1/* Definitions of target machine for GNU compiler.  MIPS version.
2   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5   Changed by Michael Meissner	(meissner@osf.org).
6   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7   Brendan Eich (brendan@microunity.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GCC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING.  If not, write to
23the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA.  */
25
26
27/* MIPS external variables defined in mips.c.  */
28
29/* Which processor to schedule for.  Since there is no difference between
30   a R2000 and R3000 in terms of the scheduler, we collapse them into
31   just an R3000.  The elements of the enumeration must match exactly
32   the cpu attribute in the mips.md machine description.  */
33
34enum processor_type {
35  PROCESSOR_R3000,
36  PROCESSOR_4KC,
37  PROCESSOR_4KP,
38  PROCESSOR_5KC,
39  PROCESSOR_5KF,
40  PROCESSOR_20KC,
41  PROCESSOR_24K,
42  PROCESSOR_24KX,
43  PROCESSOR_M4K,
44  PROCESSOR_OCTEON,
45  PROCESSOR_R3900,
46  PROCESSOR_R6000,
47  PROCESSOR_R4000,
48  PROCESSOR_R4100,
49  PROCESSOR_R4111,
50  PROCESSOR_R4120,
51  PROCESSOR_R4130,
52  PROCESSOR_R4300,
53  PROCESSOR_R4600,
54  PROCESSOR_R4650,
55  PROCESSOR_R5000,
56  PROCESSOR_R5400,
57  PROCESSOR_R5500,
58  PROCESSOR_R7000,
59  PROCESSOR_R8000,
60  PROCESSOR_R9000,
61  PROCESSOR_SB1,
62  PROCESSOR_SB1A,
63  PROCESSOR_SR71000,
64  PROCESSOR_MAX
65};
66
67/* Costs of various operations on the different architectures.  */
68
69struct mips_rtx_cost_data
70{
71  unsigned short fp_add;
72  unsigned short fp_mult_sf;
73  unsigned short fp_mult_df;
74  unsigned short fp_div_sf;
75  unsigned short fp_div_df;
76  unsigned short int_mult_si;
77  unsigned short int_mult_di;
78  unsigned short int_div_si;
79  unsigned short int_div_di;
80  unsigned short branch_cost;
81  unsigned short memory_latency;
82};
83
84/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
85   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
86   to work on a 64 bit machine.  */
87
88#define ABI_32  0
89#define ABI_N32 1
90#define ABI_64  2
91#define ABI_EABI 3
92#define ABI_O64  4
93
94/* Information about one recognized processor.  Defined here for the
95   benefit of TARGET_CPU_CPP_BUILTINS.  */
96struct mips_cpu_info {
97  /* The 'canonical' name of the processor as far as GCC is concerned.
98     It's typically a manufacturer's prefix followed by a numerical
99     designation.  It should be lower case.  */
100  const char *name;
101
102  /* The internal processor number that most closely matches this
103     entry.  Several processors can have the same value, if there's no
104     difference between them from GCC's point of view.  */
105  enum processor_type cpu;
106
107  /* The ISA level that the processor implements.  */
108  int isa;
109};
110
111#ifndef USED_FOR_TARGET
112extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
113extern const char *current_function_file; /* filename current function is in */
114extern int num_source_filenames;	/* current .file # */
115extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
116extern int sym_lineno;			/* sgi next label # for each stmt */
117extern int set_noreorder;		/* # of nested .set noreorder's  */
118extern int set_nomacro;			/* # of nested .set nomacro's  */
119extern int set_noat;			/* # of nested .set noat's  */
120extern int set_volatile;		/* # of nested .set volatile's  */
121extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
122extern int mips_dbx_regno[];		/* Map register # to debug register # */
123extern bool mips_split_p[];
124extern GTY(()) rtx cmp_operands[2];
125extern enum processor_type mips_arch;   /* which cpu to codegen for */
126extern enum processor_type mips_tune;   /* which cpu to schedule for */
127extern int mips_isa;			/* architectural level */
128extern int mips_abi;			/* which ABI to use */
129extern int mips16_hard_float;		/* mips16 without -msoft-float */
130extern const struct mips_cpu_info mips_cpu_info_table[];
131extern const struct mips_cpu_info *mips_arch_info;
132extern const struct mips_cpu_info *mips_tune_info;
133extern const struct mips_rtx_cost_data *mips_cost;
134#endif
135
136/* Macros to silence warnings about numbers being signed in traditional
137   C and unsigned in ISO C when compiled on 32-bit hosts.  */
138
139#define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
140#define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
141#define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
142
143
144/* Run-time compilation parameters selecting different hardware subsets.  */
145
146/* True if the call patterns should be split into a jalr followed by
147   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
148   in which $gp is call-clobbered.  It is only safe to split the load
149   from the call when every use of $gp is explicit.  */
150
151#define TARGET_SPLIT_CALLS \
152  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
153
154/* True if we're generating a form of -mabicalls in which we can use
155   operators like %hi and %lo to refer to locally-binding symbols.
156   We can only do this for -mno-shared, and only then if we can use
157   relocation operations instead of assembly macros.  It isn't really
158   worth using absolute sequences for 64-bit symbols because GOT
159   accesses are so much shorter.  */
160
161#define TARGET_ABSOLUTE_ABICALLS	\
162  (TARGET_ABICALLS			\
163   && !TARGET_SHARED			\
164   && TARGET_EXPLICIT_RELOCS		\
165   && !ABI_HAS_64BIT_SYMBOLS)
166
167/* True if we can optimize sibling calls.  For simplicity, we only
168   handle cases in which call_insn_operand will reject invalid
169   sibcall addresses.  There are two cases in which this isn't true:
170
171      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
172	but there is no direct jump instruction.  It isn't worth
173	using sibling calls in this case anyway; they would usually
174	be longer than normal calls.
175
176      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
177	accepts global constants, but "jr $25" is the only allowed
178	sibcall.  */
179
180#define TARGET_SIBCALLS \
181  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
182
183/* True if .gpword or .gpdword should be used for switch tables.
184
185   Although GAS does understand .gpdword, the SGI linker mishandles
186   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
187   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
188#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
189
190/* Generate mips16 code */
191#define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
192/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
193#define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
194
195/* Generic ISA defines.  */
196#define ISA_MIPS1		    (mips_isa == 1)
197#define ISA_MIPS2		    (mips_isa == 2)
198#define ISA_MIPS3                   (mips_isa == 3)
199#define ISA_MIPS4		    (mips_isa == 4)
200#define ISA_MIPS32		    (mips_isa == 32)
201#define ISA_MIPS32R2		    (mips_isa == 33)
202#define ISA_MIPS64                  (mips_isa == 64)
203#define	ISA_MIPS64R2		    (mips_isa == 65)
204
205/* Architecture target defines.  */
206#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
207#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
208#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
209#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
210#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
211#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
212#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
213#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
214#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
215				     || mips_arch == PROCESSOR_SB1A)
216#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
217#define TARGET_OCTEON               (mips_arch == PROCESSOR_OCTEON)
218
219/* Scheduling target defines.  */
220#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
221#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
222#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
223#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
224#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
225#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
226#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
227#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
228#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
229#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
230#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
231#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
232				     || mips_tune == PROCESSOR_SB1A)
233#define TUNE_OCTEON                 (mips_tune == PROCESSOR_OCTEON)
234
235/* True if the pre-reload scheduler should try to create chains of
236   multiply-add or multiply-subtract instructions.  For example,
237   suppose we have:
238
239	t1 = a * b
240	t2 = t1 + c * d
241	t3 = e * f
242	t4 = t3 - g * h
243
244   t1 will have a higher priority than t2 and t3 will have a higher
245   priority than t4.  However, before reload, there is no dependence
246   between t1 and t3, and they can often have similar priorities.
247   The scheduler will then tend to prefer:
248
249	t1 = a * b
250	t3 = e * f
251	t2 = t1 + c * d
252	t4 = t3 - g * h
253
254   which stops us from making full use of macc/madd-style instructions.
255   This sort of situation occurs frequently in Fourier transforms and
256   in unrolled loops.
257
258   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
259   queue so that chained multiply-add and multiply-subtract instructions
260   appear ahead of any other instruction that is likely to clobber lo.
261   In the example above, if t2 and t3 become ready at the same time,
262   the code ensures that t2 is scheduled first.
263
264   Multiply-accumulate instructions are a bigger win for some targets
265   than others, so this macro is defined on an opt-in basis.  */
266#define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
267				     || TUNE_MIPS4120		\
268				     || TUNE_MIPS4130)
269
270#define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
271#define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
272
273/* IRIX specific stuff.  */
274#define TARGET_IRIX	   0
275#define TARGET_IRIX6	   0
276
277/* Define preprocessor macros for the -march and -mtune options.
278   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
279   processor.  If INFO's canonical name is "foo", define PREFIX to
280   be "foo", and define an additional macro PREFIX_FOO.  */
281#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
282  do								\
283    {								\
284      char *macro, *p;						\
285								\
286      macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
287      for (p = macro; *p != 0; p++)				\
288	if (*p == '+')						\
289	  *p = 'P';						\
290	else							\
291	  *p = TOUPPER (*p);					\
292								\
293      builtin_define (macro);					\
294      builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
295      free (macro);						\
296    }								\
297  while (0)
298
299/* Target CPU builtins.  */
300#define TARGET_CPU_CPP_BUILTINS()				\
301  do								\
302    {								\
303      /* Everyone but IRIX defines this to mips.  */            \
304      if (!TARGET_IRIX)                                         \
305        builtin_assert ("machine=mips");                        \
306                                                                \
307      builtin_assert ("cpu=mips");				\
308      builtin_define ("__mips__");     				\
309      builtin_define ("_mips");					\
310								\
311      /* We do this here because __mips is defined below	\
312	 and so we can't use builtin_define_std.  */		\
313      if (!flag_iso)						\
314	builtin_define ("mips");				\
315								\
316      if (TARGET_64BIT)						\
317	builtin_define ("__mips64");				\
318								\
319      if (!TARGET_IRIX)						\
320	{							\
321	  /* Treat _R3000 and _R4000 like register-size		\
322	     defines, which is how they've historically		\
323	     been used.  */					\
324	  if (TARGET_64BIT)					\
325	    {							\
326	      builtin_define_std ("R4000");			\
327	      builtin_define ("_R4000");			\
328	    }							\
329	  else							\
330	    {							\
331	      builtin_define_std ("R3000");			\
332	      builtin_define ("_R3000");			\
333	    }							\
334	}							\
335      if (TARGET_FLOAT64)					\
336	builtin_define ("__mips_fpr=64");			\
337      else							\
338	builtin_define ("__mips_fpr=32");			\
339								\
340      if (TARGET_MIPS16)					\
341	builtin_define ("__mips16");				\
342								\
343      if (TARGET_MIPS3D)					\
344	builtin_define ("__mips3d");				\
345								\
346      if (TARGET_DSP)						\
347	builtin_define ("__mips_dsp");				\
348								\
349      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
350      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
351								\
352      if (ISA_MIPS1)						\
353	{							\
354	  builtin_define ("__mips=1");				\
355	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
356	}							\
357      else if (ISA_MIPS2)					\
358	{							\
359	  builtin_define ("__mips=2");				\
360	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
361	}							\
362      else if (ISA_MIPS3)					\
363	{							\
364	  builtin_define ("__mips=3");				\
365	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
366	}							\
367      else if (ISA_MIPS4)					\
368	{							\
369	  builtin_define ("__mips=4");				\
370	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
371	}							\
372      else if (ISA_MIPS32)					\
373	{							\
374	  builtin_define ("__mips=32");				\
375	  builtin_define ("__mips_isa_rev=1");			\
376	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
377	}							\
378      else if (ISA_MIPS32R2)					\
379	{							\
380	  builtin_define ("__mips=32");				\
381	  builtin_define ("__mips_isa_rev=2");			\
382	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
383	}							\
384      else if (ISA_MIPS64)					\
385	{							\
386	  builtin_define ("__mips=64");				\
387	  builtin_define ("__mips_isa_rev=1");			\
388	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
389	}							\
390      else if (ISA_MIPS64R2)					\
391	{							\
392	  builtin_define ("__mips=64");				\
393	  builtin_define ("__mips_isa_rev=2");			\
394	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
395	}							\
396								\
397      if (TARGET_HARD_FLOAT)					\
398	builtin_define ("__mips_hard_float");			\
399      else if (TARGET_SOFT_FLOAT)				\
400	builtin_define ("__mips_soft_float");			\
401								\
402      if (TARGET_SINGLE_FLOAT)					\
403	builtin_define ("__mips_single_float");			\
404								\
405      if (TARGET_PAIRED_SINGLE_FLOAT)				\
406	builtin_define ("__mips_paired_single_float");		\
407								\
408      if (TARGET_BIG_ENDIAN)					\
409	{							\
410	  builtin_define_std ("MIPSEB");			\
411	  builtin_define ("_MIPSEB");				\
412	}							\
413      else							\
414	{							\
415	  builtin_define_std ("MIPSEL");			\
416	  builtin_define ("_MIPSEL");				\
417	}							\
418								\
419        /* Macros dependent on the C dialect.  */		\
420      if (preprocessing_asm_p ())				\
421	{							\
422          builtin_define_std ("LANGUAGE_ASSEMBLY");		\
423	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
424	}							\
425      else if (c_dialect_cxx ())				\
426        {							\
427	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
428          builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
429          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
430        }							\
431      else							\
432	{							\
433          builtin_define_std ("LANGUAGE_C");			\
434	  builtin_define ("_LANGUAGE_C");			\
435	}							\
436      if (c_dialect_objc ())					\
437        {							\
438	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
439          builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
440	  /* Bizarre, but needed at least for Irix.  */		\
441	  builtin_define_std ("LANGUAGE_C");			\
442	  builtin_define ("_LANGUAGE_C");			\
443        }							\
444								\
445      if (mips_abi == ABI_EABI)					\
446	builtin_define ("__mips_eabi");				\
447								\
448} while (0)
449
450/* Default target_flags if no switches are specified  */
451
452#ifndef TARGET_DEFAULT
453#define TARGET_DEFAULT 0
454#endif
455
456#ifndef TARGET_CPU_DEFAULT
457#define TARGET_CPU_DEFAULT 0
458#endif
459
460#ifndef TARGET_ENDIAN_DEFAULT
461#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
462#endif
463
464#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
465#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
466#endif
467
468/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
469#ifndef MIPS_ISA_DEFAULT
470#ifndef MIPS_CPU_STRING_DEFAULT
471#define MIPS_CPU_STRING_DEFAULT "from-abi"
472#endif
473#endif
474
475#ifdef IN_LIBGCC2
476#undef TARGET_64BIT
477/* Make this compile time constant for libgcc2 */
478#ifdef __mips64
479#define TARGET_64BIT		1
480#else
481#define TARGET_64BIT		0
482#endif
483#endif /* IN_LIBGCC2 */
484
485#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
486
487#ifndef MULTILIB_ENDIAN_DEFAULT
488#if TARGET_ENDIAN_DEFAULT == 0
489#define MULTILIB_ENDIAN_DEFAULT "EL"
490#else
491#define MULTILIB_ENDIAN_DEFAULT "EB"
492#endif
493#endif
494
495#ifndef MULTILIB_ISA_DEFAULT
496#  if MIPS_ISA_DEFAULT == 1
497#    define MULTILIB_ISA_DEFAULT "mips1"
498#  else
499#    if MIPS_ISA_DEFAULT == 2
500#      define MULTILIB_ISA_DEFAULT "mips2"
501#    else
502#      if MIPS_ISA_DEFAULT == 3
503#        define MULTILIB_ISA_DEFAULT "mips3"
504#      else
505#        if MIPS_ISA_DEFAULT == 4
506#          define MULTILIB_ISA_DEFAULT "mips4"
507#        else
508#          if MIPS_ISA_DEFAULT == 32
509#            define MULTILIB_ISA_DEFAULT "mips32"
510#          else
511#            if MIPS_ISA_DEFAULT == 33
512#              define MULTILIB_ISA_DEFAULT "mips32r2"
513#            else
514#              if MIPS_ISA_DEFAULT == 64
515#                define MULTILIB_ISA_DEFAULT "mips64"
516#              else
517#                if MIPS_ISA_DEFAULT == 65
518#                  define MULTILIB_ISA_DEFAULT "mips64r2"
519#                else
520#                  define MULTILIB_ISA_DEFAULT "mips1"
521#                endif
522#              endif
523#            endif
524#          endif
525#        endif
526#      endif
527#    endif
528#  endif
529#endif
530
531#ifndef MULTILIB_DEFAULTS
532#define MULTILIB_DEFAULTS \
533    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
534#endif
535
536/* We must pass -EL to the linker by default for little endian embedded
537   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
538   linker will default to using big-endian output files.  The OUTPUT_FORMAT
539   line must be in the linker script, otherwise -EB/-EL will not work.  */
540
541#ifndef ENDIAN_SPEC
542#if TARGET_ENDIAN_DEFAULT == 0
543#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
544#else
545#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
546#endif
547#endif
548
549/* Support for a compile-time default CPU, et cetera.  The rules are:
550   --with-arch is ignored if -march is specified or a -mips is specified
551     (other than -mips16).
552   --with-tune is ignored if -mtune is specified.
553   --with-abi is ignored if -mabi is specified.
554   --with-float is ignored if -mhard-float or -msoft-float are
555     specified.
556   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
557     specified. */
558#define OPTION_DEFAULT_SPECS \
559  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
560  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
561  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
562  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
563  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
564
565
566#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
567                               && ISA_HAS_COND_TRAP)
568
569#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
570				 && !TARGET_SR71K                       \
571				 && !TARGET_MIPS16)
572
573/* Generate three-operand multiply instructions for SImode.  */
574#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
575                                  || TARGET_MIPS5400                    \
576                                  || TARGET_MIPS5500                    \
577                                  || TARGET_MIPS7000                    \
578                                  || TARGET_MIPS9000                    \
579				  || TARGET_MAD				\
580                                  || ISA_MIPS32	                        \
581                                  || ISA_MIPS32R2                       \
582                                  || ISA_MIPS64                         \
583                                  || ISA_MIPS64R2)                      \
584                                 && !TARGET_MIPS16)
585
586/* Generate three-operand multiply instructions for DImode.  */
587#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
588				 && !TARGET_MIPS16)
589
590/* True if the ABI can only work with 64-bit integer registers.  We
591   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
592   otherwise floating-point registers must also be 64-bit.  */
593#define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
594
595/* Likewise for 32-bit regs.  */
596#define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
597
598/* True if symbols are 64 bits wide.  At present, n64 is the only
599   ABI for which this is true.  */
600#define ABI_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64 && !TARGET_SYM32)
601
602/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
603#define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
604				 || ISA_MIPS4				\
605                                 || ISA_MIPS64				\
606				 || ISA_MIPS64R2)
607
608/* ISA has branch likely instructions (e.g. mips2).  */
609/* Disable branchlikely for tx39 until compare rewrite.  They haven't
610   been generated up to this point.  */
611#define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
612
613/* ISA has the conditional move instructions introduced in mips4.  */
614#define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
615				  || ISA_MIPS32	                        \
616				  || ISA_MIPS32R2                       \
617				  || ISA_MIPS64				\
618				  || ISA_MIPS64R2)			\
619                                 && !TARGET_MIPS5500                    \
620				 && !TARGET_MIPS16)
621
622/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
623   branch on CC, and move (both FP and non-FP) on CC.  */
624#define ISA_HAS_8CC		(ISA_MIPS4				\
625                         	 || ISA_MIPS32	                        \
626                         	 || ISA_MIPS32R2                        \
627				 || ISA_MIPS64				\
628				 || ISA_MIPS64R2)
629
630/* This is a catch all for other mips4 instructions: indexed load, the
631   FP madd and msub instructions, and the FP recip and recip sqrt
632   instructions.  */
633#define ISA_HAS_FP4             ((ISA_MIPS4				\
634				  || ISA_MIPS64				\
635				  || ISA_MIPS64R2)     			\
636 				 && !TARGET_MIPS16)
637
638/* ISA has conditional trap instructions.  */
639#define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
640				 && !TARGET_MIPS16)
641
642/* ISA has integer multiply-accumulate instructions, madd and msub.  */
643#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
644				  || ISA_MIPS32R2			\
645				  || ISA_MIPS64				\
646				  || ISA_MIPS64R2			\
647				  ) && !TARGET_MIPS16)
648
649/* ISA has floating-point nmadd and nmsub instructions.  */
650#define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
651				  || ISA_MIPS64				\
652				  || ISA_MIPS64R2)			\
653                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
654				 && ! TARGET_MIPS16)
655
656/* ISA has count leading zeroes/ones instruction (not implemented).  */
657#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
658                                  || ISA_MIPS32R2			\
659                                  || ISA_MIPS64				\
660                                  || ISA_MIPS64R2			\
661                                 ) && !TARGET_MIPS16)
662
663/* ISA has double-word count leading zeroes/ones instruction (not
664   implemented).  */
665#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64				\
666				 || ISA_MIPS64R2			\
667				 && !TARGET_MIPS16)
668
669/* ISA has three operand multiply instructions that put
670   the high part in an accumulator: mulhi or mulhiu.  */
671#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
672                                 || TARGET_MIPS5500                     \
673                                 || TARGET_SR71K                        \
674                                 )
675
676/* ISA has three operand multiply instructions that
677   negates the result and puts the result in an accumulator.  */
678#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
679                                 || TARGET_MIPS5500                     \
680                                 || TARGET_SR71K                        \
681                                 )
682
683/* ISA has three operand multiply instructions that subtracts the
684   result from a 4th operand and puts the result in an accumulator.  */
685#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
686                                 || TARGET_MIPS5500                     \
687                                 || TARGET_SR71K                        \
688                                 )
689/* ISA has three operand multiply instructions that  the result
690   from a 4th operand and puts the result in an accumulator.  */
691#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)	\
692                                 || (TARGET_MIPS4130 && !TARGET_MIPS16)	\
693                                 || TARGET_MIPS5400                     \
694                                 || TARGET_MIPS5500                     \
695                                 || TARGET_SR71K                        \
696                                 )
697
698/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
699#define ISA_HAS_MACCHI		(!TARGET_MIPS16				\
700				 && (TARGET_MIPS4120			\
701				     || TARGET_MIPS4130))
702
703/* ISA has 32-bit rotate right instruction.  */
704#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
705                                 && (ISA_MIPS32R2                       \
706                                     || ISA_MIPS64R2                    \
707                                     || TARGET_MIPS5400                 \
708                                     || TARGET_MIPS5500                 \
709                                     || TARGET_SR71K                    \
710                                     ))
711
712/* ISA has 64-bit rotate right instruction.  */
713#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
714                                 && !TARGET_MIPS16                      \
715                                 && (TARGET_MIPS5400                    \
716                                     || TARGET_MIPS5500                 \
717                                     || TARGET_SR71K                    \
718                                     ))
719
720/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
721#define ISA_HAS_PREFETCH	((ISA_MIPS4				\
722				  || ISA_MIPS32				\
723				  || ISA_MIPS32R2			\
724				  || ISA_MIPS64		       		\
725				  || ISA_MIPS64R2)	       		\
726				 && !TARGET_MIPS16)
727
728/* ISA has data indexed prefetch instructions.  This controls use of
729   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
730   (prefx is a cop1x instruction, so can only be used if FP is
731   enabled.)  */
732#define ISA_HAS_PREFETCHX       ((ISA_MIPS4				\
733				  || ISA_MIPS64				\
734				  || ISA_MIPS64R2)			\
735 				 && !TARGET_MIPS16)
736
737/* True if trunc.w.s and trunc.w.d are real (not synthetic)
738   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
739   also requires TARGET_DOUBLE_FLOAT.  */
740#define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
741
742/* ISA includes the MIPS32r2 seb and seh instructions.  */
743#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
744                                 && (ISA_MIPS32R2                      \
745				     || ISA_MIPS64R2			\
746                                     ))
747
748/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
749#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
750                                 && (ISA_MIPS32R2                      \
751				     || ISA_MIPS64R2		       \
752                                     ))
753
754/* True if the result of a load is not available to the next instruction.
755   A nop will then be needed between instructions like "lw $4,..."
756   and "addiu $4,$4,1".  */
757#define ISA_HAS_LOAD_DELAY	(mips_isa == 1				\
758				 && !TARGET_MIPS3900			\
759				 && !TARGET_MIPS16)
760
761/* Likewise mtc1 and mfc1.  */
762#define ISA_HAS_XFER_DELAY	(mips_isa <= 3)
763
764/* Likewise floating-point comparisons.  */
765#define ISA_HAS_FCMP_DELAY	(mips_isa <= 3)
766
767/* True if mflo and mfhi can be immediately followed by instructions
768   which write to the HI and LO registers.
769
770   According to MIPS specifications, MIPS ISAs I, II, and III need
771   (at least) two instructions between the reads of HI/LO and
772   instructions which write them, and later ISAs do not.  Contradicting
773   the MIPS specifications, some MIPS IV processor user manuals (e.g.
774   the UM for the NEC Vr5000) document needing the instructions between
775   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
776   MIPS64 and later ISAs to have the interlocks, plus any specific
777   earlier-ISA CPUs for which CPU documentation declares that the
778   instructions are really interlocked.  */
779#define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
780				 || ISA_MIPS32R2			\
781				 || ISA_MIPS64				\
782				 || ISA_MIPS64R2			\
783				 || TARGET_MIPS5500)
784
785/* Add -G xx support.  */
786
787#undef  SWITCH_TAKES_ARG
788#define SWITCH_TAKES_ARG(CHAR)						\
789  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
790
791#define OVERRIDE_OPTIONS override_options ()
792
793#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
794
795/* Show we can debug even without a frame pointer.  */
796#define CAN_DEBUG_WITHOUT_FP
797
798/* Tell collect what flags to pass to nm.  */
799#ifndef NM_FLAGS
800#define NM_FLAGS "-Bn"
801#endif
802
803
804#ifndef MIPS_ABI_DEFAULT
805#define MIPS_ABI_DEFAULT ABI_32
806#endif
807
808/* Use the most portable ABI flag for the ASM specs.  */
809
810#if MIPS_ABI_DEFAULT == ABI_32
811#define MULTILIB_ABI_DEFAULT "mabi=32"
812#endif
813
814#if MIPS_ABI_DEFAULT == ABI_O64
815#define MULTILIB_ABI_DEFAULT "mabi=o64"
816#endif
817
818#if MIPS_ABI_DEFAULT == ABI_N32
819#define MULTILIB_ABI_DEFAULT "mabi=n32"
820#endif
821
822#if MIPS_ABI_DEFAULT == ABI_64
823#define MULTILIB_ABI_DEFAULT "mabi=64"
824#endif
825
826#if MIPS_ABI_DEFAULT == ABI_EABI
827#define MULTILIB_ABI_DEFAULT "mabi=eabi"
828#endif
829
830/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
831   to the assembler.  It may be overridden by subtargets.  */
832#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
833#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
834%{noasmopt:-O0} \
835%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
836#endif
837
838/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
839   the assembler.  It may be overridden by subtargets.
840
841   Beginning with gas 2.13, -mdebug must be passed to correctly handle
842   COFF debugging info.  */
843
844#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
845#define SUBTARGET_ASM_DEBUGGING_SPEC "\
846%{g} %{g0} %{g1} %{g2} %{g3} \
847%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
848%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
849%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
850%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
851%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
852#endif
853
854/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
855   overridden by subtargets.  */
856
857#ifndef SUBTARGET_ASM_SPEC
858#define SUBTARGET_ASM_SPEC ""
859#endif
860
861#undef ASM_SPEC
862#define ASM_SPEC "\
863%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
864%{mips32} %{mips32r2} %{mips64} \
865%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
866%{mips3d:-mips3d} \
867%{mdsp} \
868%{mfix-vr4120} %{mfix-vr4130} \
869%(subtarget_asm_optimizing_spec) \
870%(subtarget_asm_debugging_spec) \
871%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
872%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
873%{mshared} %{mno-shared} \
874%{msym32} %{mno-sym32} \
875%{mtune=*} %{v} \
876%(subtarget_asm_spec)"
877
878/* Extra switches sometimes passed to the linker.  */
879/* ??? The bestGnum will never be passed to the linker, because the gcc driver
880  will interpret it as a -b option.  */
881
882#ifndef LINK_SPEC
883#define LINK_SPEC "\
884%(endian_spec) \
885%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
886%{bestGnum} %{shared} %{non_shared}"
887#endif  /* LINK_SPEC defined */
888
889
890/* Specs for the compiler proper */
891
892/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
893   overridden by subtargets.  */
894#ifndef SUBTARGET_CC1_SPEC
895#define SUBTARGET_CC1_SPEC ""
896#endif
897
898/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
899
900#undef CC1_SPEC
901#define CC1_SPEC "\
902%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
903%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
904%{save-temps: } \
905%(subtarget_cc1_spec)"
906
907/* Preprocessor specs.  */
908
909/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
910   overridden by subtargets.  */
911#ifndef SUBTARGET_CPP_SPEC
912#define SUBTARGET_CPP_SPEC ""
913#endif
914
915#define CPP_SPEC "%(subtarget_cpp_spec)"
916
917/* This macro defines names of additional specifications to put in the specs
918   that can be used in various specifications like CC1_SPEC.  Its definition
919   is an initializer with a subgrouping for each command option.
920
921   Each subgrouping contains a string constant, that defines the
922   specification name, and a string constant that used by the GCC driver
923   program.
924
925   Do not define this macro if it does not need to do anything.  */
926
927#define EXTRA_SPECS							\
928  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
929  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
930  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
931  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
932  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
933  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
934  { "endian_spec", ENDIAN_SPEC },					\
935  SUBTARGET_EXTRA_SPECS
936
937#ifndef SUBTARGET_EXTRA_SPECS
938#define SUBTARGET_EXTRA_SPECS
939#endif
940
941#define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
942#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
943#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
944
945#ifndef PREFERRED_DEBUGGING_TYPE
946#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
947#endif
948
949#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
950
951/* By default, turn on GDB extensions.  */
952#define DEFAULT_GDB_EXTENSIONS 1
953
954/* Local compiler-generated symbols must have a prefix that the assembler
955   understands.   By default, this is $, although some targets (e.g.,
956   NetBSD-ELF) need to override this.  */
957
958#ifndef LOCAL_LABEL_PREFIX
959#define LOCAL_LABEL_PREFIX	"$"
960#endif
961
962/* By default on the mips, external symbols do not have an underscore
963   prepended, but some targets (e.g., NetBSD) require this.  */
964
965#ifndef USER_LABEL_PREFIX
966#define USER_LABEL_PREFIX	""
967#endif
968
969/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
970   since the length can run past this up to a continuation point.  */
971#undef DBX_CONTIN_LENGTH
972#define DBX_CONTIN_LENGTH 1500
973
974/* How to renumber registers for dbx and gdb.  */
975#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
976
977/* The mapping from gcc register number to DWARF 2 CFA column number.  */
978#define DWARF_FRAME_REGNUM(REG)	(REG)
979
980/* The DWARF 2 CFA column which tracks the return address.  */
981#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
982
983/* The DWARF 2 CFA column which tracks the return address from a
984   signal handler context.  */
985#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
986
987/* Before the prologue, RA lives in r31.  */
988#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
989
990/* Describe how we implement __builtin_eh_return.  */
991#define EH_RETURN_DATA_REGNO(N) \
992  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
993
994#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
995
996/* Offsets recorded in opcodes are a multiple of this alignment factor.
997   The default for this in 64-bit mode is 8, which causes problems with
998   SFmode register saves.  */
999#define DWARF_CIE_DATA_ALIGNMENT -4
1000
1001/* Correct the offset of automatic variables and arguments.  Note that
1002   the MIPS debug format wants all automatic variables and arguments
1003   to be in terms of the virtual frame pointer (stack pointer before
1004   any adjustment in the function), while the MIPS 3.0 linker wants
1005   the frame pointer to be the stack pointer after the initial
1006   adjustment.  */
1007
1008#define DEBUGGER_AUTO_OFFSET(X)				\
1009  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1010#define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1011  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1012
1013/* Target machine storage layout */
1014
1015#define BITS_BIG_ENDIAN 0
1016#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1017#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1018
1019/* Define this to set the endianness to use in libgcc2.c, which can
1020   not depend on target_flags.  */
1021#if !defined(MIPSEL) && !defined(__MIPSEL__)
1022#define LIBGCC2_WORDS_BIG_ENDIAN 1
1023#else
1024#define LIBGCC2_WORDS_BIG_ENDIAN 0
1025#endif
1026
1027#define MAX_BITS_PER_WORD 64
1028
1029/* Width of a word, in units (bytes).  */
1030#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1031#ifndef IN_LIBGCC2
1032#define MIN_UNITS_PER_WORD 4
1033#endif
1034
1035/* For MIPS, width of a floating point register.  */
1036#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1037
1038/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1039   the next available register.  */
1040#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1041
1042/* The largest size of value that can be held in floating-point
1043   registers and moved with a single instruction.  */
1044#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1045
1046/* The largest size of value that can be held in floating-point
1047   registers.  */
1048#define UNITS_PER_FPVALUE			\
1049  (TARGET_SOFT_FLOAT ? 0			\
1050   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1051   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1052
1053/* The number of bytes in a double.  */
1054#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1055
1056#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1057
1058/* Set the sizes of the core types.  */
1059#define SHORT_TYPE_SIZE 16
1060#define INT_TYPE_SIZE 32
1061#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1062#define LONG_LONG_TYPE_SIZE 64
1063
1064#define FLOAT_TYPE_SIZE 32
1065#define DOUBLE_TYPE_SIZE 64
1066#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1067
1068/* long double is not a fixed mode, but the idea is that, if we
1069   support long double, we also want a 128-bit integer type.  */
1070#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1071
1072#ifdef IN_LIBGCC2
1073#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1074  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1075#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1076# else
1077#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1078# endif
1079#endif
1080
1081/* Width in bits of a pointer.  */
1082#ifndef POINTER_SIZE
1083#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1084#endif
1085
1086/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1087#define PARM_BOUNDARY BITS_PER_WORD
1088
1089/* Allocation boundary (in *bits*) for the code of a function.  */
1090#define FUNCTION_BOUNDARY 32
1091
1092/* Alignment of field after `int : 0' in a structure.  */
1093#define EMPTY_FIELD_BOUNDARY 32
1094
1095/* Every structure's size must be a multiple of this.  */
1096/* 8 is observed right on a DECstation and on riscos 4.02.  */
1097#define STRUCTURE_SIZE_BOUNDARY 8
1098
1099/* There is no point aligning anything to a rounder boundary than this.  */
1100#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1101
1102/* All accesses must be aligned.  */
1103#define STRICT_ALIGNMENT 1
1104
1105/* Define this if you wish to imitate the way many other C compilers
1106   handle alignment of bitfields and the structures that contain
1107   them.
1108
1109   The behavior is that the type written for a bit-field (`int',
1110   `short', or other integer type) imposes an alignment for the
1111   entire structure, as if the structure really did contain an
1112   ordinary field of that type.  In addition, the bit-field is placed
1113   within the structure so that it would fit within such a field,
1114   not crossing a boundary for it.
1115
1116   Thus, on most machines, a bit-field whose type is written as `int'
1117   would not cross a four-byte boundary, and would force four-byte
1118   alignment for the whole structure.  (The alignment used may not
1119   be four bytes; it is controlled by the other alignment
1120   parameters.)
1121
1122   If the macro is defined, its definition should be a C expression;
1123   a nonzero value for the expression enables this behavior.  */
1124
1125#define PCC_BITFIELD_TYPE_MATTERS 1
1126
1127/* If defined, a C expression to compute the alignment given to a
1128   constant that is being placed in memory.  CONSTANT is the constant
1129   and ALIGN is the alignment that the object would ordinarily have.
1130   The value of this macro is used instead of that alignment to align
1131   the object.
1132
1133   If this macro is not defined, then ALIGN is used.
1134
1135   The typical use of this macro is to increase alignment for string
1136   constants to be word aligned so that `strcpy' calls that copy
1137   constants can be done inline.  */
1138
1139#define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1140  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1141   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1142
1143/* If defined, a C expression to compute the alignment for a static
1144   variable.  TYPE is the data type, and ALIGN is the alignment that
1145   the object would ordinarily have.  The value of this macro is used
1146   instead of that alignment to align the object.
1147
1148   If this macro is not defined, then ALIGN is used.
1149
1150   One use of this macro is to increase alignment of medium-size
1151   data to make it all fit in fewer cache lines.  Another is to
1152   cause character arrays to be word-aligned so that `strcpy' calls
1153   that copy constants to character arrays can be done inline.  */
1154
1155#undef DATA_ALIGNMENT
1156#define DATA_ALIGNMENT(TYPE, ALIGN)					\
1157  ((((ALIGN) < BITS_PER_WORD)						\
1158    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1159	|| TREE_CODE (TYPE) == UNION_TYPE				\
1160	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1161
1162
1163#define PAD_VARARGS_DOWN \
1164  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1165
1166/* Define if operations between registers always perform the operation
1167   on the full register even if a narrower mode is specified.  */
1168#define WORD_REGISTER_OPERATIONS
1169
1170/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1171   moves.  All other references are zero extended.  */
1172#define LOAD_EXTEND_OP(MODE) \
1173  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1174   ? SIGN_EXTEND : ZERO_EXTEND)
1175
1176/* Define this macro if it is advisable to hold scalars in registers
1177   in a wider mode than that declared by the program.  In such cases,
1178   the value is constrained to be within the bounds of the declared
1179   type, but kept valid in the wider mode.  The signedness of the
1180   extension may differ from that of the type.  */
1181
1182#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1183  if (GET_MODE_CLASS (MODE) == MODE_INT		\
1184      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1185    {                                           \
1186      if ((MODE) == SImode)                     \
1187        (UNSIGNEDP) = 0;                        \
1188      (MODE) = Pmode;                           \
1189    }
1190
1191/* Define if loading short immediate values into registers sign extends.  */
1192#define SHORT_IMMEDIATES_SIGN_EXTEND
1193
1194/* The [d]clz instructions have the natural values at 0.  */
1195
1196#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1197  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1198
1199/* Standard register usage.  */
1200
1201/* Number of hardware registers.  We have:
1202
1203   - 32 integer registers
1204   - 32 floating point registers
1205   - 8 condition code registers
1206   - 2 accumulator registers (hi and lo)
1207   - 32 registers each for coprocessors 0, 2 and 3
1208   - 3 fake registers:
1209	- ARG_POINTER_REGNUM
1210	- FRAME_POINTER_REGNUM
1211	- FAKE_CALL_REGNO (see the comment above load_callsi for details)
1212   - 3 dummy entries that were used at various times in the past.
1213   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1214   - 6 DSP control registers  */
1215
1216#define FIRST_PSEUDO_REGISTER 188
1217
1218/* By default, fix the kernel registers ($26 and $27), the global
1219   pointer ($28) and the stack pointer ($29).  This can change
1220   depending on the command-line options.
1221
1222   Regarding coprocessor registers: without evidence to the contrary,
1223   it's best to assume that each coprocessor register has a unique
1224   use.  This can be overridden, in, e.g., override_options() or
1225   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1226   for a particular target.  */
1227
1228#define FIXED_REGISTERS							\
1229{									\
1230  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1231  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1232  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1233  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1234  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1235  /* COP0 registers */							\
1236  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1237  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1238  /* COP2 registers */							\
1239  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1240  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1241  /* COP3 registers */							\
1242  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1243  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1244  /* 6 DSP accumulator registers & 6 control registers */		\
1245  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1246}
1247
1248
1249/* Set up this array for o32 by default.
1250
1251   Note that we don't mark $31 as a call-clobbered register.  The idea is
1252   that it's really the call instructions themselves which clobber $31.
1253   We don't care what the called function does with it afterwards.
1254
1255   This approach makes it easier to implement sibcalls.  Unlike normal
1256   calls, sibcalls don't clobber $31, so the register reaches the
1257   called function in tact.  EPILOGUE_USES says that $31 is useful
1258   to the called function.  */
1259
1260#define CALL_USED_REGISTERS						\
1261{									\
1262  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1263  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1264  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1265  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1266  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1267  /* COP0 registers */							\
1268  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1269  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1270  /* COP2 registers */							\
1271  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1272  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1273  /* COP3 registers */							\
1274  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1275  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1276  /* 6 DSP accumulator registers & 6 control registers */		\
1277  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1278}
1279
1280
1281/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1282
1283#define CALL_REALLY_USED_REGISTERS                                      \
1284{ /* General registers.  */                                             \
1285  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1286  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1287  /* Floating-point registers.  */                                      \
1288  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1289  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1290  /* Others.  */                                                        \
1291  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1292  /* COP0 registers */							\
1293  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1294  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1295  /* COP2 registers */							\
1296  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1297  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1298  /* COP3 registers */							\
1299  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1300  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1301  /* 6 DSP accumulator registers & 6 control registers */		\
1302  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1303}
1304
1305/* Internal macros to classify a register number as to whether it's a
1306   general purpose register, a floating point register, a
1307   multiply/divide register, or a status register.  */
1308
1309#define GP_REG_FIRST 0
1310#define GP_REG_LAST  31
1311#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1312#define GP_DBX_FIRST 0
1313
1314#define FP_REG_FIRST 32
1315#define FP_REG_LAST  63
1316#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1317#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1318
1319#define MD_REG_FIRST 64
1320#define MD_REG_LAST  65
1321#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1322#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1323
1324#define ST_REG_FIRST 67
1325#define ST_REG_LAST  74
1326#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1327
1328
1329/* FIXME: renumber.  */
1330#define COP0_REG_FIRST 80
1331#define COP0_REG_LAST 111
1332#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1333
1334#define COP2_REG_FIRST 112
1335#define COP2_REG_LAST 143
1336#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1337
1338#define COP3_REG_FIRST 144
1339#define COP3_REG_LAST 175
1340#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1341/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1342#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1343
1344#define DSP_ACC_REG_FIRST 176
1345#define DSP_ACC_REG_LAST 181
1346#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1347
1348#define AT_REGNUM	(GP_REG_FIRST + 1)
1349#define HI_REGNUM	(MD_REG_FIRST + 0)
1350#define LO_REGNUM	(MD_REG_FIRST + 1)
1351#define AC1HI_REGNUM	(DSP_ACC_REG_FIRST + 0)
1352#define AC1LO_REGNUM	(DSP_ACC_REG_FIRST + 1)
1353#define AC2HI_REGNUM	(DSP_ACC_REG_FIRST + 2)
1354#define AC2LO_REGNUM	(DSP_ACC_REG_FIRST + 3)
1355#define AC3HI_REGNUM	(DSP_ACC_REG_FIRST + 4)
1356#define AC3LO_REGNUM	(DSP_ACC_REG_FIRST + 5)
1357
1358/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1359   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1360   should be used instead.  */
1361#define FPSW_REGNUM	ST_REG_FIRST
1362
1363#define GP_REG_P(REGNO)	\
1364  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1365#define M16_REG_P(REGNO) \
1366  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1367#define FP_REG_P(REGNO)  \
1368  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1369#define MD_REG_P(REGNO) \
1370  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1371#define ST_REG_P(REGNO) \
1372  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1373#define COP0_REG_P(REGNO) \
1374  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1375#define COP2_REG_P(REGNO) \
1376  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1377#define COP3_REG_P(REGNO) \
1378  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1379#define ALL_COP_REG_P(REGNO) \
1380  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1381/* Test if REGNO is one of the 6 new DSP accumulators.  */
1382#define DSP_ACC_REG_P(REGNO) \
1383  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1384/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1385#define ACC_REG_P(REGNO) \
1386  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1387/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1388#define ACC_HI_REG_P(REGNO) \
1389  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1390   || (REGNO) == AC3HI_REGNUM)
1391
1392#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1393
1394/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1395   to initialize the mips16 gp pseudo register.  */
1396#define CONST_GP_P(X)				\
1397  (GET_CODE (X) == CONST			\
1398   && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1399   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1400
1401/* Return coprocessor number from register number.  */
1402
1403#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1404  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1405   : COP3_REG_P (REGNO) ? '3' : '?')
1406
1407
1408#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1409
1410/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1411   array built in override_options.  Because machmodes.h is not yet
1412   included before this file is processed, the MODE bound can't be
1413   expressed here.  */
1414
1415extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1416
1417#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1418  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1419
1420/* Value is 1 if it is a good idea to tie two pseudo registers
1421   when one has mode MODE1 and one has mode MODE2.
1422   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1423   for any hard reg, then this must be 0 for correct output.  */
1424#define MODES_TIEABLE_P(MODE1, MODE2)					\
1425  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
1426    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
1427   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
1428       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1429
1430/* Register to use for pushing function arguments.  */
1431#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1432
1433/* These two registers don't really exist: they get eliminated to either
1434   the stack or hard frame pointer.  */
1435#define ARG_POINTER_REGNUM 77
1436#define FRAME_POINTER_REGNUM 78
1437
1438/* $30 is not available on the mips16, so we use $17 as the frame
1439   pointer.  */
1440#define HARD_FRAME_POINTER_REGNUM \
1441  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1442
1443/* Value should be nonzero if functions must have frame pointers.
1444   Zero means the frame pointer need not be set up (and parms
1445   may be accessed via the stack pointer) in functions that seem suitable.
1446   This is computed in `reload', in reload1.c.  */
1447#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1448
1449/* Register in which static-chain is passed to a function.  */
1450#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1451
1452/* Registers used as temporaries in prologue/epilogue code.  If we're
1453   generating mips16 code, these registers must come from the core set
1454   of 8.  The prologue register mustn't conflict with any incoming
1455   arguments, the static chain pointer, or the frame pointer.  The
1456   epilogue temporary mustn't conflict with the return registers, the
1457   frame pointer, the EH stack adjustment, or the EH data registers.  */
1458
1459#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1460#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1461
1462#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1463#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1464
1465/* Define this macro if it is as good or better to call a constant
1466   function address than to call an address kept in a register.  */
1467#define NO_FUNCTION_CSE 1
1468
1469/* The ABI-defined global pointer.  Sometimes we use a different
1470   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1471#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1472
1473/* We normally use $28 as the global pointer.  However, when generating
1474   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1475   register instead.  They can then avoid saving and restoring $28
1476   and perhaps avoid using a frame at all.
1477
1478   When a leaf function uses something other than $28, mips_expand_prologue
1479   will modify pic_offset_table_rtx in place.  Take the register number
1480   from there after reload.  */
1481#define PIC_OFFSET_TABLE_REGNUM \
1482  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1483
1484#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1485
1486/* Define the classes of registers for register constraints in the
1487   machine description.  Also define ranges of constants.
1488
1489   One of the classes must always be named ALL_REGS and include all hard regs.
1490   If there is more than one class, another class must be named NO_REGS
1491   and contain no registers.
1492
1493   The name GENERAL_REGS must be the name of a class (or an alias for
1494   another name such as ALL_REGS).  This is the class of registers
1495   that is allowed by "g" or "r" in a register constraint.
1496   Also, registers outside this class are allocated only when
1497   instructions express preferences for them.
1498
1499   The classes must be numbered in nondecreasing order; that is,
1500   a larger-numbered class must never be contained completely
1501   in a smaller-numbered class.
1502
1503   For any two classes, it is very desirable that there be another
1504   class that represents their union.  */
1505
1506enum reg_class
1507{
1508  NO_REGS,			/* no registers in set */
1509  M16_NA_REGS,			/* mips16 regs not used to pass args */
1510  M16_REGS,			/* mips16 directly accessible registers */
1511  T_REG,			/* mips16 T register ($24) */
1512  M16_T_REGS,			/* mips16 registers plus T register */
1513  PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1514  V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1515  LEA_REGS,			/* Every GPR except $25 */
1516  GR_REGS,			/* integer registers */
1517  FP_REGS,			/* floating point registers */
1518  HI_REG,			/* hi register */
1519  LO_REG,			/* lo register */
1520  MD_REGS,			/* multiply/divide registers (hi/lo) */
1521  COP0_REGS,			/* generic coprocessor classes */
1522  COP2_REGS,
1523  COP3_REGS,
1524  HI_AND_GR_REGS,		/* union classes */
1525  LO_AND_GR_REGS,
1526  HI_AND_FP_REGS,
1527  COP0_AND_GR_REGS,
1528  COP2_AND_GR_REGS,
1529  COP3_AND_GR_REGS,
1530  ALL_COP_REGS,
1531  ALL_COP_AND_GR_REGS,
1532  ST_REGS,			/* status registers (fp status) */
1533  DSP_ACC_REGS,			/* DSP accumulator registers */
1534  ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1535  ALL_REGS,			/* all registers */
1536  LIM_REG_CLASSES		/* max value + 1 */
1537};
1538
1539#define N_REG_CLASSES (int) LIM_REG_CLASSES
1540
1541#define GENERAL_REGS GR_REGS
1542
1543/* An initializer containing the names of the register classes as C
1544   string constants.  These names are used in writing some of the
1545   debugging dumps.  */
1546
1547#define REG_CLASS_NAMES							\
1548{									\
1549  "NO_REGS",								\
1550  "M16_NA_REGS",							\
1551  "M16_REGS",								\
1552  "T_REG",								\
1553  "M16_T_REGS",								\
1554  "PIC_FN_ADDR_REG",							\
1555  "V1_REG",								\
1556  "LEA_REGS",								\
1557  "GR_REGS",								\
1558  "FP_REGS",								\
1559  "HI_REG",								\
1560  "LO_REG",								\
1561  "MD_REGS",								\
1562  /* coprocessor registers */						\
1563  "COP0_REGS",								\
1564  "COP2_REGS",								\
1565  "COP3_REGS",								\
1566  "HI_AND_GR_REGS",							\
1567  "LO_AND_GR_REGS",							\
1568  "HI_AND_FP_REGS",							\
1569  "COP0_AND_GR_REGS",							\
1570  "COP2_AND_GR_REGS",							\
1571  "COP3_AND_GR_REGS",							\
1572  "ALL_COP_REGS",							\
1573  "ALL_COP_AND_GR_REGS",						\
1574  "ST_REGS",								\
1575  "DSP_ACC_REGS",							\
1576  "ACC_REGS",								\
1577  "ALL_REGS"								\
1578}
1579
1580/* An initializer containing the contents of the register classes,
1581   as integers which are bit masks.  The Nth integer specifies the
1582   contents of class N.  The way the integer MASK is interpreted is
1583   that register R is in the class if `MASK & (1 << R)' is 1.
1584
1585   When the machine has more than 32 registers, an integer does not
1586   suffice.  Then the integers are replaced by sub-initializers,
1587   braced groupings containing several integers.  Each
1588   sub-initializer must be suitable as an initializer for the type
1589   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1590
1591#define REG_CLASS_CONTENTS						                                \
1592{									                                \
1593  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
1594  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
1595  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
1596  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
1597  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
1598  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SVR4 PIC function address register */ \
1599  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* only $v1 */ \
1600  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* Every other GPR except $25 */   \
1601  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
1602  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
1603  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
1604  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
1605  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
1606  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1607  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1608  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1609  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
1610  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
1611  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
1612  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			        \
1613  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	                        \
1614  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1615  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1616  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1617  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
1618  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* dsp accumulator registers */	\
1619  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* hi/lo and dsp accumulator registers */	\
1620  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* all registers */	\
1621}
1622
1623
1624/* A C expression whose value is a register class containing hard
1625   register REGNO.  In general there is more that one such class;
1626   choose a class which is "minimal", meaning that no smaller class
1627   also contains the register.  */
1628
1629extern const enum reg_class mips_regno_to_class[];
1630
1631#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1632
1633/* A macro whose definition is the name of the class to which a
1634   valid base register must belong.  A base register is one used in
1635   an address which is the register value plus a displacement.  */
1636
1637#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1638
1639/* A macro whose definition is the name of the class to which a
1640   valid index register must belong.  An index register is one used
1641   in an address where its value is either multiplied by a scale
1642   factor or added to another register (as well as added to a
1643   displacement).  */
1644
1645#define INDEX_REG_CLASS NO_REGS
1646
1647/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1648   registers explicitly used in the rtl to be used as spill registers
1649   but prevents the compiler from extending the lifetime of these
1650   registers.  */
1651
1652#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1653
1654/* This macro is used later on in the file.  */
1655#define GR_REG_CLASS_P(CLASS)						\
1656  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
1657   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS			\
1658   || (CLASS) == V1_REG							\
1659   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1660
1661/* This macro is also used later on in the file.  */
1662#define COP_REG_CLASS_P(CLASS)						\
1663  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1664
1665/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1666   is the default value (allocate the registers in numeric order).  We
1667   define it just so that we can override it for the mips16 target in
1668   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1669
1670#define REG_ALLOC_ORDER							\
1671{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
1672  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1673  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1674  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1675  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
1676  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
1677  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
1678  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
1679  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
1680  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
1681  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
1682  176,177,178,179,180,181,182,183,184,185,186,187			\
1683}
1684
1685/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1686   to be rearranged based on a particular function.  On the mips16, we
1687   want to allocate $24 (T_REG) before other registers for
1688   instructions for which it is possible.  */
1689
1690#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1691
1692/* True if VALUE is an unsigned 6-bit number.  */
1693
1694#define UIMM6_OPERAND(VALUE) \
1695  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1696
1697/* True if VALUE is a signed 10-bit number.  */
1698
1699#define IMM10_OPERAND(VALUE) \
1700  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1701
1702/* True if VALUE is a signed 16-bit number.  */
1703
1704#define SMALL_OPERAND(VALUE) \
1705  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1706
1707/* True if VALUE is an unsigned 16-bit number.  */
1708
1709#define SMALL_OPERAND_UNSIGNED(VALUE) \
1710  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1711
1712/* True if VALUE can be loaded into a register using LUI.  */
1713
1714#define LUI_OPERAND(VALUE)					\
1715  (((VALUE) | 0x7fff0000) == 0x7fff0000				\
1716   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1717
1718/* Return a value X with the low 16 bits clear, and such that
1719   VALUE - X is a signed 16-bit value.  */
1720
1721#define CONST_HIGH_PART(VALUE) \
1722  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1723
1724#define CONST_LOW_PART(VALUE) \
1725  ((VALUE) - CONST_HIGH_PART (VALUE))
1726
1727#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1728#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1729#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1730
1731#define PREFERRED_RELOAD_CLASS(X,CLASS)					\
1732  mips_preferred_reload_class (X, CLASS)
1733
1734/* Certain machines have the property that some registers cannot be
1735   copied to some other registers without using memory.  Define this
1736   macro on those machines to be a C expression that is nonzero if
1737   objects of mode MODE in registers of CLASS1 can only be copied to
1738   registers of class CLASS2 by storing a register of CLASS1 into
1739   memory and loading that memory location into a register of CLASS2.
1740
1741   Do not define this macro if its value would always be zero.  */
1742#if 0
1743#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1744  ((!TARGET_DEBUG_H_MODE						\
1745    && GET_MODE_CLASS (MODE) == MODE_INT				\
1746    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
1747	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
1748   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
1749       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
1750	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1751#endif
1752/* The HI and LO registers can only be reloaded via the general
1753   registers.  Condition code registers can only be loaded to the
1754   general registers, and from the floating point registers.  */
1755
1756#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1757  mips_secondary_reload_class (CLASS, MODE, X, 1)
1758#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1759  mips_secondary_reload_class (CLASS, MODE, X, 0)
1760
1761/* Return the maximum number of consecutive registers
1762   needed to represent mode MODE in a register of class CLASS.  */
1763
1764#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1765
1766#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1767  mips_cannot_change_mode_class (FROM, TO, CLASS)
1768
1769/* Stack layout; function entry, exit and calling.  */
1770
1771#define STACK_GROWS_DOWNWARD
1772
1773/* The offset of the first local variable from the beginning of the frame.
1774   See compute_frame_size for details about the frame layout.
1775
1776   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1777   we assume that we will need 16 bytes of argument space.  This is because
1778   the value profiling code may emit calls to cmpdi2 in leaf functions.
1779   Without this hack, the local variables will start at sp+8 and the gp save
1780   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1781   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1782   will end up as 24 instead of 8.  This won't be needed if profiling code is
1783   inserted before virtual register instantiation.  */
1784
1785#define STARTING_FRAME_OFFSET						\
1786  ((flag_profile_values && ! TARGET_64BIT				\
1787    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1788    : current_function_outgoing_args_size)				\
1789   + (TARGET_ABICALLS && !TARGET_NEWABI					\
1790      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1791
1792#define RETURN_ADDR_RTX mips_return_addr
1793
1794/* Since the mips16 ISA mode is encoded in the least-significant bit
1795   of the address, mask it off return addresses for purposes of
1796   finding exception handling regions.  */
1797
1798#define MASK_RETURN_ADDR GEN_INT (-2)
1799
1800
1801/* Similarly, don't use the least-significant bit to tell pointers to
1802   code from vtable index.  */
1803
1804#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1805
1806/* The eliminations to $17 are only used for mips16 code.  See the
1807   definition of HARD_FRAME_POINTER_REGNUM.  */
1808
1809#define ELIMINABLE_REGS							\
1810{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
1811 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
1812 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
1813 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1814 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
1815 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1816
1817/* We can always eliminate to the hard frame pointer.  We can eliminate
1818   to the stack pointer unless a frame pointer is needed.
1819
1820   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1821   reload may be unable to compute the address of a local variable,
1822   since there is no way to add a large constant to the stack pointer
1823   without using a temporary register.  */
1824#define CAN_ELIMINATE(FROM, TO)						\
1825  ((TO) == HARD_FRAME_POINTER_REGNUM 				        \
1826   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed		\
1827       && (!TARGET_MIPS16						\
1828	   || compute_frame_size (get_frame_size ()) < 32768)))
1829
1830#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1831  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1832
1833/* Allocate stack space for arguments at the beginning of each function.  */
1834#define ACCUMULATE_OUTGOING_ARGS 1
1835
1836/* The argument pointer always points to the first argument.  */
1837#define FIRST_PARM_OFFSET(FNDECL) 0
1838
1839/* o32 and o64 reserve stack space for all argument registers.  */
1840#define REG_PARM_STACK_SPACE(FNDECL) 			\
1841  (TARGET_OLDABI					\
1842   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
1843   : 0)
1844
1845/* Define this if it is the responsibility of the caller to
1846   allocate the area reserved for arguments passed in registers.
1847   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1848   of this macro is to determine whether the space is included in
1849   `current_function_outgoing_args_size'.  */
1850#define OUTGOING_REG_PARM_STACK_SPACE
1851
1852#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1853
1854#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1855
1856/* Symbolic macros for the registers used to return integer and floating
1857   point values.  */
1858
1859#define GP_RETURN (GP_REG_FIRST + 2)
1860#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1861
1862#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1863
1864/* Symbolic macros for the first/last argument registers.  */
1865
1866#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1867#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1868#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1869#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1870
1871#define LIBCALL_VALUE(MODE) \
1872  mips_function_value (NULL_TREE, NULL, (MODE))
1873
1874#define FUNCTION_VALUE(VALTYPE, FUNC) \
1875  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1876
1877/* 1 if N is a possible register number for a function value.
1878   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1879   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1880
1881#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1882  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1883      && (N) == FP_RETURN + 2))
1884
1885/* 1 if N is a possible register number for function argument passing.
1886   We have no FP argument registers when soft-float.  When FP registers
1887   are 32 bits, we can't directly reference the odd numbered ones.  */
1888
1889#define FUNCTION_ARG_REGNO_P(N)					\
1890  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
1891    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
1892   && !fixed_regs[N])
1893
1894/* This structure has to cope with two different argument allocation
1895   schemes.  Most MIPS ABIs view the arguments as a structure, of which
1896   the first N words go in registers and the rest go on the stack.  If I
1897   < N, the Ith word might go in Ith integer argument register or in a
1898   floating-point register.  For these ABIs, we only need to remember
1899   the offset of the current argument into the structure.
1900
1901   The EABI instead allocates the integer and floating-point arguments
1902   separately.  The first N words of FP arguments go in FP registers,
1903   the rest go on the stack.  Likewise, the first N words of the other
1904   arguments go in integer registers, and the rest go on the stack.  We
1905   need to maintain three counts: the number of integer registers used,
1906   the number of floating-point registers used, and the number of words
1907   passed on the stack.
1908
1909   We could keep separate information for the two ABIs (a word count for
1910   the standard ABIs, and three separate counts for the EABI).  But it
1911   seems simpler to view the standard ABIs as forms of EABI that do not
1912   allocate floating-point registers.
1913
1914   So for the standard ABIs, the first N words are allocated to integer
1915   registers, and function_arg decides on an argument-by-argument basis
1916   whether that argument should really go in an integer register, or in
1917   a floating-point one.  */
1918
1919typedef struct mips_args {
1920  /* Always true for varargs functions.  Otherwise true if at least
1921     one argument has been passed in an integer register.  */
1922  int gp_reg_found;
1923
1924  /* The number of arguments seen so far.  */
1925  unsigned int arg_number;
1926
1927  /* The number of integer registers used so far.  For all ABIs except
1928     EABI, this is the number of words that have been added to the
1929     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
1930  unsigned int num_gprs;
1931
1932  /* For EABI, the number of floating-point registers used so far.  */
1933  unsigned int num_fprs;
1934
1935  /* The number of words passed on the stack.  */
1936  unsigned int stack_words;
1937
1938  /* On the mips16, we need to keep track of which floating point
1939     arguments were passed in general registers, but would have been
1940     passed in the FP regs if this were a 32 bit function, so that we
1941     can move them to the FP regs if we wind up calling a 32 bit
1942     function.  We record this information in fp_code, encoded in base
1943     four.  A zero digit means no floating point argument, a one digit
1944     means an SFmode argument, and a two digit means a DFmode argument,
1945     and a three digit is not used.  The low order digit is the first
1946     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1947     an SFmode argument.  ??? A more sophisticated approach will be
1948     needed if MIPS_ABI != ABI_32.  */
1949  int fp_code;
1950
1951  /* True if the function has a prototype.  */
1952  int prototype;
1953} CUMULATIVE_ARGS;
1954
1955/* Initialize a variable CUM of type CUMULATIVE_ARGS
1956   for a call to a function whose data type is FNTYPE.
1957   For a library call, FNTYPE is 0.  */
1958
1959#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1960  init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\
1961
1962/* Update the data in CUM to advance over an argument
1963   of mode MODE and data type TYPE.
1964   (TYPE is null for libcalls where that information may not be available.)  */
1965
1966#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1967  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1968
1969/* Determine where to put an argument to a function.
1970   Value is zero to push the argument on the stack,
1971   or a hard register in which to store the argument.
1972
1973   MODE is the argument's machine mode.
1974   TYPE is the data type of the argument (as a tree).
1975    This is null for libcalls where that information may
1976    not be available.
1977   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1978    the preceding args and about the function being called.
1979   NAMED is nonzero if this argument is a named parameter
1980    (otherwise it is an extra parameter matching an ellipsis).  */
1981
1982#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1983  function_arg( &CUM, MODE, TYPE, NAMED)
1984
1985#define FUNCTION_ARG_BOUNDARY function_arg_boundary
1986
1987#define FUNCTION_ARG_PADDING(MODE, TYPE)		\
1988  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1989
1990#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)		\
1991  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1992
1993/* True if using EABI and varargs can be passed in floating-point
1994   registers.  Under these conditions, we need a more complex form
1995   of va_list, which tracks GPR, FPR and stack arguments separately.  */
1996#define EABI_FLOAT_VARARGS_P \
1997	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1998
1999
2000/* Say that the epilogue uses the return address register.  Note that
2001   in the case of sibcalls, the values "used by the epilogue" are
2002   considered live at the start of the called function.  */
2003#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2004
2005/* Treat LOC as a byte offset from the stack pointer and round it up
2006   to the next fully-aligned offset.  */
2007#define MIPS_STACK_ALIGN(LOC) \
2008  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2009
2010
2011/* Implement `va_start' for varargs and stdarg.  */
2012#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2013  mips_va_start (valist, nextarg)
2014
2015/* Output assembler code to FILE to increment profiler label # LABELNO
2016   for profiling a function entry.  */
2017
2018#define FUNCTION_PROFILER(FILE, LABELNO)				\
2019{									\
2020  if (TARGET_MIPS16)							\
2021    sorry ("mips16 function profiling");				\
2022  fprintf (FILE, "\t.set\tnoat\n");					\
2023  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
2024	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
2025  if (!TARGET_NEWABI)							\
2026    {									\
2027      fprintf (FILE,							\
2028	       "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
2029	       TARGET_64BIT ? "dsubu" : "subu",				\
2030	       reg_names[STACK_POINTER_REGNUM],				\
2031	       reg_names[STACK_POINTER_REGNUM],				\
2032	       Pmode == DImode ? 16 : 8);				\
2033    }									\
2034  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2035  fprintf (FILE, "\t.set\tat\n");					\
2036}
2037
2038/* No mips port has ever used the profiler counter word, so don't emit it
2039   or the label for it.  */
2040
2041#define NO_PROFILE_COUNTERS 1
2042
2043/* Define this macro if the code for function profiling should come
2044   before the function prologue.  Normally, the profiling code comes
2045   after.  */
2046
2047/* #define PROFILE_BEFORE_PROLOGUE */
2048
2049/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2050   the stack pointer does not matter.  The value is tested only in
2051   functions that have frame pointers.
2052   No definition is equivalent to always zero.  */
2053
2054#define EXIT_IGNORE_STACK 1
2055
2056
2057/* A C statement to output, on the stream FILE, assembler code for a
2058   block of data that contains the constant parts of a trampoline.
2059   This code should not include a label--the label is taken care of
2060   automatically.  */
2061
2062#define TRAMPOLINE_TEMPLATE(STREAM)					\
2063{									\
2064  if (ptr_mode == DImode)						\
2065    fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove   $1,$31\n");	\
2066  else									\
2067    fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");	\
2068  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
2069  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
2070  if (ptr_mode == DImode)						\
2071    {									\
2072      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
2073      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
2074      fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove  $25,$3\n");	\
2075    }									\
2076  else									\
2077    {									\
2078      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
2079      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
2080      fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3\n");	\
2081    }									\
2082  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
2083  if (ptr_mode == DImode)						\
2084    {									\
2085      fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove   $31,$1\n");	\
2086      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2087      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2088    }									\
2089  else									\
2090    {									\
2091      fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");	\
2092      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2093      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2094    }									\
2095}
2096
2097/* A C expression for the size in bytes of the trampoline, as an
2098   integer.  */
2099
2100#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2101
2102/* Alignment required for trampolines, in bits.  */
2103
2104#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2105
2106/* INITIALIZE_TRAMPOLINE calls this library function to flush
2107   program and data caches.  */
2108
2109#ifndef CACHE_FLUSH_FUNC
2110#define CACHE_FLUSH_FUNC "_flush_cache"
2111#endif
2112
2113/* A C statement to initialize the variable parts of a trampoline.
2114   ADDR is an RTX for the address of the trampoline; FNADDR is an
2115   RTX for the address of the nested function; STATIC_CHAIN is an
2116   RTX for the static chain value that should be passed to the
2117   function when it is called.  */
2118
2119#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
2120{									    \
2121  rtx func_addr, chain_addr;						    \
2122									    \
2123  func_addr = plus_constant (ADDR, 32);					    \
2124  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));	    \
2125  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);		    \
2126  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);		    \
2127									    \
2128  /* Flush both caches.  We need to flush the data cache in case	    \
2129     the system has a write-back cache.  */				    \
2130  /* ??? Should check the return value for errors.  */			    \
2131  if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
2132    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2133		       0, VOIDmode, 3, ADDR, Pmode,			    \
2134		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2135		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
2136}
2137
2138/* Addressing modes, and classification of registers for them.  */
2139
2140#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2141#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2142  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2143
2144/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2145   and check its validity for a certain class.
2146   We have two alternate definitions for each of them.
2147   The usual definition accepts all pseudo regs; the other rejects them all.
2148   The symbol REG_OK_STRICT causes the latter definition to be used.
2149
2150   Most source files want to accept pseudo regs in the hope that
2151   they will get allocated to the class that the insn wants them to be in.
2152   Some source files that are used after register allocation
2153   need to be strict.  */
2154
2155#ifndef REG_OK_STRICT
2156#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2157  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2158#else
2159#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2160  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2161#endif
2162
2163#define REG_OK_FOR_INDEX_P(X) 0
2164
2165
2166/* Maximum number of registers that can appear in a valid memory address.  */
2167
2168#define MAX_REGS_PER_ADDRESS 1
2169
2170#ifdef REG_OK_STRICT
2171#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2172{						\
2173  if (mips_legitimate_address_p (MODE, X, 1))	\
2174    goto ADDR;					\
2175}
2176#else
2177#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2178{						\
2179  if (mips_legitimate_address_p (MODE, X, 0))	\
2180    goto ADDR;					\
2181}
2182#endif
2183
2184/* Check for constness inline but use mips_legitimate_address_p
2185   to check whether a constant really is an address.  */
2186
2187#define CONSTANT_ADDRESS_P(X) \
2188  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2189
2190#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2191
2192#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2193  do {								\
2194    if (mips_legitimize_address (&(X), MODE))			\
2195      goto WIN;							\
2196  } while (0)
2197
2198
2199/* A C statement or compound statement with a conditional `goto
2200   LABEL;' executed if memory address X (an RTX) can have different
2201   meanings depending on the machine mode of the memory reference it
2202   is used for.
2203
2204   Autoincrement and autodecrement addresses typically have
2205   mode-dependent effects because the amount of the increment or
2206   decrement is the size of the operand being addressed.  Some
2207   machines have other mode-dependent addresses.  Many RISC machines
2208   have no mode-dependent addresses.
2209
2210   You may assume that ADDR is a valid address for the machine.  */
2211
2212#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2213
2214/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2215   'the start of the function that this code is output in'.  */
2216
2217#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2218  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2219    asm_fprintf ((FILE), "%U%s",					\
2220		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2221  else									\
2222    asm_fprintf ((FILE), "%U%s", (NAME))
2223
2224/* Flag to mark a function decl symbol that requires a long call.  */
2225#define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2226#define SYMBOL_REF_LONG_CALL_P(X)					\
2227  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2228
2229/* Specify the machine mode that this machine uses
2230   for the index in the tablejump instruction.
2231   ??? Using HImode in mips16 mode can cause overflow.  */
2232#define CASE_VECTOR_MODE \
2233  (TARGET_MIPS16 ? HImode : ptr_mode)
2234
2235/* Define as C expression which evaluates to nonzero if the tablejump
2236   instruction expects the table to contain offsets from the address of the
2237   table.
2238   Do not define this if the table should contain absolute addresses.  */
2239#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2240
2241/* Define this as 1 if `char' should by default be signed; else as 0.  */
2242#ifndef DEFAULT_SIGNED_CHAR
2243#define DEFAULT_SIGNED_CHAR 1
2244#endif
2245
2246/* Max number of bytes we can move from memory to memory
2247   in one reasonably fast instruction.  */
2248#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2249#define MAX_MOVE_MAX 8
2250
2251/* Define this macro as a C expression which is nonzero if
2252   accessing less than a word of memory (i.e. a `char' or a
2253   `short') is no faster than accessing a word of memory, i.e., if
2254   such access require more than one instruction or if there is no
2255   difference in cost between byte and (aligned) word loads.
2256
2257   On RISC machines, it tends to generate better code to define
2258   this as 1, since it avoids making a QI or HI mode register.  */
2259#define SLOW_BYTE_ACCESS 1
2260
2261/* Define this to be nonzero if shift instructions ignore all but the low-order
2262   few bits.  */
2263#define SHIFT_COUNT_TRUNCATED 1
2264
2265/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2266   is done just by pretending it is already truncated.  */
2267#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2268  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2269
2270
2271/* Specify the machine mode that pointers have.
2272   After generation of rtl, the compiler makes no further distinction
2273   between pointers and any other objects of this machine mode.  */
2274
2275#ifndef Pmode
2276#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2277#endif
2278
2279/* Give call MEMs SImode since it is the "most permissive" mode
2280   for both 32-bit and 64-bit targets.  */
2281
2282#define FUNCTION_MODE SImode
2283
2284
2285/* The cost of loading values from the constant pool.  It should be
2286   larger than the cost of any constant we want to synthesize in-line.  */
2287
2288#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2289
2290/* A C expression for the cost of moving data from a register in
2291   class FROM to one in class TO.  The classes are expressed using
2292   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2293   the default; other values are interpreted relative to that.
2294
2295   It is not required that the cost always equal 2 when FROM is the
2296   same as TO; on some machines it is expensive to move between
2297   registers if they are not general registers.
2298
2299   If reload sees an insn consisting of a single `set' between two
2300   hard registers, and if `REGISTER_MOVE_COST' applied to their
2301   classes returns a value of 2, reload does not check to ensure
2302   that the constraints of the insn are met.  Setting a cost of
2303   other than 2 will allow reload to verify that the constraints are
2304   met.  You should do this if the `movM' pattern's constraints do
2305   not allow such copying.  */
2306
2307#define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2308  mips_register_move_cost (MODE, FROM, TO)
2309
2310#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2311  (mips_cost->memory_latency	      		\
2312   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2313
2314/* Define if copies to/from condition code registers should be avoided.
2315
2316   This is needed for the MIPS because reload_outcc is not complete;
2317   it needs to handle cases where the source is a general or another
2318   condition code register.  */
2319#define AVOID_CCMODE_COPIES
2320
2321/* A C expression for the cost of a branch instruction.  A value of
2322   1 is the default; other values are interpreted relative to that.  */
2323
2324#define BRANCH_COST mips_cost->branch_cost
2325#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2326
2327/* If defined, modifies the length assigned to instruction INSN as a
2328   function of the context in which it is used.  LENGTH is an lvalue
2329   that contains the initially computed length of the insn and should
2330   be updated with the correct length of the insn.  */
2331#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2332  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2333
2334/* Return the asm template for a non-MIPS16 conditional branch instruction.
2335   OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2336   its operands.  */
2337#define MIPS_BRANCH(OPCODE, OPERANDS) \
2338  "%*" OPCODE "%?\t" OPERANDS "%/"
2339
2340/* Return the asm template for a call.  INSN is the instruction's mnemonic
2341   ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2342   of the target.
2343
2344   When generating -mabicalls without explicit relocation operators,
2345   all calls should use assembly macros.  Otherwise, all indirect
2346   calls should use "jr" or "jalr"; we will arrange to restore $gp
2347   afterwards if necessary.  Finally, we can only generate direct
2348   calls for -mabicalls by temporarily switching to non-PIC mode.  */
2349#define MIPS_CALL(INSN, OPERANDS, OPNO)				\
2350  (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS			\
2351   ? "%*" INSN "\t%" #OPNO "%/"					\
2352   : REG_P (OPERANDS[OPNO])					\
2353   ? "%*" INSN "r\t%" #OPNO "%/"				\
2354   : TARGET_ABICALLS						\
2355   ? (".option\tpic0\n\t"					\
2356      "%*" INSN "\t%" #OPNO "%/\n\t"				\
2357      ".option\tpic2")						\
2358   : "%*" INSN "\t%" #OPNO "%/")
2359
2360/* Control the assembler format that we output.  */
2361
2362/* Output to assembler file text saying following lines
2363   may contain character constants, extra white space, comments, etc.  */
2364
2365#ifndef ASM_APP_ON
2366#define ASM_APP_ON " #APP\n"
2367#endif
2368
2369/* Output to assembler file text saying following lines
2370   no longer contain unusual constructs.  */
2371
2372#ifndef ASM_APP_OFF
2373#define ASM_APP_OFF " #NO_APP\n"
2374#endif
2375
2376#define REGISTER_NAMES							   \
2377{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2378  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2379  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2380  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2381  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2382  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2383  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2384  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2385  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2386  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",		   \
2387  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2388  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2389  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2390  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2391  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2392  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2393  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2394  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2395  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2396  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2397  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2398  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2399  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2400  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2401
2402/* List the "software" names for each register.  Also list the numerical
2403   names for $fp and $sp.  */
2404
2405#define ADDITIONAL_REGISTER_NAMES					\
2406{									\
2407  { "$29",	29 + GP_REG_FIRST },					\
2408  { "$30",	30 + GP_REG_FIRST },					\
2409  { "at",	 1 + GP_REG_FIRST },					\
2410  { "v0",	 2 + GP_REG_FIRST },					\
2411  { "v1",	 3 + GP_REG_FIRST },					\
2412  { "a0",	 4 + GP_REG_FIRST },					\
2413  { "a1",	 5 + GP_REG_FIRST },					\
2414  { "a2",	 6 + GP_REG_FIRST },					\
2415  { "a3",	 7 + GP_REG_FIRST },					\
2416  { "t0",	 8 + GP_REG_FIRST },					\
2417  { "t1",	 9 + GP_REG_FIRST },					\
2418  { "t2",	10 + GP_REG_FIRST },					\
2419  { "t3",	11 + GP_REG_FIRST },					\
2420  { "t4",	12 + GP_REG_FIRST },					\
2421  { "t5",	13 + GP_REG_FIRST },					\
2422  { "t6",	14 + GP_REG_FIRST },					\
2423  { "t7",	15 + GP_REG_FIRST },					\
2424  { "s0",	16 + GP_REG_FIRST },					\
2425  { "s1",	17 + GP_REG_FIRST },					\
2426  { "s2",	18 + GP_REG_FIRST },					\
2427  { "s3",	19 + GP_REG_FIRST },					\
2428  { "s4",	20 + GP_REG_FIRST },					\
2429  { "s5",	21 + GP_REG_FIRST },					\
2430  { "s6",	22 + GP_REG_FIRST },					\
2431  { "s7",	23 + GP_REG_FIRST },					\
2432  { "t8",	24 + GP_REG_FIRST },					\
2433  { "t9",	25 + GP_REG_FIRST },					\
2434  { "k0",	26 + GP_REG_FIRST },					\
2435  { "k1",	27 + GP_REG_FIRST },					\
2436  { "gp",	28 + GP_REG_FIRST },					\
2437  { "sp",	29 + GP_REG_FIRST },					\
2438  { "fp",	30 + GP_REG_FIRST },					\
2439  { "ra",	31 + GP_REG_FIRST },					\
2440  ALL_COP_ADDITIONAL_REGISTER_NAMES					\
2441}
2442
2443/* This is meant to be redefined in the host dependent files.  It is a
2444   set of alternative names and regnums for mips coprocessors.  */
2445
2446#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2447
2448/* A C compound statement to output to stdio stream STREAM the
2449   assembler syntax for an instruction operand X.  X is an RTL
2450   expression.
2451
2452   CODE is a value that can be used to specify one of several ways
2453   of printing the operand.  It is used when identical operands
2454   must be printed differently depending on the context.  CODE
2455   comes from the `%' specification that was used to request
2456   printing of the operand.  If the specification was just `%DIGIT'
2457   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2458   is the ASCII code for LTR.
2459
2460   If X is a register, this macro should print the register's name.
2461   The names can be found in an array `reg_names' whose type is
2462   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2463
2464   When the machine description has a specification `%PUNCT' (a `%'
2465   followed by a punctuation character), this macro is called with
2466   a null pointer for X and the punctuation character for CODE.
2467
2468   See mips.c for the MIPS specific codes.  */
2469
2470#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2471
2472/* A C expression which evaluates to true if CODE is a valid
2473   punctuation character for use in the `PRINT_OPERAND' macro.  If
2474   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2475   punctuation characters (except for the standard one, `%') are
2476   used in this way.  */
2477
2478#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2479
2480/* A C compound statement to output to stdio stream STREAM the
2481   assembler syntax for an instruction operand that is a memory
2482   reference whose address is ADDR.  ADDR is an RTL expression.  */
2483
2484#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2485
2486
2487/* A C statement, to be executed after all slot-filler instructions
2488   have been output.  If necessary, call `dbr_sequence_length' to
2489   determine the number of slots filled in a sequence (zero if not
2490   currently outputting a sequence), to decide how many no-ops to
2491   output, or whatever.
2492
2493   Don't define this macro if it has nothing to do, but it is
2494   helpful in reading assembly output if the extent of the delay
2495   sequence is made explicit (e.g. with white space).
2496
2497   Note that output routines for instructions with delay slots must
2498   be prepared to deal with not being output as part of a sequence
2499   (i.e.  when the scheduling pass is not run, or when no slot
2500   fillers could be found.)  The variable `final_sequence' is null
2501   when not processing a sequence, otherwise it contains the
2502   `sequence' rtx being output.  */
2503
2504#define DBR_OUTPUT_SEQEND(STREAM)					\
2505do									\
2506  {									\
2507    if (set_nomacro > 0 && --set_nomacro == 0)				\
2508      fputs ("\t.set\tmacro\n", STREAM);				\
2509									\
2510    if (set_noreorder > 0 && --set_noreorder == 0)			\
2511      fputs ("\t.set\treorder\n", STREAM);				\
2512									\
2513    fputs ("\n", STREAM);						\
2514  }									\
2515while (0)
2516
2517
2518/* How to tell the debugger about changes of source files.  */
2519#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2520  mips_output_filename (STREAM, NAME)
2521
2522/* mips-tfile does not understand .stabd directives.  */
2523#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {	\
2524  dbxout_begin_stabn_sline (LINE);				\
2525  dbxout_stab_value_internal_label ("LM", &COUNTER);		\
2526} while (0)
2527
2528/* Use .loc directives for SDB line numbers.  */
2529#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)			\
2530  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2531
2532/* The MIPS implementation uses some labels for its own purpose.  The
2533   following lists what labels are created, and are all formed by the
2534   pattern $L[a-z].*.  The machine independent portion of GCC creates
2535   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2536
2537	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2538	$Lb[0-9]+	Begin blocks for MIPS debug support
2539	$Lc[0-9]+	Label for use in s<xx> operation.
2540	$Le[0-9]+	End blocks for MIPS debug support  */
2541
2542#undef ASM_DECLARE_OBJECT_NAME
2543#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2544  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2545
2546/* Globalizing directive for a label.  */
2547#define GLOBAL_ASM_OP "\t.globl\t"
2548
2549/* This says how to define a global common symbol.  */
2550
2551#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2552
2553/* This says how to define a local common symbol (i.e., not visible to
2554   linker).  */
2555
2556#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2557#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2558  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2559#endif
2560
2561/* This says how to output an external.  It would be possible not to
2562   output anything and let undefined symbol become external. However
2563   the assembler uses length information on externals to allocate in
2564   data/sdata bss/sbss, thereby saving exec time.  */
2565
2566#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2567  mips_output_external(STREAM,DECL,NAME)
2568
2569/* This is how to declare a function name.  The actual work of
2570   emitting the label is moved to function_prologue, so that we can
2571   get the line number correctly emitted before the .ent directive,
2572   and after any .file directives.  Define as empty so that the function
2573   is not declared before the .ent directive elsewhere.  */
2574
2575#undef ASM_DECLARE_FUNCTION_NAME
2576#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2577
2578#ifndef FUNCTION_NAME_ALREADY_DECLARED
2579#define FUNCTION_NAME_ALREADY_DECLARED 0
2580#endif
2581
2582/* This is how to store into the string LABEL
2583   the symbol_ref name of an internal numbered label where
2584   PREFIX is the class of label and NUM is the number within the class.
2585   This is suitable for output with `assemble_name'.  */
2586
2587#undef ASM_GENERATE_INTERNAL_LABEL
2588#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2589  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2590
2591/* This is how to output an element of a case-vector that is absolute.  */
2592
2593#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2594  fprintf (STREAM, "\t%s\t%sL%d\n",					\
2595	   ptr_mode == DImode ? ".dword" : ".word",			\
2596	   LOCAL_LABEL_PREFIX,						\
2597	   VALUE)
2598
2599/* This is how to output an element of a case-vector.  We can make the
2600   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2601   is supported.  */
2602
2603#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2604do {									\
2605  if (TARGET_MIPS16)							\
2606    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
2607	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2608  else if (TARGET_GPWORD)						\
2609    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2610	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2611	     LOCAL_LABEL_PREFIX, VALUE);				\
2612  else									\
2613    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2614	     ptr_mode == DImode ? ".dword" : ".word",			\
2615	     LOCAL_LABEL_PREFIX, VALUE);				\
2616} while (0)
2617
2618/* When generating MIPS16 code, we want the jump table to be in the text
2619   section so that we can load its address using a PC-relative addition.  */
2620#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2621
2622/* This is how to output an assembler line
2623   that says to advance the location counter
2624   to a multiple of 2**LOG bytes.  */
2625
2626#define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2627  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2628
2629/* This is how to output an assembler line to advance the location
2630   counter by SIZE bytes.  */
2631
2632#undef ASM_OUTPUT_SKIP
2633#define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2634  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2635
2636/* This is how to output a string.  */
2637#undef ASM_OUTPUT_ASCII
2638#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
2639  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2640
2641/* Output #ident as a in the read-only data section.  */
2642#undef  ASM_OUTPUT_IDENT
2643#define ASM_OUTPUT_IDENT(FILE, STRING)					\
2644{									\
2645  const char *p = STRING;						\
2646  int size = strlen (p) + 1;						\
2647  switch_to_section (readonly_data_section);				\
2648  assemble_string (p, size);						\
2649}
2650
2651/* Default to -G 8 */
2652#ifndef MIPS_DEFAULT_GVALUE
2653#define MIPS_DEFAULT_GVALUE 8
2654#endif
2655
2656/* Define the strings to put out for each section in the object file.  */
2657#define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2658#define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2659
2660#undef READONLY_DATA_SECTION_ASM_OP
2661#define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2662
2663#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2664do									\
2665  {									\
2666    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
2667	     TARGET_64BIT ? "dsubu" : "subu",				\
2668	     reg_names[STACK_POINTER_REGNUM],				\
2669	     reg_names[STACK_POINTER_REGNUM],				\
2670	     TARGET_64BIT ? "sd" : "sw",				\
2671	     reg_names[REGNO],						\
2672	     reg_names[STACK_POINTER_REGNUM]);				\
2673  }									\
2674while (0)
2675
2676#define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2677do									\
2678  {									\
2679    if (! set_noreorder)						\
2680      fprintf (STREAM, "\t.set\tnoreorder\n");				\
2681									\
2682    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2683	     TARGET_64BIT ? "ld" : "lw",				\
2684	     reg_names[REGNO],						\
2685	     reg_names[STACK_POINTER_REGNUM],				\
2686	     TARGET_64BIT ? "daddu" : "addu",				\
2687	     reg_names[STACK_POINTER_REGNUM],				\
2688	     reg_names[STACK_POINTER_REGNUM]);				\
2689									\
2690    if (! set_noreorder)						\
2691      fprintf (STREAM, "\t.set\treorder\n");				\
2692  }									\
2693while (0)
2694
2695/* How to start an assembler comment.
2696   The leading space is important (the mips native assembler requires it).  */
2697#ifndef ASM_COMMENT_START
2698#define ASM_COMMENT_START " #"
2699#endif
2700
2701/* Default definitions for size_t and ptrdiff_t.  We must override the
2702   definitions from ../svr4.h on mips-*-linux-gnu.  */
2703
2704#undef SIZE_TYPE
2705#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2706
2707#undef PTRDIFF_TYPE
2708#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2709
2710#ifndef __mips16
2711/* Since the bits of the _init and _fini function is spread across
2712   many object files, each potentially with its own GP, we must assume
2713   we need to load our GP.  We don't preserve $gp or $ra, since each
2714   init/fini chunk is supposed to initialize $gp, and crti/crtn
2715   already take care of preserving $ra and, when appropriate, $gp.  */
2716#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2717#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2718   asm (SECTION_OP "\n\
2719	.set noreorder\n\
2720	bal 1f\n\
2721	nop\n\
27221:	.cpload $31\n\
2723	.set reorder\n\
2724	jal " USER_LABEL_PREFIX #FUNC "\n\
2725	" TEXT_SECTION_ASM_OP);
2726#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2727#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2728   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2729#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2730   asm (SECTION_OP "\n\
2731	.set noreorder\n\
2732	bal 1f\n\
2733	nop\n\
27341:	.set reorder\n\
2735	.cpsetup $31, $2, 1b\n\
2736	jal " USER_LABEL_PREFIX #FUNC "\n\
2737	" TEXT_SECTION_ASM_OP);
2738#endif
2739#endif
2740
2741#ifndef HAVE_AS_TLS
2742#define HAVE_AS_TLS 0
2743#endif
2744