mips.h revision 169690
1/* Definitions of target machine for GNU compiler.  MIPS version.
2   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5   Changed by Michael Meissner	(meissner@osf.org).
6   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7   Brendan Eich (brendan@microunity.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GCC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING.  If not, write to
23the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA.  */
25
26
27/* MIPS external variables defined in mips.c.  */
28
29/* Which processor to schedule for.  Since there is no difference between
30   a R2000 and R3000 in terms of the scheduler, we collapse them into
31   just an R3000.  The elements of the enumeration must match exactly
32   the cpu attribute in the mips.md machine description.  */
33
34enum processor_type {
35  PROCESSOR_R3000,
36  PROCESSOR_4KC,
37  PROCESSOR_4KP,
38  PROCESSOR_5KC,
39  PROCESSOR_5KF,
40  PROCESSOR_20KC,
41  PROCESSOR_24K,
42  PROCESSOR_24KX,
43  PROCESSOR_M4K,
44  PROCESSOR_R3900,
45  PROCESSOR_R6000,
46  PROCESSOR_R4000,
47  PROCESSOR_R4100,
48  PROCESSOR_R4111,
49  PROCESSOR_R4120,
50  PROCESSOR_R4130,
51  PROCESSOR_R4300,
52  PROCESSOR_R4600,
53  PROCESSOR_R4650,
54  PROCESSOR_R5000,
55  PROCESSOR_R5400,
56  PROCESSOR_R5500,
57  PROCESSOR_R7000,
58  PROCESSOR_R8000,
59  PROCESSOR_R9000,
60  PROCESSOR_SB1,
61  PROCESSOR_SB1A,
62  PROCESSOR_SR71000,
63  PROCESSOR_MAX
64};
65
66/* Costs of various operations on the different architectures.  */
67
68struct mips_rtx_cost_data
69{
70  unsigned short fp_add;
71  unsigned short fp_mult_sf;
72  unsigned short fp_mult_df;
73  unsigned short fp_div_sf;
74  unsigned short fp_div_df;
75  unsigned short int_mult_si;
76  unsigned short int_mult_di;
77  unsigned short int_div_si;
78  unsigned short int_div_di;
79  unsigned short branch_cost;
80  unsigned short memory_latency;
81};
82
83/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
84   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
85   to work on a 64 bit machine.  */
86
87#define ABI_32  0
88#define ABI_N32 1
89#define ABI_64  2
90#define ABI_EABI 3
91#define ABI_O64  4
92
93/* Information about one recognized processor.  Defined here for the
94   benefit of TARGET_CPU_CPP_BUILTINS.  */
95struct mips_cpu_info {
96  /* The 'canonical' name of the processor as far as GCC is concerned.
97     It's typically a manufacturer's prefix followed by a numerical
98     designation.  It should be lower case.  */
99  const char *name;
100
101  /* The internal processor number that most closely matches this
102     entry.  Several processors can have the same value, if there's no
103     difference between them from GCC's point of view.  */
104  enum processor_type cpu;
105
106  /* The ISA level that the processor implements.  */
107  int isa;
108};
109
110#ifndef USED_FOR_TARGET
111extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
112extern const char *current_function_file; /* filename current function is in */
113extern int num_source_filenames;	/* current .file # */
114extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
115extern int sym_lineno;			/* sgi next label # for each stmt */
116extern int set_noreorder;		/* # of nested .set noreorder's  */
117extern int set_nomacro;			/* # of nested .set nomacro's  */
118extern int set_noat;			/* # of nested .set noat's  */
119extern int set_volatile;		/* # of nested .set volatile's  */
120extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
121extern int mips_dbx_regno[];		/* Map register # to debug register # */
122extern bool mips_split_p[];
123extern GTY(()) rtx cmp_operands[2];
124extern enum processor_type mips_arch;   /* which cpu to codegen for */
125extern enum processor_type mips_tune;   /* which cpu to schedule for */
126extern int mips_isa;			/* architectural level */
127extern int mips_abi;			/* which ABI to use */
128extern int mips16_hard_float;		/* mips16 without -msoft-float */
129extern const struct mips_cpu_info mips_cpu_info_table[];
130extern const struct mips_cpu_info *mips_arch_info;
131extern const struct mips_cpu_info *mips_tune_info;
132extern const struct mips_rtx_cost_data *mips_cost;
133#endif
134
135/* Macros to silence warnings about numbers being signed in traditional
136   C and unsigned in ISO C when compiled on 32-bit hosts.  */
137
138#define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
139#define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
140#define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
141
142
143/* Run-time compilation parameters selecting different hardware subsets.  */
144
145/* True if the call patterns should be split into a jalr followed by
146   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
147   in which $gp is call-clobbered.  It is only safe to split the load
148   from the call when every use of $gp is explicit.  */
149
150#define TARGET_SPLIT_CALLS \
151  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
152
153/* True if we're generating a form of -mabicalls in which we can use
154   operators like %hi and %lo to refer to locally-binding symbols.
155   We can only do this for -mno-shared, and only then if we can use
156   relocation operations instead of assembly macros.  It isn't really
157   worth using absolute sequences for 64-bit symbols because GOT
158   accesses are so much shorter.  */
159
160#define TARGET_ABSOLUTE_ABICALLS	\
161  (TARGET_ABICALLS			\
162   && !TARGET_SHARED			\
163   && TARGET_EXPLICIT_RELOCS		\
164   && !ABI_HAS_64BIT_SYMBOLS)
165
166/* True if we can optimize sibling calls.  For simplicity, we only
167   handle cases in which call_insn_operand will reject invalid
168   sibcall addresses.  There are two cases in which this isn't true:
169
170      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
171	but there is no direct jump instruction.  It isn't worth
172	using sibling calls in this case anyway; they would usually
173	be longer than normal calls.
174
175      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
176	accepts global constants, but "jr $25" is the only allowed
177	sibcall.  */
178
179#define TARGET_SIBCALLS \
180  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
181
182/* True if .gpword or .gpdword should be used for switch tables.
183
184   Although GAS does understand .gpdword, the SGI linker mishandles
185   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
186   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
187#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
188
189/* Generate mips16 code */
190#define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
191/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
192#define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
193
194/* Generic ISA defines.  */
195#define ISA_MIPS1		    (mips_isa == 1)
196#define ISA_MIPS2		    (mips_isa == 2)
197#define ISA_MIPS3                   (mips_isa == 3)
198#define ISA_MIPS4		    (mips_isa == 4)
199#define ISA_MIPS32		    (mips_isa == 32)
200#define ISA_MIPS32R2		    (mips_isa == 33)
201#define ISA_MIPS64                  (mips_isa == 64)
202
203/* Architecture target defines.  */
204#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
205#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
206#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
207#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
208#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
209#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
210#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
211#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
212#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
213				     || mips_arch == PROCESSOR_SB1A)
214#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
215
216/* Scheduling target defines.  */
217#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
218#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
219#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
220#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
221#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
222#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
223#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
224#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
225#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
226#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
227#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
228#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
229				     || mips_tune == PROCESSOR_SB1A)
230
231/* True if the pre-reload scheduler should try to create chains of
232   multiply-add or multiply-subtract instructions.  For example,
233   suppose we have:
234
235	t1 = a * b
236	t2 = t1 + c * d
237	t3 = e * f
238	t4 = t3 - g * h
239
240   t1 will have a higher priority than t2 and t3 will have a higher
241   priority than t4.  However, before reload, there is no dependence
242   between t1 and t3, and they can often have similar priorities.
243   The scheduler will then tend to prefer:
244
245	t1 = a * b
246	t3 = e * f
247	t2 = t1 + c * d
248	t4 = t3 - g * h
249
250   which stops us from making full use of macc/madd-style instructions.
251   This sort of situation occurs frequently in Fourier transforms and
252   in unrolled loops.
253
254   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
255   queue so that chained multiply-add and multiply-subtract instructions
256   appear ahead of any other instruction that is likely to clobber lo.
257   In the example above, if t2 and t3 become ready at the same time,
258   the code ensures that t2 is scheduled first.
259
260   Multiply-accumulate instructions are a bigger win for some targets
261   than others, so this macro is defined on an opt-in basis.  */
262#define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
263				     || TUNE_MIPS4120		\
264				     || TUNE_MIPS4130)
265
266#define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
267#define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
268
269/* IRIX specific stuff.  */
270#define TARGET_IRIX	   0
271#define TARGET_IRIX6	   0
272
273/* Define preprocessor macros for the -march and -mtune options.
274   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
275   processor.  If INFO's canonical name is "foo", define PREFIX to
276   be "foo", and define an additional macro PREFIX_FOO.  */
277#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
278  do								\
279    {								\
280      char *macro, *p;						\
281								\
282      macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
283      for (p = macro; *p != 0; p++)				\
284	*p = TOUPPER (*p);					\
285								\
286      builtin_define (macro);					\
287      builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
288      free (macro);						\
289    }								\
290  while (0)
291
292/* Target CPU builtins.  */
293#define TARGET_CPU_CPP_BUILTINS()				\
294  do								\
295    {								\
296      /* Everyone but IRIX defines this to mips.  */            \
297      if (!TARGET_IRIX)                                         \
298        builtin_assert ("machine=mips");                        \
299                                                                \
300      builtin_assert ("cpu=mips");				\
301      builtin_define ("__mips__");     				\
302      builtin_define ("_mips");					\
303								\
304      /* We do this here because __mips is defined below	\
305	 and so we can't use builtin_define_std.  */		\
306      if (!flag_iso)						\
307	builtin_define ("mips");				\
308								\
309      if (TARGET_64BIT)						\
310	builtin_define ("__mips64");				\
311								\
312      if (!TARGET_IRIX)						\
313	{							\
314	  /* Treat _R3000 and _R4000 like register-size		\
315	     defines, which is how they've historically		\
316	     been used.  */					\
317	  if (TARGET_64BIT)					\
318	    {							\
319	      builtin_define_std ("R4000");			\
320	      builtin_define ("_R4000");			\
321	    }							\
322	  else							\
323	    {							\
324	      builtin_define_std ("R3000");			\
325	      builtin_define ("_R3000");			\
326	    }							\
327	}							\
328      if (TARGET_FLOAT64)					\
329	builtin_define ("__mips_fpr=64");			\
330      else							\
331	builtin_define ("__mips_fpr=32");			\
332								\
333      if (TARGET_MIPS16)					\
334	builtin_define ("__mips16");				\
335								\
336      if (TARGET_MIPS3D)					\
337	builtin_define ("__mips3d");				\
338								\
339      if (TARGET_DSP)						\
340	builtin_define ("__mips_dsp");				\
341								\
342      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
343      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
344								\
345      if (ISA_MIPS1)						\
346	{							\
347	  builtin_define ("__mips=1");				\
348	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
349	}							\
350      else if (ISA_MIPS2)					\
351	{							\
352	  builtin_define ("__mips=2");				\
353	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
354	}							\
355      else if (ISA_MIPS3)					\
356	{							\
357	  builtin_define ("__mips=3");				\
358	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
359	}							\
360      else if (ISA_MIPS4)					\
361	{							\
362	  builtin_define ("__mips=4");				\
363	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
364	}							\
365      else if (ISA_MIPS32)					\
366	{							\
367	  builtin_define ("__mips=32");				\
368	  builtin_define ("__mips_isa_rev=1");			\
369	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
370	}							\
371      else if (ISA_MIPS32R2)					\
372	{							\
373	  builtin_define ("__mips=32");				\
374	  builtin_define ("__mips_isa_rev=2");			\
375	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
376	}							\
377      else if (ISA_MIPS64)					\
378	{							\
379	  builtin_define ("__mips=64");				\
380	  builtin_define ("__mips_isa_rev=1");			\
381	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
382	}							\
383								\
384      if (TARGET_HARD_FLOAT)					\
385	builtin_define ("__mips_hard_float");			\
386      else if (TARGET_SOFT_FLOAT)				\
387	builtin_define ("__mips_soft_float");			\
388								\
389      if (TARGET_SINGLE_FLOAT)					\
390	builtin_define ("__mips_single_float");			\
391								\
392      if (TARGET_PAIRED_SINGLE_FLOAT)				\
393	builtin_define ("__mips_paired_single_float");		\
394								\
395      if (TARGET_BIG_ENDIAN)					\
396	{							\
397	  builtin_define_std ("MIPSEB");			\
398	  builtin_define ("_MIPSEB");				\
399	}							\
400      else							\
401	{							\
402	  builtin_define_std ("MIPSEL");			\
403	  builtin_define ("_MIPSEL");				\
404	}							\
405								\
406        /* Macros dependent on the C dialect.  */		\
407      if (preprocessing_asm_p ())				\
408	{							\
409          builtin_define_std ("LANGUAGE_ASSEMBLY");		\
410	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
411	}							\
412      else if (c_dialect_cxx ())				\
413        {							\
414	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
415          builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
416          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
417        }							\
418      else							\
419	{							\
420          builtin_define_std ("LANGUAGE_C");			\
421	  builtin_define ("_LANGUAGE_C");			\
422	}							\
423      if (c_dialect_objc ())					\
424        {							\
425	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
426          builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
427	  /* Bizarre, but needed at least for Irix.  */		\
428	  builtin_define_std ("LANGUAGE_C");			\
429	  builtin_define ("_LANGUAGE_C");			\
430        }							\
431								\
432      if (mips_abi == ABI_EABI)					\
433	builtin_define ("__mips_eabi");				\
434								\
435} while (0)
436
437/* Default target_flags if no switches are specified  */
438
439#ifndef TARGET_DEFAULT
440#define TARGET_DEFAULT 0
441#endif
442
443#ifndef TARGET_CPU_DEFAULT
444#define TARGET_CPU_DEFAULT 0
445#endif
446
447#ifndef TARGET_ENDIAN_DEFAULT
448#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
449#endif
450
451#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
452#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
453#endif
454
455/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
456#ifndef MIPS_ISA_DEFAULT
457#ifndef MIPS_CPU_STRING_DEFAULT
458#define MIPS_CPU_STRING_DEFAULT "from-abi"
459#endif
460#endif
461
462#ifdef IN_LIBGCC2
463#undef TARGET_64BIT
464/* Make this compile time constant for libgcc2 */
465#ifdef __mips64
466#define TARGET_64BIT		1
467#else
468#define TARGET_64BIT		0
469#endif
470#endif /* IN_LIBGCC2 */
471
472#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
473
474#ifndef MULTILIB_ENDIAN_DEFAULT
475#if TARGET_ENDIAN_DEFAULT == 0
476#define MULTILIB_ENDIAN_DEFAULT "EL"
477#else
478#define MULTILIB_ENDIAN_DEFAULT "EB"
479#endif
480#endif
481
482#ifndef MULTILIB_ISA_DEFAULT
483#  if MIPS_ISA_DEFAULT == 1
484#    define MULTILIB_ISA_DEFAULT "mips1"
485#  else
486#    if MIPS_ISA_DEFAULT == 2
487#      define MULTILIB_ISA_DEFAULT "mips2"
488#    else
489#      if MIPS_ISA_DEFAULT == 3
490#        define MULTILIB_ISA_DEFAULT "mips3"
491#      else
492#        if MIPS_ISA_DEFAULT == 4
493#          define MULTILIB_ISA_DEFAULT "mips4"
494#        else
495#          if MIPS_ISA_DEFAULT == 32
496#            define MULTILIB_ISA_DEFAULT "mips32"
497#          else
498#            if MIPS_ISA_DEFAULT == 33
499#              define MULTILIB_ISA_DEFAULT "mips32r2"
500#            else
501#              if MIPS_ISA_DEFAULT == 64
502#                define MULTILIB_ISA_DEFAULT "mips64"
503#              else
504#                define MULTILIB_ISA_DEFAULT "mips1"
505#              endif
506#            endif
507#          endif
508#        endif
509#      endif
510#    endif
511#  endif
512#endif
513
514#ifndef MULTILIB_DEFAULTS
515#define MULTILIB_DEFAULTS \
516    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
517#endif
518
519/* We must pass -EL to the linker by default for little endian embedded
520   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
521   linker will default to using big-endian output files.  The OUTPUT_FORMAT
522   line must be in the linker script, otherwise -EB/-EL will not work.  */
523
524#ifndef ENDIAN_SPEC
525#if TARGET_ENDIAN_DEFAULT == 0
526#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
527#else
528#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
529#endif
530#endif
531
532/* Support for a compile-time default CPU, et cetera.  The rules are:
533   --with-arch is ignored if -march is specified or a -mips is specified
534     (other than -mips16).
535   --with-tune is ignored if -mtune is specified.
536   --with-abi is ignored if -mabi is specified.
537   --with-float is ignored if -mhard-float or -msoft-float are
538     specified.
539   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
540     specified. */
541#define OPTION_DEFAULT_SPECS \
542  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
543  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
544  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
545  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
546  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
547
548
549#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
550                               && ISA_HAS_COND_TRAP)
551
552#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
553				 && !TARGET_SR71K                       \
554				 && !TARGET_MIPS16)
555
556/* Generate three-operand multiply instructions for SImode.  */
557#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
558                                  || TARGET_MIPS5400                    \
559                                  || TARGET_MIPS5500                    \
560                                  || TARGET_MIPS7000                    \
561                                  || TARGET_MIPS9000                    \
562				  || TARGET_MAD				\
563                                  || ISA_MIPS32	                        \
564                                  || ISA_MIPS32R2                       \
565                                  || ISA_MIPS64)                        \
566                                 && !TARGET_MIPS16)
567
568/* Generate three-operand multiply instructions for DImode.  */
569#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
570				 && !TARGET_MIPS16)
571
572/* True if the ABI can only work with 64-bit integer registers.  We
573   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
574   otherwise floating-point registers must also be 64-bit.  */
575#define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
576
577/* Likewise for 32-bit regs.  */
578#define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
579
580/* True if symbols are 64 bits wide.  At present, n64 is the only
581   ABI for which this is true.  */
582#define ABI_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64 && !TARGET_SYM32)
583
584/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
585#define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
586				 || ISA_MIPS4				\
587                                 || ISA_MIPS64)
588
589/* ISA has branch likely instructions (e.g. mips2).  */
590/* Disable branchlikely for tx39 until compare rewrite.  They haven't
591   been generated up to this point.  */
592#define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
593
594/* ISA has the conditional move instructions introduced in mips4.  */
595#define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
596				  || ISA_MIPS32	                        \
597				  || ISA_MIPS32R2                       \
598				  || ISA_MIPS64)			\
599                                 && !TARGET_MIPS5500                    \
600				 && !TARGET_MIPS16)
601
602/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
603   branch on CC, and move (both FP and non-FP) on CC.  */
604#define ISA_HAS_8CC		(ISA_MIPS4				\
605                         	 || ISA_MIPS32	                        \
606                         	 || ISA_MIPS32R2                        \
607				 || ISA_MIPS64)
608
609/* This is a catch all for other mips4 instructions: indexed load, the
610   FP madd and msub instructions, and the FP recip and recip sqrt
611   instructions.  */
612#define ISA_HAS_FP4             ((ISA_MIPS4				\
613				  || ISA_MIPS64)       			\
614 				 && !TARGET_MIPS16)
615
616/* ISA has conditional trap instructions.  */
617#define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
618				 && !TARGET_MIPS16)
619
620/* ISA has integer multiply-accumulate instructions, madd and msub.  */
621#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
622				  || ISA_MIPS32R2			\
623				  || ISA_MIPS64				\
624				  ) && !TARGET_MIPS16)
625
626/* ISA has floating-point nmadd and nmsub instructions.  */
627#define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
628				  || ISA_MIPS64)       			\
629                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
630				 && ! TARGET_MIPS16)
631
632/* ISA has count leading zeroes/ones instruction (not implemented).  */
633#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
634                                  || ISA_MIPS32R2			\
635                                  || ISA_MIPS64				\
636                                 ) && !TARGET_MIPS16)
637
638/* ISA has double-word count leading zeroes/ones instruction (not
639   implemented).  */
640#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64				\
641				 && !TARGET_MIPS16)
642
643/* ISA has three operand multiply instructions that put
644   the high part in an accumulator: mulhi or mulhiu.  */
645#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
646                                 || TARGET_MIPS5500                     \
647                                 || TARGET_SR71K                        \
648                                 )
649
650/* ISA has three operand multiply instructions that
651   negates the result and puts the result in an accumulator.  */
652#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
653                                 || TARGET_MIPS5500                     \
654                                 || TARGET_SR71K                        \
655                                 )
656
657/* ISA has three operand multiply instructions that subtracts the
658   result from a 4th operand and puts the result in an accumulator.  */
659#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
660                                 || TARGET_MIPS5500                     \
661                                 || TARGET_SR71K                        \
662                                 )
663/* ISA has three operand multiply instructions that  the result
664   from a 4th operand and puts the result in an accumulator.  */
665#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)	\
666                                 || (TARGET_MIPS4130 && !TARGET_MIPS16)	\
667                                 || TARGET_MIPS5400                     \
668                                 || TARGET_MIPS5500                     \
669                                 || TARGET_SR71K                        \
670                                 )
671
672/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
673#define ISA_HAS_MACCHI		(!TARGET_MIPS16				\
674				 && (TARGET_MIPS4120			\
675				     || TARGET_MIPS4130))
676
677/* ISA has 32-bit rotate right instruction.  */
678#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
679                                 && (ISA_MIPS32R2                       \
680                                     || TARGET_MIPS5400                 \
681                                     || TARGET_MIPS5500                 \
682                                     || TARGET_SR71K                    \
683                                     ))
684
685/* ISA has 64-bit rotate right instruction.  */
686#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
687                                 && !TARGET_MIPS16                      \
688                                 && (TARGET_MIPS5400                    \
689                                     || TARGET_MIPS5500                 \
690                                     || TARGET_SR71K                    \
691                                     ))
692
693/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
694#define ISA_HAS_PREFETCH	((ISA_MIPS4				\
695				  || ISA_MIPS32				\
696				  || ISA_MIPS32R2			\
697				  || ISA_MIPS64)	       		\
698				 && !TARGET_MIPS16)
699
700/* ISA has data indexed prefetch instructions.  This controls use of
701   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
702   (prefx is a cop1x instruction, so can only be used if FP is
703   enabled.)  */
704#define ISA_HAS_PREFETCHX       ((ISA_MIPS4				\
705				  || ISA_MIPS64)       			\
706 				 && !TARGET_MIPS16)
707
708/* True if trunc.w.s and trunc.w.d are real (not synthetic)
709   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
710   also requires TARGET_DOUBLE_FLOAT.  */
711#define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
712
713/* ISA includes the MIPS32r2 seb and seh instructions.  */
714#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
715                                 && (ISA_MIPS32R2                      \
716                                     ))
717
718/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
719#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
720                                 && (ISA_MIPS32R2                      \
721                                     ))
722
723/* True if the result of a load is not available to the next instruction.
724   A nop will then be needed between instructions like "lw $4,..."
725   and "addiu $4,$4,1".  */
726#define ISA_HAS_LOAD_DELAY	(mips_isa == 1				\
727				 && !TARGET_MIPS3900			\
728				 && !TARGET_MIPS16)
729
730/* Likewise mtc1 and mfc1.  */
731#define ISA_HAS_XFER_DELAY	(mips_isa <= 3)
732
733/* Likewise floating-point comparisons.  */
734#define ISA_HAS_FCMP_DELAY	(mips_isa <= 3)
735
736/* True if mflo and mfhi can be immediately followed by instructions
737   which write to the HI and LO registers.
738
739   According to MIPS specifications, MIPS ISAs I, II, and III need
740   (at least) two instructions between the reads of HI/LO and
741   instructions which write them, and later ISAs do not.  Contradicting
742   the MIPS specifications, some MIPS IV processor user manuals (e.g.
743   the UM for the NEC Vr5000) document needing the instructions between
744   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
745   MIPS64 and later ISAs to have the interlocks, plus any specific
746   earlier-ISA CPUs for which CPU documentation declares that the
747   instructions are really interlocked.  */
748#define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
749				 || ISA_MIPS32R2			\
750				 || ISA_MIPS64				\
751				 || TARGET_MIPS5500)
752
753/* Add -G xx support.  */
754
755#undef  SWITCH_TAKES_ARG
756#define SWITCH_TAKES_ARG(CHAR)						\
757  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
758
759#define OVERRIDE_OPTIONS override_options ()
760
761#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
762
763/* Show we can debug even without a frame pointer.  */
764#define CAN_DEBUG_WITHOUT_FP
765
766/* Tell collect what flags to pass to nm.  */
767#ifndef NM_FLAGS
768#define NM_FLAGS "-Bn"
769#endif
770
771
772#ifndef MIPS_ABI_DEFAULT
773#define MIPS_ABI_DEFAULT ABI_32
774#endif
775
776/* Use the most portable ABI flag for the ASM specs.  */
777
778#if MIPS_ABI_DEFAULT == ABI_32
779#define MULTILIB_ABI_DEFAULT "mabi=32"
780#endif
781
782#if MIPS_ABI_DEFAULT == ABI_O64
783#define MULTILIB_ABI_DEFAULT "mabi=o64"
784#endif
785
786#if MIPS_ABI_DEFAULT == ABI_N32
787#define MULTILIB_ABI_DEFAULT "mabi=n32"
788#endif
789
790#if MIPS_ABI_DEFAULT == ABI_64
791#define MULTILIB_ABI_DEFAULT "mabi=64"
792#endif
793
794#if MIPS_ABI_DEFAULT == ABI_EABI
795#define MULTILIB_ABI_DEFAULT "mabi=eabi"
796#endif
797
798/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
799   to the assembler.  It may be overridden by subtargets.  */
800#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
801#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
802%{noasmopt:-O0} \
803%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
804#endif
805
806/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
807   the assembler.  It may be overridden by subtargets.
808
809   Beginning with gas 2.13, -mdebug must be passed to correctly handle
810   COFF debugging info.  */
811
812#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
813#define SUBTARGET_ASM_DEBUGGING_SPEC "\
814%{g} %{g0} %{g1} %{g2} %{g3} \
815%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
816%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
817%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
818%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
819%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
820#endif
821
822/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
823   overridden by subtargets.  */
824
825#ifndef SUBTARGET_ASM_SPEC
826#define SUBTARGET_ASM_SPEC ""
827#endif
828
829#undef ASM_SPEC
830#define ASM_SPEC "\
831%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
832%{mips32} %{mips32r2} %{mips64} \
833%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
834%{mips3d:-mips3d} \
835%{mdsp} \
836%{mfix-vr4120} %{mfix-vr4130} \
837%(subtarget_asm_optimizing_spec) \
838%(subtarget_asm_debugging_spec) \
839%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
840%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
841%{mshared} %{mno-shared} \
842%{msym32} %{mno-sym32} \
843%{mtune=*} %{v} \
844%(subtarget_asm_spec)"
845
846/* Extra switches sometimes passed to the linker.  */
847/* ??? The bestGnum will never be passed to the linker, because the gcc driver
848  will interpret it as a -b option.  */
849
850#ifndef LINK_SPEC
851#define LINK_SPEC "\
852%(endian_spec) \
853%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
854%{bestGnum} %{shared} %{non_shared}"
855#endif  /* LINK_SPEC defined */
856
857
858/* Specs for the compiler proper */
859
860/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
861   overridden by subtargets.  */
862#ifndef SUBTARGET_CC1_SPEC
863#define SUBTARGET_CC1_SPEC ""
864#endif
865
866/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
867
868#undef CC1_SPEC
869#define CC1_SPEC "\
870%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
871%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
872%{save-temps: } \
873%(subtarget_cc1_spec)"
874
875/* Preprocessor specs.  */
876
877/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
878   overridden by subtargets.  */
879#ifndef SUBTARGET_CPP_SPEC
880#define SUBTARGET_CPP_SPEC ""
881#endif
882
883#define CPP_SPEC "%(subtarget_cpp_spec)"
884
885/* This macro defines names of additional specifications to put in the specs
886   that can be used in various specifications like CC1_SPEC.  Its definition
887   is an initializer with a subgrouping for each command option.
888
889   Each subgrouping contains a string constant, that defines the
890   specification name, and a string constant that used by the GCC driver
891   program.
892
893   Do not define this macro if it does not need to do anything.  */
894
895#define EXTRA_SPECS							\
896  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
897  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
898  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
899  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
900  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
901  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
902  { "endian_spec", ENDIAN_SPEC },					\
903  SUBTARGET_EXTRA_SPECS
904
905#ifndef SUBTARGET_EXTRA_SPECS
906#define SUBTARGET_EXTRA_SPECS
907#endif
908
909#define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
910#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
911#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
912
913#ifndef PREFERRED_DEBUGGING_TYPE
914#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
915#endif
916
917#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
918
919/* By default, turn on GDB extensions.  */
920#define DEFAULT_GDB_EXTENSIONS 1
921
922/* Local compiler-generated symbols must have a prefix that the assembler
923   understands.   By default, this is $, although some targets (e.g.,
924   NetBSD-ELF) need to override this.  */
925
926#ifndef LOCAL_LABEL_PREFIX
927#define LOCAL_LABEL_PREFIX	"$"
928#endif
929
930/* By default on the mips, external symbols do not have an underscore
931   prepended, but some targets (e.g., NetBSD) require this.  */
932
933#ifndef USER_LABEL_PREFIX
934#define USER_LABEL_PREFIX	""
935#endif
936
937/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
938   since the length can run past this up to a continuation point.  */
939#undef DBX_CONTIN_LENGTH
940#define DBX_CONTIN_LENGTH 1500
941
942/* How to renumber registers for dbx and gdb.  */
943#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
944
945/* The mapping from gcc register number to DWARF 2 CFA column number.  */
946#define DWARF_FRAME_REGNUM(REG)	(REG)
947
948/* The DWARF 2 CFA column which tracks the return address.  */
949#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
950
951/* The DWARF 2 CFA column which tracks the return address from a
952   signal handler context.  */
953#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
954
955/* Before the prologue, RA lives in r31.  */
956#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
957
958/* Describe how we implement __builtin_eh_return.  */
959#define EH_RETURN_DATA_REGNO(N) \
960  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
961
962#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
963
964/* Offsets recorded in opcodes are a multiple of this alignment factor.
965   The default for this in 64-bit mode is 8, which causes problems with
966   SFmode register saves.  */
967#define DWARF_CIE_DATA_ALIGNMENT -4
968
969/* Correct the offset of automatic variables and arguments.  Note that
970   the MIPS debug format wants all automatic variables and arguments
971   to be in terms of the virtual frame pointer (stack pointer before
972   any adjustment in the function), while the MIPS 3.0 linker wants
973   the frame pointer to be the stack pointer after the initial
974   adjustment.  */
975
976#define DEBUGGER_AUTO_OFFSET(X)				\
977  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
978#define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
979  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
980
981/* Target machine storage layout */
982
983#define BITS_BIG_ENDIAN 0
984#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
985#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
986
987/* Define this to set the endianness to use in libgcc2.c, which can
988   not depend on target_flags.  */
989#if !defined(MIPSEL) && !defined(__MIPSEL__)
990#define LIBGCC2_WORDS_BIG_ENDIAN 1
991#else
992#define LIBGCC2_WORDS_BIG_ENDIAN 0
993#endif
994
995#define MAX_BITS_PER_WORD 64
996
997/* Width of a word, in units (bytes).  */
998#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
999#ifndef IN_LIBGCC2
1000#define MIN_UNITS_PER_WORD 4
1001#endif
1002
1003/* For MIPS, width of a floating point register.  */
1004#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1005
1006/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1007   the next available register.  */
1008#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1009
1010/* The largest size of value that can be held in floating-point
1011   registers and moved with a single instruction.  */
1012#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1013
1014/* The largest size of value that can be held in floating-point
1015   registers.  */
1016#define UNITS_PER_FPVALUE			\
1017  (TARGET_SOFT_FLOAT ? 0			\
1018   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1019   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1020
1021/* The number of bytes in a double.  */
1022#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1023
1024#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1025
1026/* Set the sizes of the core types.  */
1027#define SHORT_TYPE_SIZE 16
1028#define INT_TYPE_SIZE 32
1029#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1030#define LONG_LONG_TYPE_SIZE 64
1031
1032#define FLOAT_TYPE_SIZE 32
1033#define DOUBLE_TYPE_SIZE 64
1034#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1035
1036/* long double is not a fixed mode, but the idea is that, if we
1037   support long double, we also want a 128-bit integer type.  */
1038#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1039
1040#ifdef IN_LIBGCC2
1041#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1042  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1043#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1044# else
1045#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1046# endif
1047#endif
1048
1049/* Width in bits of a pointer.  */
1050#ifndef POINTER_SIZE
1051#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1052#endif
1053
1054/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1055#define PARM_BOUNDARY BITS_PER_WORD
1056
1057/* Allocation boundary (in *bits*) for the code of a function.  */
1058#define FUNCTION_BOUNDARY 32
1059
1060/* Alignment of field after `int : 0' in a structure.  */
1061#define EMPTY_FIELD_BOUNDARY 32
1062
1063/* Every structure's size must be a multiple of this.  */
1064/* 8 is observed right on a DECstation and on riscos 4.02.  */
1065#define STRUCTURE_SIZE_BOUNDARY 8
1066
1067/* There is no point aligning anything to a rounder boundary than this.  */
1068#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1069
1070/* All accesses must be aligned.  */
1071#define STRICT_ALIGNMENT 1
1072
1073/* Define this if you wish to imitate the way many other C compilers
1074   handle alignment of bitfields and the structures that contain
1075   them.
1076
1077   The behavior is that the type written for a bit-field (`int',
1078   `short', or other integer type) imposes an alignment for the
1079   entire structure, as if the structure really did contain an
1080   ordinary field of that type.  In addition, the bit-field is placed
1081   within the structure so that it would fit within such a field,
1082   not crossing a boundary for it.
1083
1084   Thus, on most machines, a bit-field whose type is written as `int'
1085   would not cross a four-byte boundary, and would force four-byte
1086   alignment for the whole structure.  (The alignment used may not
1087   be four bytes; it is controlled by the other alignment
1088   parameters.)
1089
1090   If the macro is defined, its definition should be a C expression;
1091   a nonzero value for the expression enables this behavior.  */
1092
1093#define PCC_BITFIELD_TYPE_MATTERS 1
1094
1095/* If defined, a C expression to compute the alignment given to a
1096   constant that is being placed in memory.  CONSTANT is the constant
1097   and ALIGN is the alignment that the object would ordinarily have.
1098   The value of this macro is used instead of that alignment to align
1099   the object.
1100
1101   If this macro is not defined, then ALIGN is used.
1102
1103   The typical use of this macro is to increase alignment for string
1104   constants to be word aligned so that `strcpy' calls that copy
1105   constants can be done inline.  */
1106
1107#define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1108  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1109   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1110
1111/* If defined, a C expression to compute the alignment for a static
1112   variable.  TYPE is the data type, and ALIGN is the alignment that
1113   the object would ordinarily have.  The value of this macro is used
1114   instead of that alignment to align the object.
1115
1116   If this macro is not defined, then ALIGN is used.
1117
1118   One use of this macro is to increase alignment of medium-size
1119   data to make it all fit in fewer cache lines.  Another is to
1120   cause character arrays to be word-aligned so that `strcpy' calls
1121   that copy constants to character arrays can be done inline.  */
1122
1123#undef DATA_ALIGNMENT
1124#define DATA_ALIGNMENT(TYPE, ALIGN)					\
1125  ((((ALIGN) < BITS_PER_WORD)						\
1126    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1127	|| TREE_CODE (TYPE) == UNION_TYPE				\
1128	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1129
1130
1131#define PAD_VARARGS_DOWN \
1132  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1133
1134/* Define if operations between registers always perform the operation
1135   on the full register even if a narrower mode is specified.  */
1136#define WORD_REGISTER_OPERATIONS
1137
1138/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1139   moves.  All other references are zero extended.  */
1140#define LOAD_EXTEND_OP(MODE) \
1141  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1142   ? SIGN_EXTEND : ZERO_EXTEND)
1143
1144/* Define this macro if it is advisable to hold scalars in registers
1145   in a wider mode than that declared by the program.  In such cases,
1146   the value is constrained to be within the bounds of the declared
1147   type, but kept valid in the wider mode.  The signedness of the
1148   extension may differ from that of the type.  */
1149
1150#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1151  if (GET_MODE_CLASS (MODE) == MODE_INT		\
1152      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1153    {                                           \
1154      if ((MODE) == SImode)                     \
1155        (UNSIGNEDP) = 0;                        \
1156      (MODE) = Pmode;                           \
1157    }
1158
1159/* Define if loading short immediate values into registers sign extends.  */
1160#define SHORT_IMMEDIATES_SIGN_EXTEND
1161
1162/* The [d]clz instructions have the natural values at 0.  */
1163
1164#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1165  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1166
1167/* Standard register usage.  */
1168
1169/* Number of hardware registers.  We have:
1170
1171   - 32 integer registers
1172   - 32 floating point registers
1173   - 8 condition code registers
1174   - 2 accumulator registers (hi and lo)
1175   - 32 registers each for coprocessors 0, 2 and 3
1176   - 3 fake registers:
1177	- ARG_POINTER_REGNUM
1178	- FRAME_POINTER_REGNUM
1179	- FAKE_CALL_REGNO (see the comment above load_callsi for details)
1180   - 3 dummy entries that were used at various times in the past.
1181   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1182   - 6 DSP control registers  */
1183
1184#define FIRST_PSEUDO_REGISTER 188
1185
1186/* By default, fix the kernel registers ($26 and $27), the global
1187   pointer ($28) and the stack pointer ($29).  This can change
1188   depending on the command-line options.
1189
1190   Regarding coprocessor registers: without evidence to the contrary,
1191   it's best to assume that each coprocessor register has a unique
1192   use.  This can be overridden, in, e.g., override_options() or
1193   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1194   for a particular target.  */
1195
1196#define FIXED_REGISTERS							\
1197{									\
1198  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1199  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1200  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1201  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1202  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1203  /* COP0 registers */							\
1204  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1205  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1206  /* COP2 registers */							\
1207  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1208  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1209  /* COP3 registers */							\
1210  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1211  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1212  /* 6 DSP accumulator registers & 6 control registers */		\
1213  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1214}
1215
1216
1217/* Set up this array for o32 by default.
1218
1219   Note that we don't mark $31 as a call-clobbered register.  The idea is
1220   that it's really the call instructions themselves which clobber $31.
1221   We don't care what the called function does with it afterwards.
1222
1223   This approach makes it easier to implement sibcalls.  Unlike normal
1224   calls, sibcalls don't clobber $31, so the register reaches the
1225   called function in tact.  EPILOGUE_USES says that $31 is useful
1226   to the called function.  */
1227
1228#define CALL_USED_REGISTERS						\
1229{									\
1230  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1231  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1232  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1233  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1234  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1235  /* COP0 registers */							\
1236  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1237  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1238  /* COP2 registers */							\
1239  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1240  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1241  /* COP3 registers */							\
1242  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1243  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1244  /* 6 DSP accumulator registers & 6 control registers */		\
1245  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1246}
1247
1248
1249/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1250
1251#define CALL_REALLY_USED_REGISTERS                                      \
1252{ /* General registers.  */                                             \
1253  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1254  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1255  /* Floating-point registers.  */                                      \
1256  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1257  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1258  /* Others.  */                                                        \
1259  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1260  /* COP0 registers */							\
1261  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1262  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1263  /* COP2 registers */							\
1264  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1265  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1266  /* COP3 registers */							\
1267  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1268  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1269  /* 6 DSP accumulator registers & 6 control registers */		\
1270  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1271}
1272
1273/* Internal macros to classify a register number as to whether it's a
1274   general purpose register, a floating point register, a
1275   multiply/divide register, or a status register.  */
1276
1277#define GP_REG_FIRST 0
1278#define GP_REG_LAST  31
1279#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1280#define GP_DBX_FIRST 0
1281
1282#define FP_REG_FIRST 32
1283#define FP_REG_LAST  63
1284#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1285#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1286
1287#define MD_REG_FIRST 64
1288#define MD_REG_LAST  65
1289#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1290#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1291
1292#define ST_REG_FIRST 67
1293#define ST_REG_LAST  74
1294#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1295
1296
1297/* FIXME: renumber.  */
1298#define COP0_REG_FIRST 80
1299#define COP0_REG_LAST 111
1300#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1301
1302#define COP2_REG_FIRST 112
1303#define COP2_REG_LAST 143
1304#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1305
1306#define COP3_REG_FIRST 144
1307#define COP3_REG_LAST 175
1308#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1309/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1310#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1311
1312#define DSP_ACC_REG_FIRST 176
1313#define DSP_ACC_REG_LAST 181
1314#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1315
1316#define AT_REGNUM	(GP_REG_FIRST + 1)
1317#define HI_REGNUM	(MD_REG_FIRST + 0)
1318#define LO_REGNUM	(MD_REG_FIRST + 1)
1319#define AC1HI_REGNUM	(DSP_ACC_REG_FIRST + 0)
1320#define AC1LO_REGNUM	(DSP_ACC_REG_FIRST + 1)
1321#define AC2HI_REGNUM	(DSP_ACC_REG_FIRST + 2)
1322#define AC2LO_REGNUM	(DSP_ACC_REG_FIRST + 3)
1323#define AC3HI_REGNUM	(DSP_ACC_REG_FIRST + 4)
1324#define AC3LO_REGNUM	(DSP_ACC_REG_FIRST + 5)
1325
1326/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1327   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1328   should be used instead.  */
1329#define FPSW_REGNUM	ST_REG_FIRST
1330
1331#define GP_REG_P(REGNO)	\
1332  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1333#define M16_REG_P(REGNO) \
1334  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1335#define FP_REG_P(REGNO)  \
1336  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1337#define MD_REG_P(REGNO) \
1338  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1339#define ST_REG_P(REGNO) \
1340  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1341#define COP0_REG_P(REGNO) \
1342  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1343#define COP2_REG_P(REGNO) \
1344  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1345#define COP3_REG_P(REGNO) \
1346  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1347#define ALL_COP_REG_P(REGNO) \
1348  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1349/* Test if REGNO is one of the 6 new DSP accumulators.  */
1350#define DSP_ACC_REG_P(REGNO) \
1351  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1352/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1353#define ACC_REG_P(REGNO) \
1354  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1355/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1356#define ACC_HI_REG_P(REGNO) \
1357  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1358   || (REGNO) == AC3HI_REGNUM)
1359
1360#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1361
1362/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1363   to initialize the mips16 gp pseudo register.  */
1364#define CONST_GP_P(X)				\
1365  (GET_CODE (X) == CONST			\
1366   && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1367   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1368
1369/* Return coprocessor number from register number.  */
1370
1371#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1372  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1373   : COP3_REG_P (REGNO) ? '3' : '?')
1374
1375
1376#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1377
1378/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1379   array built in override_options.  Because machmodes.h is not yet
1380   included before this file is processed, the MODE bound can't be
1381   expressed here.  */
1382
1383extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1384
1385#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1386  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1387
1388/* Value is 1 if it is a good idea to tie two pseudo registers
1389   when one has mode MODE1 and one has mode MODE2.
1390   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1391   for any hard reg, then this must be 0 for correct output.  */
1392#define MODES_TIEABLE_P(MODE1, MODE2)					\
1393  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
1394    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
1395   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
1396       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1397
1398/* Register to use for pushing function arguments.  */
1399#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1400
1401/* These two registers don't really exist: they get eliminated to either
1402   the stack or hard frame pointer.  */
1403#define ARG_POINTER_REGNUM 77
1404#define FRAME_POINTER_REGNUM 78
1405
1406/* $30 is not available on the mips16, so we use $17 as the frame
1407   pointer.  */
1408#define HARD_FRAME_POINTER_REGNUM \
1409  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1410
1411/* Value should be nonzero if functions must have frame pointers.
1412   Zero means the frame pointer need not be set up (and parms
1413   may be accessed via the stack pointer) in functions that seem suitable.
1414   This is computed in `reload', in reload1.c.  */
1415#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1416
1417/* Register in which static-chain is passed to a function.  */
1418#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1419
1420/* Registers used as temporaries in prologue/epilogue code.  If we're
1421   generating mips16 code, these registers must come from the core set
1422   of 8.  The prologue register mustn't conflict with any incoming
1423   arguments, the static chain pointer, or the frame pointer.  The
1424   epilogue temporary mustn't conflict with the return registers, the
1425   frame pointer, the EH stack adjustment, or the EH data registers.  */
1426
1427#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1428#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1429
1430#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1431#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1432
1433/* Define this macro if it is as good or better to call a constant
1434   function address than to call an address kept in a register.  */
1435#define NO_FUNCTION_CSE 1
1436
1437/* The ABI-defined global pointer.  Sometimes we use a different
1438   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1439#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1440
1441/* We normally use $28 as the global pointer.  However, when generating
1442   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1443   register instead.  They can then avoid saving and restoring $28
1444   and perhaps avoid using a frame at all.
1445
1446   When a leaf function uses something other than $28, mips_expand_prologue
1447   will modify pic_offset_table_rtx in place.  Take the register number
1448   from there after reload.  */
1449#define PIC_OFFSET_TABLE_REGNUM \
1450  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1451
1452#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1453
1454/* Define the classes of registers for register constraints in the
1455   machine description.  Also define ranges of constants.
1456
1457   One of the classes must always be named ALL_REGS and include all hard regs.
1458   If there is more than one class, another class must be named NO_REGS
1459   and contain no registers.
1460
1461   The name GENERAL_REGS must be the name of a class (or an alias for
1462   another name such as ALL_REGS).  This is the class of registers
1463   that is allowed by "g" or "r" in a register constraint.
1464   Also, registers outside this class are allocated only when
1465   instructions express preferences for them.
1466
1467   The classes must be numbered in nondecreasing order; that is,
1468   a larger-numbered class must never be contained completely
1469   in a smaller-numbered class.
1470
1471   For any two classes, it is very desirable that there be another
1472   class that represents their union.  */
1473
1474enum reg_class
1475{
1476  NO_REGS,			/* no registers in set */
1477  M16_NA_REGS,			/* mips16 regs not used to pass args */
1478  M16_REGS,			/* mips16 directly accessible registers */
1479  T_REG,			/* mips16 T register ($24) */
1480  M16_T_REGS,			/* mips16 registers plus T register */
1481  PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1482  V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1483  LEA_REGS,			/* Every GPR except $25 */
1484  GR_REGS,			/* integer registers */
1485  FP_REGS,			/* floating point registers */
1486  HI_REG,			/* hi register */
1487  LO_REG,			/* lo register */
1488  MD_REGS,			/* multiply/divide registers (hi/lo) */
1489  COP0_REGS,			/* generic coprocessor classes */
1490  COP2_REGS,
1491  COP3_REGS,
1492  HI_AND_GR_REGS,		/* union classes */
1493  LO_AND_GR_REGS,
1494  HI_AND_FP_REGS,
1495  COP0_AND_GR_REGS,
1496  COP2_AND_GR_REGS,
1497  COP3_AND_GR_REGS,
1498  ALL_COP_REGS,
1499  ALL_COP_AND_GR_REGS,
1500  ST_REGS,			/* status registers (fp status) */
1501  DSP_ACC_REGS,			/* DSP accumulator registers */
1502  ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1503  ALL_REGS,			/* all registers */
1504  LIM_REG_CLASSES		/* max value + 1 */
1505};
1506
1507#define N_REG_CLASSES (int) LIM_REG_CLASSES
1508
1509#define GENERAL_REGS GR_REGS
1510
1511/* An initializer containing the names of the register classes as C
1512   string constants.  These names are used in writing some of the
1513   debugging dumps.  */
1514
1515#define REG_CLASS_NAMES							\
1516{									\
1517  "NO_REGS",								\
1518  "M16_NA_REGS",							\
1519  "M16_REGS",								\
1520  "T_REG",								\
1521  "M16_T_REGS",								\
1522  "PIC_FN_ADDR_REG",							\
1523  "V1_REG",								\
1524  "LEA_REGS",								\
1525  "GR_REGS",								\
1526  "FP_REGS",								\
1527  "HI_REG",								\
1528  "LO_REG",								\
1529  "MD_REGS",								\
1530  /* coprocessor registers */						\
1531  "COP0_REGS",								\
1532  "COP2_REGS",								\
1533  "COP3_REGS",								\
1534  "HI_AND_GR_REGS",							\
1535  "LO_AND_GR_REGS",							\
1536  "HI_AND_FP_REGS",							\
1537  "COP0_AND_GR_REGS",							\
1538  "COP2_AND_GR_REGS",							\
1539  "COP3_AND_GR_REGS",							\
1540  "ALL_COP_REGS",							\
1541  "ALL_COP_AND_GR_REGS",						\
1542  "ST_REGS",								\
1543  "DSP_ACC_REGS",							\
1544  "ACC_REGS",								\
1545  "ALL_REGS"								\
1546}
1547
1548/* An initializer containing the contents of the register classes,
1549   as integers which are bit masks.  The Nth integer specifies the
1550   contents of class N.  The way the integer MASK is interpreted is
1551   that register R is in the class if `MASK & (1 << R)' is 1.
1552
1553   When the machine has more than 32 registers, an integer does not
1554   suffice.  Then the integers are replaced by sub-initializers,
1555   braced groupings containing several integers.  Each
1556   sub-initializer must be suitable as an initializer for the type
1557   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1558
1559#define REG_CLASS_CONTENTS						                                \
1560{									                                \
1561  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
1562  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
1563  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
1564  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
1565  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
1566  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SVR4 PIC function address register */ \
1567  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* only $v1 */ \
1568  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* Every other GPR except $25 */   \
1569  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
1570  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
1571  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
1572  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
1573  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
1574  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1575  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1576  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1577  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
1578  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
1579  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
1580  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			        \
1581  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	                        \
1582  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1583  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1584  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1585  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
1586  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* dsp accumulator registers */	\
1587  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* hi/lo and dsp accumulator registers */	\
1588  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* all registers */	\
1589}
1590
1591
1592/* A C expression whose value is a register class containing hard
1593   register REGNO.  In general there is more that one such class;
1594   choose a class which is "minimal", meaning that no smaller class
1595   also contains the register.  */
1596
1597extern const enum reg_class mips_regno_to_class[];
1598
1599#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1600
1601/* A macro whose definition is the name of the class to which a
1602   valid base register must belong.  A base register is one used in
1603   an address which is the register value plus a displacement.  */
1604
1605#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1606
1607/* A macro whose definition is the name of the class to which a
1608   valid index register must belong.  An index register is one used
1609   in an address where its value is either multiplied by a scale
1610   factor or added to another register (as well as added to a
1611   displacement).  */
1612
1613#define INDEX_REG_CLASS NO_REGS
1614
1615/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1616   registers explicitly used in the rtl to be used as spill registers
1617   but prevents the compiler from extending the lifetime of these
1618   registers.  */
1619
1620#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1621
1622/* This macro is used later on in the file.  */
1623#define GR_REG_CLASS_P(CLASS)						\
1624  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
1625   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS			\
1626   || (CLASS) == V1_REG							\
1627   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1628
1629/* This macro is also used later on in the file.  */
1630#define COP_REG_CLASS_P(CLASS)						\
1631  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1632
1633/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1634   is the default value (allocate the registers in numeric order).  We
1635   define it just so that we can override it for the mips16 target in
1636   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1637
1638#define REG_ALLOC_ORDER							\
1639{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
1640  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1641  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1642  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1643  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
1644  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
1645  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
1646  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
1647  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
1648  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
1649  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
1650  176,177,178,179,180,181,182,183,184,185,186,187			\
1651}
1652
1653/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1654   to be rearranged based on a particular function.  On the mips16, we
1655   want to allocate $24 (T_REG) before other registers for
1656   instructions for which it is possible.  */
1657
1658#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1659
1660/* True if VALUE is an unsigned 6-bit number.  */
1661
1662#define UIMM6_OPERAND(VALUE) \
1663  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1664
1665/* True if VALUE is a signed 10-bit number.  */
1666
1667#define IMM10_OPERAND(VALUE) \
1668  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1669
1670/* True if VALUE is a signed 16-bit number.  */
1671
1672#define SMALL_OPERAND(VALUE) \
1673  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1674
1675/* True if VALUE is an unsigned 16-bit number.  */
1676
1677#define SMALL_OPERAND_UNSIGNED(VALUE) \
1678  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1679
1680/* True if VALUE can be loaded into a register using LUI.  */
1681
1682#define LUI_OPERAND(VALUE)					\
1683  (((VALUE) | 0x7fff0000) == 0x7fff0000				\
1684   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1685
1686/* Return a value X with the low 16 bits clear, and such that
1687   VALUE - X is a signed 16-bit value.  */
1688
1689#define CONST_HIGH_PART(VALUE) \
1690  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1691
1692#define CONST_LOW_PART(VALUE) \
1693  ((VALUE) - CONST_HIGH_PART (VALUE))
1694
1695#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1696#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1697#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1698
1699#define PREFERRED_RELOAD_CLASS(X,CLASS)					\
1700  mips_preferred_reload_class (X, CLASS)
1701
1702/* Certain machines have the property that some registers cannot be
1703   copied to some other registers without using memory.  Define this
1704   macro on those machines to be a C expression that is nonzero if
1705   objects of mode MODE in registers of CLASS1 can only be copied to
1706   registers of class CLASS2 by storing a register of CLASS1 into
1707   memory and loading that memory location into a register of CLASS2.
1708
1709   Do not define this macro if its value would always be zero.  */
1710#if 0
1711#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1712  ((!TARGET_DEBUG_H_MODE						\
1713    && GET_MODE_CLASS (MODE) == MODE_INT				\
1714    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
1715	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
1716   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
1717       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
1718	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1719#endif
1720/* The HI and LO registers can only be reloaded via the general
1721   registers.  Condition code registers can only be loaded to the
1722   general registers, and from the floating point registers.  */
1723
1724#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1725  mips_secondary_reload_class (CLASS, MODE, X, 1)
1726#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1727  mips_secondary_reload_class (CLASS, MODE, X, 0)
1728
1729/* Return the maximum number of consecutive registers
1730   needed to represent mode MODE in a register of class CLASS.  */
1731
1732#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1733
1734#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1735  mips_cannot_change_mode_class (FROM, TO, CLASS)
1736
1737/* Stack layout; function entry, exit and calling.  */
1738
1739#define STACK_GROWS_DOWNWARD
1740
1741/* The offset of the first local variable from the beginning of the frame.
1742   See compute_frame_size for details about the frame layout.
1743
1744   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1745   we assume that we will need 16 bytes of argument space.  This is because
1746   the value profiling code may emit calls to cmpdi2 in leaf functions.
1747   Without this hack, the local variables will start at sp+8 and the gp save
1748   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1749   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1750   will end up as 24 instead of 8.  This won't be needed if profiling code is
1751   inserted before virtual register instantiation.  */
1752
1753#define STARTING_FRAME_OFFSET						\
1754  ((flag_profile_values && ! TARGET_64BIT				\
1755    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1756    : current_function_outgoing_args_size)				\
1757   + (TARGET_ABICALLS && !TARGET_NEWABI					\
1758      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1759
1760#define RETURN_ADDR_RTX mips_return_addr
1761
1762/* Since the mips16 ISA mode is encoded in the least-significant bit
1763   of the address, mask it off return addresses for purposes of
1764   finding exception handling regions.  */
1765
1766#define MASK_RETURN_ADDR GEN_INT (-2)
1767
1768
1769/* Similarly, don't use the least-significant bit to tell pointers to
1770   code from vtable index.  */
1771
1772#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1773
1774/* The eliminations to $17 are only used for mips16 code.  See the
1775   definition of HARD_FRAME_POINTER_REGNUM.  */
1776
1777#define ELIMINABLE_REGS							\
1778{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
1779 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
1780 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
1781 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1782 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
1783 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1784
1785/* We can always eliminate to the hard frame pointer.  We can eliminate
1786   to the stack pointer unless a frame pointer is needed.
1787
1788   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1789   reload may be unable to compute the address of a local variable,
1790   since there is no way to add a large constant to the stack pointer
1791   without using a temporary register.  */
1792#define CAN_ELIMINATE(FROM, TO)						\
1793  ((TO) == HARD_FRAME_POINTER_REGNUM 				        \
1794   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed		\
1795       && (!TARGET_MIPS16						\
1796	   || compute_frame_size (get_frame_size ()) < 32768)))
1797
1798#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1799  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1800
1801/* Allocate stack space for arguments at the beginning of each function.  */
1802#define ACCUMULATE_OUTGOING_ARGS 1
1803
1804/* The argument pointer always points to the first argument.  */
1805#define FIRST_PARM_OFFSET(FNDECL) 0
1806
1807/* o32 and o64 reserve stack space for all argument registers.  */
1808#define REG_PARM_STACK_SPACE(FNDECL) 			\
1809  (TARGET_OLDABI					\
1810   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
1811   : 0)
1812
1813/* Define this if it is the responsibility of the caller to
1814   allocate the area reserved for arguments passed in registers.
1815   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1816   of this macro is to determine whether the space is included in
1817   `current_function_outgoing_args_size'.  */
1818#define OUTGOING_REG_PARM_STACK_SPACE
1819
1820#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1821
1822#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1823
1824/* Symbolic macros for the registers used to return integer and floating
1825   point values.  */
1826
1827#define GP_RETURN (GP_REG_FIRST + 2)
1828#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1829
1830#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1831
1832/* Symbolic macros for the first/last argument registers.  */
1833
1834#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1835#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1836#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1837#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1838
1839#define LIBCALL_VALUE(MODE) \
1840  mips_function_value (NULL_TREE, NULL, (MODE))
1841
1842#define FUNCTION_VALUE(VALTYPE, FUNC) \
1843  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1844
1845/* 1 if N is a possible register number for a function value.
1846   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1847   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1848
1849#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1850  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1851      && (N) == FP_RETURN + 2))
1852
1853/* 1 if N is a possible register number for function argument passing.
1854   We have no FP argument registers when soft-float.  When FP registers
1855   are 32 bits, we can't directly reference the odd numbered ones.  */
1856
1857#define FUNCTION_ARG_REGNO_P(N)					\
1858  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
1859    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
1860   && !fixed_regs[N])
1861
1862/* This structure has to cope with two different argument allocation
1863   schemes.  Most MIPS ABIs view the arguments as a structure, of which
1864   the first N words go in registers and the rest go on the stack.  If I
1865   < N, the Ith word might go in Ith integer argument register or in a
1866   floating-point register.  For these ABIs, we only need to remember
1867   the offset of the current argument into the structure.
1868
1869   The EABI instead allocates the integer and floating-point arguments
1870   separately.  The first N words of FP arguments go in FP registers,
1871   the rest go on the stack.  Likewise, the first N words of the other
1872   arguments go in integer registers, and the rest go on the stack.  We
1873   need to maintain three counts: the number of integer registers used,
1874   the number of floating-point registers used, and the number of words
1875   passed on the stack.
1876
1877   We could keep separate information for the two ABIs (a word count for
1878   the standard ABIs, and three separate counts for the EABI).  But it
1879   seems simpler to view the standard ABIs as forms of EABI that do not
1880   allocate floating-point registers.
1881
1882   So for the standard ABIs, the first N words are allocated to integer
1883   registers, and function_arg decides on an argument-by-argument basis
1884   whether that argument should really go in an integer register, or in
1885   a floating-point one.  */
1886
1887typedef struct mips_args {
1888  /* Always true for varargs functions.  Otherwise true if at least
1889     one argument has been passed in an integer register.  */
1890  int gp_reg_found;
1891
1892  /* The number of arguments seen so far.  */
1893  unsigned int arg_number;
1894
1895  /* The number of integer registers used so far.  For all ABIs except
1896     EABI, this is the number of words that have been added to the
1897     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
1898  unsigned int num_gprs;
1899
1900  /* For EABI, the number of floating-point registers used so far.  */
1901  unsigned int num_fprs;
1902
1903  /* The number of words passed on the stack.  */
1904  unsigned int stack_words;
1905
1906  /* On the mips16, we need to keep track of which floating point
1907     arguments were passed in general registers, but would have been
1908     passed in the FP regs if this were a 32 bit function, so that we
1909     can move them to the FP regs if we wind up calling a 32 bit
1910     function.  We record this information in fp_code, encoded in base
1911     four.  A zero digit means no floating point argument, a one digit
1912     means an SFmode argument, and a two digit means a DFmode argument,
1913     and a three digit is not used.  The low order digit is the first
1914     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1915     an SFmode argument.  ??? A more sophisticated approach will be
1916     needed if MIPS_ABI != ABI_32.  */
1917  int fp_code;
1918
1919  /* True if the function has a prototype.  */
1920  int prototype;
1921} CUMULATIVE_ARGS;
1922
1923/* Initialize a variable CUM of type CUMULATIVE_ARGS
1924   for a call to a function whose data type is FNTYPE.
1925   For a library call, FNTYPE is 0.  */
1926
1927#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1928  init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\
1929
1930/* Update the data in CUM to advance over an argument
1931   of mode MODE and data type TYPE.
1932   (TYPE is null for libcalls where that information may not be available.)  */
1933
1934#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1935  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1936
1937/* Determine where to put an argument to a function.
1938   Value is zero to push the argument on the stack,
1939   or a hard register in which to store the argument.
1940
1941   MODE is the argument's machine mode.
1942   TYPE is the data type of the argument (as a tree).
1943    This is null for libcalls where that information may
1944    not be available.
1945   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1946    the preceding args and about the function being called.
1947   NAMED is nonzero if this argument is a named parameter
1948    (otherwise it is an extra parameter matching an ellipsis).  */
1949
1950#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1951  function_arg( &CUM, MODE, TYPE, NAMED)
1952
1953#define FUNCTION_ARG_BOUNDARY function_arg_boundary
1954
1955#define FUNCTION_ARG_PADDING(MODE, TYPE)		\
1956  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1957
1958#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)		\
1959  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1960
1961/* True if using EABI and varargs can be passed in floating-point
1962   registers.  Under these conditions, we need a more complex form
1963   of va_list, which tracks GPR, FPR and stack arguments separately.  */
1964#define EABI_FLOAT_VARARGS_P \
1965	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1966
1967
1968/* Say that the epilogue uses the return address register.  Note that
1969   in the case of sibcalls, the values "used by the epilogue" are
1970   considered live at the start of the called function.  */
1971#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
1972
1973/* Treat LOC as a byte offset from the stack pointer and round it up
1974   to the next fully-aligned offset.  */
1975#define MIPS_STACK_ALIGN(LOC) \
1976  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
1977
1978
1979/* Implement `va_start' for varargs and stdarg.  */
1980#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1981  mips_va_start (valist, nextarg)
1982
1983/* Output assembler code to FILE to increment profiler label # LABELNO
1984   for profiling a function entry.  */
1985
1986#define FUNCTION_PROFILER(FILE, LABELNO)				\
1987{									\
1988  if (TARGET_MIPS16)							\
1989    sorry ("mips16 function profiling");				\
1990  fprintf (FILE, "\t.set\tnoat\n");					\
1991  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
1992	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
1993  if (!TARGET_NEWABI)							\
1994    {									\
1995      fprintf (FILE,							\
1996	       "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
1997	       TARGET_64BIT ? "dsubu" : "subu",				\
1998	       reg_names[STACK_POINTER_REGNUM],				\
1999	       reg_names[STACK_POINTER_REGNUM],				\
2000	       Pmode == DImode ? 16 : 8);				\
2001    }									\
2002  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2003  fprintf (FILE, "\t.set\tat\n");					\
2004}
2005
2006/* No mips port has ever used the profiler counter word, so don't emit it
2007   or the label for it.  */
2008
2009#define NO_PROFILE_COUNTERS 1
2010
2011/* Define this macro if the code for function profiling should come
2012   before the function prologue.  Normally, the profiling code comes
2013   after.  */
2014
2015/* #define PROFILE_BEFORE_PROLOGUE */
2016
2017/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2018   the stack pointer does not matter.  The value is tested only in
2019   functions that have frame pointers.
2020   No definition is equivalent to always zero.  */
2021
2022#define EXIT_IGNORE_STACK 1
2023
2024
2025/* A C statement to output, on the stream FILE, assembler code for a
2026   block of data that contains the constant parts of a trampoline.
2027   This code should not include a label--the label is taken care of
2028   automatically.  */
2029
2030#define TRAMPOLINE_TEMPLATE(STREAM)					\
2031{									\
2032  if (ptr_mode == DImode)						\
2033    fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove   $1,$31\n");	\
2034  else									\
2035    fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");	\
2036  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
2037  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
2038  if (ptr_mode == DImode)						\
2039    {									\
2040      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
2041      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
2042      fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove  $25,$3\n");	\
2043    }									\
2044  else									\
2045    {									\
2046      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
2047      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
2048      fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3\n");	\
2049    }									\
2050  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
2051  if (ptr_mode == DImode)						\
2052    {									\
2053      fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove   $31,$1\n");	\
2054      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2055      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2056    }									\
2057  else									\
2058    {									\
2059      fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");	\
2060      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2061      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2062    }									\
2063}
2064
2065/* A C expression for the size in bytes of the trampoline, as an
2066   integer.  */
2067
2068#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2069
2070/* Alignment required for trampolines, in bits.  */
2071
2072#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2073
2074/* INITIALIZE_TRAMPOLINE calls this library function to flush
2075   program and data caches.  */
2076
2077#ifndef CACHE_FLUSH_FUNC
2078#define CACHE_FLUSH_FUNC "_flush_cache"
2079#endif
2080
2081/* A C statement to initialize the variable parts of a trampoline.
2082   ADDR is an RTX for the address of the trampoline; FNADDR is an
2083   RTX for the address of the nested function; STATIC_CHAIN is an
2084   RTX for the static chain value that should be passed to the
2085   function when it is called.  */
2086
2087#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
2088{									    \
2089  rtx func_addr, chain_addr;						    \
2090									    \
2091  func_addr = plus_constant (ADDR, 32);					    \
2092  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));	    \
2093  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);		    \
2094  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);		    \
2095									    \
2096  /* Flush both caches.  We need to flush the data cache in case	    \
2097     the system has a write-back cache.  */				    \
2098  /* ??? Should check the return value for errors.  */			    \
2099  if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
2100    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2101		       0, VOIDmode, 3, ADDR, Pmode,			    \
2102		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2103		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
2104}
2105
2106/* Addressing modes, and classification of registers for them.  */
2107
2108#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2109#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2110  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2111
2112/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2113   and check its validity for a certain class.
2114   We have two alternate definitions for each of them.
2115   The usual definition accepts all pseudo regs; the other rejects them all.
2116   The symbol REG_OK_STRICT causes the latter definition to be used.
2117
2118   Most source files want to accept pseudo regs in the hope that
2119   they will get allocated to the class that the insn wants them to be in.
2120   Some source files that are used after register allocation
2121   need to be strict.  */
2122
2123#ifndef REG_OK_STRICT
2124#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2125  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2126#else
2127#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2128  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2129#endif
2130
2131#define REG_OK_FOR_INDEX_P(X) 0
2132
2133
2134/* Maximum number of registers that can appear in a valid memory address.  */
2135
2136#define MAX_REGS_PER_ADDRESS 1
2137
2138#ifdef REG_OK_STRICT
2139#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2140{						\
2141  if (mips_legitimate_address_p (MODE, X, 1))	\
2142    goto ADDR;					\
2143}
2144#else
2145#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2146{						\
2147  if (mips_legitimate_address_p (MODE, X, 0))	\
2148    goto ADDR;					\
2149}
2150#endif
2151
2152/* Check for constness inline but use mips_legitimate_address_p
2153   to check whether a constant really is an address.  */
2154
2155#define CONSTANT_ADDRESS_P(X) \
2156  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2157
2158#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2159
2160#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2161  do {								\
2162    if (mips_legitimize_address (&(X), MODE))			\
2163      goto WIN;							\
2164  } while (0)
2165
2166
2167/* A C statement or compound statement with a conditional `goto
2168   LABEL;' executed if memory address X (an RTX) can have different
2169   meanings depending on the machine mode of the memory reference it
2170   is used for.
2171
2172   Autoincrement and autodecrement addresses typically have
2173   mode-dependent effects because the amount of the increment or
2174   decrement is the size of the operand being addressed.  Some
2175   machines have other mode-dependent addresses.  Many RISC machines
2176   have no mode-dependent addresses.
2177
2178   You may assume that ADDR is a valid address for the machine.  */
2179
2180#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2181
2182/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2183   'the start of the function that this code is output in'.  */
2184
2185#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2186  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2187    asm_fprintf ((FILE), "%U%s",					\
2188		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2189  else									\
2190    asm_fprintf ((FILE), "%U%s", (NAME))
2191
2192/* Flag to mark a function decl symbol that requires a long call.  */
2193#define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2194#define SYMBOL_REF_LONG_CALL_P(X)					\
2195  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2196
2197/* Specify the machine mode that this machine uses
2198   for the index in the tablejump instruction.
2199   ??? Using HImode in mips16 mode can cause overflow.  */
2200#define CASE_VECTOR_MODE \
2201  (TARGET_MIPS16 ? HImode : ptr_mode)
2202
2203/* Define as C expression which evaluates to nonzero if the tablejump
2204   instruction expects the table to contain offsets from the address of the
2205   table.
2206   Do not define this if the table should contain absolute addresses.  */
2207#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2208
2209/* Define this as 1 if `char' should by default be signed; else as 0.  */
2210#ifndef DEFAULT_SIGNED_CHAR
2211#define DEFAULT_SIGNED_CHAR 1
2212#endif
2213
2214/* Max number of bytes we can move from memory to memory
2215   in one reasonably fast instruction.  */
2216#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2217#define MAX_MOVE_MAX 8
2218
2219/* Define this macro as a C expression which is nonzero if
2220   accessing less than a word of memory (i.e. a `char' or a
2221   `short') is no faster than accessing a word of memory, i.e., if
2222   such access require more than one instruction or if there is no
2223   difference in cost between byte and (aligned) word loads.
2224
2225   On RISC machines, it tends to generate better code to define
2226   this as 1, since it avoids making a QI or HI mode register.  */
2227#define SLOW_BYTE_ACCESS 1
2228
2229/* Define this to be nonzero if shift instructions ignore all but the low-order
2230   few bits.  */
2231#define SHIFT_COUNT_TRUNCATED 1
2232
2233/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2234   is done just by pretending it is already truncated.  */
2235#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2236  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2237
2238
2239/* Specify the machine mode that pointers have.
2240   After generation of rtl, the compiler makes no further distinction
2241   between pointers and any other objects of this machine mode.  */
2242
2243#ifndef Pmode
2244#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2245#endif
2246
2247/* Give call MEMs SImode since it is the "most permissive" mode
2248   for both 32-bit and 64-bit targets.  */
2249
2250#define FUNCTION_MODE SImode
2251
2252
2253/* The cost of loading values from the constant pool.  It should be
2254   larger than the cost of any constant we want to synthesize in-line.  */
2255
2256#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2257
2258/* A C expression for the cost of moving data from a register in
2259   class FROM to one in class TO.  The classes are expressed using
2260   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2261   the default; other values are interpreted relative to that.
2262
2263   It is not required that the cost always equal 2 when FROM is the
2264   same as TO; on some machines it is expensive to move between
2265   registers if they are not general registers.
2266
2267   If reload sees an insn consisting of a single `set' between two
2268   hard registers, and if `REGISTER_MOVE_COST' applied to their
2269   classes returns a value of 2, reload does not check to ensure
2270   that the constraints of the insn are met.  Setting a cost of
2271   other than 2 will allow reload to verify that the constraints are
2272   met.  You should do this if the `movM' pattern's constraints do
2273   not allow such copying.  */
2274
2275#define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2276  mips_register_move_cost (MODE, FROM, TO)
2277
2278#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2279  (mips_cost->memory_latency	      		\
2280   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2281
2282/* Define if copies to/from condition code registers should be avoided.
2283
2284   This is needed for the MIPS because reload_outcc is not complete;
2285   it needs to handle cases where the source is a general or another
2286   condition code register.  */
2287#define AVOID_CCMODE_COPIES
2288
2289/* A C expression for the cost of a branch instruction.  A value of
2290   1 is the default; other values are interpreted relative to that.  */
2291
2292#define BRANCH_COST mips_cost->branch_cost
2293#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2294
2295/* If defined, modifies the length assigned to instruction INSN as a
2296   function of the context in which it is used.  LENGTH is an lvalue
2297   that contains the initially computed length of the insn and should
2298   be updated with the correct length of the insn.  */
2299#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2300  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2301
2302/* Return the asm template for a non-MIPS16 conditional branch instruction.
2303   OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2304   its operands.  */
2305#define MIPS_BRANCH(OPCODE, OPERANDS) \
2306  "%*" OPCODE "%?\t" OPERANDS "%/"
2307
2308/* Return the asm template for a call.  INSN is the instruction's mnemonic
2309   ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2310   of the target.
2311
2312   When generating -mabicalls without explicit relocation operators,
2313   all calls should use assembly macros.  Otherwise, all indirect
2314   calls should use "jr" or "jalr"; we will arrange to restore $gp
2315   afterwards if necessary.  Finally, we can only generate direct
2316   calls for -mabicalls by temporarily switching to non-PIC mode.  */
2317#define MIPS_CALL(INSN, OPERANDS, OPNO)				\
2318  (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS			\
2319   ? "%*" INSN "\t%" #OPNO "%/"					\
2320   : REG_P (OPERANDS[OPNO])					\
2321   ? "%*" INSN "r\t%" #OPNO "%/"				\
2322   : TARGET_ABICALLS						\
2323   ? (".option\tpic0\n\t"					\
2324      "%*" INSN "\t%" #OPNO "%/\n\t"				\
2325      ".option\tpic2")						\
2326   : "%*" INSN "\t%" #OPNO "%/")
2327
2328/* Control the assembler format that we output.  */
2329
2330/* Output to assembler file text saying following lines
2331   may contain character constants, extra white space, comments, etc.  */
2332
2333#ifndef ASM_APP_ON
2334#define ASM_APP_ON " #APP\n"
2335#endif
2336
2337/* Output to assembler file text saying following lines
2338   no longer contain unusual constructs.  */
2339
2340#ifndef ASM_APP_OFF
2341#define ASM_APP_OFF " #NO_APP\n"
2342#endif
2343
2344#define REGISTER_NAMES							   \
2345{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2346  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2347  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2348  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2349  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2350  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2351  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2352  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2353  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2354  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",		   \
2355  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2356  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2357  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2358  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2359  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2360  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2361  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2362  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2363  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2364  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2365  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2366  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2367  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2368  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2369
2370/* List the "software" names for each register.  Also list the numerical
2371   names for $fp and $sp.  */
2372
2373#define ADDITIONAL_REGISTER_NAMES					\
2374{									\
2375  { "$29",	29 + GP_REG_FIRST },					\
2376  { "$30",	30 + GP_REG_FIRST },					\
2377  { "at",	 1 + GP_REG_FIRST },					\
2378  { "v0",	 2 + GP_REG_FIRST },					\
2379  { "v1",	 3 + GP_REG_FIRST },					\
2380  { "a0",	 4 + GP_REG_FIRST },					\
2381  { "a1",	 5 + GP_REG_FIRST },					\
2382  { "a2",	 6 + GP_REG_FIRST },					\
2383  { "a3",	 7 + GP_REG_FIRST },					\
2384  { "t0",	 8 + GP_REG_FIRST },					\
2385  { "t1",	 9 + GP_REG_FIRST },					\
2386  { "t2",	10 + GP_REG_FIRST },					\
2387  { "t3",	11 + GP_REG_FIRST },					\
2388  { "t4",	12 + GP_REG_FIRST },					\
2389  { "t5",	13 + GP_REG_FIRST },					\
2390  { "t6",	14 + GP_REG_FIRST },					\
2391  { "t7",	15 + GP_REG_FIRST },					\
2392  { "s0",	16 + GP_REG_FIRST },					\
2393  { "s1",	17 + GP_REG_FIRST },					\
2394  { "s2",	18 + GP_REG_FIRST },					\
2395  { "s3",	19 + GP_REG_FIRST },					\
2396  { "s4",	20 + GP_REG_FIRST },					\
2397  { "s5",	21 + GP_REG_FIRST },					\
2398  { "s6",	22 + GP_REG_FIRST },					\
2399  { "s7",	23 + GP_REG_FIRST },					\
2400  { "t8",	24 + GP_REG_FIRST },					\
2401  { "t9",	25 + GP_REG_FIRST },					\
2402  { "k0",	26 + GP_REG_FIRST },					\
2403  { "k1",	27 + GP_REG_FIRST },					\
2404  { "gp",	28 + GP_REG_FIRST },					\
2405  { "sp",	29 + GP_REG_FIRST },					\
2406  { "fp",	30 + GP_REG_FIRST },					\
2407  { "ra",	31 + GP_REG_FIRST },					\
2408  ALL_COP_ADDITIONAL_REGISTER_NAMES					\
2409}
2410
2411/* This is meant to be redefined in the host dependent files.  It is a
2412   set of alternative names and regnums for mips coprocessors.  */
2413
2414#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2415
2416/* A C compound statement to output to stdio stream STREAM the
2417   assembler syntax for an instruction operand X.  X is an RTL
2418   expression.
2419
2420   CODE is a value that can be used to specify one of several ways
2421   of printing the operand.  It is used when identical operands
2422   must be printed differently depending on the context.  CODE
2423   comes from the `%' specification that was used to request
2424   printing of the operand.  If the specification was just `%DIGIT'
2425   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2426   is the ASCII code for LTR.
2427
2428   If X is a register, this macro should print the register's name.
2429   The names can be found in an array `reg_names' whose type is
2430   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2431
2432   When the machine description has a specification `%PUNCT' (a `%'
2433   followed by a punctuation character), this macro is called with
2434   a null pointer for X and the punctuation character for CODE.
2435
2436   See mips.c for the MIPS specific codes.  */
2437
2438#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2439
2440/* A C expression which evaluates to true if CODE is a valid
2441   punctuation character for use in the `PRINT_OPERAND' macro.  If
2442   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2443   punctuation characters (except for the standard one, `%') are
2444   used in this way.  */
2445
2446#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2447
2448/* A C compound statement to output to stdio stream STREAM the
2449   assembler syntax for an instruction operand that is a memory
2450   reference whose address is ADDR.  ADDR is an RTL expression.  */
2451
2452#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2453
2454
2455/* A C statement, to be executed after all slot-filler instructions
2456   have been output.  If necessary, call `dbr_sequence_length' to
2457   determine the number of slots filled in a sequence (zero if not
2458   currently outputting a sequence), to decide how many no-ops to
2459   output, or whatever.
2460
2461   Don't define this macro if it has nothing to do, but it is
2462   helpful in reading assembly output if the extent of the delay
2463   sequence is made explicit (e.g. with white space).
2464
2465   Note that output routines for instructions with delay slots must
2466   be prepared to deal with not being output as part of a sequence
2467   (i.e.  when the scheduling pass is not run, or when no slot
2468   fillers could be found.)  The variable `final_sequence' is null
2469   when not processing a sequence, otherwise it contains the
2470   `sequence' rtx being output.  */
2471
2472#define DBR_OUTPUT_SEQEND(STREAM)					\
2473do									\
2474  {									\
2475    if (set_nomacro > 0 && --set_nomacro == 0)				\
2476      fputs ("\t.set\tmacro\n", STREAM);				\
2477									\
2478    if (set_noreorder > 0 && --set_noreorder == 0)			\
2479      fputs ("\t.set\treorder\n", STREAM);				\
2480									\
2481    fputs ("\n", STREAM);						\
2482  }									\
2483while (0)
2484
2485
2486/* How to tell the debugger about changes of source files.  */
2487#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2488  mips_output_filename (STREAM, NAME)
2489
2490/* mips-tfile does not understand .stabd directives.  */
2491#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {	\
2492  dbxout_begin_stabn_sline (LINE);				\
2493  dbxout_stab_value_internal_label ("LM", &COUNTER);		\
2494} while (0)
2495
2496/* Use .loc directives for SDB line numbers.  */
2497#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)			\
2498  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2499
2500/* The MIPS implementation uses some labels for its own purpose.  The
2501   following lists what labels are created, and are all formed by the
2502   pattern $L[a-z].*.  The machine independent portion of GCC creates
2503   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2504
2505	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2506	$Lb[0-9]+	Begin blocks for MIPS debug support
2507	$Lc[0-9]+	Label for use in s<xx> operation.
2508	$Le[0-9]+	End blocks for MIPS debug support  */
2509
2510#undef ASM_DECLARE_OBJECT_NAME
2511#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2512  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2513
2514/* Globalizing directive for a label.  */
2515#define GLOBAL_ASM_OP "\t.globl\t"
2516
2517/* This says how to define a global common symbol.  */
2518
2519#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2520
2521/* This says how to define a local common symbol (i.e., not visible to
2522   linker).  */
2523
2524#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2525#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2526  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2527#endif
2528
2529/* This says how to output an external.  It would be possible not to
2530   output anything and let undefined symbol become external. However
2531   the assembler uses length information on externals to allocate in
2532   data/sdata bss/sbss, thereby saving exec time.  */
2533
2534#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2535  mips_output_external(STREAM,DECL,NAME)
2536
2537/* This is how to declare a function name.  The actual work of
2538   emitting the label is moved to function_prologue, so that we can
2539   get the line number correctly emitted before the .ent directive,
2540   and after any .file directives.  Define as empty so that the function
2541   is not declared before the .ent directive elsewhere.  */
2542
2543#undef ASM_DECLARE_FUNCTION_NAME
2544#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2545
2546#ifndef FUNCTION_NAME_ALREADY_DECLARED
2547#define FUNCTION_NAME_ALREADY_DECLARED 0
2548#endif
2549
2550/* This is how to store into the string LABEL
2551   the symbol_ref name of an internal numbered label where
2552   PREFIX is the class of label and NUM is the number within the class.
2553   This is suitable for output with `assemble_name'.  */
2554
2555#undef ASM_GENERATE_INTERNAL_LABEL
2556#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2557  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2558
2559/* This is how to output an element of a case-vector that is absolute.  */
2560
2561#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2562  fprintf (STREAM, "\t%s\t%sL%d\n",					\
2563	   ptr_mode == DImode ? ".dword" : ".word",			\
2564	   LOCAL_LABEL_PREFIX,						\
2565	   VALUE)
2566
2567/* This is how to output an element of a case-vector.  We can make the
2568   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2569   is supported.  */
2570
2571#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2572do {									\
2573  if (TARGET_MIPS16)							\
2574    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
2575	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2576  else if (TARGET_GPWORD)						\
2577    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2578	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2579	     LOCAL_LABEL_PREFIX, VALUE);				\
2580  else									\
2581    fprintf (STREAM, "\t%s\t%sL%d\n",					\
2582	     ptr_mode == DImode ? ".dword" : ".word",			\
2583	     LOCAL_LABEL_PREFIX, VALUE);				\
2584} while (0)
2585
2586/* When generating MIPS16 code, we want the jump table to be in the text
2587   section so that we can load its address using a PC-relative addition.  */
2588#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2589
2590/* This is how to output an assembler line
2591   that says to advance the location counter
2592   to a multiple of 2**LOG bytes.  */
2593
2594#define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2595  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2596
2597/* This is how to output an assembler line to advance the location
2598   counter by SIZE bytes.  */
2599
2600#undef ASM_OUTPUT_SKIP
2601#define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2602  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2603
2604/* This is how to output a string.  */
2605#undef ASM_OUTPUT_ASCII
2606#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
2607  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2608
2609/* Output #ident as a in the read-only data section.  */
2610#undef  ASM_OUTPUT_IDENT
2611#define ASM_OUTPUT_IDENT(FILE, STRING)					\
2612{									\
2613  const char *p = STRING;						\
2614  int size = strlen (p) + 1;						\
2615  switch_to_section (readonly_data_section);				\
2616  assemble_string (p, size);						\
2617}
2618
2619/* Default to -G 8 */
2620#ifndef MIPS_DEFAULT_GVALUE
2621#define MIPS_DEFAULT_GVALUE 8
2622#endif
2623
2624/* Define the strings to put out for each section in the object file.  */
2625#define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2626#define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2627
2628#undef READONLY_DATA_SECTION_ASM_OP
2629#define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2630
2631#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2632do									\
2633  {									\
2634    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
2635	     TARGET_64BIT ? "dsubu" : "subu",				\
2636	     reg_names[STACK_POINTER_REGNUM],				\
2637	     reg_names[STACK_POINTER_REGNUM],				\
2638	     TARGET_64BIT ? "sd" : "sw",				\
2639	     reg_names[REGNO],						\
2640	     reg_names[STACK_POINTER_REGNUM]);				\
2641  }									\
2642while (0)
2643
2644#define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2645do									\
2646  {									\
2647    if (! set_noreorder)						\
2648      fprintf (STREAM, "\t.set\tnoreorder\n");				\
2649									\
2650    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2651	     TARGET_64BIT ? "ld" : "lw",				\
2652	     reg_names[REGNO],						\
2653	     reg_names[STACK_POINTER_REGNUM],				\
2654	     TARGET_64BIT ? "daddu" : "addu",				\
2655	     reg_names[STACK_POINTER_REGNUM],				\
2656	     reg_names[STACK_POINTER_REGNUM]);				\
2657									\
2658    if (! set_noreorder)						\
2659      fprintf (STREAM, "\t.set\treorder\n");				\
2660  }									\
2661while (0)
2662
2663/* How to start an assembler comment.
2664   The leading space is important (the mips native assembler requires it).  */
2665#ifndef ASM_COMMENT_START
2666#define ASM_COMMENT_START " #"
2667#endif
2668
2669/* Default definitions for size_t and ptrdiff_t.  We must override the
2670   definitions from ../svr4.h on mips-*-linux-gnu.  */
2671
2672#undef SIZE_TYPE
2673#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2674
2675#undef PTRDIFF_TYPE
2676#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2677
2678#ifndef __mips16
2679/* Since the bits of the _init and _fini function is spread across
2680   many object files, each potentially with its own GP, we must assume
2681   we need to load our GP.  We don't preserve $gp or $ra, since each
2682   init/fini chunk is supposed to initialize $gp, and crti/crtn
2683   already take care of preserving $ra and, when appropriate, $gp.  */
2684#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2685#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2686   asm (SECTION_OP "\n\
2687	.set noreorder\n\
2688	bal 1f\n\
2689	nop\n\
26901:	.cpload $31\n\
2691	.set reorder\n\
2692	jal " USER_LABEL_PREFIX #FUNC "\n\
2693	" TEXT_SECTION_ASM_OP);
2694#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2695#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2696   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2697#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2698   asm (SECTION_OP "\n\
2699	.set noreorder\n\
2700	bal 1f\n\
2701	nop\n\
27021:	.set reorder\n\
2703	.cpsetup $31, $2, 1b\n\
2704	jal " USER_LABEL_PREFIX #FUNC "\n\
2705	" TEXT_SECTION_ASM_OP);
2706#endif
2707#endif
2708
2709#ifndef HAVE_AS_TLS
2710#define HAVE_AS_TLS 0
2711#endif
2712