1/* Strict aliasing checks.
2   Copyright (C) 2007 Free Software Foundation, Inc.
3   Contributed by Silvius Rus <rus@google.com>.
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING.  If not, write to
19   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20   Boston, MA 02110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "alloc-pool.h"
27#include "tree.h"
28#include "tree-dump.h"
29#include "tree-flow.h"
30#include "params.h"
31#include "function.h"
32#include "expr.h"
33#include "toplev.h"
34#include "diagnostic.h"
35#include "tree-ssa-structalias.h"
36#include "tree-ssa-propagate.h"
37#include "langhooks.h"
38
39/* Module to issue a warning when a program uses data through a type
40   different from the type through which the data were defined.
41   Implements -Wstrict-aliasing and -Wstrict-aliasing=n.
42   These checks only happen when -fstrict-aliasing is present.
43
44   The idea is to use the compiler to identify occurrences of nonstandard
45   aliasing, and report them to programmers.  Programs free of such aliasing
46   are more portable, maintainable, and can usually be optimized better.
47
48   The current, as of April 2007, C and C++ language standards forbid
49   accessing data of type A through an lvalue of another type B,
50   with certain exceptions. See the C Standard ISO/IEC 9899:1999,
51   section 6.5, paragraph 7, and the C++ Standard ISO/IEC 14882:1998,
52   section 3.10, paragraph 15.
53
54   Example 1:*a is used as int but was defined as a float, *b.
55        int* a = ...;
56        float* b = reinterpret_cast<float*> (a);
57        *b = 2.0;
58        return *a
59
60   Unfortunately, the problem is in general undecidable if we take into
61   account arithmetic expressions such as array indices or pointer arithmetic.
62   (It is at least as hard as Peano arithmetic decidability.)
63   Even ignoring arithmetic, the problem is still NP-hard, because it is
64   at least as hard as flow-insensitive may-alias analysis, which was proved
65   NP-hard by Horwitz et al, TOPLAS 1997.
66
67   It is clear that we need to choose some heuristics.
68   Unfortunately, various users have different goals which correspond to
69   different time budgets so a common approach will not suit all.
70   We present the user with three effort/accuracy levels.  By accuracy, we mean
71   a common-sense mix of low count of false positives with a
72   reasonably low number of false negatives.  We are heavily biased
73   towards a low count of false positives.
74   The effort (compilation time) is likely to increase with the level.
75
76   -Wstrict-aliasing=1
77   ===================
78   Most aggressive, least accurate.  Possibly useful when higher levels
79   do not warn but -fstrict-aliasing still breaks the code, as
80   it has very few false negatives.
81   Warn for all bad pointer conversions, even if never dereferenced.
82   Implemented in the front end (c-common.c).
83   Uses alias_sets_might_conflict to compare types.
84
85   -Wstrict-aliasing=2
86   ===================
87   Aggressive, not too precise.
88   May still have many false positives (not as many as level 1 though),
89   and few false negatives (but possibly more than level 1).
90   Runs only in the front end. Uses alias_sets_might_conflict to
91   compare types. Does not check for pointer dereferences.
92   Only warns when an address is taken. Warns about incomplete type punning.
93
94   -Wstrict-aliasing=3 (default)
95   ===================
96   Should have very few false positives and few false negatives.
97   Takes care of the common punn+dereference pattern in the front end:
98   *(int*)&some_float.
99   Takes care of multiple statement cases in the back end,
100   using flow-sensitive points-to information (-O required).
101   Uses alias_sets_conflict_p to compare types and only warns
102   when the converted pointer is dereferenced.
103   Does not warn about incomplete type punning.
104
105   Future improvements can be included by adding higher levels.
106
107   In summary, expression level analysis is performed in the front-end,
108   and multiple-statement analysis is performed in the backend.
109   The remainder of this discussion is only about the backend analysis.
110
111   This implementation uses flow-sensitive points-to information.
112   Flow-sensitivity refers to accesses to the pointer, and not the object
113   pointed.  For instance, we do not warn about the following case.
114
115   Example 2.
116        int* a = (int*)malloc (...);
117        float* b = reinterpret_cast<float*> (a);
118        *b = 2.0;
119        a = (int*)malloc (...);
120        return *a;
121
122   In SSA, it becomes clear that the INT value *A_2 referenced in the
123   return statement is not aliased to the FLOAT defined through *B_1.
124        int* a_1 = (int*)malloc (...);
125        float* b_1 = reinterpret_cast<float*> (a_1);
126        *b_1 = 2.0;
127        a_2 = (int*)malloc (...);
128        return *a_2;
129
130
131   Algorithm Outline
132   =================
133
134   ForEach (ptr, object) in the points-to table
135     If (incompatible_types (*ptr, object))
136       If (referenced (ptr, current function)
137           and referenced (object, current function))
138         Issue warning (ptr, object, reference locations)
139
140   The complexity is:
141   O (sizeof (points-to table)
142      + sizeof (function body) * lookup_time (points-to table))
143
144   Pointer dereference locations are looked up on demand.  The search is
145   a single scan of the function body, in which all references to pointers
146   and objects in the points-to table are recorded.  However, this dominant
147   time factor occurs rarely, only when cross-type aliasing was detected.
148
149
150   Limitations of the Proposed Implementation
151   ==========================================
152
153   1. We do not catch the following case, because -fstrict-aliasing will
154      associate different tags with MEM while building points-to information,
155      thus before we get to analyze it.
156      XXX: this could be solved by either running with -fno-strict-aliasing
157      or by recording the points-to information before splitting the orignal
158      tag based on type.
159
160   Example 3.
161        void* mem = malloc (...);
162	int* pi = reinterpret_cast<int*> (mem);
163	float* b = reinterpret_cast<float*> (mem);
164	*b = 2.0;
165	return *pi+1;
166
167   2. We do not check whether the two conflicting (de)references can
168      reach each other in the control flow sense.  If we fixed limitation
169      1, we would wrongly issue a warning in the following case.
170
171   Example 4.
172        void* raw = malloc (...);
173        if (...) {
174         float* b = reinterpret_cast<float*> (raw);
175         *b = 2.0;
176         return (int)*b;
177        } else {
178         int* a = reinterpret_cast<int*> (raw);
179         *a = 1;
180         return *a;
181
182   3. Only simple types are compared, thus no structures, unions or classes
183      are analyzed.  A first attempt to deal with structures introduced much
184      complication and has not showed much improvement in preliminary tests,
185      so it was left out.
186
187   4. All analysis is intraprocedural.  */
188
189
190/* Local declarations.  */
191static void find_references_in_function (void);
192
193
194
195/* Get main type of tree TYPE, stripping array dimensions and qualifiers.  */
196
197static tree
198get_main_type (tree type)
199{
200  while (TREE_CODE (type) == ARRAY_TYPE)
201    type = TREE_TYPE (type);
202  return TYPE_MAIN_VARIANT (type);
203}
204
205
206/* Get the type of the given object.  If IS_PTR is true, get the type of the
207   object pointed to or referenced by OBJECT instead.
208   For arrays, return the element type.  Ignore all qualifiers.  */
209
210static tree
211get_otype (tree object, bool is_ptr)
212{
213  tree otype = TREE_TYPE (object);
214
215  if (is_ptr)
216    {
217      gcc_assert (POINTER_TYPE_P (otype));
218      otype = TREE_TYPE (otype);
219    }
220  return get_main_type (otype);
221}
222
223
224/* Return true if tree TYPE is struct, class or union.  */
225
226static bool
227struct_class_union_p (tree type)
228{
229  return (TREE_CODE (type) == RECORD_TYPE
230	  || TREE_CODE (type) == UNION_TYPE
231	  || TREE_CODE (type) == QUAL_UNION_TYPE);
232}
233
234
235
236/* Keep data during a search for an aliasing site.
237   RHS = object or pointer aliased.  No LHS is specified because we are only
238   looking in the UseDef paths of a given variable, so LHS will always be
239   an SSA name of the same variable.
240   When IS_RHS_POINTER = true, we are looking for ... = RHS.  Otherwise,
241   we are looking for ... = &RHS.
242   SITE is the output of a search, non-NULL if the search succeeded.  */
243
244struct alias_match
245{
246  tree rhs;
247  bool is_rhs_pointer;
248  tree site;
249};
250
251
252/* Callback for find_alias_site.  Return true if the right hand site
253   of STMT matches DATA.  */
254
255static bool
256find_alias_site_helper (tree var ATTRIBUTE_UNUSED, tree stmt, void *data)
257{
258  struct alias_match *match = (struct alias_match *) data;
259  tree rhs_pointer = get_rhs (stmt);
260  tree to_match = NULL_TREE;
261
262  while (TREE_CODE (rhs_pointer) == NOP_EXPR
263         || TREE_CODE (rhs_pointer) == CONVERT_EXPR
264         || TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
265    rhs_pointer = TREE_OPERAND (rhs_pointer, 0);
266
267  if (!rhs_pointer)
268    /* Not a type conversion.  */
269    return false;
270
271  if (TREE_CODE (rhs_pointer) == ADDR_EXPR && !match->is_rhs_pointer)
272    to_match = TREE_OPERAND (rhs_pointer, 0);
273  else if (POINTER_TYPE_P (rhs_pointer) && match->is_rhs_pointer)
274    to_match = rhs_pointer;
275
276  if (to_match != match->rhs)
277    /* Type conversion, but not a name match.  */
278    return false;
279
280  /* Found it.  */
281  match->site = stmt;
282  return true;
283}
284
285
286/* Find the statement where OBJECT1 gets aliased to OBJECT2.
287   If IS_PTR2 is true, consider OBJECT2 to be the name of a pointer or
288   reference rather than the actual aliased object.
289   For now, just implement the case where OBJECT1 is an SSA name defined
290   by a PHI statement.  */
291
292static tree
293find_alias_site (tree object1, bool is_ptr1 ATTRIBUTE_UNUSED,
294                 tree object2, bool is_ptr2)
295{
296  struct alias_match match;
297
298  match.rhs = object2;
299  match.is_rhs_pointer = is_ptr2;
300  match.site = NULL_TREE;
301
302  if (TREE_CODE (object1) != SSA_NAME)
303    return NULL_TREE;
304
305  walk_use_def_chains (object1, find_alias_site_helper, &match, false);
306  return match.site;
307}
308
309
310/* Structure to store temporary results when trying to figure out whether
311   an object is referenced.  Just its presence in the text is not enough,
312   as we may just be taking its address.  */
313
314struct match_info
315{
316  tree object;
317  bool is_ptr;
318  /* The difference between the number of references to OBJECT
319     and the number of occurences of &OBJECT.  */
320  int found;
321};
322
323
324/* Return the base if EXPR is an SSA name.  Return EXPR otherwise.  */
325
326static tree
327get_ssa_base (tree expr)
328{
329  if (TREE_CODE (expr) == SSA_NAME)
330    return SSA_NAME_VAR (expr);
331  else
332    return expr;
333}
334
335
336/* Record references to objects and pointer dereferences across some piece of
337   code.  The number of references is recorded for each item.
338   References to an object just to take its address are not counted.
339   For instance, if PTR is a pointer and OBJ is an object:
340   1. Expression &obj + *ptr will have the following reference match structure:
341   ptrs: <ptr, 1>
342   objs: <ptr, 1>
343   OBJ does not appear as referenced because we just take its address.
344   2. Expression ptr + *ptr will have the following reference match structure:
345   ptrs: <ptr, 1>
346   objs: <ptr, 2>
347   PTR shows up twice as an object, but is dereferenced only once.
348
349   The elements of the hash tables are tree_map objects.  */
350struct reference_matches
351{
352  htab_t ptrs;
353  htab_t objs;
354};
355
356
357/* Return the match, if any.  Otherwise, return NULL_TREE.  It will
358   return NULL_TREE even when a match was found, if the value associated
359   to KEY is NULL_TREE.  */
360
361static inline tree
362match (htab_t ref_map, tree key)
363{
364  struct tree_map to_find;
365  struct tree_map *found;
366  void **slot = NULL;
367
368  to_find.from = key;
369  to_find.hash = htab_hash_pointer (key);
370  slot = htab_find_slot (ref_map, &to_find, NO_INSERT);
371
372  if (!slot)
373    return NULL_TREE;
374
375  found = (struct tree_map *) *slot;
376  return found->to;
377}
378
379
380/* Set the entry corresponding to KEY, but only if the entry
381   already exists and its value is NULL_TREE.  Otherwise, do nothing.  */
382
383static inline void
384maybe_add_match (htab_t ref_map, struct tree_map *key)
385{
386  struct tree_map *found = htab_find (ref_map, key);
387
388  if (found && !found->to)
389    found->to = key->to;
390}
391
392
393/* Add an entry to HT, with key T and value NULL_TREE.  */
394
395static void
396add_key (htab_t ht, tree t, alloc_pool references_pool)
397{
398  void **slot;
399  struct tree_map *tp = pool_alloc (references_pool);
400
401  tp->from = t;
402  tp->to = NULL_TREE;
403  tp->hash = htab_hash_pointer(tp->from);
404
405  slot = htab_find_slot (ht, tp, INSERT);
406  *slot = (void *) tp;
407}
408
409
410/* Some memory to keep the objects in the reference table.  */
411
412static alloc_pool ref_table_alloc_pool = NULL;
413
414
415/* Get some memory to keep the objects in the reference table.  */
416
417static inline alloc_pool
418reference_table_alloc_pool (bool build)
419{
420  if (ref_table_alloc_pool || !build)
421    return ref_table_alloc_pool;
422
423  ref_table_alloc_pool =
424    create_alloc_pool ("ref_table_alloc_pool", sizeof (struct tree_map), 20);
425
426  return ref_table_alloc_pool;
427}
428
429
430/* Initialize the reference table by adding all pointers in the points-to
431   table as keys, and NULL_TREE as associated values.  */
432
433static struct reference_matches *
434build_reference_table (void)
435{
436  unsigned int i;
437  struct reference_matches *ref_table = NULL;
438  alloc_pool references_pool = reference_table_alloc_pool (true);
439
440  ref_table = XNEW (struct reference_matches);
441  ref_table->objs = htab_create (10, tree_map_hash, tree_map_eq, NULL);
442  ref_table->ptrs = htab_create (10, tree_map_hash, tree_map_eq, NULL);
443
444  for (i = 1; i < num_ssa_names; i++)
445    {
446      tree ptr = ssa_name (i);
447      struct ptr_info_def *pi;
448
449      if (ptr == NULL_TREE)
450	continue;
451
452      pi = SSA_NAME_PTR_INFO (ptr);
453
454      if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
455	{
456	  /* Add pointer to the interesting dereference list.  */
457	  add_key (ref_table->ptrs, ptr, references_pool);
458
459	  /* Add all aliased names to the interesting reference list.  */
460	  if (pi->pt_vars)
461	    {
462	      unsigned ix;
463	      bitmap_iterator bi;
464
465	      EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
466		{
467		  tree alias = referenced_var (ix);
468		  add_key (ref_table->objs, alias, references_pool);
469		}
470	    }
471	}
472    }
473
474  return ref_table;
475}
476
477
478/*  Reference table.  */
479
480static struct reference_matches *ref_table = NULL;
481
482
483/* Clean up the reference table if allocated.  */
484
485static void
486maybe_free_reference_table (void)
487{
488  if (ref_table)
489    {
490      htab_delete (ref_table->ptrs);
491      htab_delete (ref_table->objs);
492      free (ref_table);
493      ref_table = NULL;
494    }
495
496  if (ref_table_alloc_pool)
497    {
498      free_alloc_pool (ref_table_alloc_pool);
499      ref_table_alloc_pool = NULL;
500    }
501}
502
503
504/* Get the reference table.  Initialize it if needed.  */
505
506static inline struct reference_matches *
507reference_table (bool build)
508{
509  if (ref_table || !build)
510    return ref_table;
511
512  ref_table = build_reference_table ();
513  find_references_in_function ();
514  return ref_table;
515}
516
517
518/* Callback for find_references_in_function.
519   Check whether *TP is an object reference or pointer dereference for the
520   variables given in ((struct match_info*)DATA)->OBJS or
521   ((struct match_info*)DATA)->PTRS.  The total number of references
522   is stored in the same structures.  */
523
524static tree
525find_references_in_tree_helper (tree *tp,
526				int *walk_subtrees ATTRIBUTE_UNUSED,
527				void *data)
528{
529  struct tree_map match;
530  static int parent_tree_code = ERROR_MARK;
531
532  /* Do not report references just for the purpose of taking an address.
533     XXX: we rely on the fact that the tree walk is in preorder
534     and that ADDR_EXPR is not a leaf, thus cannot be carried over across
535     walks.  */
536  if (parent_tree_code == ADDR_EXPR)
537    goto finish;
538
539  match.to = (tree) data;
540
541  if (TREE_CODE (*tp) == INDIRECT_REF)
542    {
543      match.from = TREE_OPERAND (*tp, 0);
544      match.hash = htab_hash_pointer (match.from);
545      maybe_add_match (reference_table (true)->ptrs, &match);
546    }
547  else
548    {
549      match.from = *tp;
550      match.hash = htab_hash_pointer (match.from);
551      maybe_add_match (reference_table (true)->objs, &match);
552    }
553
554finish:
555  parent_tree_code = TREE_CODE (*tp);
556  return NULL_TREE;
557}
558
559
560/* Find all the references to aliased variables in the current function.  */
561
562static void
563find_references_in_function (void)
564{
565  basic_block bb;
566  block_stmt_iterator i;
567
568  FOR_EACH_BB (bb)
569    for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
570      walk_tree (bsi_stmt_ptr (i), find_references_in_tree_helper,
571		 (void *) *bsi_stmt_ptr (i), NULL);
572}
573
574
575/* Find the reference site for OBJECT.
576   If IS_PTR is true, look for derferences of OBJECT instead.
577   XXX: only the first site is returned in the current
578   implementation.  If there are no matching sites, return NULL_TREE.  */
579
580static tree
581reference_site (tree object, bool is_ptr)
582{
583  if (is_ptr)
584    return match (reference_table (true)->ptrs, object);
585  else
586    return match (reference_table (true)->objs, object);
587}
588
589
590/* Try to get more location info when something is missing.
591   OBJECT1 and OBJECT2 are aliased names.  If IS_PTR1 or IS_PTR2, the alias
592   is on the memory referenced or pointed to by OBJECT1 and OBJECT2.
593   ALIAS_SITE, DEREF_SITE1 and DEREF_SITE2 are the statements where the
594   alias takes place (some pointer assignment usually) and where the
595   alias is referenced through OBJECT1 and OBJECT2 respectively.
596   REF_TYPE1 and REF_TYPE2 will return the type of the reference at the
597   respective sites.  Only the first matching reference is returned for
598   each name.  If no statement is found, the function header is returned.  */
599
600static void
601maybe_find_missing_stmts (tree object1, bool is_ptr1,
602                          tree object2, bool is_ptr2,
603                          tree *alias_site,
604                          tree *deref_site1,
605                          tree *deref_site2)
606{
607  if (object1 && object2)
608    {
609      if (!*alias_site || !EXPR_HAS_LOCATION (*alias_site))
610	*alias_site = find_alias_site (object1, is_ptr1, object2, is_ptr2);
611
612      if (!*deref_site1 || !EXPR_HAS_LOCATION (*deref_site1))
613	*deref_site1 = reference_site (object1, is_ptr1);
614
615      if (!*deref_site2 || !EXPR_HAS_LOCATION (*deref_site2))
616	*deref_site2 = reference_site (object2, is_ptr2);
617    }
618
619  /* If we could not find the alias site, set it to one of the dereference
620     sites, if available.  */
621  if (!*alias_site)
622    {
623      if (*deref_site1)
624	*alias_site = *deref_site1;
625      else if (*deref_site2)
626	*alias_site = *deref_site2;
627    }
628
629  /* If we could not find the dereference sites, set them to the alias site,
630     if known.  */
631  if (!*deref_site1 && *alias_site)
632    *deref_site1 = *alias_site;
633  if (!*deref_site2 && *alias_site)
634    *deref_site2 = *alias_site;
635}
636
637
638/* Callback for find_first_artificial_name.
639   Find out if there are no artificial names at tree node *T.  */
640
641static tree
642ffan_walker (tree *t,
643             int *go_below ATTRIBUTE_UNUSED,
644             void *data ATTRIBUTE_UNUSED)
645{
646  if (TREE_CODE (*t) == VAR_DECL || TREE_CODE (*t) == PARM_DECL)
647    if (DECL_ARTIFICIAL (*t))
648      return *t;
649
650  return NULL_TREE;
651}
652
653/* Return the first artificial name within EXPR, or NULL_TREE if
654   none exists.  */
655
656static tree
657find_first_artificial_name (tree expr)
658{
659  return walk_tree_without_duplicates (&expr, ffan_walker, NULL);
660}
661
662
663/* Get a name from the original program for VAR.  */
664
665static const char *
666get_var_name (tree var)
667{
668  if (TREE_CODE (var) == SSA_NAME)
669    return get_var_name (get_ssa_base (var));
670
671  if (find_first_artificial_name (var))
672    return "{unknown}";
673
674  if (TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
675    if (DECL_NAME (var))
676      return IDENTIFIER_POINTER (DECL_NAME (var));
677
678  return "{unknown}";
679}
680
681
682/* Return true if VAR contains an artificial name.  */
683
684static bool
685contains_artificial_name_p (tree var)
686{
687  if (TREE_CODE (var) == SSA_NAME)
688    return contains_artificial_name_p (get_ssa_base (var));
689
690  return find_first_artificial_name (var) != NULL_TREE;
691}
692
693
694/* Return "*" if OBJECT is not the actual alias but a pointer to it, or
695   "" otherwise.
696   IS_PTR is true when OBJECT is not the actual alias.
697   In addition to checking IS_PTR, we also make sure that OBJECT is a pointer
698   since IS_PTR would also be true for C++ references, but we should only
699   print a * before a pointer and not before a reference.  */
700
701static const char *
702get_maybe_star_prefix (tree object, bool is_ptr)
703{
704  gcc_assert (object);
705  return (is_ptr
706          && TREE_CODE (TREE_TYPE (object)) == POINTER_TYPE) ? "*" : "";
707}
708
709
710/* Callback for contains_node_type_p.
711   Returns true if *T has tree code *(int*)DATA.  */
712
713static tree
714contains_node_type_p_callback (tree *t,
715			       int *go_below ATTRIBUTE_UNUSED,
716			       void *data)
717{
718  return ((int) TREE_CODE (*t) == *((int *) data)) ? *t : NULL_TREE;
719}
720
721
722/* Return true if T contains a node with tree code TYPE.  */
723
724static bool
725contains_node_type_p (tree t, int type)
726{
727  return (walk_tree_without_duplicates (&t, contains_node_type_p_callback,
728					(void *) &type)
729	  != NULL_TREE);
730}
731
732
733/* Return true if a warning was issued in the front end at STMT.  */
734
735static bool
736already_warned_in_frontend_p (tree stmt)
737{
738  tree rhs_pointer;
739
740  if (stmt == NULL_TREE)
741    return false;
742
743  rhs_pointer = get_rhs (stmt);
744
745  if ((TREE_CODE (rhs_pointer) == NOP_EXPR
746       || TREE_CODE (rhs_pointer) == CONVERT_EXPR
747       || TREE_CODE (rhs_pointer) == VIEW_CONVERT_EXPR)
748      && TREE_NO_WARNING (rhs_pointer))
749    return true;
750  else
751    return false;
752}
753
754
755/* Return true if and only if TYPE is a function or method pointer type,
756   or pointer to a pointer to ... to a function or method.  */
757
758static bool
759is_method_pointer (tree type)
760{
761  while (TREE_CODE (type) == POINTER_TYPE)
762    type = TREE_TYPE (type);
763  return TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == FUNCTION_TYPE;
764}
765
766
767/* Issue a -Wstrict-aliasing warning.
768   OBJECT1 and OBJECT2 are aliased names.
769   If IS_PTR1 and/or IS_PTR2 is true, then the corresponding name
770   OBJECT1/OBJECT2 is a pointer or reference to the aliased memory,
771   rather than actual storage.
772   ALIAS_SITE is a statement where the alias took place.  In the most common
773   case, that is where a pointer was assigned to the address of an object.  */
774
775static bool
776strict_aliasing_warn (tree alias_site,
777                      tree object1, bool is_ptr1,
778                      tree object2, bool is_ptr2,
779		      bool filter_artificials)
780{
781  tree ref_site1 = NULL_TREE;
782  tree ref_site2 = NULL_TREE;
783  const char *name1;
784  const char *name2;
785  location_t alias_loc;
786  location_t ref1_loc;
787  location_t ref2_loc;
788  gcc_assert (object1);
789  gcc_assert (object2);
790
791  if (contains_artificial_name_p (object1)
792      || contains_artificial_name_p (object2))
793    return false;
794
795  name1 = get_var_name (object1);
796  name2 = get_var_name (object2);
797
798  if (is_method_pointer (get_main_type (TREE_TYPE (object2))))
799    return false;
800
801  maybe_find_missing_stmts (object1, is_ptr1, object2, is_ptr2, &alias_site,
802                            &ref_site1, &ref_site2);
803
804  if (!alias_site)
805    return false;
806
807  if (EXPR_HAS_LOCATION (alias_site))
808    alias_loc = EXPR_LOCATION (alias_site);
809  else
810    return false;
811
812  if (EXPR_HAS_LOCATION (ref_site1))
813    ref1_loc = EXPR_LOCATION (ref_site1);
814  else
815    ref1_loc = alias_loc;
816
817  if (EXPR_HAS_LOCATION (ref_site2))
818    ref2_loc = EXPR_LOCATION (ref_site2);
819  else
820    ref2_loc = alias_loc;
821
822  if (already_warned_in_frontend_p (alias_site))
823    return false;
824
825  /* If they are not SSA names, but contain SSA names, drop the warning
826     because it cannot be displayed well.
827     Also drop it if they both contain artificials.
828     XXX: this is a hack, must figure out a better way to display them.  */
829  if (filter_artificials)
830    if ((find_first_artificial_name (get_ssa_base (object1))
831	 && find_first_artificial_name (get_ssa_base (object2)))
832	|| (TREE_CODE (object1) != SSA_NAME
833	    && contains_node_type_p (object1, SSA_NAME))
834	|| (TREE_CODE (object2) != SSA_NAME
835	    && contains_node_type_p (object2, SSA_NAME)))
836      return false;
837
838  /* XXX: In the following format string, %s:%d should be replaced by %H.
839     However, in my tests only the first %H printed ok, while the
840     second and third were printed as blanks.  */
841  warning (OPT_Wstrict_aliasing,
842	   "%Hlikely type-punning may break strict-aliasing rules: "
843	   "object %<%s%s%> of main type %qT is referenced at or around "
844	   "%s:%d and may be "
845	   "aliased to object %<%s%s%> of main type %qT which is referenced "
846	   "at or around %s:%d.",
847	   &alias_loc,
848	   get_maybe_star_prefix (object1, is_ptr1),
849	   name1, get_otype (object1, is_ptr1),
850	   LOCATION_FILE (ref1_loc), LOCATION_LINE (ref1_loc),
851	   get_maybe_star_prefix (object2, is_ptr2),
852	   name2, get_otype (object2, is_ptr2),
853	   LOCATION_FILE (ref2_loc), LOCATION_LINE (ref2_loc));
854
855  return true;
856}
857
858
859
860/* Return true when any objects of TYPE1 and TYPE2 respectively
861   may not be aliased according to the language standard.  */
862
863static bool
864nonstandard_alias_types_p (tree type1, tree type2)
865{
866  HOST_WIDE_INT set1;
867  HOST_WIDE_INT set2;
868
869  if (VOID_TYPE_P (type1) || VOID_TYPE_P (type2))
870    return false;
871
872  set1 = get_alias_set (type1);
873  set2 = get_alias_set (type2);
874  return !alias_sets_conflict_p (set1, set2);
875}
876
877
878
879/* Returns true if the given name is a struct field tag (SFT).  */
880
881static bool
882struct_field_tag_p (tree var)
883{
884  return TREE_CODE (var) == STRUCT_FIELD_TAG;
885}
886
887
888/* Returns true when *PTR may not be aliased to ALIAS.
889   See C standard 6.5p7 and C++ standard 3.10p15.
890   If PTR_PTR is true, ALIAS represents a pointer or reference to the
891   aliased storage rather than its actual name.  */
892
893static bool
894nonstandard_alias_p (tree ptr, tree alias, bool ptr_ptr)
895{
896  /* Find the types to compare.  */
897  tree ptr_type = get_otype (ptr, true);
898  tree alias_type = get_otype (alias, ptr_ptr);
899
900  /* XXX: for now, say it's OK if the alias escapes.
901     Not sure this is needed in general, but otherwise GCC will not
902     bootstrap.  */
903  if (var_ann (get_ssa_base (alias))->escape_mask != NO_ESCAPE)
904      return false;
905
906  /* XXX: don't get into structures for now.  It brings much complication
907     and little benefit.  */
908  if (struct_class_union_p (ptr_type) || struct_class_union_p (alias_type))
909    return false;
910
911  /* XXX: In 4.2.1, field resolution in alias is not as good as in pre-4.3
912     This fixes problems found during the backport, where a pointer to the
913     first field of a struct appears to be aliased to the whole struct.  */
914  if (struct_field_tag_p (alias))
915     return false;
916
917  /* If they are both SSA names of artificials, let it go, the warning
918     is too confusing.  */
919  if (find_first_artificial_name (ptr) && find_first_artificial_name (alias))
920    return false;
921
922  /* Compare the types.  */
923  return nonstandard_alias_types_p (ptr_type, alias_type);
924}
925
926
927/* Return true when we should skip analysis for pointer PTR based on the
928   fact that their alias information *PI is not considered relevant.  */
929
930static bool
931skip_this_pointer (tree ptr ATTRIBUTE_UNUSED, struct ptr_info_def *pi)
932{
933  /* If it is not dereferenced, it is not a problem (locally).  */
934  if (!pi->is_dereferenced)
935    return true;
936
937  /* This would probably cause too many false positives.  */
938  if (pi->value_escapes_p || pi->pt_anything)
939    return true;
940
941  return false;
942}
943
944
945/* Find aliasing to named objects for pointer PTR.  */
946
947static void
948dsa_named_for (tree ptr)
949{
950  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
951
952  if (pi)
953    {
954      if (skip_this_pointer (ptr, pi))
955	return;
956
957      /* For all the variables it could be aliased to.  */
958      if (pi->pt_vars)
959	{
960	  unsigned ix;
961	  bitmap_iterator bi;
962
963	  EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
964	    {
965	      tree alias = referenced_var (ix);
966
967              if (is_global_var (alias))
968                continue;
969
970	      if (nonstandard_alias_p (ptr, alias, false))
971		strict_aliasing_warn (SSA_NAME_DEF_STMT (ptr),
972				      ptr, true, alias, false, true);
973	    }
974	}
975    }
976}
977
978
979/* Detect and report strict aliasing violation of named objects.  */
980
981static void
982detect_strict_aliasing_named (void)
983{
984  unsigned int i;
985
986  for (i = 1; i < num_ssa_names; i++)
987    {
988      tree ptr = ssa_name (i);
989      struct ptr_info_def *pi;
990
991      if (ptr == NULL_TREE)
992	continue;
993
994      pi = SSA_NAME_PTR_INFO (ptr);
995
996      if (!SSA_NAME_IN_FREE_LIST (ptr) && pi && pi->name_mem_tag)
997	dsa_named_for (ptr);
998    }
999}
1000
1001
1002/* Return false only the first time I see each instance of FUNC.  */
1003
1004static bool
1005processed_func_p (tree func)
1006{
1007  static htab_t seen = NULL;
1008  void **slot;
1009
1010  if (!seen)
1011    seen = htab_create (100, htab_hash_pointer, htab_eq_pointer, NULL);
1012
1013  slot = htab_find_slot (seen, func, INSERT);
1014  gcc_assert (slot);
1015
1016  if (*slot)
1017    return true;
1018
1019  *slot = func;
1020  return false;
1021}
1022
1023
1024/* Detect and warn about type-punning using points-to information.  */
1025
1026void
1027strict_aliasing_warning_backend (void)
1028{
1029  if (!(flag_strict_aliasing
1030        && warn_strict_aliasing == 3
1031        && !processed_func_p (current_function_decl)))
1032    return;
1033
1034  detect_strict_aliasing_named ();
1035  maybe_free_reference_table ();
1036}
1037