = n->right;
409
410  return n;
411}
412
413/* Return the node in SP with the smallest key.  */
414
415splay_tree_node
416splay_tree_min (splay_tree sp)
417{
418  splay_tree_node n = sp->root;
419
420  if (!n)
421    return NULL;
422
423  while (n->left)
424    n = n->left;
425
426  return n;
427}
428
429/* Return the immediate predecessor KEY, or NULL if there is no
430   predecessor.  KEY need not be present in the tree.  */
431
432splay_tree_node
433splay_tree_predecessor (splay_tree sp, splay_tree_key key)
434{
435  int comparison;
436  splay_tree_node node;
437
438  /* If the tree is empty, there is certainly no predecessor.  */
439  if (!sp->root)
440    return NULL;
441
442  /* Splay the tree around KEY.  That will leave either the KEY
443     itself, its predecessor, or its successor at the root.  */
444  splay_tree_splay (sp, key);
445  comparison = (*sp->comp)(sp->root->key, key);
446
447  /* If the predecessor is at the root, just return it.  */
448  if (comparison < 0)
449    return sp->root;
450
451  /* Otherwise, find the rightmost element of the left subtree.  */
452  node = sp->root->left;
453  if (node)
454    while (node->right)
455      node = node->right;
456
457  return node;
458}
459
460/* Return the immediate successor KEY, or NULL if there is no
461   successor.  KEY need not be present in the tree.  */
462
463splay_tree_node
464splay_tree_successor (splay_tree sp, splay_tree_key key)
465{
466  int comparison;
467  splay_tree_node node;
468
469  /* If the tree is empty, there is certainly no successor.  */
470  if (!sp->root)
471    return NULL;
472
473  /* Splay the tree around KEY.  That will leave either the KEY
474     itself, its predecessor, or its successor at the root.  */
475  splay_tree_splay (sp, key);
476  comparison = (*sp->comp)(sp->root->key, key);
477
478  /* If the successor is at the root, just return it.  */
479  if (comparison > 0)
480    return sp->root;
481
482  /* Otherwise, find the leftmost element of the right subtree.  */
483  node = sp->root->right;
484  if (node)
485    while (node->left)
486      node = node->left;
487
488  return node;
489}
490
491/* Call FN, passing it the DATA, for every node in SP, following an
492   in-order traversal.  If FN every returns a non-zero value, the
493   iteration ceases immediately, and the value is returned.
494   Otherwise, this function returns 0.  */
495
496int
497splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
498{
499  return splay_tree_foreach_helper (sp, sp->root, fn, data);
500}
501
502/* Splay-tree comparison function, treating the keys as ints.  */
503
504int
505splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
506{
507  if ((int) k1 < (int) k2)
508    return -1;
509  else if ((int) k1 > (int) k2)
510    return 1;
511  else
512    return 0;
513}
514
515/* Splay-tree comparison function, treating the keys as pointers.  */
516
517int
518splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
519{
520  if ((char*) k1 < (char*) k2)
521    return -1;
522  else if ((char*) k1 > (char*) k2)
523    return 1;
524  else
525    return 0;
526}
527