mips.h revision 302408
1/* Definitions of target machine for GNU compiler.  MIPS version.
2   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5   Changed by Michael Meissner	(meissner@osf.org).
6   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7   Brendan Eich (brendan@microunity.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GCC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING.  If not, write to
23the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA.  */
25
26
27/* MIPS external variables defined in mips.c.  */
28
29/* Which processor to schedule for.  Since there is no difference between
30   a R2000 and R3000 in terms of the scheduler, we collapse them into
31   just an R3000.  The elements of the enumeration must match exactly
32   the cpu attribute in the mips.md machine description.  */
33
34enum processor_type {
35  PROCESSOR_R3000,
36  PROCESSOR_4KC,
37  PROCESSOR_4KP,
38  PROCESSOR_5KC,
39  PROCESSOR_5KF,
40  PROCESSOR_20KC,
41  PROCESSOR_24K,
42  PROCESSOR_24KX,
43  PROCESSOR_M4K,
44  PROCESSOR_OCTEON,
45  PROCESSOR_R3900,
46  PROCESSOR_R6000,
47  PROCESSOR_R4000,
48  PROCESSOR_R4100,
49  PROCESSOR_R4111,
50  PROCESSOR_R4120,
51  PROCESSOR_R4130,
52  PROCESSOR_R4300,
53  PROCESSOR_R4600,
54  PROCESSOR_R4650,
55  PROCESSOR_R5000,
56  PROCESSOR_R5400,
57  PROCESSOR_R5500,
58  PROCESSOR_R7000,
59  PROCESSOR_R8000,
60  PROCESSOR_R9000,
61  PROCESSOR_SB1,
62  PROCESSOR_SB1A,
63  PROCESSOR_SR71000,
64  PROCESSOR_MAX
65};
66
67/* Costs of various operations on the different architectures.  */
68
69struct mips_rtx_cost_data
70{
71  unsigned short fp_add;
72  unsigned short fp_mult_sf;
73  unsigned short fp_mult_df;
74  unsigned short fp_div_sf;
75  unsigned short fp_div_df;
76  unsigned short int_mult_si;
77  unsigned short int_mult_di;
78  unsigned short int_div_si;
79  unsigned short int_div_di;
80  unsigned short branch_cost;
81  unsigned short memory_latency;
82};
83
84/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
85   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
86   to work on a 64 bit machine.  */
87
88#define ABI_32  0
89#define ABI_N32 1
90#define ABI_64  2
91#define ABI_EABI 3
92#define ABI_O64  4
93
94/* Information about one recognized processor.  Defined here for the
95   benefit of TARGET_CPU_CPP_BUILTINS.  */
96struct mips_cpu_info {
97  /* The 'canonical' name of the processor as far as GCC is concerned.
98     It's typically a manufacturer's prefix followed by a numerical
99     designation.  It should be lower case.  */
100  const char *name;
101
102  /* The internal processor number that most closely matches this
103     entry.  Several processors can have the same value, if there's no
104     difference between them from GCC's point of view.  */
105  enum processor_type cpu;
106
107  /* The ISA level that the processor implements.  */
108  int isa;
109};
110
111#ifndef USED_FOR_TARGET
112extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
113extern const char *current_function_file; /* filename current function is in */
114extern int num_source_filenames;	/* current .file # */
115extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
116extern int sym_lineno;			/* sgi next label # for each stmt */
117extern int set_noreorder;		/* # of nested .set noreorder's  */
118extern int set_nomacro;			/* # of nested .set nomacro's  */
119extern int set_noat;			/* # of nested .set noat's  */
120extern int set_volatile;		/* # of nested .set volatile's  */
121extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
122extern int mips_dbx_regno[];		/* Map register # to debug register # */
123extern bool mips_split_p[];
124extern GTY(()) rtx cmp_operands[2];
125extern enum processor_type mips_arch;   /* which cpu to codegen for */
126extern enum processor_type mips_tune;   /* which cpu to schedule for */
127extern int mips_isa;			/* architectural level */
128extern int mips_abi;			/* which ABI to use */
129extern int mips16_hard_float;		/* mips16 without -msoft-float */
130extern const struct mips_cpu_info mips_cpu_info_table[];
131extern const struct mips_cpu_info *mips_arch_info;
132extern const struct mips_cpu_info *mips_tune_info;
133extern const struct mips_rtx_cost_data *mips_cost;
134#endif
135
136/* Macros to silence warnings about numbers being signed in traditional
137   C and unsigned in ISO C when compiled on 32-bit hosts.  */
138
139#define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
140#define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
141#define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
142
143
144/* Run-time compilation parameters selecting different hardware subsets.  */
145
146/* True if the call patterns should be split into a jalr followed by
147   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
148   in which $gp is call-clobbered.  It is only safe to split the load
149   from the call when every use of $gp is explicit.  */
150
151#define TARGET_SPLIT_CALLS \
152  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
153
154/* True if we're generating a form of -mabicalls in which we can use
155   operators like %hi and %lo to refer to locally-binding symbols.
156   We can only do this for -mno-shared, and only then if we can use
157   relocation operations instead of assembly macros.  It isn't really
158   worth using absolute sequences for 64-bit symbols because GOT
159   accesses are so much shorter.  */
160
161#define TARGET_ABSOLUTE_ABICALLS	\
162  (TARGET_ABICALLS			\
163   && !TARGET_SHARED			\
164   && TARGET_EXPLICIT_RELOCS		\
165   && !ABI_HAS_64BIT_SYMBOLS)
166
167/* True if we can optimize sibling calls.  For simplicity, we only
168   handle cases in which call_insn_operand will reject invalid
169   sibcall addresses.  There are two cases in which this isn't true:
170
171      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
172	but there is no direct jump instruction.  It isn't worth
173	using sibling calls in this case anyway; they would usually
174	be longer than normal calls.
175
176      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
177	accepts global constants, but "jr $25" is the only allowed
178	sibcall.  */
179
180#define TARGET_SIBCALLS \
181  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
182
183/* True if .gpword or .gpdword should be used for switch tables.
184
185   Although GAS does understand .gpdword, the SGI linker mishandles
186   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
187   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
188#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
189
190/* Generate mips16 code */
191#define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
192/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
193#define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
194
195/* Generic ISA defines.  */
196#define ISA_MIPS1		    (mips_isa == 1)
197#define ISA_MIPS2		    (mips_isa == 2)
198#define ISA_MIPS3                   (mips_isa == 3)
199#define ISA_MIPS4		    (mips_isa == 4)
200#define ISA_MIPS32		    (mips_isa == 32)
201#define ISA_MIPS32R2		    (mips_isa == 33)
202#define ISA_MIPS64                  (mips_isa == 64)
203#define	ISA_MIPS64R2		    (mips_isa == 65)
204
205/* Architecture target defines.  */
206#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
207#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
208#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
209#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
210#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
211#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
212#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
213#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
214#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
215				     || mips_arch == PROCESSOR_SB1A)
216#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
217#define TARGET_OCTEON               (mips_arch == PROCESSOR_OCTEON)
218
219/* Scheduling target defines.  */
220#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
221#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
222#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
223#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
224#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
225#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
226#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
227#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
228#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
229#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
230#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
231#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
232				     || mips_tune == PROCESSOR_SB1A)
233#define TUNE_OCTEON                 (mips_tune == PROCESSOR_OCTEON)
234
235/* True if the pre-reload scheduler should try to create chains of
236   multiply-add or multiply-subtract instructions.  For example,
237   suppose we have:
238
239	t1 = a * b
240	t2 = t1 + c * d
241	t3 = e * f
242	t4 = t3 - g * h
243
244   t1 will have a higher priority than t2 and t3 will have a higher
245   priority than t4.  However, before reload, there is no dependence
246   between t1 and t3, and they can often have similar priorities.
247   The scheduler will then tend to prefer:
248
249	t1 = a * b
250	t3 = e * f
251	t2 = t1 + c * d
252	t4 = t3 - g * h
253
254   which stops us from making full use of macc/madd-style instructions.
255   This sort of situation occurs frequently in Fourier transforms and
256   in unrolled loops.
257
258   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
259   queue so that chained multiply-add and multiply-subtract instructions
260   appear ahead of any other instruction that is likely to clobber lo.
261   In the example above, if t2 and t3 become ready at the same time,
262   the code ensures that t2 is scheduled first.
263
264   Multiply-accumulate instructions are a bigger win for some targets
265   than others, so this macro is defined on an opt-in basis.  */
266#define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
267				     || TUNE_MIPS4120		\
268				     || TUNE_MIPS4130)
269
270#define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
271#define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
272
273/* IRIX specific stuff.  */
274#define TARGET_IRIX	   0
275#define TARGET_IRIX6	   0
276
277/* Define preprocessor macros for the -march and -mtune options.
278   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
279   processor.  If INFO's canonical name is "foo", define PREFIX to
280   be "foo", and define an additional macro PREFIX_FOO.  */
281#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
282  do								\
283    {								\
284      char *macro, *p;						\
285								\
286      macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
287      for (p = macro; *p != 0; p++)				\
288	*p = TOUPPER (*p);					\
289								\
290      builtin_define (macro);					\
291      builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
292      free (macro);						\
293    }								\
294  while (0)
295
296/* Target CPU builtins.  */
297#define TARGET_CPU_CPP_BUILTINS()				\
298  do								\
299    {								\
300      /* Everyone but IRIX defines this to mips.  */            \
301      if (!TARGET_IRIX)                                         \
302        builtin_assert ("machine=mips");                        \
303                                                                \
304      builtin_assert ("cpu=mips");				\
305      builtin_define ("__mips__");     				\
306      builtin_define ("_mips");					\
307								\
308      /* We do this here because __mips is defined below	\
309	 and so we can't use builtin_define_std.  */		\
310      if (!flag_iso)						\
311	builtin_define ("mips");				\
312								\
313      if (TARGET_64BIT)						\
314	builtin_define ("__mips64");				\
315								\
316      if (!TARGET_IRIX)						\
317	{							\
318	  /* Treat _R3000 and _R4000 like register-size		\
319	     defines, which is how they've historically		\
320	     been used.  */					\
321	  if (TARGET_64BIT)					\
322	    {							\
323	      builtin_define_std ("R4000");			\
324	      builtin_define ("_R4000");			\
325	    }							\
326	  else							\
327	    {							\
328	      builtin_define_std ("R3000");			\
329	      builtin_define ("_R3000");			\
330	    }							\
331	}							\
332      if (TARGET_FLOAT64)					\
333	builtin_define ("__mips_fpr=64");			\
334      else							\
335	builtin_define ("__mips_fpr=32");			\
336								\
337      if (TARGET_MIPS16)					\
338	builtin_define ("__mips16");				\
339								\
340      if (TARGET_MIPS3D)					\
341	builtin_define ("__mips3d");				\
342								\
343      if (TARGET_DSP)						\
344	builtin_define ("__mips_dsp");				\
345								\
346      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
347      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
348								\
349      if (ISA_MIPS1)						\
350	{							\
351	  builtin_define ("__mips=1");				\
352	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
353	}							\
354      else if (ISA_MIPS2)					\
355	{							\
356	  builtin_define ("__mips=2");				\
357	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
358	}							\
359      else if (ISA_MIPS3)					\
360	{							\
361	  builtin_define ("__mips=3");				\
362	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
363	}							\
364      else if (ISA_MIPS4)					\
365	{							\
366	  builtin_define ("__mips=4");				\
367	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
368	}							\
369      else if (ISA_MIPS32)					\
370	{							\
371	  builtin_define ("__mips=32");				\
372	  builtin_define ("__mips_isa_rev=1");			\
373	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
374	}							\
375      else if (ISA_MIPS32R2)					\
376	{							\
377	  builtin_define ("__mips=32");				\
378	  builtin_define ("__mips_isa_rev=2");			\
379	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
380	}							\
381      else if (ISA_MIPS64)					\
382	{							\
383	  builtin_define ("__mips=64");				\
384	  builtin_define ("__mips_isa_rev=1");			\
385	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
386	}							\
387      else if (ISA_MIPS64R2)					\
388	{							\
389	  builtin_define ("__mips=64");				\
390	  builtin_define ("__mips_isa_rev=2");			\
391	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
392	}							\
393								\
394      if (TARGET_HARD_FLOAT)					\
395	builtin_define ("__mips_hard_float");			\
396      else if (TARGET_SOFT_FLOAT)				\
397	builtin_define ("__mips_soft_float");			\
398								\
399      if (TARGET_SINGLE_FLOAT)					\
400	builtin_define ("__mips_single_float");			\
401								\
402      if (TARGET_PAIRED_SINGLE_FLOAT)				\
403	builtin_define ("__mips_paired_single_float");		\
404								\
405      if (TARGET_BIG_ENDIAN)					\
406	{							\
407	  builtin_define_std ("MIPSEB");			\
408	  builtin_define ("_MIPSEB");				\
409	}							\
410      else							\
411	{							\
412	  builtin_define_std ("MIPSEL");			\
413	  builtin_define ("_MIPSEL");				\
414	}							\
415								\
416        /* Macros dependent on the C dialect.  */		\
417      if (preprocessing_asm_p ())				\
418	{							\
419          builtin_define_std ("LANGUAGE_ASSEMBLY");		\
420	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
421	}							\
422      else if (c_dialect_cxx ())				\
423        {							\
424	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
425          builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
426          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
427        }							\
428      else							\
429	{							\
430          builtin_define_std ("LANGUAGE_C");			\
431	  builtin_define ("_LANGUAGE_C");			\
432	}							\
433      if (c_dialect_objc ())					\
434        {							\
435	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
436          builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
437	  /* Bizarre, but needed at least for Irix.  */		\
438	  builtin_define_std ("LANGUAGE_C");			\
439	  builtin_define ("_LANGUAGE_C");			\
440        }							\
441								\
442      if (mips_abi == ABI_EABI)					\
443	builtin_define ("__mips_eabi");				\
444								\
445} while (0)
446
447/* Default target_flags if no switches are specified  */
448
449#ifndef TARGET_DEFAULT
450#define TARGET_DEFAULT 0
451#endif
452
453#ifndef TARGET_CPU_DEFAULT
454#define TARGET_CPU_DEFAULT 0
455#endif
456
457#ifndef TARGET_ENDIAN_DEFAULT
458#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
459#endif
460
461#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
462#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
463#endif
464
465/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
466#ifndef MIPS_ISA_DEFAULT
467#ifndef MIPS_CPU_STRING_DEFAULT
468#define MIPS_CPU_STRING_DEFAULT "from-abi"
469#endif
470#endif
471
472#ifdef IN_LIBGCC2
473#undef TARGET_64BIT
474/* Make this compile time constant for libgcc2 */
475#ifdef __mips64
476#define TARGET_64BIT		1
477#else
478#define TARGET_64BIT		0
479#endif
480#endif /* IN_LIBGCC2 */
481
482#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
483
484#ifndef MULTILIB_ENDIAN_DEFAULT
485#if TARGET_ENDIAN_DEFAULT == 0
486#define MULTILIB_ENDIAN_DEFAULT "EL"
487#else
488#define MULTILIB_ENDIAN_DEFAULT "EB"
489#endif
490#endif
491
492#ifndef MULTILIB_ISA_DEFAULT
493#  if MIPS_ISA_DEFAULT == 1
494#    define MULTILIB_ISA_DEFAULT "mips1"
495#  else
496#    if MIPS_ISA_DEFAULT == 2
497#      define MULTILIB_ISA_DEFAULT "mips2"
498#    else
499#      if MIPS_ISA_DEFAULT == 3
500#        define MULTILIB_ISA_DEFAULT "mips3"
501#      else
502#        if MIPS_ISA_DEFAULT == 4
503#          define MULTILIB_ISA_DEFAULT "mips4"
504#        else
505#          if MIPS_ISA_DEFAULT == 32
506#            define MULTILIB_ISA_DEFAULT "mips32"
507#          else
508#            if MIPS_ISA_DEFAULT == 33
509#              define MULTILIB_ISA_DEFAULT "mips32r2"
510#            else
511#              if MIPS_ISA_DEFAULT == 64
512#                define MULTILIB_ISA_DEFAULT "mips64"
513#              else
514#                if MIPS_ISA_DEFAULT == 65
515#                  define MULTILIB_ISA_DEFAULT "mips64r2"
516#                else
517#                  define MULTILIB_ISA_DEFAULT "mips1"
518#                endif
519#              endif
520#            endif
521#          endif
522#        endif
523#      endif
524#    endif
525#  endif
526#endif
527
528#ifndef MULTILIB_DEFAULTS
529#define MULTILIB_DEFAULTS \
530    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
531#endif
532
533/* We must pass -EL to the linker by default for little endian embedded
534   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
535   linker will default to using big-endian output files.  The OUTPUT_FORMAT
536   line must be in the linker script, otherwise -EB/-EL will not work.  */
537
538#ifndef ENDIAN_SPEC
539#if TARGET_ENDIAN_DEFAULT == 0
540#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
541#else
542#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
543#endif
544#endif
545
546/* Support for a compile-time default CPU, et cetera.  The rules are:
547   --with-arch is ignored if -march is specified or a -mips is specified
548     (other than -mips16).
549   --with-tune is ignored if -mtune is specified.
550   --with-abi is ignored if -mabi is specified.
551   --with-float is ignored if -mhard-float or -msoft-float are
552     specified.
553   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
554     specified. */
555#define OPTION_DEFAULT_SPECS \
556  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
557  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
558  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
559  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
560  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
561
562
563#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
564                               && ISA_HAS_COND_TRAP)
565
566#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
567				 && !TARGET_SR71K                       \
568				 && !TARGET_MIPS16)
569
570/* Generate three-operand multiply instructions for SImode.  */
571#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
572                                  || TARGET_MIPS5400                    \
573                                  || TARGET_MIPS5500                    \
574                                  || TARGET_MIPS7000                    \
575                                  || TARGET_MIPS9000                    \
576				  || TARGET_MAD				\
577                                  || ISA_MIPS32	                        \
578                                  || ISA_MIPS32R2                       \
579                                  || ISA_MIPS64                         \
580                                  || ISA_MIPS64R2)                      \
581                                 && !TARGET_MIPS16)
582
583/* Generate three-operand multiply instructions for DImode.  */
584#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
585				 && !TARGET_MIPS16)
586
587/* True if the ABI can only work with 64-bit integer registers.  We
588   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
589   otherwise floating-point registers must also be 64-bit.  */
590#define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
591
592/* Likewise for 32-bit regs.  */
593#define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
594
595/* True if symbols are 64 bits wide.  At present, n64 is the only
596   ABI for which this is true.  */
597#define ABI_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64 && !TARGET_SYM32)
598
599/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
600#define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
601				 || ISA_MIPS4				\
602                                 || ISA_MIPS64				\
603				 || ISA_MIPS64R2)
604
605/* ISA has branch likely instructions (e.g. mips2).  */
606/* Disable branchlikely for tx39 until compare rewrite.  They haven't
607   been generated up to this point.  */
608#define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
609
610/* ISA has the conditional move instructions introduced in mips4.  */
611#define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
612				  || ISA_MIPS32	                        \
613				  || ISA_MIPS32R2                       \
614				  || ISA_MIPS64				\
615				  || ISA_MIPS64R2)			\
616                                 && !TARGET_MIPS5500                    \
617				 && !TARGET_MIPS16)
618
619/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
620   branch on CC, and move (both FP and non-FP) on CC.  */
621#define ISA_HAS_8CC		(ISA_MIPS4				\
622                         	 || ISA_MIPS32	                        \
623                         	 || ISA_MIPS32R2                        \
624				 || ISA_MIPS64				\
625				 || ISA_MIPS64R2)
626
627/* This is a catch all for other mips4 instructions: indexed load, the
628   FP madd and msub instructions, and the FP recip and recip sqrt
629   instructions.  */
630#define ISA_HAS_FP4             ((ISA_MIPS4				\
631				  || ISA_MIPS64				\
632				  || ISA_MIPS64R2)     			\
633 				 && !TARGET_MIPS16)
634
635/* ISA has conditional trap instructions.  */
636#define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
637				 && !TARGET_MIPS16)
638
639/* ISA has integer multiply-accumulate instructions, madd and msub.  */
640#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
641				  || ISA_MIPS32R2			\
642				  || ISA_MIPS64				\
643				  || ISA_MIPS64R2			\
644				  ) && !TARGET_MIPS16)
645
646/* ISA has floating-point nmadd and nmsub instructions.  */
647#define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
648				  || ISA_MIPS64				\
649				  || ISA_MIPS64R2)			\
650                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
651				 && ! TARGET_MIPS16)
652
653/* ISA has count leading zeroes/ones instruction (not implemented).  */
654#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
655                                  || ISA_MIPS32R2			\
656                                  || ISA_MIPS64				\
657                                  || ISA_MIPS64R2			\
658                                 ) && !TARGET_MIPS16)
659
660/* ISA has double-word count leading zeroes/ones instruction (not
661   implemented).  */
662#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64				\
663				 || ISA_MIPS64R2			\
664				 && !TARGET_MIPS16)
665
666/* ISA has three operand multiply instructions that put
667   the high part in an accumulator: mulhi or mulhiu.  */
668#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
669                                 || TARGET_MIPS5500                     \
670                                 || TARGET_SR71K                        \
671                                 )
672
673/* ISA has three operand multiply instructions that
674   negates the result and puts the result in an accumulator.  */
675#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
676                                 || TARGET_MIPS5500                     \
677                                 || TARGET_SR71K                        \
678                                 )
679
680/* ISA has three operand multiply instructions that subtracts the
681   result from a 4th operand and puts the result in an accumulator.  */
682#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
683                                 || TARGET_MIPS5500                     \
684                                 || TARGET_SR71K                        \
685                                 )
686/* ISA has three operand multiply instructions that  the result
687   from a 4th operand and puts the result in an accumulator.  */
688#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)	\
689                                 || (TARGET_MIPS4130 && !TARGET_MIPS16)	\
690                                 || TARGET_MIPS5400                     \
691                                 || TARGET_MIPS5500                     \
692                                 || TARGET_SR71K                        \
693                                 )
694
695/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
696#define ISA_HAS_MACCHI		(!TARGET_MIPS16				\
697				 && (TARGET_MIPS4120			\
698				     || TARGET_MIPS4130))
699
700/* ISA has 32-bit rotate right instruction.  */
701#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
702                                 && (ISA_MIPS32R2                       \
703                                     || ISA_MIPS64R2                    \
704                                     || TARGET_MIPS5400                 \
705                                     || TARGET_MIPS5500                 \
706                                     || TARGET_SR71K                    \
707                                     ))
708
709/* ISA has 64-bit rotate right instruction.  */
710#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
711                                 && !TARGET_MIPS16                      \
712                                 && (TARGET_MIPS5400                    \
713                                     || TARGET_MIPS5500                 \
714                                     || TARGET_SR71K                    \
715                                     ))
716
717/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
718#define ISA_HAS_PREFETCH	((ISA_MIPS4				\
719				  || ISA_MIPS32				\
720				  || ISA_MIPS32R2			\
721				  || ISA_MIPS64		       		\
722				  || ISA_MIPS64R2)	       		\
723				 && !TARGET_MIPS16)
724
725/* ISA has data indexed prefetch instructions.  This controls use of
726   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
727   (prefx is a cop1x instruction, so can only be used if FP is
728   enabled.)  */
729#define ISA_HAS_PREFETCHX       ((ISA_MIPS4				\
730				  || ISA_MIPS64				\
731				  || ISA_MIPS64R2)			\
732 				 && !TARGET_MIPS16)
733
734/* True if trunc.w.s and trunc.w.d are real (not synthetic)
735   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
736   also requires TARGET_DOUBLE_FLOAT.  */
737#define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
738
739/* ISA includes the MIPS32r2 seb and seh instructions.  */
740#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
741                                 && (ISA_MIPS32R2                      \
742				     || ISA_MIPS64R2			\
743                                     ))
744
745/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
746#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
747                                 && (ISA_MIPS32R2                      \
748				     || ISA_MIPS64R2		       \
749                                     ))
750
751/* True if the result of a load is not available to the next instruction.
752   A nop will then be needed between instructions like "lw $4,..."
753   and "addiu $4,$4,1".  */
754#define ISA_HAS_LOAD_DELAY	(mips_isa == 1				\
755				 && !TARGET_MIPS3900			\
756				 && !TARGET_MIPS16)
757
758/* Likewise mtc1 and mfc1.  */
759#define ISA_HAS_XFER_DELAY	(mips_isa <= 3)
760
761/* Likewise floating-point comparisons.  */
762#define ISA_HAS_FCMP_DELAY	(mips_isa <= 3)
763
764/* True if mflo and mfhi can be immediately followed by instructions
765   which write to the HI and LO registers.
766
767   According to MIPS specifications, MIPS ISAs I, II, and III need
768   (at least) two instructions between the reads of HI/LO and
769   instructions which write them, and later ISAs do not.  Contradicting
770   the MIPS specifications, some MIPS IV processor user manuals (e.g.
771   the UM for the NEC Vr5000) document needing the instructions between
772   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
773   MIPS64 and later ISAs to have the interlocks, plus any specific
774   earlier-ISA CPUs for which CPU documentation declares that the
775   instructions are really interlocked.  */
776#define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
777				 || ISA_MIPS32R2			\
778				 || ISA_MIPS64				\
779				 || ISA_MIPS64R2			\
780				 || TARGET_MIPS5500)
781
782/* Add -G xx support.  */
783
784#undef  SWITCH_TAKES_ARG
785#define SWITCH_TAKES_ARG(CHAR)						\
786  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
787
788#define OVERRIDE_OPTIONS override_options ()
789
790#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
791
792/* Show we can debug even without a frame pointer.  */
793#define CAN_DEBUG_WITHOUT_FP
794
795/* Tell collect what flags to pass to nm.  */
796#ifndef NM_FLAGS
797#define NM_FLAGS "-Bn"
798#endif
799
800
801#ifndef MIPS_ABI_DEFAULT
802#define MIPS_ABI_DEFAULT ABI_32
803#endif
804
805/* Use the most portable ABI flag for the ASM specs.  */
806
807#if MIPS_ABI_DEFAULT == ABI_32
808#define MULTILIB_ABI_DEFAULT "mabi=32"
809#endif
810
811#if MIPS_ABI_DEFAULT == ABI_O64
812#define MULTILIB_ABI_DEFAULT "mabi=o64"
813#endif
814
815#if MIPS_ABI_DEFAULT == ABI_N32
816#define MULTILIB_ABI_DEFAULT "mabi=n32"
817#endif
818
819#if MIPS_ABI_DEFAULT == ABI_64
820#define MULTILIB_ABI_DEFAULT "mabi=64"
821#endif
822
823#if MIPS_ABI_DEFAULT == ABI_EABI
824#define MULTILIB_ABI_DEFAULT "mabi=eabi"
825#endif
826
827/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
828   to the assembler.  It may be overridden by subtargets.  */
829#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
830#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
831%{noasmopt:-O0} \
832%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
833#endif
834
835/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
836   the assembler.  It may be overridden by subtargets.
837
838   Beginning with gas 2.13, -mdebug must be passed to correctly handle
839   COFF debugging info.  */
840
841#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
842#define SUBTARGET_ASM_DEBUGGING_SPEC "\
843%{g} %{g0} %{g1} %{g2} %{g3} \
844%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
845%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
846%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
847%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
848%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
849#endif
850
851/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
852   overridden by subtargets.  */
853
854#ifndef SUBTARGET_ASM_SPEC
855#define SUBTARGET_ASM_SPEC ""
856#endif
857
858#undef ASM_SPEC
859#define ASM_SPEC "\
860%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
861%{mips32} %{mips32r2} %{mips64} \
862%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
863%{mips3d:-mips3d} \
864%{mdsp} \
865%{mfix-vr4120} %{mfix-vr4130} \
866%(subtarget_asm_optimizing_spec) \
867%(subtarget_asm_debugging_spec) \
868%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
869%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
870%{mshared} %{mno-shared} \
871%{msym32} %{mno-sym32} \
872%{mtune=*} %{v} \
873%(subtarget_asm_spec)"
874
875/* Extra switches sometimes passed to the linker.  */
876/* ??? The bestGnum will never be passed to the linker, because the gcc driver
877  will interpret it as a -b option.  */
878
879#ifndef LINK_SPEC
880#define LINK_SPEC "\
881%(endian_spec) \
882%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
883%{bestGnum} %{shared} %{non_shared}"
884#endif  /* LINK_SPEC defined */
885
886
887/* Specs for the compiler proper */
888
889/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
890   overridden by subtargets.  */
891#ifndef SUBTARGET_CC1_SPEC
892#define SUBTARGET_CC1_SPEC ""
893#endif
894
895/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
896
897#undef CC1_SPEC
898#define CC1_SPEC "\
899%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
900%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
901%{save-temps: } \
902%(subtarget_cc1_spec)"
903
904/* Preprocessor specs.  */
905
906/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
907   overridden by subtargets.  */
908#ifndef SUBTARGET_CPP_SPEC
909#define SUBTARGET_CPP_SPEC ""
910#endif
911
912#define CPP_SPEC "%(subtarget_cpp_spec)"
913
914/* This macro defines names of additional specifications to put in the specs
915   that can be used in various specifications like CC1_SPEC.  Its definition
916   is an initializer with a subgrouping for each command option.
917
918   Each subgrouping contains a string constant, that defines the
919   specification name, and a string constant that used by the GCC driver
920   program.
921
922   Do not define this macro if it does not need to do anything.  */
923
924#define EXTRA_SPECS							\
925  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
926  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
927  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
928  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
929  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
930  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
931  { "endian_spec", ENDIAN_SPEC },					\
932  SUBTARGET_EXTRA_SPECS
933
934#ifndef SUBTARGET_EXTRA_SPECS
935#define SUBTARGET_EXTRA_SPECS
936#endif
937
938#define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
939#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
940#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
941
942#ifndef PREFERRED_DEBUGGING_TYPE
943#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
944#endif
945
946#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
947
948/* By default, turn on GDB extensions.  */
949#define DEFAULT_GDB_EXTENSIONS 1
950
951/* Local compiler-generated symbols must have a prefix that the assembler
952   understands.   By default, this is $, although some targets (e.g.,
953   NetBSD-ELF) need to override this.  */
954
955#ifndef LOCAL_LABEL_PREFIX
956#define LOCAL_LABEL_PREFIX	"$"
957#endif
958
959/* By default on the mips, external symbols do not have an underscore
960   prepended, but some targets (e.g., NetBSD) require this.  */
961
962#ifndef USER_LABEL_PREFIX
963#define USER_LABEL_PREFIX	""
964#endif
965
966/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
967   since the length can run past this up to a continuation point.  */
968#undef DBX_CONTIN_LENGTH
969#define DBX_CONTIN_LENGTH 1500
970
971/* How to renumber registers for dbx and gdb.  */
972#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
973
974/* The mapping from gcc register number to DWARF 2 CFA column number.  */
975#define DWARF_FRAME_REGNUM(REG)	(REG)
976
977/* The DWARF 2 CFA column which tracks the return address.  */
978#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
979
980/* The DWARF 2 CFA column which tracks the return address from a
981   signal handler context.  */
982#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
983
984/* Before the prologue, RA lives in r31.  */
985#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
986
987/* Describe how we implement __builtin_eh_return.  */
988#define EH_RETURN_DATA_REGNO(N) \
989  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
990
991#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
992
993/* Offsets recorded in opcodes are a multiple of this alignment factor.
994   The default for this in 64-bit mode is 8, which causes problems with
995   SFmode register saves.  */
996#define DWARF_CIE_DATA_ALIGNMENT -4
997
998/* Correct the offset of automatic variables and arguments.  Note that
999   the MIPS debug format wants all automatic variables and arguments
1000   to be in terms of the virtual frame pointer (stack pointer before
1001   any adjustment in the function), while the MIPS 3.0 linker wants
1002   the frame pointer to be the stack pointer after the initial
1003   adjustment.  */
1004
1005#define DEBUGGER_AUTO_OFFSET(X)				\
1006  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1007#define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1008  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1009
1010/* Target machine storage layout */
1011
1012#define BITS_BIG_ENDIAN 0
1013#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1014#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1015
1016/* Define this to set the endianness to use in libgcc2.c, which can
1017   not depend on target_flags.  */
1018#if !defined(MIPSEL) && !defined(__MIPSEL__)
1019#define LIBGCC2_WORDS_BIG_ENDIAN 1
1020#else
1021#define LIBGCC2_WORDS_BIG_ENDIAN 0
1022#endif
1023
1024#define MAX_BITS_PER_WORD 64
1025
1026/* Width of a word, in units (bytes).  */
1027#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1028#ifndef IN_LIBGCC2
1029#define MIN_UNITS_PER_WORD 4
1030#endif
1031
1032/* For MIPS, width of a floating point register.  */
1033#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1034
1035/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1036   the next available register.  */
1037#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1038
1039/* The largest size of value that can be held in floating-point
1040   registers and moved with a single instruction.  */
1041#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1042
1043/* The largest size of value that can be held in floating-point
1044   registers.  */
1045#define UNITS_PER_FPVALUE			\
1046  (TARGET_SOFT_FLOAT ? 0			\
1047   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1048   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1049
1050/* The number of bytes in a double.  */
1051#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1052
1053#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1054
1055/* Set the sizes of the core types.  */
1056#define SHORT_TYPE_SIZE 16
1057#define INT_TYPE_SIZE 32
1058#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1059#define LONG_LONG_TYPE_SIZE 64
1060
1061#define FLOAT_TYPE_SIZE 32
1062#define DOUBLE_TYPE_SIZE 64
1063#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1064
1065/* long double is not a fixed mode, but the idea is that, if we
1066   support long double, we also want a 128-bit integer type.  */
1067#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1068
1069#ifdef IN_LIBGCC2
1070#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1071  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1072#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1073# else
1074#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1075# endif
1076#endif
1077
1078/* Width in bits of a pointer.  */
1079#ifndef POINTER_SIZE
1080#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1081#endif
1082
1083/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1084#define PARM_BOUNDARY BITS_PER_WORD
1085
1086/* Allocation boundary (in *bits*) for the code of a function.  */
1087#define FUNCTION_BOUNDARY 32
1088
1089/* Alignment of field after `int : 0' in a structure.  */
1090#define EMPTY_FIELD_BOUNDARY 32
1091
1092/* Every structure's size must be a multiple of this.  */
1093/* 8 is observed right on a DECstation and on riscos 4.02.  */
1094#define STRUCTURE_SIZE_BOUNDARY 8
1095
1096/* There is no point aligning anything to a rounder boundary than this.  */
1097#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1098
1099/* All accesses must be aligned.  */
1100#define STRICT_ALIGNMENT 1
1101
1102/* Define this if you wish to imitate the way many other C compilers
1103   handle alignment of bitfields and the structures that contain
1104   them.
1105
1106   The behavior is that the type written for a bit-field (`int',
1107   `short', or other integer type) imposes an alignment for the
1108   entire structure, as if the structure really did contain an
1109   ordinary field of that type.  In addition, the bit-field is placed
1110   within the structure so that it would fit within such a field,
1111   not crossing a boundary for it.
1112
1113   Thus, on most machines, a bit-field whose type is written as `int'
1114   would not cross a four-byte boundary, and would force four-byte
1115   alignment for the whole structure.  (The alignment used may not
1116   be four bytes; it is controlled by the other alignment
1117   parameters.)
1118
1119   If the macro is defined, its definition should be a C expression;
1120   a nonzero value for the expression enables this behavior.  */
1121
1122#define PCC_BITFIELD_TYPE_MATTERS 1
1123
1124/* If defined, a C expression to compute the alignment given to a
1125   constant that is being placed in memory.  CONSTANT is the constant
1126   and ALIGN is the alignment that the object would ordinarily have.
1127   The value of this macro is used instead of that alignment to align
1128   the object.
1129
1130   If this macro is not defined, then ALIGN is used.
1131
1132   The typical use of this macro is to increase alignment for string
1133   constants to be word aligned so that `strcpy' calls that copy
1134   constants can be done inline.  */
1135
1136#define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1137  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1138   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1139
1140/* If defined, a C expression to compute the alignment for a static
1141   variable.  TYPE is the data type, and ALIGN is the alignment that
1142   the object would ordinarily have.  The value of this macro is used
1143   instead of that alignment to align the object.
1144
1145   If this macro is not defined, then ALIGN is used.
1146
1147   One use of this macro is to increase alignment of medium-size
1148   data to make it all fit in fewer cache lines.  Another is to
1149   cause character arrays to be word-aligned so that `strcpy' calls
1150   that copy constants to character arrays can be done inline.  */
1151
1152#undef DATA_ALIGNMENT
1153#define DATA_ALIGNMENT(TYPE, ALIGN)					\
1154  ((((ALIGN) < BITS_PER_WORD)						\
1155    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1156	|| TREE_CODE (TYPE) == UNION_TYPE				\
1157	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1158
1159
1160#define PAD_VARARGS_DOWN \
1161  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1162
1163/* Define if operations between registers always perform the operation
1164   on the full register even if a narrower mode is specified.  */
1165#define WORD_REGISTER_OPERATIONS
1166
1167/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1168   moves.  All other references are zero extended.  */
1169#define LOAD_EXTEND_OP(MODE) \
1170  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1171   ? SIGN_EXTEND : ZERO_EXTEND)
1172
1173/* Define this macro if it is advisable to hold scalars in registers
1174   in a wider mode than that declared by the program.  In such cases,
1175   the value is constrained to be within the bounds of the declared
1176   type, but kept valid in the wider mode.  The signedness of the
1177   extension may differ from that of the type.  */
1178
1179#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1180  if (GET_MODE_CLASS (MODE) == MODE_INT		\
1181      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1182    {                                           \
1183      if ((MODE) == SImode)                     \
1184        (UNSIGNEDP) = 0;                        \
1185      (MODE) = Pmode;                           \
1186    }
1187
1188/* Define if loading short immediate values into registers sign extends.  */
1189#define SHORT_IMMEDIATES_SIGN_EXTEND
1190
1191/* The [d]clz instructions have the natural values at 0.  */
1192
1193#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1194  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1195
1196/* Standard register usage.  */
1197
1198/* Number of hardware registers.  We have:
1199
1200   - 32 integer registers
1201   - 32 floating point registers
1202   - 8 condition code registers
1203   - 2 accumulator registers (hi and lo)
1204   - 32 registers each for coprocessors 0, 2 and 3
1205   - 3 fake registers:
1206	- ARG_POINTER_REGNUM
1207	- FRAME_POINTER_REGNUM
1208	- FAKE_CALL_REGNO (see the comment above load_callsi for details)
1209   - 3 dummy entries that were used at various times in the past.
1210   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1211   - 6 DSP control registers  */
1212
1213#define FIRST_PSEUDO_REGISTER 188
1214
1215/* By default, fix the kernel registers ($26 and $27), the global
1216   pointer ($28) and the stack pointer ($29).  This can change
1217   depending on the command-line options.
1218
1219   Regarding coprocessor registers: without evidence to the contrary,
1220   it's best to assume that each coprocessor register has a unique
1221   use.  This can be overridden, in, e.g., override_options() or
1222   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1223   for a particular target.  */
1224
1225#define FIXED_REGISTERS							\
1226{									\
1227  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1228  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1229  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1230  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1231  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1232  /* COP0 registers */							\
1233  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1234  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1235  /* COP2 registers */							\
1236  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1237  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1238  /* COP3 registers */							\
1239  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1240  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1241  /* 6 DSP accumulator registers & 6 control registers */		\
1242  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1243}
1244
1245
1246/* Set up this array for o32 by default.
1247
1248   Note that we don't mark $31 as a call-clobbered register.  The idea is
1249   that it's really the call instructions themselves which clobber $31.
1250   We don't care what the called function does with it afterwards.
1251
1252   This approach makes it easier to implement sibcalls.  Unlike normal
1253   calls, sibcalls don't clobber $31, so the register reaches the
1254   called function in tact.  EPILOGUE_USES says that $31 is useful
1255   to the called function.  */
1256
1257#define CALL_USED_REGISTERS						\
1258{									\
1259  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1260  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1261  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1262  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1263  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1264  /* COP0 registers */							\
1265  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1266  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1267  /* COP2 registers */							\
1268  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1269  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1270  /* COP3 registers */							\
1271  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1272  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1273  /* 6 DSP accumulator registers & 6 control registers */		\
1274  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1275}
1276
1277
1278/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1279
1280#define CALL_REALLY_USED_REGISTERS                                      \
1281{ /* General registers.  */                                             \
1282  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1283  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1284  /* Floating-point registers.  */                                      \
1285  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1286  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1287  /* Others.  */                                                        \
1288  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1289  /* COP0 registers */							\
1290  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1291  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1292  /* COP2 registers */							\
1293  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1294  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1295  /* COP3 registers */							\
1296  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1297  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1298  /* 6 DSP accumulator registers & 6 control registers */		\
1299  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1300}
1301
1302/* Internal macros to classify a register number as to whether it's a
1303   general purpose register, a floating point register, a
1304   multiply/divide register, or a status register.  */
1305
1306#define GP_REG_FIRST 0
1307#define GP_REG_LAST  31
1308#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1309#define GP_DBX_FIRST 0
1310
1311#define FP_REG_FIRST 32
1312#define FP_REG_LAST  63
1313#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1314#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1315
1316#define MD_REG_FIRST 64
1317#define MD_REG_LAST  65
1318#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1319#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1320
1321#define ST_REG_FIRST 67
1322#define ST_REG_LAST  74
1323#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1324
1325
1326/* FIXME: renumber.  */
1327#define COP0_REG_FIRST 80
1328#define COP0_REG_LAST 111
1329#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1330
1331#define COP2_REG_FIRST 112
1332#define COP2_REG_LAST 143
1333#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1334
1335#define COP3_REG_FIRST 144
1336#define COP3_REG_LAST 175
1337#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1338/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1339#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1340
1341#define DSP_ACC_REG_FIRST 176
1342#define DSP_ACC_REG_LAST 181
1343#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1344
1345#define AT_REGNUM	(GP_REG_FIRST + 1)
1346#define HI_REGNUM	(MD_REG_FIRST + 0)
1347#define LO_REGNUM	(MD_REG_FIRST + 1)
1348#define AC1HI_REGNUM	(DSP_ACC_REG_FIRST + 0)
1349#define AC1LO_REGNUM	(DSP_ACC_REG_FIRST + 1)
1350#define AC2HI_REGNUM	(DSP_ACC_REG_FIRST + 2)
1351#define AC2LO_REGNUM	(DSP_ACC_REG_FIRST + 3)
1352#define AC3HI_REGNUM	(DSP_ACC_REG_FIRST + 4)
1353#define AC3LO_REGNUM	(DSP_ACC_REG_FIRST + 5)
1354
1355/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1356   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1357   should be used instead.  */
1358#define FPSW_REGNUM	ST_REG_FIRST
1359
1360#define GP_REG_P(REGNO)	\
1361  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1362#define M16_REG_P(REGNO) \
1363  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1364#define FP_REG_P(REGNO)  \
1365  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1366#define MD_REG_P(REGNO) \
1367  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1368#define ST_REG_P(REGNO) \
1369  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1370#define COP0_REG_P(REGNO) \
1371  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1372#define COP2_REG_P(REGNO) \
1373  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1374#define COP3_REG_P(REGNO) \
1375  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1376#define ALL_COP_REG_P(REGNO) \
1377  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1378/* Test if REGNO is one of the 6 new DSP accumulators.  */
1379#define DSP_ACC_REG_P(REGNO) \
1380  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1381/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1382#define ACC_REG_P(REGNO) \
1383  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1384/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1385#define ACC_HI_REG_P(REGNO) \
1386  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1387   || (REGNO) == AC3HI_REGNUM)
1388
1389#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1390
1391/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1392   to initialize the mips16 gp pseudo register.  */
1393#define CONST_GP_P(X)				\
1394  (GET_CODE (X) == CONST			\
1395   && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1396   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1397
1398/* Return coprocessor number from register number.  */
1399
1400#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1401  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1402   : COP3_REG_P (REGNO) ? '3' : '?')
1403
1404
1405#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1406
1407/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1408   array built in override_options.  Because machmodes.h is not yet
1409   included before this file is processed, the MODE bound can't be
1410   expressed here.  */
1411
1412extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1413
1414#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1415  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1416
1417/* Value is 1 if it is a good idea to tie two pseudo registers
1418   when one has mode MODE1 and one has mode MODE2.
1419   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1420   for any hard reg, then this must be 0 for correct output.  */
1421#define MODES_TIEABLE_P(MODE1, MODE2)					\
1422  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
1423    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
1424   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
1425       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1426
1427/* Register to use for pushing function arguments.  */
1428#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1429
1430/* These two registers don't really exist: they get eliminated to either
1431   the stack or hard frame pointer.  */
1432#define ARG_POINTER_REGNUM 77
1433#define FRAME_POINTER_REGNUM 78
1434
1435/* $30 is not available on the mips16, so we use $17 as the frame
1436   pointer.  */
1437#define HARD_FRAME_POINTER_REGNUM \
1438  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1439
1440/* Value should be nonzero if functions must have frame pointers.
1441   Zero means the frame pointer need not be set up (and parms
1442   may be accessed via the stack pointer) in functions that seem suitable.
1443   This is computed in `reload', in reload1.c.  */
1444#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1445
1446/* Register in which static-chain is passed to a function.  */
1447#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1448
1449/* Registers used as temporaries in prologue/epilogue code.  If we're
1450   generating mips16 code, these registers must come from the core set
1451   of 8.  The prologue register mustn't conflict with any incoming
1452   arguments, the static chain pointer, or the frame pointer.  The
1453   epilogue temporary mustn't conflict with the return registers, the
1454   frame pointer, the EH stack adjustment, or the EH data registers.  */
1455
1456#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1457#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1458
1459#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1460#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1461
1462/* Define this macro if it is as good or better to call a constant
1463   function address than to call an address kept in a register.  */
1464#define NO_FUNCTION_CSE 1
1465
1466/* The ABI-defined global pointer.  Sometimes we use a different
1467   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1468#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1469
1470/* We normally use $28 as the global pointer.  However, when generating
1471   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1472   register instead.  They can then avoid saving and restoring $28
1473   and perhaps avoid using a frame at all.
1474
1475   When a leaf function uses something other than $28, mips_expand_prologue
1476   will modify pic_offset_table_rtx in place.  Take the register number
1477   from there after reload.  */
1478#define PIC_OFFSET_TABLE_REGNUM \
1479  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1480
1481#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1482
1483/* Define the classes of registers for register constraints in the
1484   machine description.  Also define ranges of constants.
1485
1486   One of the classes must always be named ALL_REGS and include all hard regs.
1487   If there is more than one class, another class must be named NO_REGS
1488   and contain no registers.
1489
1490   The name GENERAL_REGS must be the name of a class (or an alias for
1491   another name such as ALL_REGS).  This is the class of registers
1492   that is allowed by "g" or "r" in a register constraint.
1493   Also, registers outside this class are allocated only when
1494   instructions express preferences for them.
1495
1496   The classes must be numbered in nondecreasing order; that is,
1497   a larger-numbered class must never be contained completely
1498   in a smaller-numbered class.
1499
1500   For any two classes, it is very desirable that there be another
1501   class that represents their union.  */
1502
1503enum reg_class
1504{
1505  NO_REGS,			/* no registers in set */
1506  M16_NA_REGS,			/* mips16 regs not used to pass args */
1507  M16_REGS,			/* mips16 directly accessible registers */
1508  T_REG,			/* mips16 T register ($24) */
1509  M16_T_REGS,			/* mips16 registers plus T register */
1510  PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1511  V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1512  LEA_REGS,			/* Every GPR except $25 */
1513  GR_REGS,			/* integer registers */
1514  FP_REGS,			/* floating point registers */
1515  HI_REG,			/* hi register */
1516  LO_REG,			/* lo register */
1517  MD_REGS,			/* multiply/divide registers (hi/lo) */
1518  COP0_REGS,			/* generic coprocessor classes */
1519  COP2_REGS,
1520  COP3_REGS,
1521  HI_AND_GR_REGS,		/* union classes */
1522  LO_AND_GR_REGS,
1523  HI_AND_FP_REGS,
1524  COP0_AND_GR_REGS,
1525  COP2_AND_GR_REGS,
1526  COP3_AND_GR_REGS,
1527  ALL_COP_REGS,
1528  ALL_COP_AND_GR_REGS,
1529  ST_REGS,			/* status registers (fp status) */
1530  DSP_ACC_REGS,			/* DSP accumulator registers */
1531  ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1532  ALL_REGS,			/* all registers */
1533  LIM_REG_CLASSES		/* max value + 1 */
1534};
1535
1536#define N_REG_CLASSES (int) LIM_REG_CLASSES
1537
1538#define GENERAL_REGS GR_REGS
1539
1540/* An initializer containing the names of the register classes as C
1541   string constants.  These names are used in writing some of the
1542   debugging dumps.  */
1543
1544#define REG_CLASS_NAMES							\
1545{									\
1546  "NO_REGS",								\
1547  "M16_NA_REGS",							\
1548  "M16_REGS",								\
1549  "T_REG",								\
1550  "M16_T_REGS",								\
1551  "PIC_FN_ADDR_REG",							\
1552  "V1_REG",								\
1553  "LEA_REGS",								\
1554  "GR_REGS",								\
1555  "FP_REGS",								\
1556  "HI_REG",								\
1557  "LO_REG",								\
1558  "MD_REGS",								\
1559  /* coprocessor registers */						\
1560  "COP0_REGS",								\
1561  "COP2_REGS",								\
1562  "COP3_REGS",								\
1563  "HI_AND_GR_REGS",							\
1564  "LO_AND_GR_REGS",							\
1565  "HI_AND_FP_REGS",							\
1566  "COP0_AND_GR_REGS",							\
1567  "COP2_AND_GR_REGS",							\
1568  "COP3_AND_GR_REGS",							\
1569  "ALL_COP_REGS",							\
1570  "ALL_COP_AND_GR_REGS",						\
1571  "ST_REGS",								\
1572  "DSP_ACC_REGS",							\
1573  "ACC_REGS",								\
1574  "ALL_REGS"								\
1575}
1576
1577/* An initializer containing the contents of the register classes,
1578   as integers which are bit masks.  The Nth integer specifies the
1579   contents of class N.  The way the integer MASK is interpreted is
1580   that register R is in the class if `MASK & (1 << R)' is 1.
1581
1582   When the machine has more than 32 registers, an integer does not
1583   suffice.  Then the integers are replaced by sub-initializers,
1584   braced groupings containing several integers.  Each
1585   sub-initializer must be suitable as an initializer for the type
1586   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1587
1588#define REG_CLASS_CONTENTS						                                \
1589{									                                \
1590  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
1591  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
1592  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
1593  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
1594  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
1595  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SVR4 PIC function address register */ \
1596  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* only $v1 */ \
1597  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* Every other GPR except $25 */   \
1598  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
1599  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
1600  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
1601  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
1602  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
1603  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1604  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1605  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1606  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
1607  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
1608  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
1609  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			        \
1610  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	                        \
1611  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1612  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1613  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1614  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
1615  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* dsp accumulator registers */	\
1616  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* hi/lo and dsp accumulator registers */	\
1617  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* all registers */	\
1618}
1619
1620
1621/* A C expression whose value is a register class containing hard
1622   register REGNO.  In general there is more that one such class;
1623   choose a class which is "minimal", meaning that no smaller class
1624   also contains the register.  */
1625
1626extern const enum reg_class mips_regno_to_class[];
1627
1628#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1629
1630/* A macro whose definition is the name of the class to which a
1631   valid base register must belong.  A base register is one used in
1632   an address which is the register value plus a displacement.  */
1633
1634#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1635
1636/* A macro whose definition is the name of the class to which a
1637   valid index register must belong.  An index register is one used
1638   in an address where its value is either multiplied by a scale
1639   factor or added to another register (as well as added to a
1640   displacement).  */
1641
1642#define INDEX_REG_CLASS NO_REGS
1643
1644/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1645   registers explicitly used in the rtl to be used as spill registers
1646   but prevents the compiler from extending the lifetime of these
1647   registers.  */
1648
1649#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1650
1651/* This macro is used later on in the file.  */
1652#define GR_REG_CLASS_P(CLASS)						\
1653  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
1654   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS			\
1655   || (CLASS) == V1_REG							\
1656   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1657
1658/* This macro is also used later on in the file.  */
1659#define COP_REG_CLASS_P(CLASS)						\
1660  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1661
1662/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1663   is the default value (allocate the registers in numeric order).  We
1664   define it just so that we can override it for the mips16 target in
1665   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1666
1667#define REG_ALLOC_ORDER							\
1668{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
1669  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1670  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1671  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1672  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
1673  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
1674  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
1675  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
1676  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
1677  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
1678  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
1679  176,177,178,179,180,181,182,183,184,185,186,187			\
1680}
1681
1682/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1683   to be rearranged based on a particular function.  On the mips16, we
1684   want to allocate $24 (T_REG) before other registers for
1685   instructions for which it is possible.  */
1686
1687#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1688
1689/* True if VALUE is an unsigned 6-bit number.  */
1690
1691#define UIMM6_OPERAND(VALUE) \
1692  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1693
1694/* True if VALUE is a signed 10-bit number.  */
1695
1696#define IMM10_OPERAND(VALUE) \
1697  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1698
1699/* True if VALUE is a signed 16-bit number.  */
1700
1701#define SMALL_OPERAND(VALUE) \
1702  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1703
1704/* True if VALUE is an unsigned 16-bit number.  */
1705
1706#define SMALL_OPERAND_UNSIGNED(VALUE) \
1707  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1708
1709/* True if VALUE can be loaded into a register using LUI.  */
1710
1711#define LUI_OPERAND(VALUE)					\
1712  (((VALUE) | 0x7fff0000) == 0x7fff0000				\
1713   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1714
1715/* Return a value X with the low 16 bits clear, and such that
1716   VALUE - X is a signed 16-bit value.  */
1717
1718#define CONST_HIGH_PART(VALUE) \
1719  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1720
1721#define CONST_LOW_PART(VALUE) \
1722  ((VALUE) - CONST_HIGH_PART (VALUE))
1723
1724#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1725#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1726#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1727
1728#define PREFERRED_RELOAD_CLASS(X,CLASS)					\
1729  mips_preferred_reload_class (X, CLASS)
1730
1731/* Certain machines have the property that some registers cannot be
1732   copied to some other registers without using memory.  Define this
1733   macro on those machines to be a C expression that is nonzero if
1734   objects of mode MODE in registers of CLASS1 can only be copied to
1735   registers of class CLASS2 by storing a register of CLASS1 into
1736   memory and loading that memory location into a register of CLASS2.
1737
1738   Do not define this macro if its value would always be zero.  */
1739#if 0
1740#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1741  ((!TARGET_DEBUG_H_MODE						\
1742    && GET_MODE_CLASS (MODE) == MODE_INT				\
1743    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
1744	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
1745   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
1746       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
1747	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1748#endif
1749/* The HI and LO registers can only be reloaded via the general
1750   registers.  Condition code registers can only be loaded to the
1751   general registers, and from the floating point registers.  */
1752
1753#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1754  mips_secondary_reload_class (CLASS, MODE, X, 1)
1755#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1756  mips_secondary_reload_class (CLASS, MODE, X, 0)
1757
1758/* Return the maximum number of consecutive registers
1759   needed to represent mode MODE in a register of class CLASS.  */
1760
1761#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1762
1763#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1764  mips_cannot_change_mode_class (FROM, TO, CLASS)
1765
1766/* Stack layout; function entry, exit and calling.  */
1767
1768#define STACK_GROWS_DOWNWARD
1769
1770/* The offset of the first local variable from the beginning of the frame.
1771   See compute_frame_size for details about the frame layout.
1772
1773   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1774   we assume that we will need 16 bytes of argument space.  This is because
1775   the value profiling code may emit calls to cmpdi2 in leaf functions.
1776   Without this hack, the local variables will start at sp+8 and the gp save
1777   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1778   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1779   will end up as 24 instead of 8.  This won't be needed if profiling code is
1780   inserted before virtual register instantiation.  */
1781
1782#define STARTING_FRAME_OFFSET						\
1783  ((flag_profile_values && ! TARGET_64BIT				\
1784    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1785    : current_function_outgoing_args_size)				\
1786   + (TARGET_ABICALLS && !TARGET_NEWABI					\
1787      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1788
1789#define RETURN_ADDR_RTX mips_return_addr
1790
1791/* Since the mips16 ISA mode is encoded in the least-significant bit
1792   of the address, mask it off return addresses for purposes of
1793   finding exception handling regions.  */
1794
1795#define MASK_RETURN_ADDR GEN_INT (-2)
1796
1797
1798/* Similarly, don't use the least-significant bit to tell pointers to
1799   code from vtable index.  */
1800
1801#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1802
1803/* The eliminations to $17 are only used for mips16 code.  See the
1804   definition of HARD_FRAME_POINTER_REGNUM.  */
1805
1806#define ELIMINABLE_REGS							\
1807{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
1808 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
1809 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
1810 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1811 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
1812 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1813
1814/* We can always eliminate to the hard frame pointer.  We can eliminate
1815   to the stack pointer unless a frame pointer is needed.
1816
1817   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1818   reload may be unable to compute the address of a local variable,
1819   since there is no way to add a large constant to the stack pointer
1820   without using a temporary register.  */
1821#define CAN_ELIMINATE(FROM, TO)						\
1822  ((TO) == HARD_FRAME_POINTER_REGNUM 				        \
1823   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed		\
1824       && (!TARGET_MIPS16						\
1825	   || compute_frame_size (get_frame_size ()) < 32768)))
1826
1827#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1828  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1829
1830/* Allocate stack space for arguments at the beginning of each function.  */
1831#define ACCUMULATE_OUTGOING_ARGS 1
1832
1833/* The argument pointer always points to the first argument.  */
1834#define FIRST_PARM_OFFSET(FNDECL) 0
1835
1836/* o32 and o64 reserve stack space for all argument registers.  */
1837#define REG_PARM_STACK_SPACE(FNDECL) 			\
1838  (TARGET_OLDABI					\
1839   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
1840   : 0)
1841
1842/* Define this if it is the responsibility of the caller to
1843   allocate the area reserved for arguments passed in registers.
1844   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1845   of this macro is to determine whether the space is included in
1846   `current_function_outgoing_args_size'.  */
1847#define OUTGOING_REG_PARM_STACK_SPACE
1848
1849#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1850
1851#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1852
1853/* Symbolic macros for the registers used to return integer and floating
1854   point values.  */
1855
1856#define GP_RETURN (GP_REG_FIRST + 2)
1857#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1858
1859#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1860
1861/* Symbolic macros for the first/last argument registers.  */
1862
1863#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1864#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1865#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1866#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1867
1868#define LIBCALL_VALUE(MODE) \
1869  mips_function_value (NULL_TREE, NULL, (MODE))
1870
1871#define FUNCTION_VALUE(VALTYPE, FUNC) \
1872  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1873
1874/* 1 if N is a possible register number for a function value.
1875   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1876   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1877
1878#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1879  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1880      && (N) == FP_RETURN + 2))
1881
1882/* 1 if N is a possible register number for function argument passing.
1883   We have no FP argument registers when soft-float.  When FP registers
1884   are 32 bits, we can't directly reference the odd numbered ones.  */
1885
1886#define FUNCTION_ARG_REGNO_P(N)					\
1887  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
1888    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
1889   && !fixed_regs[N])
1890
1891/* This structure has to cope with two different argument allocation
1892   schemes.  Most MIPS ABIs view the arguments as a structure, of which
1893   the first N words go in registers and the rest go on the stack.  If I
1894   < N, the Ith word might go in Ith integer argument register or in a
1895   floating-point register.  For these ABIs, we only need to remember
1896   the offset of the current argument into the structure.
1897
1898   The EABI instead allocates the integer and floating-point arguments
1899   separately.  The first N words of FP arguments go in FP registers,
1900   the rest go on the stack.  Likewise, the first N words of the other
1901   arguments go in integer registers, and the rest go on the stack.  We
1902   need to maintain three counts: the number of integer registers used,
1903   the number of floating-point registers used, and the number of words
1904   passed on the stack.
1905
1906   We could keep separate information for the two ABIs (a word count for
1907   the standard ABIs, and three separate counts for the EABI).  But it
1908   seems simpler to view the standard ABIs as forms of EABI that do not
1909   allocate floating-point registers.
1910
1911   So for the standard ABIs, the first N words are allocated to integer
1912   registers, and function_arg decides on an argument-by-argument basis
1913   whether that argument should really go in an integer register, or in
1914   a floating-point one.  */
1915
1916typedef struct mips_args {
1917  /* Always true for varargs functions.  Otherwise true if at least
1918     one argument has been passed in an integer register.  */
1919  int gp_reg_found;
1920
1921  /* The number of arguments seen so far.  */
1922  unsigned int arg_number;
1923
1924  /* The number of integer registers used so far.  For all ABIs except
1925     EABI, this is the number of words that have been added to the
1926     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
1927  unsigned int num_gprs;
1928
1929  /* For EABI, the number of floating-point registers used so far.  */
1930  unsigned int num_fprs;
1931
1932  /* The number of words passed on the stack.  */
1933  unsigned int stack_words;
1934
1935  /* On the mips16, we need to keep track of which floating point
1936     arguments were passed in general registers, but would have been
1937     passed in the FP regs if this were a 32 bit function, so that we
1938     can move them to the FP regs if we wind up calling a 32 bit
1939     function.  We record this information in fp_code, encoded in base
1940     four.  A zero digit means no floating point argument, a one digit
1941     means an SFmode argument, and a two digit means a DFmode argument,
1942     and a three digit is not used.  The low order digit is the first
1943     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1944     an SFmode argument.  ??? A more sophisticated approach will be
1945     needed if MIPS_ABI != ABI_32.  */
1946  int fp_code;
1947
1948  /* True if the function has a prototype.  */
1949  int prototype;
1950} CUMULATIVE_ARGS;
1951
1952/* Initialize a variable CUM of type CUMULATIVE_ARGS
1953   for a call to a function whose data type is FNTYPE.
1954   For a library call, FNTYPE is 0.  */
1955
1956#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1957  init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\
1958
1959/* Update the data in CUM to advance over an argument
1960   of mode MODE and data type TYPE.
1961   (TYPE is null for libcalls where that information may not be available.)  */
1962
1963#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1964  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1965
1966/* Determine where to put an argument to a function.
1967   Value is zero to push the argument on the stack,
1968   or a hard register in which to store the argument.
1969
1970   MODE is the argument's machine mode.
1971   TYPE is the data type of the argument (as a tree).
1972    This is null for libcalls where that information may
1973    not be available.
1974   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1975    the preceding args and about the function being called.
1976   NAMED is nonzero if this argument is a named parameter
1977    (otherwise it is an extra parameter matching an ellipsis).  */
1978
1979#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1980  function_arg( &CUM, MODE, TYPE, NAMED)
1981
1982#define FUNCTION_ARG_BOUNDARY function_arg_boundary
1983
1984#define FUNCTION_ARG_PADDING(MODE, TYPE)		\
1985  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1986
1987#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)		\
1988  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1989
1990/* True if using EABI and varargs can be passed in floating-point
1991   registers.  Under these conditions, we need a more complex form
1992   of va_list, which tracks GPR, FPR and stack arguments separately.  */
1993#define EABI_FLOAT_VARARGS_P \
1994	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1995
1996
1997/* Say that the epilogue uses the return address register.  Note that
1998   in the case of sibcalls, the values "used by the epilogue" are
1999   considered live at the start of the called function.  */
2000#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2001
2002/* Treat LOC as a byte offset from the stack pointer and round it up
2003   to the next fully-aligned offset.  */
2004#define MIPS_STACK_ALIGN(LOC) \
2005  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2006
2007
2008/* Implement `va_start' for varargs and stdarg.  */
2009#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2010  mips_va_start (valist, nextarg)
2011
2012/* Output assembler code to FILE to increment profiler label # LABELNO
2013   for profiling a function entry.  */
2014
2015#define FUNCTION_PROFILER(FILE, LABELNO)				\
2016{									\
2017  if (TARGET_MIPS16)							\
2018    sorry ("mips16 function profiling");				\
2019  fprintf (FILE, "\t.set\tnoat\n");					\
2020  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
2021	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
2022  if (!TARGET_NEWABI)							\
2023    {									\
2024      fprintf (FILE,							\
2025	       "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
2026	       TARGET_64BIT ? "dsubu" : "subu",				\
2027	       reg_names[STACK_POINTER_REGNUM],				\
2028	       reg_names[STACK_POINTER_REGNUM],				\
2029	       Pmode == DImode ? 16 : 8);				\
2030    }									\
2031  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2032  fprintf (FILE, "\t.set\tat\n");					\
2033}
2034
2035/* No mips port has ever used the profiler counter word, so don't emit it
2036   or the label for it.  */
2037
2038#define NO_PROFILE_COUNTERS 1
2039
2040/* Define this macro if the code for function profiling should come
2041   before the function prologue.  Normally, the profiling code comes
2042   after.  */
2043
2044/* #define PROFILE_BEFORE_PROLOGUE */
2045
2046/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2047   the stack pointer does not matter.  The value is tested only in
2048   functions that have frame pointers.
2049   No definition is equivalent to always zero.  */
2050
2051#define EXIT_IGNORE_STACK 1
2052
2053
2054/* A C statement to output, on the stream FILE, assembler code for a
2055   block of data that contains the constant parts of a trampoline.
2056   This code should not include a label--the label is taken care of
2057   automatically.  */
2058
2059#define TRAMPOLINE_TEMPLATE(STREAM)					\
2060{									\
2061  if (ptr_mode == DImode)						\
2062    fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove   $1,$31\n");	\
2063  else									\
2064    fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");	\
2065  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
2066  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
2067  if (ptr_mode == DImode)						\
2068    {									\
2069      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
2070      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
2071      fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove  $25,$3\n");	\
2072    }									\
2073  else									\
2074    {									\
2075      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
2076      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
2077      fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3\n");	\
2078    }									\
2079  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
2080  if (ptr_mode == DImode)						\
2081    {									\
2082      fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove   $31,$1\n");	\
2083      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2084      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2085    }									\
2086  else									\
2087    {									\
2088      fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");	\
2089      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2090      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2091    }									\
2092}
2093
2094/* A C expression for the size in bytes of the trampoline, as an
2095   integer.  */
2096
2097#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2098
2099/* Alignment required for trampolines, in bits.  */
2100
2101#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2102
2103/* INITIALIZE_TRAMPOLINE calls this library function to flush
2104   program and data caches.  */
2105
2106#ifndef CACHE_FLUSH_FUNC
2107#define CACHE_FLUSH_FUNC "_flush_cache"
2108#endif
2109
2110/* A C statement to initialize the variable parts of a trampoline.
2111   ADDR is an RTX for the address of the trampoline; FNADDR is an
2112   RTX for the address of the nested function; STATIC_CHAIN is an
2113   RTX for the static chain value that should be passed to the
2114   function when it is called.  */
2115
2116#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
2117{									    \
2118  rtx func_addr, chain_addr;						    \
2119									    \
2120  func_addr = plus_constant (ADDR, 32);					    \
2121  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));	    \
2122  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);		    \
2123  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);		    \
2124									    \
2125  /* Flush both caches.  We need to flush the data cache in case	    \
2126     the system has a write-back cache.  */				    \
2127  /* ??? Should check the return value for errors.  */			    \
2128  if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
2129    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2130		       0, VOIDmode, 3, ADDR, Pmode,			    \
2131		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2132		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
2133}
2134
2135/* Addressing modes, and classification of registers for them.  */
2136
2137#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2138#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2139  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2140
2141/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2142   and check its validity for a certain class.
2143   We have two alternate definitions for each of them.
2144   The usual definition accepts all pseudo regs; the other rejects them all.
2145   The symbol REG_OK_STRICT causes the latter definition to be used.
2146
2147   Most source files want to accept pseudo regs in the hope that
2148   they will get allocated to the class that the insn wants them to be in.
2149   Some source files that are used after register allocation
2150   need to be strict.  */
2151
2152#ifndef REG_OK_STRICT
2153#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2154  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2155#else
2156#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2157  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2158#endif
2159
2160#define REG_OK_FOR_INDEX_P(X) 0
2161
2162
2163/* Maximum number of registers that can appear in a valid memory address.  */
2164
2165#define MAX_REGS_PER_ADDRESS 1
2166
2167#ifdef REG_OK_STRICT
2168#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2169{						\
2170  if (mips_legitimate_address_p (MODE, X, 1))	\
2171    goto ADDR;					\
2172}
2173#else
2174#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2175{						\
2176  if (mips_legitimate_address_p (MODE, X, 0))	\
2177    goto ADDR;					\
2178}
2179#endif
2180
2181/* Check for constness inline but use mips_legitimate_address_p
2182   to check whether a constant really is an address.  */
2183
2184#define CONSTANT_ADDRESS_P(X) \
2185  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2186
2187#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2188
2189#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2190  do {								\
2191    if (mips_legitimize_address (&(X), MODE))			\
2192      goto WIN;							\
2193  } while (0)
2194
2195
2196/* A C statement or compound statement with a conditional `goto
2197   LABEL;' executed if memory address X (an RTX) can have different
2198   meanings depending on the machine mode of the memory reference it
2199   is used for.
2200
2201   Autoincrement and autodecrement addresses typically have
2202   mode-dependent effects because the amount of the increment or
2203   decrement is the size of the operand being addressed.  Some
2204   machines have other mode-dependent addresses.  Many RISC machines
2205   have no mode-dependent addresses.
2206
2207   You may assume that ADDR is a valid address for the machine.  */
2208
2209#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2210
2211/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2212   'the start of the function that this code is output in'.  */
2213
2214#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2215  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2216    asm_fprintf ((FILE), "%U%s",					\
2217		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2218  else									\
2219    asm_fprintf ((FILE), "%U%s", (NAME))
2220
2221/* Flag to mark a function decl symbol that requires a long call.  */
2222#define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2223#define SYMBOL_REF_LONG_CALL_P(X)					\
2224  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2225
2226/* Specify the machine mode that this machine uses
2227   for the index in the tablejump instruction.
2228   ??? Using HImode in mips16 mode can cause overflow.  */
2229#define CASE_VECTOR_MODE \
2230  (TARGET_MIPS16 ? HImode : ptr_mode)
2231
2232/* Define as C expression which evaluates to nonzero if the tablejump
2233   instruction expects the table to contain offsets from the address of the
2234   table.
2235   Do not define this if the table should contain absolute addresses.  */
2236#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2237
2238/* Define this as 1 if `char' should by default be signed; else as 0.  */
2239#ifndef DEFAULT_SIGNED_CHAR
2240#define DEFAULT_SIGNED_CHAR 1
2241#endif
2242
2243/* Max number of bytes we can move from memory to memory
2244   in one reasonably fast instruction.  */
2245#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2246#define MAX_MOVE_MAX 8
2247
2248/* Define this macro as a C expression which is nonzero if
2249   accessing less than a word of memory (i.e. a `char' or a
2250   `short') is no faster than accessing a word of memory, i.e., if
2251   such access require more than one instruction or if there is no
2252   difference in cost between byte and (aligned) word loads.
2253
2254   On RISC machines, it tends to generate better code to define
2255   this as 1, since it avoids making a QI or HI mode register.  */
2256#define SLOW_BYTE_ACCESS 1
2257
2258/* Define this to be nonzero if shift instructions ignore all but the low-order
2259   few bits.  */
2260#define SHIFT_COUNT_TRUNCATED 1
2261
2262/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2263   is done just by pretending it is already truncated.  */
2264#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2265  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2266
2267
2268/* Specify the machine mode that pointers have.
2269   After generation of rtl, the compiler makes no further distinction
2270   between pointers and any other objects of this machine mode.  */
2271
2272#ifndef Pmode
2273#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2274#endif
2275
2276/* Give call MEMs SImode since it is the "most permissive" mode
2277   for both 32-bit and 64-bit targets.  */
2278
2279#define FUNCTION_MODE SImode
2280
2281
2282/* The cost of loading values from the constant pool.  It should be
2283   larger than the cost of any constant we want to synthesize in-line.  */
2284
2285#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2286
2287/* A C expression for the cost of moving data from a register in
2288   class FROM to one in class TO.  The classes are expressed using
2289   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2290   the default; other values are interpreted relative to that.
2291
2292   It is not required that the cost always equal 2 when FROM is the
2293   same as TO; on some machines it is expensive to move between
2294   registers if they are not general registers.
2295
2296   If reload sees an insn consisting of a single `set' between two
2297   hard registers, and if `REGISTER_MOVE_COST' applied to their
2298   classes returns a value of 2, reload does not check to ensure
2299   that the constraints of the insn are met.  Setting a cost of
2300   other than 2 will allow reload to verify that the constraints are
2301   met.  You should do this if the `movM' pattern's constraints do
2302   not allow such copying.  */
2303
2304#define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2305  mips_register_move_cost (MODE, FROM, TO)
2306
2307#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2308  (mips_cost->memory_latency	      		\
2309   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2310
2311/* Define if copies to/from condition code registers should be avoided.
2312
2313   This is needed for the MIPS because reload_outcc is not complete;
2314   it needs to handle cases where the source is a general or another
2315   condition code register.  */
2316#define AVOID_CCMODE_COPIES
2317
2318/* A C expression for the cost of a branch instruction.  A value of
2319   1 is the default; other values are interpreted relative to that.  */
2320
2321#define BRANCH_COST mips_cost->branch_cost
2322#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2323
2324/* If defined, modifies the length assigned to instruction INSN as a
2325   function of the context in which it is used.  LENGTH is an lvalue
2326   that contains the initially computed length of the insn and should
2327   be updated with the correct length of the insn.  */
2328#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2329  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2330
2331/* Return the asm template for a non-MIPS16 conditional branch instruction.
2332   OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2333   its operands.  */
2334#define MIPS_BRANCH(OPCODE, OPERANDS) \
2335  "%*" OPCODE "%?\t" OPERANDS "%/"
2336
2337/* Return the asm template for a call.  INSN is the instruction's mnemonic
2338   ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2339   of the target.
2340
2341   When generating -mabicalls without explicit relocation operators,
2342   all calls should use assembly macros.  Otherwise, all indirect
2343   calls should use "jr" or "jalr"; we will arrange to restore $gp
2344   afterwards if necessary.  Finally, we can only generate direct
2345   calls for -mabicalls by temporarily switching to non-PIC mode.  */
2346#define MIPS_CALL(INSN, OPERANDS, OPNO)				\
2347  (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS			\
2348   ? "%*" INSN "\t%" #OPNO "%/"					\
2349   : REG_P (OPERANDS[OPNO])					\
2350   ? "%*" INSN "r\t%" #OPNO "%/"				\
2351   : TARGET_ABICALLS						\
2352   ? (".option\tpic0\n\t"					\
2353      "%*" INSN "\t%" #OPNO "%/\n\t"				\
2354      ".option\tpic2")						\
2355   : "%*" INSN "\t%" #OPNO "%/")
2356
2357/* Control the assembler format that we output.  */
2358
2359/* Output to assembler file text saying following lines
2360   may contain character constants, extra white space, comments, etc.  */
2361
2362#ifndef ASM_APP_ON
2363#define ASM_APP_ON " #APP\n"
2364#endif
2365
2366/* Output to assembler file text saying following lines
2367   no longer contain unusual constructs.  */
2368
2369#ifndef ASM_APP_OFF
2370#define ASM_APP_OFF " #NO_APP\n"
2371#endif
2372
2373#define REGISTER_NAMES							   \
2374{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2375  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2376  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2377  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2378  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2379  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2380  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2381  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2382  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2383  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",		   \
2384  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2385  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2386  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2387  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2388  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2389  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2390  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2391  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2392  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2393  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2394  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2395  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2396  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2397  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2398
2399/* List the "software" names for each register.  Also list the numerical
2400   names for $fp and $sp.  */
2401
2402#define ADDITIONAL_REGISTER_NAMES					\
2403{									\
2404  { "$29",	29 + GP_REG_FIRST },					\
2405  { "$30",	30 + GP_REG_FIRST },					\
2406  { "at",	 1 + GP_REG_FIRST },					\
2407  { "v0",	 2 + GP_REG_FIRST },					\
2408  { "v1",	 3 + GP_REG_FIRST },					\
2409  { "a0",	 4 + GP_REG_FIRST },					\
2410  { "a1",	 5 + GP_REG_FIRST },					\
2411  { "a2",	 6 + GP_REG_FIRST },					\
2412  { "a3",	 7 + GP_REG_FIRST },					\
2413  { "t0",	 8 + GP_REG_FIRST },					\
2414  { "t1",	 9 + GP_REG_FIRST },					\
2415  { "t2",	10 + GP_REG_FIRST },					\
2416  { "t3",	11 + GP_REG_FIRST },					\
2417  { "t4",	12 + GP_REG_FIRST },					\
2418  { "t5",	13 + GP_REG_FIRST },					\
2419  { "t6",	14 + GP_REG_FIRST },					\
2420  { "t7",	15 + GP_REG_FIRST },					\
2421  { "s0",	16 + GP_REG_FIRST },					\
2422  { "s1",	17 + GP_REG_FIRST },					\
2423  { "s2",	18 + GP_REG_FIRST },					\
2424  { "s3",	19 + GP_REG_FIRST },					\
2425  { "s4",	20 + GP_REG_FIRST },					\
2426  { "s5",	21 + GP_REG_FIRST },					\
2427  { "s6",	22 + GP_REG_FIRST },					\
2428  { "s7",	23 + GP_REG_FIRST },					\
2429  { "t8",	24 + GP_REG_FIRST },					\
2430  { "t9",	25 + GP_REG_FIRST },					\
2431  { "k0",	26 + GP_REG_FIRST },					\
2432  { "k1",	27 + GP_REG_FIRST },					\
2433  { "gp",	28 + GP_REG_FIRST },					\
2434  { "sp",	29 + GP_REG_FIRST },					\
2435  { "fp",	30 + GP_REG_FIRST },					\
2436  { "ra",	31 + GP_REG_FIRST },					\
2437  ALL_COP_ADDITIONAL_REGISTER_NAMES					\
2438}
2439
2440/* This is meant to be redefined in the host dependent files.  It is a
2441   set of alternative names and regnums for mips coprocessors.  */
2442
2443#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2444
2445/* A C compound statement to output to stdio stream STREAM the
2446   assembler syntax for an instruction operand X.  X is an RTL
2447   expression.
2448
2449   CODE is a value that can be used to specify one of several ways
2450   of printing the operand.  It is used when identical operands
2451   must be printed differently depending on the context.  CODE
2452   comes from the `%' specification that was used to request
2453   printing of the operand.  If the specification was just `%DIGIT'
2454   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2455   is the ASCII code for LTR.
2456
2457   If X is a register, this macro should print the register's name.
2458   The names can be found in an array `reg_names' whose type is
2459   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2460
2461   When the machine description has a specification `%PUNCT' (a `%'
2462   followed by a punctuation character), this macro is called with
2463   a null pointer for X and the punctuation character for CODE.
2464
2465   See mips.c for the MIPS specific codes.  */
2466
2467#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2468
2469/* A C expression which evaluates to true if CODE is a valid
2470   punctuation character for use in the `PRINT_OPERAND' macro.  If
2471   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2472   punctuation characters (except for the standard one, `%') are
2473   used in this way.  */
2474
2475#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2476
2477/* A C compound statement to output to stdio stream STREAM the
2478   assembler syntax for an instruction operand that is a memory
2479   reference whose address is ADDR.  ADDR is an RTL expression.  */
2480
2481#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2482
2483
2484/* A C statement, to be executed after all slot-filler instructions
2485   have been output.  If necessary, call `dbr_sequence_length' to
2486   determine the number of slots filled in a sequence (zero if not
2487   currently outputting a sequence), to decide how many no-ops to
2488   output, or whatever.
2489
2490   Don't define this macro if it has nothing to do, but it is
2491   helpful in reading assembly output if the extent of the delay
2492   sequence is made explicit (e.g. with white space).
2493
2494   Note that output routines for instructions with delay slots must
2495   be prepared to deal with not being output as part of a sequence
2496   (i.e.  when the scheduling pass is not run, or when no slot
2497   fillers could be found.)  The variable `final_sequence' is null
2498   when not processing a sequence, otherwise it contains the
2499   `sequence' rtx being output.  */
2500
2501#define DBR_OUTPUT_SEQEND(STREAM)					\
2502do									\
2503  {									\
2504    if (set_nomacro > 0 && --set_nomacro == 0)				\
2505      fputs ("\t.set\tmacro\n", STREAM);				\
2506									\
2507    if (set_noreorder > 0 && --set_noreorder == 0)			\
2508      fputs ("\t.set\treorder\n", STREAM);				\
2509									\
2510    fputs ("\n", STREAM);						\
2511  }									\
2512while (0)
2513
2514
2515/* How to tell the debugger about changes of source files.  */
2516#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2517  mips_output_filename (STREAM, NAME)
2518
2519/* mips-tfile does not understand .stabd directives.  */
2520#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {	\
2521  dbxout_begin_stabn_sline (LINE);				\
2522  dbxout_stab_value_internal_label ("LM", &COUNTER);		\
2523} while (0)
2524
2525/* Use .loc directives for SDB line numbers.  */
2526#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)			\
2527  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2528
2529/* The MIPS implementation uses some labels for its own purpose.  The
2530   following lists what labels are created, and are all formed by the
2531   pattern $L[a-z].*.  The machine independent portion of GCC creates
2532   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2533
2534	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2535	$Lb[0-9]+	Begin blocks for MIPS debug support
2536	$Lc[0-9]+	Label for use in s<xx> operation.
2537	$Le[0-9]+	End blocks for MIPS debug support  */
2538
2539#undef ASM_DECLARE_OBJECT_NAME
2540#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2541  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2542
2543/* Globalizing directive for a label.  */
2544#define GLOBAL_ASM_OP "\t.globl\t"
2545
2546/* This says how to define a global common symbol.  */
2547
2548#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2549
2550/* This says how to define a local common symbol (i.e., not visible to
2551   linker).  */
2552
2553#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2554#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2555  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2556#endif
2557
2558/* This says how to output an external.  It would be possible not to
2559   output anything and let undefined symbol become external. However
2560   the assembler uses length information on externals to allocate in
2561   data/sdata bss/sbss, thereby saving exec time.  */
2562
2563#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2564  mips_output_external(STREAM,DECL,NAME)
2565
2566/* This is how to declare a function name.  The actual work of
2567   emitting the label is moved to function_prologue, so that we can
2568   get the line number correctly emitted before the .ent directive,
2569   and after any .file directives.  Define as empty so that the function
2570   is not declared before the .ent directive elsewhere.  */
2571
2572#undef ASM_DECLARE_FUNCTION_NAME
2573#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2574
2575#ifndef FUNCTION_NAME_ALREADY_DECLARED
2576#define FUNCTION_NAME_ALREADY_DECLARED 0
2577#endif
2578
2579/* This is how to store into the string LABEL
2580   the symbol_ref name of an internal numbered label where
2581   PREFIX is the class of label and NUM is the number within the class.
2582   This is suitable for output with `assemble_name'.  */
2583
2584#undef ASM_GENERATE_INTERNAL_LABEL
2585#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2586  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2587
2588/* This is how to output an element of a case-vector that is absolute.  */
2589
2590#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2591  fprintf (STREAM, "\t%s\t%sL%d\n",					\
2592	   ptr_mode == DImode ? ".dword" : ".word",			\
2593	   LOCAL_LABEL_PREFIX,						\
2594	   VALUE)
2595
2596/* This is how to output an element of a case-vector.  We can make the
2597   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2598   is supported.  */
2599
2600#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2601do {									\
2602  if (TARGET_MIPS16)							\
2603    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
2604	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2605  else if (TARGET_GPWORD)						\
2606    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2607	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2608	     LOCAL_LABEL_PREFIX, VALUE);				\
2609  else									\
2610    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2611	     ptr_mode == DImode ? ".dword" : ".word",			\
2612	     LOCAL_LABEL_PREFIX, VALUE);				\
2613} while (0)
2614
2615/* When generating MIPS16 code, we want the jump table to be in the text
2616   section so that we can load its address using a PC-relative addition.  */
2617#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2618
2619/* This is how to output an assembler line
2620   that says to advance the location counter
2621   to a multiple of 2**LOG bytes.  */
2622
2623#define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2624  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2625
2626/* This is how to output an assembler line to advance the location
2627   counter by SIZE bytes.  */
2628
2629#undef ASM_OUTPUT_SKIP
2630#define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2631  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2632
2633/* This is how to output a string.  */
2634#undef ASM_OUTPUT_ASCII
2635#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
2636  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2637
2638/* Output #ident as a in the read-only data section.  */
2639#undef  ASM_OUTPUT_IDENT
2640#define ASM_OUTPUT_IDENT(FILE, STRING)					\
2641{									\
2642  const char *p = STRING;						\
2643  int size = strlen (p) + 1;						\
2644  switch_to_section (readonly_data_section);				\
2645  assemble_string (p, size);						\
2646}
2647
2648/* Default to -G 8 */
2649#ifndef MIPS_DEFAULT_GVALUE
2650#define MIPS_DEFAULT_GVALUE 8
2651#endif
2652
2653/* Define the strings to put out for each section in the object file.  */
2654#define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2655#define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2656
2657#undef READONLY_DATA_SECTION_ASM_OP
2658#define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2659
2660#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2661do									\
2662  {									\
2663    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
2664	     TARGET_64BIT ? "dsubu" : "subu",				\
2665	     reg_names[STACK_POINTER_REGNUM],				\
2666	     reg_names[STACK_POINTER_REGNUM],				\
2667	     TARGET_64BIT ? "sd" : "sw",				\
2668	     reg_names[REGNO],						\
2669	     reg_names[STACK_POINTER_REGNUM]);				\
2670  }									\
2671while (0)
2672
2673#define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2674do									\
2675  {									\
2676    if (! set_noreorder)						\
2677      fprintf (STREAM, "\t.set\tnoreorder\n");				\
2678									\
2679    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2680	     TARGET_64BIT ? "ld" : "lw",				\
2681	     reg_names[REGNO],						\
2682	     reg_names[STACK_POINTER_REGNUM],				\
2683	     TARGET_64BIT ? "daddu" : "addu",				\
2684	     reg_names[STACK_POINTER_REGNUM],				\
2685	     reg_names[STACK_POINTER_REGNUM]);				\
2686									\
2687    if (! set_noreorder)						\
2688      fprintf (STREAM, "\t.set\treorder\n");				\
2689  }									\
2690while (0)
2691
2692/* How to start an assembler comment.
2693   The leading space is important (the mips native assembler requires it).  */
2694#ifndef ASM_COMMENT_START
2695#define ASM_COMMENT_START " #"
2696#endif
2697
2698/* Default definitions for size_t and ptrdiff_t.  We must override the
2699   definitions from ../svr4.h on mips-*-linux-gnu.  */
2700
2701#undef SIZE_TYPE
2702#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2703
2704#undef PTRDIFF_TYPE
2705#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2706
2707#ifndef __mips16
2708/* Since the bits of the _init and _fini function is spread across
2709   many object files, each potentially with its own GP, we must assume
2710   we need to load our GP.  We don't preserve $gp or $ra, since each
2711   init/fini chunk is supposed to initialize $gp, and crti/crtn
2712   already take care of preserving $ra and, when appropriate, $gp.  */
2713#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2714#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2715   asm (SECTION_OP "\n\
2716	.set noreorder\n\
2717	bal 1f\n\
2718	nop\n\
27191:	.cpload $31\n\
2720	.set reorder\n\
2721	jal " USER_LABEL_PREFIX #FUNC "\n\
2722	" TEXT_SECTION_ASM_OP);
2723#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2724#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2725   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2726#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2727   asm (SECTION_OP "\n\
2728	.set noreorder\n\
2729	bal 1f\n\
2730	nop\n\
27311:	.set reorder\n\
2732	.cpsetup $31, $2, 1b\n\
2733	jal " USER_LABEL_PREFIX #FUNC "\n\
2734	" TEXT_SECTION_ASM_OP);
2735#endif
2736#endif
2737
2738#ifndef HAVE_AS_TLS
2739#define HAVE_AS_TLS 0
2740#endif
2741