1/* Dead code elimination pass for the GNU compiler.
2   Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3   Contributed by Ben Elliston <bje@redhat.com>
4   and Andrew MacLeod <amacleod@redhat.com>
5   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it
10under the terms of the GNU General Public License as published by the
11Free Software Foundation; either version 2, or (at your option) any
12later version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT
15ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING.  If not, write to the Free
21Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2202110-1301, USA.  */
23
24/* Dead code elimination.
25
26   References:
27
28     Building an Optimizing Compiler,
29     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31     Advanced Compiler Design and Implementation,
32     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34   Dead-code elimination is the removal of statements which have no
35   impact on the program's output.  "Dead statements" have no impact
36   on the program's output, while "necessary statements" may have
37   impact on the output.
38
39   The algorithm consists of three phases:
40   1. Marking as necessary all statements known to be necessary,
41      e.g. most function calls, writing a value to memory, etc;
42   2. Propagating necessary statements, e.g., the statements
43      giving values to operands in necessary statements; and
44   3. Removing dead statements.  */
45
46#include "config.h"
47#include "system.h"
48#include "coretypes.h"
49#include "tm.h"
50#include "ggc.h"
51
52/* These RTL headers are needed for basic-block.h.  */
53#include "rtl.h"
54#include "tm_p.h"
55#include "hard-reg-set.h"
56#include "obstack.h"
57#include "basic-block.h"
58
59#include "tree.h"
60#include "diagnostic.h"
61#include "tree-flow.h"
62#include "tree-gimple.h"
63#include "tree-dump.h"
64#include "tree-pass.h"
65#include "timevar.h"
66#include "flags.h"
67#include "cfgloop.h"
68#include "tree-scalar-evolution.h"
69
70static struct stmt_stats
71{
72  int total;
73  int total_phis;
74  int removed;
75  int removed_phis;
76} stats;
77
78static VEC(tree,heap) *worklist;
79
80/* Vector indicating an SSA name has already been processed and marked
81   as necessary.  */
82static sbitmap processed;
83
84/* Vector indicating that last_stmt if a basic block has already been
85   marked as necessary.  */
86static sbitmap last_stmt_necessary;
87
88/* Before we can determine whether a control branch is dead, we need to
89   compute which blocks are control dependent on which edges.
90
91   We expect each block to be control dependent on very few edges so we
92   use a bitmap for each block recording its edges.  An array holds the
93   bitmap.  The Ith bit in the bitmap is set if that block is dependent
94   on the Ith edge.  */
95static bitmap *control_dependence_map;
96
97/* Vector indicating that a basic block has already had all the edges
98   processed that it is control dependent on.  */
99static sbitmap visited_control_parents;
100
101/* TRUE if this pass alters the CFG (by removing control statements).
102   FALSE otherwise.
103
104   If this pass alters the CFG, then it will arrange for the dominators
105   to be recomputed.  */
106static bool cfg_altered;
107
108/* Execute code that follows the macro for each edge (given number
109   EDGE_NUMBER within the CODE) for which the block with index N is
110   control dependent.  */
111#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)	\
112  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,	\
113			    (EDGE_NUMBER), (BI))
114
115/* Local function prototypes.  */
116static inline void set_control_dependence_map_bit (basic_block, int);
117static inline void clear_control_dependence_bitmap (basic_block);
118static void find_all_control_dependences (struct edge_list *);
119static void find_control_dependence (struct edge_list *, int);
120static inline basic_block find_pdom (basic_block);
121
122static inline void mark_stmt_necessary (tree, bool);
123static inline void mark_operand_necessary (tree, bool);
124
125static void mark_stmt_if_obviously_necessary (tree, bool);
126static void find_obviously_necessary_stmts (struct edge_list *);
127
128static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
129static void propagate_necessity (struct edge_list *);
130
131static void eliminate_unnecessary_stmts (void);
132static void remove_dead_phis (basic_block);
133static void remove_dead_stmt (block_stmt_iterator *, basic_block);
134
135static void print_stats (void);
136static void tree_dce_init (bool);
137static void tree_dce_done (bool);
138
139/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
140static inline void
141set_control_dependence_map_bit (basic_block bb, int edge_index)
142{
143  if (bb == ENTRY_BLOCK_PTR)
144    return;
145  gcc_assert (bb != EXIT_BLOCK_PTR);
146  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
147}
148
149/* Clear all control dependences for block BB.  */
150static inline void
151clear_control_dependence_bitmap (basic_block bb)
152{
153  bitmap_clear (control_dependence_map[bb->index]);
154}
155
156/* Record all blocks' control dependences on all edges in the edge
157   list EL, ala Morgan, Section 3.6.  */
158
159static void
160find_all_control_dependences (struct edge_list *el)
161{
162  int i;
163
164  for (i = 0; i < NUM_EDGES (el); ++i)
165    find_control_dependence (el, i);
166}
167
168/* Determine all blocks' control dependences on the given edge with edge_list
169   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
170
171static void
172find_control_dependence (struct edge_list *el, int edge_index)
173{
174  basic_block current_block;
175  basic_block ending_block;
176
177  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
178
179  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
180    ending_block = single_succ (ENTRY_BLOCK_PTR);
181  else
182    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
183
184  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
185       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
186       current_block = find_pdom (current_block))
187    {
188      edge e = INDEX_EDGE (el, edge_index);
189
190      /* For abnormal edges, we don't make current_block control
191	 dependent because instructions that throw are always necessary
192	 anyway.  */
193      if (e->flags & EDGE_ABNORMAL)
194	continue;
195
196      set_control_dependence_map_bit (current_block, edge_index);
197    }
198}
199
200/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
201   This function is necessary because some blocks have negative numbers.  */
202
203static inline basic_block
204find_pdom (basic_block block)
205{
206  gcc_assert (block != ENTRY_BLOCK_PTR);
207
208  if (block == EXIT_BLOCK_PTR)
209    return EXIT_BLOCK_PTR;
210  else
211    {
212      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
213      if (! bb)
214	return EXIT_BLOCK_PTR;
215      return bb;
216    }
217}
218
219#define NECESSARY(stmt)		stmt->common.asm_written_flag
220
221/* If STMT is not already marked necessary, mark it, and add it to the
222   worklist if ADD_TO_WORKLIST is true.  */
223static inline void
224mark_stmt_necessary (tree stmt, bool add_to_worklist)
225{
226  gcc_assert (stmt);
227  gcc_assert (!DECL_P (stmt));
228
229  if (NECESSARY (stmt))
230    return;
231
232  if (dump_file && (dump_flags & TDF_DETAILS))
233    {
234      fprintf (dump_file, "Marking useful stmt: ");
235      print_generic_stmt (dump_file, stmt, TDF_SLIM);
236      fprintf (dump_file, "\n");
237    }
238
239  NECESSARY (stmt) = 1;
240  if (add_to_worklist)
241    VEC_safe_push (tree, heap, worklist, stmt);
242}
243
244/* Mark the statement defining operand OP as necessary.  PHIONLY is true
245   if we should only mark it necessary if it is a phi node.  */
246
247static inline void
248mark_operand_necessary (tree op, bool phionly)
249{
250  tree stmt;
251  int ver;
252
253  gcc_assert (op);
254
255  ver = SSA_NAME_VERSION (op);
256  if (TEST_BIT (processed, ver))
257    return;
258  SET_BIT (processed, ver);
259
260  stmt = SSA_NAME_DEF_STMT (op);
261  gcc_assert (stmt);
262
263  if (NECESSARY (stmt)
264      || IS_EMPTY_STMT (stmt)
265      || (phionly && TREE_CODE (stmt) != PHI_NODE))
266    return;
267
268  NECESSARY (stmt) = 1;
269  VEC_safe_push (tree, heap, worklist, stmt);
270}
271
272
273/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
274   it can make other statements necessary.
275
276   If AGGRESSIVE is false, control statements are conservatively marked as
277   necessary.  */
278
279static void
280mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
281{
282  stmt_ann_t ann;
283  tree op;
284
285  /* With non-call exceptions, we have to assume that all statements could
286     throw.  If a statement may throw, it is inherently necessary.  */
287  if (flag_non_call_exceptions
288      && tree_could_throw_p (stmt))
289    {
290      mark_stmt_necessary (stmt, true);
291      return;
292    }
293
294  /* Statements that are implicitly live.  Most function calls, asm and return
295     statements are required.  Labels and BIND_EXPR nodes are kept because
296     they are control flow, and we have no way of knowing whether they can be
297     removed.  DCE can eliminate all the other statements in a block, and CFG
298     can then remove the block and labels.  */
299  switch (TREE_CODE (stmt))
300    {
301    case BIND_EXPR:
302    case LABEL_EXPR:
303    case CASE_LABEL_EXPR:
304      mark_stmt_necessary (stmt, false);
305      return;
306
307    case ASM_EXPR:
308    case RESX_EXPR:
309    case RETURN_EXPR:
310      mark_stmt_necessary (stmt, true);
311      return;
312
313    case CALL_EXPR:
314      /* Most, but not all function calls are required.  Function calls that
315	 produce no result and have no side effects (i.e. const pure
316	 functions) are unnecessary.  */
317      if (TREE_SIDE_EFFECTS (stmt))
318	mark_stmt_necessary (stmt, true);
319      return;
320
321    case MODIFY_EXPR:
322      op = get_call_expr_in (stmt);
323      if (op && TREE_SIDE_EFFECTS (op))
324	{
325	  mark_stmt_necessary (stmt, true);
326	  return;
327	}
328
329      /* These values are mildly magic bits of the EH runtime.  We can't
330	 see the entire lifetime of these values until landing pads are
331	 generated.  */
332      if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
333	  || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
334	{
335	  mark_stmt_necessary (stmt, true);
336	  return;
337	}
338      break;
339
340    case GOTO_EXPR:
341      gcc_assert (!simple_goto_p (stmt));
342      mark_stmt_necessary (stmt, true);
343      return;
344
345    case COND_EXPR:
346      gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
347      /* Fall through.  */
348
349    case SWITCH_EXPR:
350      if (! aggressive)
351	mark_stmt_necessary (stmt, true);
352      break;
353
354    default:
355      break;
356    }
357
358  ann = stmt_ann (stmt);
359
360  /* If the statement has volatile operands, it needs to be preserved.
361     Same for statements that can alter control flow in unpredictable
362     ways.  */
363  if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
364    {
365      mark_stmt_necessary (stmt, true);
366      return;
367    }
368
369  if (is_hidden_global_store (stmt))
370    {
371      mark_stmt_necessary (stmt, true);
372      return;
373    }
374
375  return;
376}
377
378/* Find obviously necessary statements.  These are things like most function
379   calls, and stores to file level variables.
380
381   If EL is NULL, control statements are conservatively marked as
382   necessary.  Otherwise it contains the list of edges used by control
383   dependence analysis.  */
384
385static void
386find_obviously_necessary_stmts (struct edge_list *el)
387{
388  basic_block bb;
389  block_stmt_iterator i;
390  edge e;
391
392  FOR_EACH_BB (bb)
393    {
394      tree phi;
395
396      /* Check any PHI nodes in the block.  */
397      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
398	{
399	  NECESSARY (phi) = 0;
400
401	  /* PHIs for virtual variables do not directly affect code
402	     generation and need not be considered inherently necessary
403	     regardless of the bits set in their decl.
404
405	     Thus, we only need to mark PHIs for real variables which
406	     need their result preserved as being inherently necessary.  */
407	  if (is_gimple_reg (PHI_RESULT (phi))
408	      && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
409	    mark_stmt_necessary (phi, true);
410        }
411
412      /* Check all statements in the block.  */
413      for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
414	{
415	  tree stmt = bsi_stmt (i);
416	  NECESSARY (stmt) = 0;
417	  mark_stmt_if_obviously_necessary (stmt, el != NULL);
418	}
419    }
420
421  if (el)
422    {
423      /* Prevent the loops from being removed.  We must keep the infinite loops,
424	 and we currently do not have a means to recognize the finite ones.  */
425      FOR_EACH_BB (bb)
426	{
427	  edge_iterator ei;
428	  FOR_EACH_EDGE (e, ei, bb->succs)
429	    if (e->flags & EDGE_DFS_BACK)
430	      mark_control_dependent_edges_necessary (e->dest, el);
431	}
432    }
433}
434
435/* Make corresponding control dependent edges necessary.  We only
436   have to do this once for each basic block, so we clear the bitmap
437   after we're done.  */
438static void
439mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
440{
441  bitmap_iterator bi;
442  unsigned edge_number;
443
444  gcc_assert (bb != EXIT_BLOCK_PTR);
445
446  if (bb == ENTRY_BLOCK_PTR)
447    return;
448
449  EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
450    {
451      tree t;
452      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
453
454      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
455	continue;
456      SET_BIT (last_stmt_necessary, cd_bb->index);
457
458      t = last_stmt (cd_bb);
459      if (t && is_ctrl_stmt (t))
460	mark_stmt_necessary (t, true);
461    }
462}
463
464/* Propagate necessity using the operands of necessary statements.  Process
465   the uses on each statement in the worklist, and add all feeding statements
466   which contribute to the calculation of this value to the worklist.
467
468   In conservative mode, EL is NULL.  */
469
470static void
471propagate_necessity (struct edge_list *el)
472{
473  tree i;
474  bool aggressive = (el ? true : false);
475
476  if (dump_file && (dump_flags & TDF_DETAILS))
477    fprintf (dump_file, "\nProcessing worklist:\n");
478
479  while (VEC_length (tree, worklist) > 0)
480    {
481      /* Take `i' from worklist.  */
482      i = VEC_pop (tree, worklist);
483
484      if (dump_file && (dump_flags & TDF_DETAILS))
485	{
486	  fprintf (dump_file, "processing: ");
487	  print_generic_stmt (dump_file, i, TDF_SLIM);
488	  fprintf (dump_file, "\n");
489	}
490
491      if (aggressive)
492	{
493	  /* Mark the last statements of the basic blocks that the block
494	     containing `i' is control dependent on, but only if we haven't
495	     already done so.  */
496	  basic_block bb = bb_for_stmt (i);
497	  if (bb != ENTRY_BLOCK_PTR
498	      && ! TEST_BIT (visited_control_parents, bb->index))
499	    {
500	      SET_BIT (visited_control_parents, bb->index);
501	      mark_control_dependent_edges_necessary (bb, el);
502	    }
503	}
504
505      if (TREE_CODE (i) == PHI_NODE)
506	{
507	  /* PHI nodes are somewhat special in that each PHI alternative has
508	     data and control dependencies.  All the statements feeding the
509	     PHI node's arguments are always necessary.  In aggressive mode,
510	     we also consider the control dependent edges leading to the
511	     predecessor block associated with each PHI alternative as
512	     necessary.  */
513	  int k;
514	  for (k = 0; k < PHI_NUM_ARGS (i); k++)
515            {
516	      tree arg = PHI_ARG_DEF (i, k);
517	      if (TREE_CODE (arg) == SSA_NAME)
518		mark_operand_necessary (arg, false);
519	    }
520
521	  if (aggressive)
522	    {
523	      for (k = 0; k < PHI_NUM_ARGS (i); k++)
524		{
525		  basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
526		  if (arg_bb != ENTRY_BLOCK_PTR
527		      && ! TEST_BIT (visited_control_parents, arg_bb->index))
528		    {
529		      SET_BIT (visited_control_parents, arg_bb->index);
530		      mark_control_dependent_edges_necessary (arg_bb, el);
531		    }
532		}
533	    }
534	}
535      else
536	{
537	  /* Propagate through the operands.  Examine all the USE, VUSE and
538	     V_MAY_DEF operands in this statement.  Mark all the statements
539	     which feed this statement's uses as necessary.  */
540	  ssa_op_iter iter;
541	  tree use;
542
543	  /* The operands of V_MAY_DEF expressions are also needed as they
544	     represent potential definitions that may reach this
545	     statement (V_MAY_DEF operands allow us to follow def-def
546	     links).  */
547
548	  FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
549	    mark_operand_necessary (use, false);
550	}
551    }
552}
553
554
555/* Propagate necessity around virtual phi nodes used in kill operands.
556   The reason this isn't done during propagate_necessity is because we don't
557   want to keep phis around that are just there for must-defs, unless we
558   absolutely have to.  After we've rewritten the reaching definitions to be
559   correct in the previous part of the fixup routine, we can simply propagate
560   around the information about which of these virtual phi nodes are really
561   used, and set the NECESSARY flag accordingly.
562   Note that we do the minimum here to ensure that we keep alive the phis that
563   are actually used in the corrected SSA form.  In particular, some of these
564   phis may now have all of the same operand, and will be deleted by some
565   other pass.  */
566
567static void
568mark_really_necessary_kill_operand_phis (void)
569{
570  basic_block bb;
571  int i;
572
573  /* Seed the worklist with the new virtual phi arguments and virtual
574     uses */
575  FOR_EACH_BB (bb)
576    {
577      block_stmt_iterator bsi;
578      tree phi;
579
580      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
581	{
582	  if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
583	    {
584	      for (i = 0; i < PHI_NUM_ARGS (phi); i++)
585		mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
586	    }
587	}
588
589      for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
590	{
591	  tree stmt = bsi_stmt (bsi);
592
593	  if (NECESSARY (stmt))
594	    {
595	      use_operand_p use_p;
596	      ssa_op_iter iter;
597	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
598					SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
599		{
600		  tree use = USE_FROM_PTR (use_p);
601		  mark_operand_necessary (use, true);
602		}
603	    }
604	}
605    }
606
607  /* Mark all virtual phis still in use as necessary, and all of their
608     arguments that are phis as necessary.  */
609  while (VEC_length (tree, worklist) > 0)
610    {
611      tree use = VEC_pop (tree, worklist);
612
613      for (i = 0; i < PHI_NUM_ARGS (use); i++)
614	mark_operand_necessary (PHI_ARG_DEF (use, i), true);
615    }
616}
617
618
619
620
621/* Eliminate unnecessary statements. Any instruction not marked as necessary
622   contributes nothing to the program, and can be deleted.  */
623
624static void
625eliminate_unnecessary_stmts (void)
626{
627  basic_block bb;
628  block_stmt_iterator i;
629
630  if (dump_file && (dump_flags & TDF_DETAILS))
631    fprintf (dump_file, "\nEliminating unnecessary statements:\n");
632
633  clear_special_calls ();
634  FOR_EACH_BB (bb)
635    {
636      /* Remove dead PHI nodes.  */
637      remove_dead_phis (bb);
638    }
639
640  FOR_EACH_BB (bb)
641    {
642      /* Remove dead statements.  */
643      for (i = bsi_start (bb); ! bsi_end_p (i) ; )
644	{
645         tree t = bsi_stmt (i);
646
647         stats.total++;
648
649         /* If `i' is not necessary then remove it.  */
650         if (! NECESSARY (t))
651           remove_dead_stmt (&i, bb);
652         else
653           {
654             tree call = get_call_expr_in (t);
655             if (call)
656               notice_special_calls (call);
657             bsi_next (&i);
658           }
659	}
660    }
661 }
662
663/* Remove dead PHI nodes from block BB.  */
664
665static void
666remove_dead_phis (basic_block bb)
667{
668  tree prev, phi;
669
670  prev = NULL_TREE;
671  phi = phi_nodes (bb);
672  while (phi)
673    {
674      stats.total_phis++;
675
676      if (! NECESSARY (phi))
677	{
678	  tree next = PHI_CHAIN (phi);
679
680	  if (dump_file && (dump_flags & TDF_DETAILS))
681	    {
682	      fprintf (dump_file, "Deleting : ");
683	      print_generic_stmt (dump_file, phi, TDF_SLIM);
684	      fprintf (dump_file, "\n");
685	    }
686
687	  remove_phi_node (phi, prev);
688	  stats.removed_phis++;
689	  phi = next;
690	}
691      else
692	{
693	  prev = phi;
694	  phi = PHI_CHAIN (phi);
695	}
696    }
697}
698
699/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
700   containing I so that we don't have to look it up.  */
701
702static void
703remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
704{
705  tree t = bsi_stmt (*i);
706  def_operand_p def_p;
707
708  ssa_op_iter iter;
709
710  if (dump_file && (dump_flags & TDF_DETAILS))
711    {
712      fprintf (dump_file, "Deleting : ");
713      print_generic_stmt (dump_file, t, TDF_SLIM);
714      fprintf (dump_file, "\n");
715    }
716
717  stats.removed++;
718
719  /* If we have determined that a conditional branch statement contributes
720     nothing to the program, then we not only remove it, but we also change
721     the flow graph so that the current block will simply fall-thru to its
722     immediate post-dominator.  The blocks we are circumventing will be
723     removed by cleanup_tree_cfg if this change in the flow graph makes them
724     unreachable.  */
725  if (is_ctrl_stmt (t))
726    {
727      basic_block post_dom_bb;
728
729      /* The post dominance info has to be up-to-date.  */
730      gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
731      /* Get the immediate post dominator of bb.  */
732      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
733
734      /* There are three particularly problematical cases.
735
736	 1. Blocks that do not have an immediate post dominator.  This
737	    can happen with infinite loops.
738
739	 2. Blocks that are only post dominated by the exit block.  These
740	    can also happen for infinite loops as we create fake edges
741	    in the dominator tree.
742
743	 3. If the post dominator has PHI nodes we may be able to compute
744	    the right PHI args for them.
745
746
747	 In each of these cases we must remove the control statement
748	 as it may reference SSA_NAMEs which are going to be removed and
749	 we remove all but one outgoing edge from the block.  */
750      if (! post_dom_bb
751	  || post_dom_bb == EXIT_BLOCK_PTR
752	  || phi_nodes (post_dom_bb))
753	;
754      else
755	{
756	  /* Redirect the first edge out of BB to reach POST_DOM_BB.  */
757	  redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
758	  PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
759	}
760      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
761      EDGE_SUCC (bb, 0)->count = bb->count;
762
763      /* The edge is no longer associated with a conditional, so it does
764	 not have TRUE/FALSE flags.  */
765      EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
766
767      /* The lone outgoing edge from BB will be a fallthru edge.  */
768      EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
769
770      /* Remove the remaining the outgoing edges.  */
771      while (!single_succ_p (bb))
772	{
773	  /* FIXME.  When we remove the edge, we modify the CFG, which
774	     in turn modifies the dominator and post-dominator tree.
775	     Is it safe to postpone recomputing the dominator and
776	     post-dominator tree until the end of this pass given that
777	     the post-dominators are used above?  */
778	  cfg_altered = true;
779          remove_edge (EDGE_SUCC (bb, 1));
780	}
781    }
782
783  FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
784    {
785      tree def = DEF_FROM_PTR (def_p);
786      mark_sym_for_renaming (SSA_NAME_VAR (def));
787    }
788  bsi_remove (i, true);
789  release_defs (t);
790}
791
792/* Print out removed statement statistics.  */
793
794static void
795print_stats (void)
796{
797  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
798    {
799      float percg;
800
801      percg = ((float) stats.removed / (float) stats.total) * 100;
802      fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
803	       stats.removed, stats.total, (int) percg);
804
805      if (stats.total_phis == 0)
806	percg = 0;
807      else
808	percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
809
810      fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
811	       stats.removed_phis, stats.total_phis, (int) percg);
812    }
813}
814
815/* Initialization for this pass.  Set up the used data structures.  */
816
817static void
818tree_dce_init (bool aggressive)
819{
820  memset ((void *) &stats, 0, sizeof (stats));
821
822  if (aggressive)
823    {
824      int i;
825
826      control_dependence_map = XNEWVEC (bitmap, last_basic_block);
827      for (i = 0; i < last_basic_block; ++i)
828	control_dependence_map[i] = BITMAP_ALLOC (NULL);
829
830      last_stmt_necessary = sbitmap_alloc (last_basic_block);
831      sbitmap_zero (last_stmt_necessary);
832    }
833
834  processed = sbitmap_alloc (num_ssa_names + 1);
835  sbitmap_zero (processed);
836
837  worklist = VEC_alloc (tree, heap, 64);
838  cfg_altered = false;
839}
840
841/* Cleanup after this pass.  */
842
843static void
844tree_dce_done (bool aggressive)
845{
846  if (aggressive)
847    {
848      int i;
849
850      for (i = 0; i < last_basic_block; ++i)
851	BITMAP_FREE (control_dependence_map[i]);
852      free (control_dependence_map);
853
854      sbitmap_free (visited_control_parents);
855      sbitmap_free (last_stmt_necessary);
856    }
857
858  sbitmap_free (processed);
859
860  VEC_free (tree, heap, worklist);
861}
862
863/* Main routine to eliminate dead code.
864
865   AGGRESSIVE controls the aggressiveness of the algorithm.
866   In conservative mode, we ignore control dependence and simply declare
867   all but the most trivially dead branches necessary.  This mode is fast.
868   In aggressive mode, control dependences are taken into account, which
869   results in more dead code elimination, but at the cost of some time.
870
871   FIXME: Aggressive mode before PRE doesn't work currently because
872	  the dominance info is not invalidated after DCE1.  This is
873	  not an issue right now because we only run aggressive DCE
874	  as the last tree SSA pass, but keep this in mind when you
875	  start experimenting with pass ordering.  */
876
877static void
878perform_tree_ssa_dce (bool aggressive)
879{
880  struct edge_list *el = NULL;
881
882  tree_dce_init (aggressive);
883
884  if (aggressive)
885    {
886      /* Compute control dependence.  */
887      timevar_push (TV_CONTROL_DEPENDENCES);
888      calculate_dominance_info (CDI_POST_DOMINATORS);
889      el = create_edge_list ();
890      find_all_control_dependences (el);
891      timevar_pop (TV_CONTROL_DEPENDENCES);
892
893      visited_control_parents = sbitmap_alloc (last_basic_block);
894      sbitmap_zero (visited_control_parents);
895
896      mark_dfs_back_edges ();
897    }
898
899  find_obviously_necessary_stmts (el);
900
901  propagate_necessity (el);
902
903  mark_really_necessary_kill_operand_phis ();
904  eliminate_unnecessary_stmts ();
905
906  if (aggressive)
907    free_dominance_info (CDI_POST_DOMINATORS);
908
909  /* If we removed paths in the CFG, then we need to update
910     dominators as well.  I haven't investigated the possibility
911     of incrementally updating dominators.  */
912  if (cfg_altered)
913    free_dominance_info (CDI_DOMINATORS);
914
915  /* Debugging dumps.  */
916  if (dump_file)
917    print_stats ();
918
919  tree_dce_done (aggressive);
920
921  free_edge_list (el);
922}
923
924/* Pass entry points.  */
925static unsigned int
926tree_ssa_dce (void)
927{
928  perform_tree_ssa_dce (/*aggressive=*/false);
929  return 0;
930}
931
932static unsigned int
933tree_ssa_dce_loop (void)
934{
935  perform_tree_ssa_dce (/*aggressive=*/false);
936  free_numbers_of_iterations_estimates (current_loops);
937  scev_reset ();
938  return 0;
939}
940
941static unsigned int
942tree_ssa_cd_dce (void)
943{
944  perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
945  return 0;
946}
947
948static bool
949gate_dce (void)
950{
951  return flag_tree_dce != 0;
952}
953
954struct tree_opt_pass pass_dce =
955{
956  "dce",				/* name */
957  gate_dce,				/* gate */
958  tree_ssa_dce,				/* execute */
959  NULL,					/* sub */
960  NULL,					/* next */
961  0,					/* static_pass_number */
962  TV_TREE_DCE,				/* tv_id */
963  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
964  0,					/* properties_provided */
965  0,					/* properties_destroyed */
966  0,					/* todo_flags_start */
967  TODO_dump_func
968    | TODO_update_ssa
969    | TODO_cleanup_cfg
970    | TODO_ggc_collect
971    | TODO_verify_ssa
972    | TODO_remove_unused_locals,	/* todo_flags_finish */
973  0					/* letter */
974};
975
976struct tree_opt_pass pass_dce_loop =
977{
978  "dceloop",				/* name */
979  gate_dce,				/* gate */
980  tree_ssa_dce_loop,			/* execute */
981  NULL,					/* sub */
982  NULL,					/* next */
983  0,					/* static_pass_number */
984  TV_TREE_DCE,				/* tv_id */
985  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
986  0,					/* properties_provided */
987  0,					/* properties_destroyed */
988  0,					/* todo_flags_start */
989  TODO_dump_func
990    | TODO_update_ssa
991    | TODO_cleanup_cfg
992    | TODO_verify_ssa,			/* todo_flags_finish */
993  0					/* letter */
994};
995
996struct tree_opt_pass pass_cd_dce =
997{
998  "cddce",				/* name */
999  gate_dce,				/* gate */
1000  tree_ssa_cd_dce,			/* execute */
1001  NULL,					/* sub */
1002  NULL,					/* next */
1003  0,					/* static_pass_number */
1004  TV_TREE_CD_DCE,			/* tv_id */
1005  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
1006  0,					/* properties_provided */
1007  0,					/* properties_destroyed */
1008  0,					/* todo_flags_start */
1009  TODO_dump_func
1010    | TODO_update_ssa
1011    | TODO_cleanup_cfg
1012    | TODO_ggc_collect
1013    | TODO_verify_ssa
1014    | TODO_verify_flow,			/* todo_flags_finish */
1015  0					/* letter */
1016};
1017