1/* Chains of recurrences.
2   Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* This file implements operations on chains of recurrences.  Chains
23   of recurrences are used for modeling evolution functions of scalar
24   variables.
25*/
26
27#include "config.h"
28#include "system.h"
29#include "coretypes.h"
30#include "tm.h"
31#include "ggc.h"
32#include "tree.h"
33#include "real.h"
34#include "diagnostic.h"
35#include "cfgloop.h"
36#include "tree-flow.h"
37#include "tree-chrec.h"
38#include "tree-pass.h"
39#include "params.h"
40#include "tree-scalar-evolution.h"
41
42
43
44/* Extended folder for chrecs.  */
45
46/* Determines whether CST is not a constant evolution.  */
47
48static inline bool
49is_not_constant_evolution (tree cst)
50{
51  return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52}
53
54/* Fold CODE for a polynomial function and a constant.  */
55
56static inline tree
57chrec_fold_poly_cst (enum tree_code code,
58		     tree type,
59		     tree poly,
60		     tree cst)
61{
62  gcc_assert (poly);
63  gcc_assert (cst);
64  gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65  gcc_assert (!is_not_constant_evolution (cst));
66  gcc_assert (type == chrec_type (poly));
67
68  switch (code)
69    {
70    case PLUS_EXPR:
71      return build_polynomial_chrec
72	(CHREC_VARIABLE (poly),
73	 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74	 CHREC_RIGHT (poly));
75
76    case MINUS_EXPR:
77      return build_polynomial_chrec
78	(CHREC_VARIABLE (poly),
79	 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80	 CHREC_RIGHT (poly));
81
82    case MULT_EXPR:
83      return build_polynomial_chrec
84	(CHREC_VARIABLE (poly),
85	 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86	 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88    default:
89      return chrec_dont_know;
90    }
91}
92
93/* Fold the addition of two polynomial functions.  */
94
95static inline tree
96chrec_fold_plus_poly_poly (enum tree_code code,
97			   tree type,
98			   tree poly0,
99			   tree poly1)
100{
101  tree left, right;
102
103  gcc_assert (poly0);
104  gcc_assert (poly1);
105  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
106  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
107  gcc_assert (chrec_type (poly0) == chrec_type (poly1));
108  gcc_assert (type == chrec_type (poly0));
109
110  /*
111    {a, +, b}_1 + {c, +, d}_2  ->  {{a, +, b}_1 + c, +, d}_2,
112    {a, +, b}_2 + {c, +, d}_1  ->  {{c, +, d}_1 + a, +, b}_2,
113    {a, +, b}_x + {c, +, d}_x  ->  {a+c, +, b+d}_x.  */
114  if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
115    {
116      if (code == PLUS_EXPR)
117	return build_polynomial_chrec
118	  (CHREC_VARIABLE (poly1),
119	   chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
120	   CHREC_RIGHT (poly1));
121      else
122	return build_polynomial_chrec
123	  (CHREC_VARIABLE (poly1),
124	   chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
125	   chrec_fold_multiply (type, CHREC_RIGHT (poly1),
126				SCALAR_FLOAT_TYPE_P (type)
127				? build_real (type, dconstm1)
128				: build_int_cst_type (type, -1)));
129    }
130
131  if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
132    {
133      if (code == PLUS_EXPR)
134	return build_polynomial_chrec
135	  (CHREC_VARIABLE (poly0),
136	   chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
137	   CHREC_RIGHT (poly0));
138      else
139	return build_polynomial_chrec
140	  (CHREC_VARIABLE (poly0),
141	   chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
142	   CHREC_RIGHT (poly0));
143    }
144
145  if (code == PLUS_EXPR)
146    {
147      left = chrec_fold_plus
148	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
149      right = chrec_fold_plus
150	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
151    }
152  else
153    {
154      left = chrec_fold_minus
155	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
156      right = chrec_fold_minus
157	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
158    }
159
160  if (chrec_zerop (right))
161    return left;
162  else
163    return build_polynomial_chrec
164      (CHREC_VARIABLE (poly0), left, right);
165}
166
167
168
169/* Fold the multiplication of two polynomial functions.  */
170
171static inline tree
172chrec_fold_multiply_poly_poly (tree type,
173			       tree poly0,
174			       tree poly1)
175{
176  tree t0, t1, t2;
177  int var;
178
179  gcc_assert (poly0);
180  gcc_assert (poly1);
181  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
182  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
183  gcc_assert (chrec_type (poly0) == chrec_type (poly1));
184  gcc_assert (type == chrec_type (poly0));
185
186  /* {a, +, b}_1 * {c, +, d}_2  ->  {c*{a, +, b}_1, +, d}_2,
187     {a, +, b}_2 * {c, +, d}_1  ->  {a*{c, +, d}_1, +, b}_2,
188     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
189  if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
190    /* poly0 is a constant wrt. poly1.  */
191    return build_polynomial_chrec
192      (CHREC_VARIABLE (poly1),
193       chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
194       CHREC_RIGHT (poly1));
195
196  if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
197    /* poly1 is a constant wrt. poly0.  */
198    return build_polynomial_chrec
199      (CHREC_VARIABLE (poly0),
200       chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
201       CHREC_RIGHT (poly0));
202
203  /* poly0 and poly1 are two polynomials in the same variable,
204     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
205
206  /* "a*c".  */
207  t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
208
209  /* "a*d + b*c + b*d".  */
210  t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
211  t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
212						       CHREC_RIGHT (poly0),
213						       CHREC_LEFT (poly1)));
214  t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
215						       CHREC_RIGHT (poly0),
216						       CHREC_RIGHT (poly1)));
217  /* "2*b*d".  */
218  t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
219  t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
220			    ? build_real (type, dconst2)
221			    : build_int_cst (type, 2), t2);
222
223  var = CHREC_VARIABLE (poly0);
224  return build_polynomial_chrec (var, t0,
225				 build_polynomial_chrec (var, t1, t2));
226}
227
228/* When the operands are automatically_generated_chrec_p, the fold has
229   to respect the semantics of the operands.  */
230
231static inline tree
232chrec_fold_automatically_generated_operands (tree op0,
233					     tree op1)
234{
235  if (op0 == chrec_dont_know
236      || op1 == chrec_dont_know)
237    return chrec_dont_know;
238
239  if (op0 == chrec_known
240      || op1 == chrec_known)
241    return chrec_known;
242
243  if (op0 == chrec_not_analyzed_yet
244      || op1 == chrec_not_analyzed_yet)
245    return chrec_not_analyzed_yet;
246
247  /* The default case produces a safe result.  */
248  return chrec_dont_know;
249}
250
251/* Fold the addition of two chrecs.  */
252
253static tree
254chrec_fold_plus_1 (enum tree_code code, tree type,
255		   tree op0, tree op1)
256{
257  if (automatically_generated_chrec_p (op0)
258      || automatically_generated_chrec_p (op1))
259    return chrec_fold_automatically_generated_operands (op0, op1);
260
261  switch (TREE_CODE (op0))
262    {
263    case POLYNOMIAL_CHREC:
264      switch (TREE_CODE (op1))
265	{
266	case POLYNOMIAL_CHREC:
267	  return chrec_fold_plus_poly_poly (code, type, op0, op1);
268
269	default:
270	  if (code == PLUS_EXPR)
271	    return build_polynomial_chrec
272	      (CHREC_VARIABLE (op0),
273	       chrec_fold_plus (type, CHREC_LEFT (op0), op1),
274	       CHREC_RIGHT (op0));
275	  else
276	    return build_polynomial_chrec
277	      (CHREC_VARIABLE (op0),
278	       chrec_fold_minus (type, CHREC_LEFT (op0), op1),
279	       CHREC_RIGHT (op0));
280	}
281
282    default:
283      switch (TREE_CODE (op1))
284	{
285	case POLYNOMIAL_CHREC:
286	  if (code == PLUS_EXPR)
287	    return build_polynomial_chrec
288	      (CHREC_VARIABLE (op1),
289	       chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
290	       CHREC_RIGHT (op1));
291	  else
292	    return build_polynomial_chrec
293	      (CHREC_VARIABLE (op1),
294	       chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
295	       chrec_fold_multiply (type, CHREC_RIGHT (op1),
296				    SCALAR_FLOAT_TYPE_P (type)
297				    ? build_real (type, dconstm1)
298				    : build_int_cst_type (type, -1)));
299
300	default:
301	  {
302	    int size = 0;
303	    if ((tree_contains_chrecs (op0, &size)
304		 || tree_contains_chrecs (op1, &size))
305		&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
306	      return build2 (code, type, op0, op1);
307	    else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
308	      return fold_build2 (code, type,
309				  fold_convert (type, op0),
310				  fold_convert (type, op1));
311	    else
312	      return chrec_dont_know;
313	  }
314	}
315    }
316}
317
318/* Fold the addition of two chrecs.  */
319
320tree
321chrec_fold_plus (tree type,
322		 tree op0,
323		 tree op1)
324{
325  if (automatically_generated_chrec_p (op0)
326      || automatically_generated_chrec_p (op1))
327    return chrec_fold_automatically_generated_operands (op0, op1);
328
329  if (integer_zerop (op0))
330    return op1;
331  if (integer_zerop (op1))
332    return op0;
333
334  return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
335}
336
337/* Fold the subtraction of two chrecs.  */
338
339tree
340chrec_fold_minus (tree type,
341		  tree op0,
342		  tree op1)
343{
344  if (automatically_generated_chrec_p (op0)
345      || automatically_generated_chrec_p (op1))
346    return chrec_fold_automatically_generated_operands (op0, op1);
347
348  if (integer_zerop (op1))
349    return op0;
350
351  return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
352}
353
354/* Fold the multiplication of two chrecs.  */
355
356tree
357chrec_fold_multiply (tree type,
358		     tree op0,
359		     tree op1)
360{
361  if (automatically_generated_chrec_p (op0)
362      || automatically_generated_chrec_p (op1))
363    return chrec_fold_automatically_generated_operands (op0, op1);
364
365  switch (TREE_CODE (op0))
366    {
367    case POLYNOMIAL_CHREC:
368      switch (TREE_CODE (op1))
369	{
370	case POLYNOMIAL_CHREC:
371	  return chrec_fold_multiply_poly_poly (type, op0, op1);
372
373	default:
374	  if (integer_onep (op1))
375	    return op0;
376	  if (integer_zerop (op1))
377	    return build_int_cst (type, 0);
378
379	  return build_polynomial_chrec
380	    (CHREC_VARIABLE (op0),
381	     chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
382	     chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
383	}
384
385    default:
386      if (integer_onep (op0))
387	return op1;
388
389      if (integer_zerop (op0))
390    	return build_int_cst (type, 0);
391
392      switch (TREE_CODE (op1))
393	{
394	case POLYNOMIAL_CHREC:
395	  return build_polynomial_chrec
396	    (CHREC_VARIABLE (op1),
397	     chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
398	     chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
399
400	default:
401	  if (integer_onep (op1))
402	    return op0;
403	  if (integer_zerop (op1))
404	    return build_int_cst (type, 0);
405	  return fold_build2 (MULT_EXPR, type, op0, op1);
406	}
407    }
408}
409
410
411
412/* Operations.  */
413
414/* Evaluate the binomial coefficient.  Return NULL_TREE if the intermediate
415   calculation overflows, otherwise return C(n,k) with type TYPE.  */
416
417static tree
418tree_fold_binomial (tree type, tree n, unsigned int k)
419{
420  unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
421  HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
422  unsigned int i;
423  tree res;
424
425  /* Handle the most frequent cases.  */
426  if (k == 0)
427    return build_int_cst (type, 1);
428  if (k == 1)
429    return fold_convert (type, n);
430
431  /* Check that k <= n.  */
432  if (TREE_INT_CST_HIGH (n) == 0
433      && TREE_INT_CST_LOW (n) < k)
434    return NULL_TREE;
435
436  /* Numerator = n.  */
437  lnum = TREE_INT_CST_LOW (n);
438  hnum = TREE_INT_CST_HIGH (n);
439
440  /* Denominator = 2.  */
441  ldenom = 2;
442  hdenom = 0;
443
444  /* Index = Numerator-1.  */
445  if (lnum == 0)
446    {
447      hidx = hnum - 1;
448      lidx = ~ (unsigned HOST_WIDE_INT) 0;
449    }
450  else
451    {
452      hidx = hnum;
453      lidx = lnum - 1;
454    }
455
456  /* Numerator = Numerator*Index = n*(n-1).  */
457  if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
458    return NULL_TREE;
459
460  for (i = 3; i <= k; i++)
461    {
462      /* Index--.  */
463      if (lidx == 0)
464	{
465	  hidx--;
466	  lidx = ~ (unsigned HOST_WIDE_INT) 0;
467	}
468      else
469        lidx--;
470
471      /* Numerator *= Index.  */
472      if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
473	return NULL_TREE;
474
475      /* Denominator *= i.  */
476      mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
477    }
478
479  /* Result = Numerator / Denominator.  */
480  div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
481			&lres, &hres, &ldum, &hdum);
482
483  res = build_int_cst_wide (type, lres, hres);
484  return int_fits_type_p (res, type) ? res : NULL_TREE;
485}
486
487/* Helper function.  Use the Newton's interpolating formula for
488   evaluating the value of the evolution function.  */
489
490static tree
491chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
492{
493  tree arg0, arg1, binomial_n_k;
494  tree type = TREE_TYPE (chrec);
495
496  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
497	 && CHREC_VARIABLE (chrec) > var)
498    chrec = CHREC_LEFT (chrec);
499
500  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
501      && CHREC_VARIABLE (chrec) == var)
502    {
503      arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
504      if (arg0 == chrec_dont_know)
505	return chrec_dont_know;
506      binomial_n_k = tree_fold_binomial (type, n, k);
507      if (!binomial_n_k)
508	return chrec_dont_know;
509      arg1 = fold_build2 (MULT_EXPR, type,
510			  CHREC_LEFT (chrec), binomial_n_k);
511      return chrec_fold_plus (type, arg0, arg1);
512    }
513
514  binomial_n_k = tree_fold_binomial (type, n, k);
515  if (!binomial_n_k)
516    return chrec_dont_know;
517
518  return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
519}
520
521/* Evaluates "CHREC (X)" when the varying variable is VAR.
522   Example:  Given the following parameters,
523
524   var = 1
525   chrec = {3, +, 4}_1
526   x = 10
527
528   The result is given by the Newton's interpolating formula:
529   3 * \binom{10}{0} + 4 * \binom{10}{1}.
530*/
531
532tree
533chrec_apply (unsigned var,
534	     tree chrec,
535	     tree x)
536{
537  tree type = chrec_type (chrec);
538  tree res = chrec_dont_know;
539
540  if (automatically_generated_chrec_p (chrec)
541      || automatically_generated_chrec_p (x)
542
543      /* When the symbols are defined in an outer loop, it is possible
544	 to symbolically compute the apply, since the symbols are
545	 constants with respect to the varying loop.  */
546      || chrec_contains_symbols_defined_in_loop (chrec, var))
547    return chrec_dont_know;
548
549  if (dump_file && (dump_flags & TDF_DETAILS))
550    fprintf (dump_file, "(chrec_apply \n");
551
552  if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
553    x = build_real_from_int_cst (type, x);
554
555  if (evolution_function_is_affine_p (chrec))
556    {
557      /* "{a, +, b} (x)"  ->  "a + b*x".  */
558      x = chrec_convert (type, x, NULL_TREE);
559      res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
560      if (!integer_zerop (CHREC_LEFT (chrec)))
561	res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
562    }
563
564  else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
565    res = chrec;
566
567  else if (TREE_CODE (x) == INTEGER_CST
568	   && tree_int_cst_sgn (x) == 1)
569    /* testsuite/.../ssa-chrec-38.c.  */
570    res = chrec_evaluate (var, chrec, x, 0);
571  else
572    res = chrec_dont_know;
573
574  if (dump_file && (dump_flags & TDF_DETAILS))
575    {
576      fprintf (dump_file, "  (varying_loop = %d\n", var);
577      fprintf (dump_file, ")\n  (chrec = ");
578      print_generic_expr (dump_file, chrec, 0);
579      fprintf (dump_file, ")\n  (x = ");
580      print_generic_expr (dump_file, x, 0);
581      fprintf (dump_file, ")\n  (res = ");
582      print_generic_expr (dump_file, res, 0);
583      fprintf (dump_file, "))\n");
584    }
585
586  return res;
587}
588
589/* Replaces the initial condition in CHREC with INIT_COND.  */
590
591tree
592chrec_replace_initial_condition (tree chrec,
593				 tree init_cond)
594{
595  if (automatically_generated_chrec_p (chrec))
596    return chrec;
597
598  gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
599
600  switch (TREE_CODE (chrec))
601    {
602    case POLYNOMIAL_CHREC:
603      return build_polynomial_chrec
604	(CHREC_VARIABLE (chrec),
605	 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
606	 CHREC_RIGHT (chrec));
607
608    default:
609      return init_cond;
610    }
611}
612
613/* Returns the initial condition of a given CHREC.  */
614
615tree
616initial_condition (tree chrec)
617{
618  if (automatically_generated_chrec_p (chrec))
619    return chrec;
620
621  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
622    return initial_condition (CHREC_LEFT (chrec));
623  else
624    return chrec;
625}
626
627/* Returns a univariate function that represents the evolution in
628   LOOP_NUM.  Mask the evolution of any other loop.  */
629
630tree
631hide_evolution_in_other_loops_than_loop (tree chrec,
632					 unsigned loop_num)
633{
634  if (automatically_generated_chrec_p (chrec))
635    return chrec;
636
637  switch (TREE_CODE (chrec))
638    {
639    case POLYNOMIAL_CHREC:
640      if (CHREC_VARIABLE (chrec) == loop_num)
641	return build_polynomial_chrec
642	  (loop_num,
643	   hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
644						    loop_num),
645	   CHREC_RIGHT (chrec));
646
647      else if (CHREC_VARIABLE (chrec) < loop_num)
648	/* There is no evolution in this loop.  */
649	return initial_condition (chrec);
650
651      else
652	return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
653							loop_num);
654
655    default:
656      return chrec;
657    }
658}
659
660/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
661   true, otherwise returns the initial condition in LOOP_NUM.  */
662
663static tree
664chrec_component_in_loop_num (tree chrec,
665			     unsigned loop_num,
666			     bool right)
667{
668  tree component;
669
670  if (automatically_generated_chrec_p (chrec))
671    return chrec;
672
673  switch (TREE_CODE (chrec))
674    {
675    case POLYNOMIAL_CHREC:
676      if (CHREC_VARIABLE (chrec) == loop_num)
677	{
678	  if (right)
679	    component = CHREC_RIGHT (chrec);
680	  else
681	    component = CHREC_LEFT (chrec);
682
683	  if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
684	      || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
685	    return component;
686
687	  else
688	    return build_polynomial_chrec
689	      (loop_num,
690	       chrec_component_in_loop_num (CHREC_LEFT (chrec),
691					    loop_num,
692					    right),
693	       component);
694	}
695
696      else if (CHREC_VARIABLE (chrec) < loop_num)
697	/* There is no evolution part in this loop.  */
698	return NULL_TREE;
699
700      else
701	return chrec_component_in_loop_num (CHREC_LEFT (chrec),
702					    loop_num,
703					    right);
704
705     default:
706      if (right)
707	return NULL_TREE;
708      else
709	return chrec;
710    }
711}
712
713/* Returns the evolution part in LOOP_NUM.  Example: the call
714   evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
715   {1, +, 2}_1  */
716
717tree
718evolution_part_in_loop_num (tree chrec,
719			    unsigned loop_num)
720{
721  return chrec_component_in_loop_num (chrec, loop_num, true);
722}
723
724/* Returns the initial condition in LOOP_NUM.  Example: the call
725   initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
726   {0, +, 1}_1  */
727
728tree
729initial_condition_in_loop_num (tree chrec,
730			       unsigned loop_num)
731{
732  return chrec_component_in_loop_num (chrec, loop_num, false);
733}
734
735/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
736   This function is essentially used for setting the evolution to
737   chrec_dont_know, for example after having determined that it is
738   impossible to say how many times a loop will execute.  */
739
740tree
741reset_evolution_in_loop (unsigned loop_num,
742			 tree chrec,
743			 tree new_evol)
744{
745  gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
746
747  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
748      && CHREC_VARIABLE (chrec) > loop_num)
749    {
750      tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
751					   new_evol);
752      tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
753					    new_evol);
754      return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
755		     build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
756		     left, right);
757    }
758
759  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
760	 && CHREC_VARIABLE (chrec) == loop_num)
761    chrec = CHREC_LEFT (chrec);
762
763  return build_polynomial_chrec (loop_num, chrec, new_evol);
764}
765
766/* Merges two evolution functions that were found by following two
767   alternate paths of a conditional expression.  */
768
769tree
770chrec_merge (tree chrec1,
771	     tree chrec2)
772{
773  if (chrec1 == chrec_dont_know
774      || chrec2 == chrec_dont_know)
775    return chrec_dont_know;
776
777  if (chrec1 == chrec_known
778      || chrec2 == chrec_known)
779    return chrec_known;
780
781  if (chrec1 == chrec_not_analyzed_yet)
782    return chrec2;
783  if (chrec2 == chrec_not_analyzed_yet)
784    return chrec1;
785
786  if (eq_evolutions_p (chrec1, chrec2))
787    return chrec1;
788
789  return chrec_dont_know;
790}
791
792
793
794/* Observers.  */
795
796/* Helper function for is_multivariate_chrec.  */
797
798static bool
799is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
800{
801  if (chrec == NULL_TREE)
802    return false;
803
804  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
805    {
806      if (CHREC_VARIABLE (chrec) != rec_var)
807	return true;
808      else
809	return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
810		|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
811    }
812  else
813    return false;
814}
815
816/* Determine whether the given chrec is multivariate or not.  */
817
818bool
819is_multivariate_chrec (tree chrec)
820{
821  if (chrec == NULL_TREE)
822    return false;
823
824  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
825    return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
826				       CHREC_VARIABLE (chrec))
827	    || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
828					  CHREC_VARIABLE (chrec)));
829  else
830    return false;
831}
832
833/* Determines whether the chrec contains symbolic names or not.  */
834
835bool
836chrec_contains_symbols (tree chrec)
837{
838  if (chrec == NULL_TREE)
839    return false;
840
841  if (TREE_CODE (chrec) == SSA_NAME
842      || TREE_CODE (chrec) == VAR_DECL
843      || TREE_CODE (chrec) == PARM_DECL
844      || TREE_CODE (chrec) == FUNCTION_DECL
845      || TREE_CODE (chrec) == LABEL_DECL
846      || TREE_CODE (chrec) == RESULT_DECL
847      || TREE_CODE (chrec) == FIELD_DECL)
848    return true;
849
850  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
851    {
852    case 3:
853      if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
854	return true;
855
856    case 2:
857      if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
858	return true;
859
860    case 1:
861      if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
862	return true;
863
864    default:
865      return false;
866    }
867}
868
869/* Determines whether the chrec contains undetermined coefficients.  */
870
871bool
872chrec_contains_undetermined (tree chrec)
873{
874  if (chrec == chrec_dont_know
875      || chrec == chrec_not_analyzed_yet
876      || chrec == NULL_TREE)
877    return true;
878
879  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
880    {
881    case 3:
882      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
883	return true;
884
885    case 2:
886      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
887	return true;
888
889    case 1:
890      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
891	return true;
892
893    default:
894      return false;
895    }
896}
897
898/* Determines whether the tree EXPR contains chrecs, and increment
899   SIZE if it is not a NULL pointer by an estimation of the depth of
900   the tree.  */
901
902bool
903tree_contains_chrecs (tree expr, int *size)
904{
905  if (expr == NULL_TREE)
906    return false;
907
908  if (size)
909    (*size)++;
910
911  if (tree_is_chrec (expr))
912    return true;
913
914  switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
915    {
916    case 3:
917      if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
918	return true;
919
920    case 2:
921      if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
922	return true;
923
924    case 1:
925      if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
926	return true;
927
928    default:
929      return false;
930    }
931}
932
933/* Recursive helper function.  */
934
935static bool
936evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
937{
938  if (evolution_function_is_constant_p (chrec))
939    return true;
940
941  if (TREE_CODE (chrec) == SSA_NAME
942      && expr_invariant_in_loop_p (current_loops->parray[loopnum],
943				   chrec))
944    return true;
945
946  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
947    {
948      if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
949	  || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
950						     loopnum)
951	  || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
952						     loopnum))
953	return false;
954      return true;
955    }
956
957  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
958    {
959    case 2:
960      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
961						  loopnum))
962	return false;
963
964    case 1:
965      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
966						  loopnum))
967	return false;
968      return true;
969
970    default:
971      return false;
972    }
973
974  return false;
975}
976
977/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
978
979bool
980evolution_function_is_invariant_p (tree chrec, int loopnum)
981{
982  if (evolution_function_is_constant_p (chrec))
983    return true;
984
985  if (current_loops != NULL)
986    return evolution_function_is_invariant_rec_p (chrec, loopnum);
987
988  return false;
989}
990
991/* Determine whether the given tree is an affine multivariate
992   evolution.  */
993
994bool
995evolution_function_is_affine_multivariate_p (tree chrec)
996{
997  if (chrec == NULL_TREE)
998    return false;
999
1000  switch (TREE_CODE (chrec))
1001    {
1002    case POLYNOMIAL_CHREC:
1003      if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
1004	{
1005	  if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
1006	    return true;
1007	  else
1008	    {
1009	      if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1010		  && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1011		     != CHREC_VARIABLE (chrec)
1012		  && evolution_function_is_affine_multivariate_p
1013		  (CHREC_RIGHT (chrec)))
1014		return true;
1015	      else
1016		return false;
1017	    }
1018	}
1019      else
1020	{
1021	  if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1022	      && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1023	      && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1024	      && evolution_function_is_affine_multivariate_p
1025	      (CHREC_LEFT (chrec)))
1026	    return true;
1027	  else
1028	    return false;
1029	}
1030
1031    default:
1032      return false;
1033    }
1034}
1035
1036/* Determine whether the given tree is a function in zero or one
1037   variables.  */
1038
1039bool
1040evolution_function_is_univariate_p (tree chrec)
1041{
1042  if (chrec == NULL_TREE)
1043    return true;
1044
1045  switch (TREE_CODE (chrec))
1046    {
1047    case POLYNOMIAL_CHREC:
1048      switch (TREE_CODE (CHREC_LEFT (chrec)))
1049	{
1050	case POLYNOMIAL_CHREC:
1051	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1052	    return false;
1053	  if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1054	    return false;
1055	  break;
1056
1057	default:
1058	  break;
1059	}
1060
1061      switch (TREE_CODE (CHREC_RIGHT (chrec)))
1062	{
1063	case POLYNOMIAL_CHREC:
1064	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1065	    return false;
1066	  if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1067	    return false;
1068	  break;
1069
1070	default:
1071	  break;
1072	}
1073
1074    default:
1075      return true;
1076    }
1077}
1078
1079/* Returns the number of variables of CHREC.  Example: the call
1080   nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2.  */
1081
1082unsigned
1083nb_vars_in_chrec (tree chrec)
1084{
1085  if (chrec == NULL_TREE)
1086    return 0;
1087
1088  switch (TREE_CODE (chrec))
1089    {
1090    case POLYNOMIAL_CHREC:
1091      return 1 + nb_vars_in_chrec
1092	(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1093
1094    default:
1095      return 0;
1096    }
1097}
1098
1099/* Returns true if TYPE is a type in that we cannot directly perform
1100   arithmetics, even though it is a scalar type.  */
1101
1102static bool
1103avoid_arithmetics_in_type_p (tree type)
1104{
1105  /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1106     in the subtype, but a base type must be used, and the result then can
1107     be casted to the subtype.  */
1108  if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1109    return true;
1110
1111  return false;
1112}
1113
1114static tree chrec_convert_1 (tree, tree, tree, bool);
1115
1116/* Converts BASE and STEP of affine scev to TYPE.  LOOP is the loop whose iv
1117   the scev corresponds to.  AT_STMT is the statement at that the scev is
1118   evaluated.  USE_OVERFLOW_SEMANTICS is true if this function should assume that
1119   the rules for overflow of the given language apply (e.g., that signed
1120   arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1121   tests, but also to enforce that the result follows them.  Returns true if the
1122   conversion succeeded, false otherwise.  */
1123
1124bool
1125convert_affine_scev (struct loop *loop, tree type,
1126		     tree *base, tree *step, tree at_stmt,
1127		     bool use_overflow_semantics)
1128{
1129  tree ct = TREE_TYPE (*step);
1130  bool enforce_overflow_semantics;
1131  bool must_check_src_overflow, must_check_rslt_overflow;
1132  tree new_base, new_step;
1133
1134  /* If we cannot perform arithmetic in TYPE, avoid creating an scev.  */
1135  if (avoid_arithmetics_in_type_p (type))
1136    return false;
1137
1138  /* In general,
1139     (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1140     but we must check some assumptions.
1141
1142     1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1143        of CT is smaller than the precision of TYPE.  For example, when we
1144	cast unsigned char [254, +, 1] to unsigned, the values on left side
1145	are 254, 255, 0, 1, ..., but those on the right side are
1146	254, 255, 256, 257, ...
1147     2) In case that we must also preserve the fact that signed ivs do not
1148        overflow, we must additionally check that the new iv does not wrap.
1149	For example, unsigned char [125, +, 1] casted to signed char could
1150	become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1151	which would confuse optimizers that assume that this does not
1152	happen.  */
1153  must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1154
1155  enforce_overflow_semantics = (use_overflow_semantics
1156				&& nowrap_type_p (type));
1157  if (enforce_overflow_semantics)
1158    {
1159      /* We can avoid checking whether the result overflows in the following
1160	 cases:
1161
1162	 -- must_check_src_overflow is true, and the range of TYPE is superset
1163	    of the range of CT -- i.e., in all cases except if CT signed and
1164	    TYPE unsigned.
1165         -- both CT and TYPE have the same precision and signedness, and we
1166	    verify instead that the source does not overflow (this may be
1167	    easier than verifying it for the result, as we may use the
1168	    information about the semantics of overflow in CT).  */
1169      if (must_check_src_overflow)
1170	{
1171	  if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1172	    must_check_rslt_overflow = true;
1173	  else
1174	    must_check_rslt_overflow = false;
1175	}
1176      else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1177	       && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1178	{
1179	  must_check_rslt_overflow = false;
1180	  must_check_src_overflow = true;
1181	}
1182      else
1183	must_check_rslt_overflow = true;
1184    }
1185  else
1186    must_check_rslt_overflow = false;
1187
1188  if (must_check_src_overflow
1189      && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1190				use_overflow_semantics))
1191    return false;
1192
1193  new_base = chrec_convert_1 (type, *base, at_stmt,
1194			      use_overflow_semantics);
1195  /* The step must be sign extended, regardless of the signedness
1196     of CT and TYPE.  This only needs to be handled specially when
1197     CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1198     (with values 100, 99, 98, ...) from becoming signed or unsigned
1199     [100, +, 255] with values 100, 355, ...; the sign-extension is
1200     performed by default when CT is signed.  */
1201  new_step = *step;
1202  if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1203    new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1204				use_overflow_semantics);
1205  new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1206
1207  if (automatically_generated_chrec_p (new_base)
1208      || automatically_generated_chrec_p (new_step))
1209    return false;
1210
1211  if (must_check_rslt_overflow
1212      /* Note that in this case we cannot use the fact that signed variables
1213	 do not overflow, as this is what we are verifying for the new iv.  */
1214      && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1215    return false;
1216
1217  *base = new_base;
1218  *step = new_step;
1219  return true;
1220}
1221
1222
1223/* Convert CHREC to TYPE.  When the analyzer knows the context in
1224   which the CHREC is built, it sets AT_STMT to the statement that
1225   contains the definition of the analyzed variable, otherwise the
1226   conversion is less accurate: the information is used for
1227   determining a more accurate estimation of the number of iterations.
1228   By default AT_STMT could be safely set to NULL_TREE.
1229
1230   The following rule is always true: TREE_TYPE (chrec) ==
1231   TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1232   An example of what could happen when adding two chrecs and the type
1233   of the CHREC_RIGHT is different than CHREC_LEFT is:
1234
1235   {(uint) 0, +, (uchar) 10} +
1236   {(uint) 0, +, (uchar) 250}
1237
1238   that would produce a wrong result if CHREC_RIGHT is not (uint):
1239
1240   {(uint) 0, +, (uchar) 4}
1241
1242   instead of
1243
1244   {(uint) 0, +, (uint) 260}
1245*/
1246
1247tree
1248chrec_convert (tree type, tree chrec, tree at_stmt)
1249{
1250  return chrec_convert_1 (type, chrec, at_stmt, true);
1251}
1252
1253/* Convert CHREC to TYPE.  When the analyzer knows the context in
1254   which the CHREC is built, it sets AT_STMT to the statement that
1255   contains the definition of the analyzed variable, otherwise the
1256   conversion is less accurate: the information is used for
1257   determining a more accurate estimation of the number of iterations.
1258   By default AT_STMT could be safely set to NULL_TREE.
1259
1260   USE_OVERFLOW_SEMANTICS is true if this function should assume that
1261   the rules for overflow of the given language apply (e.g., that signed
1262   arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1263   tests, but also to enforce that the result follows them.  */
1264
1265static tree
1266chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1267		 bool use_overflow_semantics)
1268{
1269  tree ct, res;
1270  tree base, step;
1271  struct loop *loop;
1272
1273  if (automatically_generated_chrec_p (chrec))
1274    return chrec;
1275
1276  ct = chrec_type (chrec);
1277  if (ct == type)
1278    return chrec;
1279
1280  if (!evolution_function_is_affine_p (chrec))
1281    goto keep_cast;
1282
1283  loop = current_loops->parray[CHREC_VARIABLE (chrec)];
1284  base = CHREC_LEFT (chrec);
1285  step = CHREC_RIGHT (chrec);
1286
1287  if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1288			   use_overflow_semantics))
1289    return build_polynomial_chrec (loop->num, base, step);
1290
1291  /* If we cannot propagate the cast inside the chrec, just keep the cast.  */
1292keep_cast:
1293  res = fold_convert (type, chrec);
1294
1295  /* Don't propagate overflows.  */
1296  if (CONSTANT_CLASS_P (res))
1297    {
1298      TREE_CONSTANT_OVERFLOW (res) = 0;
1299      TREE_OVERFLOW (res) = 0;
1300    }
1301
1302  /* But reject constants that don't fit in their type after conversion.
1303     This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1304     natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1305     and can cause problems later when computing niters of loops.  Note
1306     that we don't do the check before converting because we don't want
1307     to reject conversions of negative chrecs to unsigned types.  */
1308  if (TREE_CODE (res) == INTEGER_CST
1309      && TREE_CODE (type) == INTEGER_TYPE
1310      && !int_fits_type_p (res, type))
1311    res = chrec_dont_know;
1312
1313  return res;
1314}
1315
1316/* Convert CHREC to TYPE, without regard to signed overflows.  Returns the new
1317   chrec if something else than what chrec_convert would do happens, NULL_TREE
1318   otherwise.  */
1319
1320tree
1321chrec_convert_aggressive (tree type, tree chrec)
1322{
1323  tree inner_type, left, right, lc, rc;
1324
1325  if (automatically_generated_chrec_p (chrec)
1326      || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1327    return NULL_TREE;
1328
1329  inner_type = TREE_TYPE (chrec);
1330  if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1331    return NULL_TREE;
1332
1333  /* If we cannot perform arithmetic in TYPE, avoid creating an scev.  */
1334  if (avoid_arithmetics_in_type_p (type))
1335    return NULL_TREE;
1336
1337  left = CHREC_LEFT (chrec);
1338  right = CHREC_RIGHT (chrec);
1339  lc = chrec_convert_aggressive (type, left);
1340  if (!lc)
1341    lc = chrec_convert (type, left, NULL_TREE);
1342  rc = chrec_convert_aggressive (type, right);
1343  if (!rc)
1344    rc = chrec_convert (type, right, NULL_TREE);
1345
1346  return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1347}
1348
1349/* Returns true when CHREC0 == CHREC1.  */
1350
1351bool
1352eq_evolutions_p (tree chrec0,
1353		 tree chrec1)
1354{
1355  if (chrec0 == NULL_TREE
1356      || chrec1 == NULL_TREE
1357      || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1358    return false;
1359
1360  if (chrec0 == chrec1)
1361    return true;
1362
1363  switch (TREE_CODE (chrec0))
1364    {
1365    case INTEGER_CST:
1366      return operand_equal_p (chrec0, chrec1, 0);
1367
1368    case POLYNOMIAL_CHREC:
1369      return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1370	      && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1371	      && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1372    default:
1373      return false;
1374    }
1375}
1376
1377/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1378   EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1379   which of these cases happens.  */
1380
1381enum ev_direction
1382scev_direction (tree chrec)
1383{
1384  tree step;
1385
1386  if (!evolution_function_is_affine_p (chrec))
1387    return EV_DIR_UNKNOWN;
1388
1389  step = CHREC_RIGHT (chrec);
1390  if (TREE_CODE (step) != INTEGER_CST)
1391    return EV_DIR_UNKNOWN;
1392
1393  if (tree_int_cst_sign_bit (step))
1394    return EV_DIR_DECREASES;
1395  else
1396    return EV_DIR_GROWS;
1397}
1398