1/* Vector API for GNU compiler.
2   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Nathan Sidwell <nathan@codesourcery.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* The macros here implement a set of templated vector types and
26   associated interfaces.  These templates are implemented with
27   macros, as we're not in C++ land.  The interface functions are
28   typesafe and use static inline functions, sometimes backed by
29   out-of-line generic functions.  The vectors are designed to
30   interoperate with the GTY machinery.
31
32   Because of the different behavior of structure objects, scalar
33   objects and of pointers, there are three flavors, one for each of
34   these variants.  Both the structure object and pointer variants
35   pass pointers to objects around -- in the former case the pointers
36   are stored into the vector and in the latter case the pointers are
37   dereferenced and the objects copied into the vector.  The scalar
38   object variant is suitable for int-like objects, and the vector
39   elements are returned by value.
40
41   There are both 'index' and 'iterate' accessors.  The iterator
42   returns a boolean iteration condition and updates the iteration
43   variable passed by reference.  Because the iterator will be
44   inlined, the address-of can be optimized away.
45
46   The vectors are implemented using the trailing array idiom, thus
47   they are not resizeable without changing the address of the vector
48   object itself.  This means you cannot have variables or fields of
49   vector type -- always use a pointer to a vector.  The one exception
50   is the final field of a structure, which could be a vector type.
51   You will have to use the embedded_size & embedded_init calls to
52   create such objects, and they will probably not be resizeable (so
53   don't use the 'safe' allocation variants).  The trailing array
54   idiom is used (rather than a pointer to an array of data), because,
55   if we allow NULL to also represent an empty vector, empty vectors
56   occupy minimal space in the structure containing them.
57
58   Each operation that increases the number of active elements is
59   available in 'quick' and 'safe' variants.  The former presumes that
60   there is sufficient allocated space for the operation to succeed
61   (it dies if there is not).  The latter will reallocate the
62   vector, if needed.  Reallocation causes an exponential increase in
63   vector size.  If you know you will be adding N elements, it would
64   be more efficient to use the reserve operation before adding the
65   elements with the 'quick' operation.  This will ensure there are at
66   least as many elements as you ask for, it will exponentially
67   increase if there are too few spare slots.  If you want reserve a
68   specific number of slots, but do not want the exponential increase
69   (for instance, you know this is the last allocation), use the
70   reserve_exact operation.  You can also create a vector of a
71   specific size from the get go.
72
73   You should prefer the push and pop operations, as they append and
74   remove from the end of the vector. If you need to remove several
75   items in one go, use the truncate operation.  The insert and remove
76   operations allow you to change elements in the middle of the
77   vector.  There are two remove operations, one which preserves the
78   element ordering 'ordered_remove', and one which does not
79   'unordered_remove'.  The latter function copies the end element
80   into the removed slot, rather than invoke a memmove operation.  The
81   'lower_bound' function will determine where to place an item in the
82   array using insert that will maintain sorted order.
83
84   When a vector type is defined, first a non-memory managed version
85   is created.  You can then define either or both garbage collected
86   and heap allocated versions.  The allocation mechanism is specified
87   when the type is defined, and is therefore part of the type.  If
88   you need both gc'd and heap allocated versions, you still must have
89   *exactly* one definition of the common non-memory managed base vector.
90
91   If you need to directly manipulate a vector, then the 'address'
92   accessor will return the address of the start of the vector.  Also
93   the 'space' predicate will tell you whether there is spare capacity
94   in the vector.  You will not normally need to use these two functions.
95
96   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97   get the non-memory allocation version, and then a
98   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99   vectors.  Variables of vector type are declared using a
100   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
101   allocation strategy, and can be either 'gc' or 'heap' for garbage
102   collected and heap allocated respectively.  It can be 'none' to get
103   a vector that must be explicitly allocated (for instance as a
104   trailing array of another structure).  The characters O, P and I
105   indicate whether TYPEDEF is a pointer (P), object (O) or integral
106   (I) type.  Be careful to pick the correct one, as you'll get an
107   awkward and inefficient API if you use the wrong one.  There is a
108   check, which results in a compile-time warning, for the P and I
109   versions, but there is no check for the O versions, as that is not
110   possible in plain C.  Due to the way GTY works, you must annotate
111   any structures you wish to insert or reference from a vector with a
112   GTY(()) tag.  You need to do this even if you never declare the GC
113   allocated variants.
114
115   An example of their use would be,
116
117   DEF_VEC_P(tree);   // non-managed tree vector.
118   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
119   			        // appear at file scope.
120
121   struct my_struct {
122     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
123   };
124
125   struct my_struct *s;
126
127   if (VEC_length(tree,s->v)) { we have some contents }
128   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130     { do something with elt }
131
132*/
133
134/* Macros to invoke API calls.  A single macro works for both pointer
135   and object vectors, but the argument and return types might well be
136   different.  In each macro, T is the typedef of the vector elements,
137   and A is the allocation strategy.  The allocation strategy is only
138   present when it is required.  Some of these macros pass the vector,
139   V, by reference (by taking its address), this is noted in the
140   descriptions.  */
141
142/* Length of vector
143   unsigned VEC_T_length(const VEC(T) *v);
144
145   Return the number of active elements in V.  V can be NULL, in which
146   case zero is returned.  */
147
148#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
149
150
151/* Check if vector is empty
152   int VEC_T_empty(const VEC(T) *v);
153
154   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
155
156#define VEC_empty(T,V)	(VEC_length (T,V) == 0)
157
158
159/* Get the final element of the vector.
160   T VEC_T_last(VEC(T) *v); // Integer
161   T VEC_T_last(VEC(T) *v); // Pointer
162   T *VEC_T_last(VEC(T) *v); // Object
163
164   Return the final element.  V must not be empty.  */
165
166#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167
168/* Index into vector
169   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172
173   Return the IX'th element.  If IX must be in the domain of V.  */
174
175#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176
177/* Iterate over vector
178   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181
182   Return iteration condition and update PTR to point to the IX'th
183   element.  At the end of iteration, sets PTR to NULL.  Use this to
184   iterate over the elements of a vector as follows,
185
186     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187       continue;  */
188
189#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190
191/* Allocate new vector.
192   VEC(T,A) *VEC_T_A_alloc(int reserve);
193
194   Allocate a new vector with space for RESERVE objects.  If RESERVE
195   is zero, NO vector is created.  */
196
197#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198
199/* Free a vector.
200   void VEC_T_A_free(VEC(T,A) *&);
201
202   Free a vector and set it to NULL.  */
203
204#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
205
206/* Use these to determine the required size and initialization of a
207   vector embedded within another structure (as the final member).
208
209   size_t VEC_T_embedded_size(int reserve);
210   void VEC_T_embedded_init(VEC(T) *v, int reserve);
211
212   These allow the caller to perform the memory allocation.  */
213
214#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
215#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216
217/* Copy a vector.
218   VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219
220   Copy the live elements of a vector into a new vector.  The new and
221   old vectors need not be allocated by the same mechanism.  */
222
223#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224
225/* Determine if a vector has additional capacity.
226
227   int VEC_T_space (VEC(T) *v,int reserve)
228
229   If V has space for RESERVE additional entries, return nonzero.  You
230   usually only need to use this if you are doing your own vector
231   reallocation, for instance on an embedded vector.  This returns
232   nonzero in exactly the same circumstances that VEC_T_reserve
233   will.  */
234
235#define VEC_space(T,V,R) \
236	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237
238/* Reserve space.
239   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240
241   Ensure that V has at least RESERVE slots available.  This will
242   create additional headroom.  Note this can cause V to be
243   reallocated.  Returns nonzero iff reallocation actually
244   occurred.  */
245
246#define VEC_reserve(T,A,V,R)	\
247	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248
249/* Reserve space exactly.
250   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251
252   Ensure that V has at least RESERVE slots available.  This will not
253   create additional headroom.  Note this can cause V to be
254   reallocated.  Returns nonzero iff reallocation actually
255   occurred.  */
256
257#define VEC_reserve_exact(T,A,V,R)	\
258	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259
260/* Push object with no reallocation
261   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
262   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
263   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264
265   Push a new element onto the end, returns a pointer to the slot
266   filled in. For object vectors, the new value can be NULL, in which
267   case NO initialization is performed.  There must
268   be sufficient space in the vector.  */
269
270#define VEC_quick_push(T,V,O)	\
271	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272
273/* Push object with reallocation
274   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
275   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
276   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277
278   Push a new element onto the end, returns a pointer to the slot
279   filled in. For object vectors, the new value can be NULL, in which
280   case NO initialization is performed.  Reallocates V, if needed.  */
281
282#define VEC_safe_push(T,A,V,O)		\
283	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284
285/* Pop element off end
286   T VEC_T_pop (VEC(T) *v);		// Integer
287   T VEC_T_pop (VEC(T) *v);		// Pointer
288   void VEC_T_pop (VEC(T) *v);		// Object
289
290   Pop the last element off the end. Returns the element popped, for
291   pointer vectors.  */
292
293#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294
295/* Truncate to specific length
296   void VEC_T_truncate (VEC(T) *v, unsigned len);
297
298   Set the length as specified.  The new length must be less than or
299   equal to the current length.  This is an O(1) operation.  */
300
301#define VEC_truncate(T,V,I)		\
302	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303
304/* Grow to a specific length.
305   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306
307   Grow the vector to a specific length.  The LEN must be as
308   long or longer than the current length.  The new elements are
309   uninitialized.  */
310
311#define VEC_safe_grow(T,A,V,I)		\
312	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313
314/* Replace element
315   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
316   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
317   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
318
319   Replace the IXth element of V with a new value, VAL.  For pointer
320   vectors returns the original value. For object vectors returns a
321   pointer to the new value.  For object vectors the new value can be
322   NULL, in which case no overwriting of the slot is actually
323   performed.  */
324
325#define VEC_replace(T,V,I,O)		\
326	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
327
328/* Insert object with no reallocation
329   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
330   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
331   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
332
333   Insert an element, VAL, at the IXth position of V. Return a pointer
334   to the slot created.  For vectors of object, the new value can be
335   NULL, in which case no initialization of the inserted slot takes
336   place. There must be sufficient space.  */
337
338#define VEC_quick_insert(T,V,I,O)	\
339	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
340
341/* Insert object with reallocation
342   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
343   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
344   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
345
346   Insert an element, VAL, at the IXth position of V. Return a pointer
347   to the slot created.  For vectors of object, the new value can be
348   NULL, in which case no initialization of the inserted slot takes
349   place. Reallocate V, if necessary.  */
350
351#define VEC_safe_insert(T,A,V,I,O)	\
352	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
353
354/* Remove element retaining order
355   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
356   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
357   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
358
359   Remove an element from the IXth position of V. Ordering of
360   remaining elements is preserved.  For pointer vectors returns the
361   removed object.  This is an O(N) operation due to a memmove.  */
362
363#define VEC_ordered_remove(T,V,I)	\
364	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
365
366/* Remove element destroying order
367   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
368   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
369   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
370
371   Remove an element from the IXth position of V. Ordering of
372   remaining elements is destroyed.  For pointer vectors returns the
373   removed object.  This is an O(1) operation.  */
374
375#define VEC_unordered_remove(T,V,I)	\
376	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
377
378/* Remove a block of elements
379   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
380
381   Remove LEN elements starting at the IXth.  Ordering is retained.
382   This is an O(1) operation.  */
383
384#define VEC_block_remove(T,V,I,L)	\
385	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
386
387/* Get the address of the array of elements
388   T *VEC_T_address (VEC(T) v)
389
390   If you need to directly manipulate the array (for instance, you
391   want to feed it to qsort), use this accessor.  */
392
393#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
394
395/* Find the first index in the vector not less than the object.
396   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
397                               bool (*lessthan) (const T, const T)); // Integer
398   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
399                               bool (*lessthan) (const T, const T)); // Pointer
400   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
401                               bool (*lessthan) (const T*, const T*)); // Object
402
403   Find the first position in which VAL could be inserted without
404   changing the ordering of V.  LESSTHAN is a function that returns
405   true if the first argument is strictly less than the second.  */
406
407#define VEC_lower_bound(T,V,O,LT)    \
408       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
409
410#if !IN_GENGTYPE
411/* Reallocate an array of elements with prefix.  */
412extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
413extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
414extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
415extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
416				     MEM_STAT_DECL);
417extern void ggc_free (void *);
418#define vec_gc_free(V) ggc_free (V)
419extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
420extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
421extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
422extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
423				       MEM_STAT_DECL);
424#define vec_heap_free(V) free (V)
425
426#if ENABLE_CHECKING
427#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
428#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
429#define VEC_CHECK_PASS ,file_,line_,function_
430
431#define VEC_ASSERT(EXPR,OP,T,A) \
432  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
433
434extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
435     ATTRIBUTE_NORETURN;
436#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
437#else
438#define VEC_CHECK_INFO
439#define VEC_CHECK_DECL
440#define VEC_CHECK_PASS
441#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
442#endif
443
444#define VEC(T,A) VEC_##T##_##A
445#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
446#else  /* IN_GENGTYPE */
447#define VEC(T,A) VEC_ T _ A
448#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
449#define VEC_STRINGIFY_(X) #X
450#undef GTY
451#endif /* IN_GENGTYPE */
452
453/* Base of vector type, not user visible.  */
454#define VEC_T(T,B)							  \
455typedef struct VEC(T,B) 				 		  \
456{									  \
457  unsigned num;								  \
458  unsigned alloc;							  \
459  T vec[1];								  \
460} VEC(T,B)
461
462#define VEC_T_GTY(T,B)							  \
463typedef struct VEC(T,B) GTY(())				 		  \
464{									  \
465  unsigned num;								  \
466  unsigned alloc;							  \
467  T GTY ((length ("%h.num"))) vec[1];					  \
468} VEC(T,B)
469
470/* Derived vector type, user visible.  */
471#define VEC_TA_GTY(T,B,A,GTY)						  \
472typedef struct VEC(T,A) GTY						  \
473{									  \
474  VEC(T,B) base;							  \
475} VEC(T,A)
476
477/* Convert to base type.  */
478#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
479
480/* Vector of integer-like object.  */
481#if IN_GENGTYPE
482{"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
483{"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
484#else
485#define DEF_VEC_I(T)							  \
486static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
487{									  \
488  (void)~(T)0;								  \
489}									  \
490									  \
491VEC_T(T,base);								  \
492VEC_TA_GTY(T,base,none,);						  \
493DEF_VEC_FUNC_P(T)							  \
494struct vec_swallow_trailing_semi
495#define DEF_VEC_ALLOC_I(T,A)						  \
496VEC_TA_GTY(T,base,A,);							  \
497DEF_VEC_ALLOC_FUNC_I(T,A)						  \
498struct vec_swallow_trailing_semi
499#endif
500
501/* Vector of pointer to object.  */
502#if IN_GENGTYPE
503{"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
504{"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
505#else
506#define DEF_VEC_P(T) 							  \
507static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
508{									  \
509  (void)((T)1 == (void *)1);						  \
510}									  \
511									  \
512VEC_T_GTY(T,base);							  \
513VEC_TA_GTY(T,base,none,);						  \
514DEF_VEC_FUNC_P(T)							  \
515struct vec_swallow_trailing_semi
516#define DEF_VEC_ALLOC_P(T,A)						  \
517VEC_TA_GTY(T,base,A,);							  \
518DEF_VEC_ALLOC_FUNC_P(T,A)						  \
519struct vec_swallow_trailing_semi
520#endif
521
522#define DEF_VEC_FUNC_P(T)						  \
523static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
524{									  \
525  return vec_ ? vec_->num : 0;						  \
526}									  \
527									  \
528static inline T VEC_OP (T,base,last)					  \
529     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
530{									  \
531  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
532  									  \
533  return vec_->vec[vec_->num - 1];					  \
534}									  \
535									  \
536static inline T VEC_OP (T,base,index)					  \
537     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
538{									  \
539  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
540  									  \
541  return vec_->vec[ix_];						  \
542}									  \
543									  \
544static inline int VEC_OP (T,base,iterate)			  	  \
545     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
546{									  \
547  if (vec_ && ix_ < vec_->num)						  \
548    {									  \
549      *ptr = vec_->vec[ix_];						  \
550      return 1;								  \
551    }									  \
552  else									  \
553    {									  \
554      *ptr = 0;								  \
555      return 0;								  \
556    }									  \
557}									  \
558									  \
559static inline size_t VEC_OP (T,base,embedded_size)			  \
560     (int alloc_)							  \
561{									  \
562  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
563}									  \
564									  \
565static inline void VEC_OP (T,base,embedded_init)			  \
566     (VEC(T,base) *vec_, int alloc_)					  \
567{									  \
568  vec_->num = 0;							  \
569  vec_->alloc = alloc_;							  \
570}									  \
571									  \
572static inline int VEC_OP (T,base,space)	       				  \
573     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
574{									  \
575  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
576  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
577}									  \
578									  \
579static inline T *VEC_OP (T,base,quick_push)				  \
580     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
581{									  \
582  T *slot_;								  \
583  									  \
584  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
585  slot_ = &vec_->vec[vec_->num++];					  \
586  *slot_ = obj_;							  \
587  									  \
588  return slot_;								  \
589}									  \
590									  \
591static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
592{									  \
593  T obj_;								  \
594									  \
595  VEC_ASSERT (vec_->num, "pop", T, base);				  \
596  obj_ = vec_->vec[--vec_->num];					  \
597									  \
598  return obj_;								  \
599}									  \
600									  \
601static inline void VEC_OP (T,base,truncate)				  \
602     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
603{									  \
604  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
605  if (vec_)								  \
606    vec_->num = size_;							  \
607}									  \
608									  \
609static inline T VEC_OP (T,base,replace)		  	     		  \
610     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
611{									  \
612  T old_obj_;								  \
613									  \
614  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
615  old_obj_ = vec_->vec[ix_];						  \
616  vec_->vec[ix_] = obj_;						  \
617									  \
618  return old_obj_;							  \
619}									  \
620									  \
621static inline T *VEC_OP (T,base,quick_insert)				  \
622     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
623{									  \
624  T *slot_;								  \
625									  \
626  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
627  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
628  slot_ = &vec_->vec[ix_];						  \
629  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
630  *slot_ = obj_;							  \
631  									  \
632  return slot_;								  \
633}									  \
634									  \
635static inline T VEC_OP (T,base,ordered_remove)				  \
636     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
637{									  \
638  T *slot_;								  \
639  T obj_;								  \
640									  \
641  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
642  slot_ = &vec_->vec[ix_];						  \
643  obj_ = *slot_;							  \
644  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
645									  \
646  return obj_;								  \
647}									  \
648									  \
649static inline T VEC_OP (T,base,unordered_remove)			  \
650     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
651{									  \
652  T *slot_;								  \
653  T obj_;								  \
654									  \
655  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
656  slot_ = &vec_->vec[ix_];						  \
657  obj_ = *slot_;							  \
658  *slot_ = vec_->vec[--vec_->num];					  \
659									  \
660  return obj_;								  \
661}									  \
662									  \
663static inline void VEC_OP (T,base,block_remove)				  \
664     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
665{									  \
666  T *slot_;								  \
667									  \
668  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
669  slot_ = &vec_->vec[ix_];						  \
670  vec_->num -= len_;							  \
671  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
672}									  \
673									  \
674static inline T *VEC_OP (T,base,address)				  \
675     (VEC(T,base) *vec_)						  \
676{									  \
677  return vec_ ? vec_->vec : 0;						  \
678}									  \
679									  \
680static inline unsigned VEC_OP (T,base,lower_bound)			  \
681     (VEC(T,base) *vec_, const T obj_,					  \
682      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
683{									  \
684   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
685   unsigned int half_, middle_;						  \
686   unsigned int first_ = 0;						  \
687   while (len_ > 0)							  \
688     {									  \
689        T middle_elem_;							  \
690        half_ = len_ >> 1;						  \
691        middle_ = first_;						  \
692        middle_ += half_;						  \
693        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
694        if (lessthan_ (middle_elem_, obj_))				  \
695          {								  \
696             first_ = middle_;						  \
697             ++first_;							  \
698             len_ = len_ - half_ - 1;					  \
699          }								  \
700        else								  \
701          len_ = half_;							  \
702     }									  \
703   return first_;							  \
704}
705
706#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
707static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
708     (int alloc_ MEM_STAT_DECL)						  \
709{									  \
710  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
711						 PASS_MEM_STAT);	  \
712}									  \
713									  \
714static inline void VEC_OP (T,A,free)					  \
715     (VEC(T,A) **vec_)							  \
716{									  \
717  if (*vec_)								  \
718    vec_##A##_free (*vec_);						  \
719  *vec_ = NULL;								  \
720}									  \
721									  \
722static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
723{									  \
724  size_t len_ = vec_ ? vec_->num : 0;					  \
725  VEC (T,A) *new_vec_ = NULL;						  \
726									  \
727  if (len_)								  \
728    {									  \
729      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
730			       (NULL, len_ PASS_MEM_STAT));		  \
731									  \
732      new_vec_->base.num = len_;					  \
733      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
734    }									  \
735  return new_vec_;							  \
736}									  \
737									  \
738static inline int VEC_OP (T,A,reserve)	       				  \
739     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
740{									  \
741  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
742				       VEC_CHECK_PASS);			  \
743		  							  \
744  if (extend)	  							  \
745    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
746		  							  \
747  return extend;							  \
748}									  \
749									  \
750static inline int VEC_OP (T,A,reserve_exact)  				  \
751     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
752{									  \
753  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
754				       VEC_CHECK_PASS);			  \
755		  							  \
756  if (extend)	  							  \
757    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
758						    PASS_MEM_STAT);	  \
759		  							  \
760  return extend;							  \
761}									  \
762									  \
763static inline void VEC_OP (T,A,safe_grow)				  \
764     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
765{									  \
766  VEC_ASSERT (size_ >= 0						  \
767	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
768						 "grow", T, A);		  \
769  VEC_OP (T,A,reserve_exact) (vec_,					  \
770			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
771			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
772  VEC_BASE (*vec_)->num = size_;					  \
773}									  \
774									  \
775static inline T *VEC_OP (T,A,safe_push)					  \
776     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
777{									  \
778  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
779									  \
780  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
781}									  \
782									  \
783static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
784     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
785{									  \
786  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
787									  \
788  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
789 				       VEC_CHECK_PASS);			  \
790}
791
792/* Vector of object.  */
793#if IN_GENGTYPE
794{"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
795{"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
796#else
797#define DEF_VEC_O(T)							  \
798VEC_T_GTY(T,base);							  \
799VEC_TA_GTY(T,base,none,);						  \
800DEF_VEC_FUNC_O(T)							  \
801struct vec_swallow_trailing_semi
802#define DEF_VEC_ALLOC_O(T,A)						  \
803VEC_TA_GTY(T,base,A,);							  \
804DEF_VEC_ALLOC_FUNC_O(T,A)						  \
805struct vec_swallow_trailing_semi
806#endif
807
808#define DEF_VEC_FUNC_O(T)						  \
809static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
810{									  \
811  return vec_ ? vec_->num : 0;						  \
812}									  \
813									  \
814static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
815{									  \
816  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
817  									  \
818  return &vec_->vec[vec_->num - 1];					  \
819}									  \
820									  \
821static inline T *VEC_OP (T,base,index)					  \
822     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
823{									  \
824  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
825  									  \
826  return &vec_->vec[ix_];						  \
827}									  \
828									  \
829static inline int VEC_OP (T,base,iterate)			     	  \
830     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
831{									  \
832  if (vec_ && ix_ < vec_->num)						  \
833    {									  \
834      *ptr = &vec_->vec[ix_];						  \
835      return 1;								  \
836    }									  \
837  else									  \
838    {									  \
839      *ptr = 0;								  \
840      return 0;								  \
841    }									  \
842}									  \
843									  \
844static inline size_t VEC_OP (T,base,embedded_size)			  \
845     (int alloc_)							  \
846{									  \
847  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
848}									  \
849									  \
850static inline void VEC_OP (T,base,embedded_init)			  \
851     (VEC(T,base) *vec_, int alloc_)					  \
852{									  \
853  vec_->num = 0;							  \
854  vec_->alloc = alloc_;							  \
855}									  \
856									  \
857static inline int VEC_OP (T,base,space)	       				  \
858     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
859{									  \
860  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
861  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
862}									  \
863									  \
864static inline T *VEC_OP (T,base,quick_push)				  \
865     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
866{									  \
867  T *slot_;								  \
868  									  \
869  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
870  slot_ = &vec_->vec[vec_->num++];					  \
871  if (obj_)								  \
872    *slot_ = *obj_;							  \
873  									  \
874  return slot_;								  \
875}									  \
876									  \
877static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
878{									  \
879  VEC_ASSERT (vec_->num, "pop", T, base);				  \
880  --vec_->num;								  \
881}									  \
882									  \
883static inline void VEC_OP (T,base,truncate)				  \
884     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
885{									  \
886  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
887  if (vec_)								  \
888    vec_->num = size_;							  \
889}									  \
890									  \
891static inline T *VEC_OP (T,base,replace)				  \
892     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
893{									  \
894  T *slot_;								  \
895									  \
896  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
897  slot_ = &vec_->vec[ix_];						  \
898  if (obj_)								  \
899    *slot_ = *obj_;							  \
900									  \
901  return slot_;								  \
902}									  \
903									  \
904static inline T *VEC_OP (T,base,quick_insert)				  \
905     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
906{									  \
907  T *slot_;								  \
908									  \
909  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
910  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
911  slot_ = &vec_->vec[ix_];						  \
912  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
913  if (obj_)								  \
914    *slot_ = *obj_;							  \
915  									  \
916  return slot_;								  \
917}									  \
918									  \
919static inline void VEC_OP (T,base,ordered_remove)			  \
920     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
921{									  \
922  T *slot_;								  \
923									  \
924  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
925  slot_ = &vec_->vec[ix_];						  \
926  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
927}									  \
928									  \
929static inline void VEC_OP (T,base,unordered_remove)			  \
930     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
931{									  \
932  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
933  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
934}									  \
935									  \
936static inline void VEC_OP (T,base,block_remove)				  \
937     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
938{									  \
939  T *slot_;								  \
940									  \
941  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
942  slot_ = &vec_->vec[ix_];						  \
943  vec_->num -= len_;							  \
944  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
945}									  \
946									  \
947static inline T *VEC_OP (T,base,address)				  \
948     (VEC(T,base) *vec_)						  \
949{									  \
950  return vec_ ? vec_->vec : 0;						  \
951}									  \
952									  \
953static inline unsigned VEC_OP (T,base,lower_bound)			  \
954     (VEC(T,base) *vec_, const T *obj_,					  \
955      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
956{									  \
957   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
958   unsigned int half_, middle_;						  \
959   unsigned int first_ = 0;						  \
960   while (len_ > 0)							  \
961     {									  \
962        T *middle_elem_;						  \
963        half_ = len_ >> 1;						  \
964        middle_ = first_;						  \
965        middle_ += half_;						  \
966        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
967        if (lessthan_ (middle_elem_, obj_))				  \
968          {								  \
969             first_ = middle_;						  \
970             ++first_;							  \
971             len_ = len_ - half_ - 1;					  \
972          }								  \
973        else								  \
974          len_ = half_;							  \
975     }									  \
976   return first_;							  \
977}
978
979#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
980static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
981     (int alloc_ MEM_STAT_DECL)						  \
982{									  \
983  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
984						 offsetof (VEC(T,A),base.vec), \
985						 sizeof (T)		  \
986						 PASS_MEM_STAT);	  \
987}									  \
988									  \
989static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
990{									  \
991  size_t len_ = vec_ ? vec_->num : 0;					  \
992  VEC (T,A) *new_vec_ = NULL;						  \
993									  \
994  if (len_)								  \
995    {									  \
996      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
997			       (NULL, len_,				  \
998				offsetof (VEC(T,A),base.vec), sizeof (T)  \
999				PASS_MEM_STAT));			  \
1000									  \
1001      new_vec_->base.num = len_;					  \
1002      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1003    }									  \
1004  return new_vec_;							  \
1005}									  \
1006									  \
1007static inline void VEC_OP (T,A,free)					  \
1008     (VEC(T,A) **vec_)							  \
1009{									  \
1010  if (*vec_)								  \
1011    vec_##A##_free (*vec_);						  \
1012  *vec_ = NULL;								  \
1013}									  \
1014									  \
1015static inline int VEC_OP (T,A,reserve)	   	    			  \
1016     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1017{									  \
1018  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1019				       VEC_CHECK_PASS);			  \
1020									  \
1021  if (extend)								  \
1022    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1023			   		      offsetof (VEC(T,A),base.vec),\
1024 					      sizeof (T)		  \
1025			   		      PASS_MEM_STAT);		  \
1026									  \
1027  return extend;							  \
1028}									  \
1029									  \
1030static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1031     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1032{									  \
1033  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1034				       VEC_CHECK_PASS);			  \
1035									  \
1036  if (extend)								  \
1037    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1038			 (*vec_, alloc_,				  \
1039			  offsetof (VEC(T,A),base.vec),			  \
1040			  sizeof (T) PASS_MEM_STAT);			  \
1041									  \
1042  return extend;							  \
1043}									  \
1044									  \
1045static inline void VEC_OP (T,A,safe_grow)				  \
1046     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1047{									  \
1048  VEC_ASSERT (size_ >= 0						  \
1049	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1050						 "grow", T, A);		  \
1051  VEC_OP (T,A,reserve_exact) (vec_,					  \
1052			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1053			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1054  VEC_BASE (*vec_)->num = size_;					  \
1055}									  \
1056									  \
1057static inline T *VEC_OP (T,A,safe_push)					  \
1058     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1059{									  \
1060  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1061									  \
1062  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1063}									  \
1064									  \
1065static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1066     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
1067 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1068{									  \
1069  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1070									  \
1071  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1072				       VEC_CHECK_PASS);			  \
1073}
1074
1075#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
1076static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
1077     (int alloc_ MEM_STAT_DECL)						  \
1078{									  \
1079  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
1080		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
1081		       sizeof (T) PASS_MEM_STAT);			  \
1082}									  \
1083									  \
1084static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1085{									  \
1086  size_t len_ = vec_ ? vec_->num : 0;					  \
1087  VEC (T,A) *new_vec_ = NULL;						  \
1088									  \
1089  if (len_)								  \
1090    {									  \
1091      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
1092			       (NULL, len_,				  \
1093				offsetof (VEC(T,A),base.vec), sizeof (T)  \
1094				PASS_MEM_STAT));			  \
1095									  \
1096      new_vec_->base.num = len_;					  \
1097      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1098    }									  \
1099  return new_vec_;							  \
1100}									  \
1101									  \
1102static inline void VEC_OP (T,A,free)					  \
1103     (VEC(T,A) **vec_)							  \
1104{									  \
1105  if (*vec_)								  \
1106    vec_##A##_free (*vec_);						  \
1107  *vec_ = NULL;								  \
1108}									  \
1109									  \
1110static inline int VEC_OP (T,A,reserve)	   	    			  \
1111     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1112{									  \
1113  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1114				       VEC_CHECK_PASS);			  \
1115									  \
1116  if (extend)								  \
1117    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1118			   		      offsetof (VEC(T,A),base.vec),\
1119 					      sizeof (T)		  \
1120			   		      PASS_MEM_STAT);		  \
1121									  \
1122  return extend;							  \
1123}									  \
1124									  \
1125static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1126     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1127{									  \
1128  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1129				       VEC_CHECK_PASS);			  \
1130									  \
1131  if (extend)								  \
1132    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1133			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
1134			  sizeof (T) PASS_MEM_STAT);			  \
1135									  \
1136  return extend;							  \
1137}									  \
1138									  \
1139static inline void VEC_OP (T,A,safe_grow)				  \
1140     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1141{									  \
1142  VEC_ASSERT (size_ >= 0						  \
1143	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1144						 "grow", T, A);		  \
1145  VEC_OP (T,A,reserve_exact) (vec_,					  \
1146			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1147			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1148  VEC_BASE (*vec_)->num = size_;					  \
1149}									  \
1150									  \
1151static inline T *VEC_OP (T,A,safe_push)					  \
1152     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1153{									  \
1154  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1155									  \
1156  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1157}									  \
1158									  \
1159static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1160     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
1161 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1162{									  \
1163  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1164									  \
1165  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1166				       VEC_CHECK_PASS);			  \
1167}
1168
1169#endif /* GCC_VEC_H */
1170