1/* Control flow graph analysis code for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* This file contains various simple utilities to analyze the CFG.  */
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "rtl.h"
28#include "obstack.h"
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "insn-config.h"
32#include "recog.h"
33#include "toplev.h"
34#include "tm_p.h"
35#include "timevar.h"
36
37/* Store the data structures necessary for depth-first search.  */
38struct depth_first_search_dsS {
39  /* stack for backtracking during the algorithm */
40  basic_block *stack;
41
42  /* number of edges in the stack.  That is, positions 0, ..., sp-1
43     have edges.  */
44  unsigned int sp;
45
46  /* record of basic blocks already seen by depth-first search */
47  sbitmap visited_blocks;
48};
49typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53					     basic_block);
54static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55						     basic_block);
56static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57static bool flow_active_insn_p (rtx);
58
59/* Like active_insn_p, except keep the return value clobber around
60   even after reload.  */
61
62static bool
63flow_active_insn_p (rtx insn)
64{
65  if (active_insn_p (insn))
66    return true;
67
68  /* A clobber of the function return value exists for buggy
69     programs that fail to return a value.  Its effect is to
70     keep the return value from being live across the entire
71     function.  If we allow it to be skipped, we introduce the
72     possibility for register lifetime confusion.  */
73  if (GET_CODE (PATTERN (insn)) == CLOBBER
74      && REG_P (XEXP (PATTERN (insn), 0))
75      && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76    return true;
77
78  return false;
79}
80
81/* Return true if the block has no effect and only forwards control flow to
82   its single destination.  */
83
84bool
85forwarder_block_p (basic_block bb)
86{
87  rtx insn;
88
89  if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90      || !single_succ_p (bb))
91    return false;
92
93  for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94    if (INSN_P (insn) && flow_active_insn_p (insn))
95      return false;
96
97  return (!INSN_P (insn)
98	  || (JUMP_P (insn) && simplejump_p (insn))
99	  || !flow_active_insn_p (insn));
100}
101
102/* Return nonzero if we can reach target from src by falling through.  */
103
104bool
105can_fallthru (basic_block src, basic_block target)
106{
107  rtx insn = BB_END (src);
108  rtx insn2;
109  edge e;
110  edge_iterator ei;
111
112  if (target == EXIT_BLOCK_PTR)
113    return true;
114  if (src->next_bb != target)
115    return 0;
116  FOR_EACH_EDGE (e, ei, src->succs)
117    if (e->dest == EXIT_BLOCK_PTR
118	&& e->flags & EDGE_FALLTHRU)
119      return 0;
120
121  insn2 = BB_HEAD (target);
122  if (insn2 && !active_insn_p (insn2))
123    insn2 = next_active_insn (insn2);
124
125  /* ??? Later we may add code to move jump tables offline.  */
126  return next_active_insn (insn) == insn2;
127}
128
129/* Return nonzero if we could reach target from src by falling through,
130   if the target was made adjacent.  If we already have a fall-through
131   edge to the exit block, we can't do that.  */
132bool
133could_fall_through (basic_block src, basic_block target)
134{
135  edge e;
136  edge_iterator ei;
137
138  if (target == EXIT_BLOCK_PTR)
139    return true;
140  FOR_EACH_EDGE (e, ei, src->succs)
141    if (e->dest == EXIT_BLOCK_PTR
142	&& e->flags & EDGE_FALLTHRU)
143      return 0;
144  return true;
145}
146
147/* Mark the back edges in DFS traversal.
148   Return nonzero if a loop (natural or otherwise) is present.
149   Inspired by Depth_First_Search_PP described in:
150
151     Advanced Compiler Design and Implementation
152     Steven Muchnick
153     Morgan Kaufmann, 1997
154
155   and heavily borrowed from pre_and_rev_post_order_compute.  */
156
157bool
158mark_dfs_back_edges (void)
159{
160  edge_iterator *stack;
161  int *pre;
162  int *post;
163  int sp;
164  int prenum = 1;
165  int postnum = 1;
166  sbitmap visited;
167  bool found = false;
168
169  /* Allocate the preorder and postorder number arrays.  */
170  pre = XCNEWVEC (int, last_basic_block);
171  post = XCNEWVEC (int, last_basic_block);
172
173  /* Allocate stack for back-tracking up CFG.  */
174  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
175  sp = 0;
176
177  /* Allocate bitmap to track nodes that have been visited.  */
178  visited = sbitmap_alloc (last_basic_block);
179
180  /* None of the nodes in the CFG have been visited yet.  */
181  sbitmap_zero (visited);
182
183  /* Push the first edge on to the stack.  */
184  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186  while (sp)
187    {
188      edge_iterator ei;
189      basic_block src;
190      basic_block dest;
191
192      /* Look at the edge on the top of the stack.  */
193      ei = stack[sp - 1];
194      src = ei_edge (ei)->src;
195      dest = ei_edge (ei)->dest;
196      ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198      /* Check if the edge destination has been visited yet.  */
199      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200	{
201	  /* Mark that we have visited the destination.  */
202	  SET_BIT (visited, dest->index);
203
204	  pre[dest->index] = prenum++;
205	  if (EDGE_COUNT (dest->succs) > 0)
206	    {
207	      /* Since the DEST node has been visited for the first
208		 time, check its successors.  */
209	      stack[sp++] = ei_start (dest->succs);
210	    }
211	  else
212	    post[dest->index] = postnum++;
213	}
214      else
215	{
216	  if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217	      && pre[src->index] >= pre[dest->index]
218	      && post[dest->index] == 0)
219	    ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222	    post[src->index] = postnum++;
223
224	  if (!ei_one_before_end_p (ei))
225	    ei_next (&stack[sp - 1]);
226	  else
227	    sp--;
228	}
229    }
230
231  free (pre);
232  free (post);
233  free (stack);
234  sbitmap_free (visited);
235
236  return found;
237}
238
239/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
240
241void
242set_edge_can_fallthru_flag (void)
243{
244  basic_block bb;
245
246  FOR_EACH_BB (bb)
247    {
248      edge e;
249      edge_iterator ei;
250
251      FOR_EACH_EDGE (e, ei, bb->succs)
252	{
253	  e->flags &= ~EDGE_CAN_FALLTHRU;
254
255	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
256	  if (e->flags & EDGE_FALLTHRU)
257	    e->flags |= EDGE_CAN_FALLTHRU;
258	}
259
260      /* If the BB ends with an invertible condjump all (2) edges are
261	 CAN_FALLTHRU edges.  */
262      if (EDGE_COUNT (bb->succs) != 2)
263	continue;
264      if (!any_condjump_p (BB_END (bb)))
265	continue;
266      if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267	continue;
268      invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269      EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270      EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271    }
272}
273
274/* Find unreachable blocks.  An unreachable block will have 0 in
275   the reachable bit in block->flags.  A nonzero value indicates the
276   block is reachable.  */
277
278void
279find_unreachable_blocks (void)
280{
281  edge e;
282  edge_iterator ei;
283  basic_block *tos, *worklist, bb;
284
285  tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
286
287  /* Clear all the reachability flags.  */
288
289  FOR_EACH_BB (bb)
290    bb->flags &= ~BB_REACHABLE;
291
292  /* Add our starting points to the worklist.  Almost always there will
293     be only one.  It isn't inconceivable that we might one day directly
294     support Fortran alternate entry points.  */
295
296  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297    {
298      *tos++ = e->dest;
299
300      /* Mark the block reachable.  */
301      e->dest->flags |= BB_REACHABLE;
302    }
303
304  /* Iterate: find everything reachable from what we've already seen.  */
305
306  while (tos != worklist)
307    {
308      basic_block b = *--tos;
309
310      FOR_EACH_EDGE (e, ei, b->succs)
311	{
312	  basic_block dest = e->dest;
313
314	  if (!(dest->flags & BB_REACHABLE))
315	    {
316	      *tos++ = dest;
317	      dest->flags |= BB_REACHABLE;
318	    }
319	}
320    }
321
322  free (worklist);
323}
324
325/* Functions to access an edge list with a vector representation.
326   Enough data is kept such that given an index number, the
327   pred and succ that edge represents can be determined, or
328   given a pred and a succ, its index number can be returned.
329   This allows algorithms which consume a lot of memory to
330   represent the normally full matrix of edge (pred,succ) with a
331   single indexed vector,  edge (EDGE_INDEX (pred, succ)), with no
332   wasted space in the client code due to sparse flow graphs.  */
333
334/* This functions initializes the edge list. Basically the entire
335   flowgraph is processed, and all edges are assigned a number,
336   and the data structure is filled in.  */
337
338struct edge_list *
339create_edge_list (void)
340{
341  struct edge_list *elist;
342  edge e;
343  int num_edges;
344  int block_count;
345  basic_block bb;
346  edge_iterator ei;
347
348  block_count = n_basic_blocks; /* Include the entry and exit blocks.  */
349
350  num_edges = 0;
351
352  /* Determine the number of edges in the flow graph by counting successor
353     edges on each basic block.  */
354  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355    {
356      num_edges += EDGE_COUNT (bb->succs);
357    }
358
359  elist = XNEW (struct edge_list);
360  elist->num_blocks = block_count;
361  elist->num_edges = num_edges;
362  elist->index_to_edge = XNEWVEC (edge, num_edges);
363
364  num_edges = 0;
365
366  /* Follow successors of blocks, and register these edges.  */
367  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368    FOR_EACH_EDGE (e, ei, bb->succs)
369      elist->index_to_edge[num_edges++] = e;
370
371  return elist;
372}
373
374/* This function free's memory associated with an edge list.  */
375
376void
377free_edge_list (struct edge_list *elist)
378{
379  if (elist)
380    {
381      free (elist->index_to_edge);
382      free (elist);
383    }
384}
385
386/* This function provides debug output showing an edge list.  */
387
388void
389print_edge_list (FILE *f, struct edge_list *elist)
390{
391  int x;
392
393  fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394	   elist->num_blocks, elist->num_edges);
395
396  for (x = 0; x < elist->num_edges; x++)
397    {
398      fprintf (f, " %-4d - edge(", x);
399      if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400	fprintf (f, "entry,");
401      else
402	fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403
404      if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405	fprintf (f, "exit)\n");
406      else
407	fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408    }
409}
410
411/* This function provides an internal consistency check of an edge list,
412   verifying that all edges are present, and that there are no
413   extra edges.  */
414
415void
416verify_edge_list (FILE *f, struct edge_list *elist)
417{
418  int pred, succ, index;
419  edge e;
420  basic_block bb, p, s;
421  edge_iterator ei;
422
423  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424    {
425      FOR_EACH_EDGE (e, ei, bb->succs)
426	{
427	  pred = e->src->index;
428	  succ = e->dest->index;
429	  index = EDGE_INDEX (elist, e->src, e->dest);
430	  if (index == EDGE_INDEX_NO_EDGE)
431	    {
432	      fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433	      continue;
434	    }
435
436	  if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437	    fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438		     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439	  if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440	    fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441		     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442	}
443    }
444
445  /* We've verified that all the edges are in the list, now lets make sure
446     there are no spurious edges in the list.  */
447
448  FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449    FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450      {
451	int found_edge = 0;
452
453	FOR_EACH_EDGE (e, ei, p->succs)
454	  if (e->dest == s)
455	    {
456	      found_edge = 1;
457	      break;
458	    }
459
460	FOR_EACH_EDGE (e, ei, s->preds)
461	  if (e->src == p)
462	    {
463	      found_edge = 1;
464	      break;
465	    }
466
467	if (EDGE_INDEX (elist, p, s)
468	    == EDGE_INDEX_NO_EDGE && found_edge != 0)
469	  fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470		   p->index, s->index);
471	if (EDGE_INDEX (elist, p, s)
472	    != EDGE_INDEX_NO_EDGE && found_edge == 0)
473	  fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474		   p->index, s->index, EDGE_INDEX (elist, p, s));
475      }
476}
477
478/* Given PRED and SUCC blocks, return the edge which connects the blocks.
479   If no such edge exists, return NULL.  */
480
481edge
482find_edge (basic_block pred, basic_block succ)
483{
484  edge e;
485  edge_iterator ei;
486
487  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488    {
489      FOR_EACH_EDGE (e, ei, pred->succs)
490	if (e->dest == succ)
491	  return e;
492    }
493  else
494    {
495      FOR_EACH_EDGE (e, ei, succ->preds)
496	if (e->src == pred)
497	  return e;
498    }
499
500  return NULL;
501}
502
503/* This routine will determine what, if any, edge there is between
504   a specified predecessor and successor.  */
505
506int
507find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508{
509  int x;
510
511  for (x = 0; x < NUM_EDGES (edge_list); x++)
512    if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513	&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514      return x;
515
516  return (EDGE_INDEX_NO_EDGE);
517}
518
519/* Dump the list of basic blocks in the bitmap NODES.  */
520
521void
522flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523{
524  unsigned int node = 0;
525  sbitmap_iterator sbi;
526
527  if (! nodes)
528    return;
529
530  fprintf (file, "%s { ", str);
531  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532    fprintf (file, "%d ", node);
533  fputs ("}\n", file);
534}
535
536/* Dump the list of edges in the array EDGE_LIST.  */
537
538void
539flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
540{
541  int i;
542
543  if (! edge_list)
544    return;
545
546  fprintf (file, "%s { ", str);
547  for (i = 0; i < num_edges; i++)
548    fprintf (file, "%d->%d ", edge_list[i]->src->index,
549	     edge_list[i]->dest->index);
550
551  fputs ("}\n", file);
552}
553
554
555/* This routine will remove any fake predecessor edges for a basic block.
556   When the edge is removed, it is also removed from whatever successor
557   list it is in.  */
558
559static void
560remove_fake_predecessors (basic_block bb)
561{
562  edge e;
563  edge_iterator ei;
564
565  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
566    {
567      if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568	remove_edge (e);
569      else
570	ei_next (&ei);
571    }
572}
573
574/* This routine will remove all fake edges from the flow graph.  If
575   we remove all fake successors, it will automatically remove all
576   fake predecessors.  */
577
578void
579remove_fake_edges (void)
580{
581  basic_block bb;
582
583  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584    remove_fake_predecessors (bb);
585}
586
587/* This routine will remove all fake edges to the EXIT_BLOCK.  */
588
589void
590remove_fake_exit_edges (void)
591{
592  remove_fake_predecessors (EXIT_BLOCK_PTR);
593}
594
595
596/* This function will add a fake edge between any block which has no
597   successors, and the exit block. Some data flow equations require these
598   edges to exist.  */
599
600void
601add_noreturn_fake_exit_edges (void)
602{
603  basic_block bb;
604
605  FOR_EACH_BB (bb)
606    if (EDGE_COUNT (bb->succs) == 0)
607      make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
608}
609
610/* This function adds a fake edge between any infinite loops to the
611   exit block.  Some optimizations require a path from each node to
612   the exit node.
613
614   See also Morgan, Figure 3.10, pp. 82-83.
615
616   The current implementation is ugly, not attempting to minimize the
617   number of inserted fake edges.  To reduce the number of fake edges
618   to insert, add fake edges from _innermost_ loops containing only
619   nodes not reachable from the exit block.  */
620
621void
622connect_infinite_loops_to_exit (void)
623{
624  basic_block unvisited_block = EXIT_BLOCK_PTR;
625  struct depth_first_search_dsS dfs_ds;
626
627  /* Perform depth-first search in the reverse graph to find nodes
628     reachable from the exit block.  */
629  flow_dfs_compute_reverse_init (&dfs_ds);
630  flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
631
632  /* Repeatedly add fake edges, updating the unreachable nodes.  */
633  while (1)
634    {
635      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636							  unvisited_block);
637      if (!unvisited_block)
638	break;
639
640      make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641      flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
642    }
643
644  flow_dfs_compute_reverse_finish (&dfs_ds);
645  return;
646}
647
648/* Compute reverse top sort order.
649   This is computing a post order numbering of the graph.  */
650
651int
652post_order_compute (int *post_order, bool include_entry_exit)
653{
654  edge_iterator *stack;
655  int sp;
656  int post_order_num = 0;
657  sbitmap visited;
658
659  if (include_entry_exit)
660    post_order[post_order_num++] = EXIT_BLOCK;
661
662  /* Allocate stack for back-tracking up CFG.  */
663  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
664  sp = 0;
665
666  /* Allocate bitmap to track nodes that have been visited.  */
667  visited = sbitmap_alloc (last_basic_block);
668
669  /* None of the nodes in the CFG have been visited yet.  */
670  sbitmap_zero (visited);
671
672  /* Push the first edge on to the stack.  */
673  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
674
675  while (sp)
676    {
677      edge_iterator ei;
678      basic_block src;
679      basic_block dest;
680
681      /* Look at the edge on the top of the stack.  */
682      ei = stack[sp - 1];
683      src = ei_edge (ei)->src;
684      dest = ei_edge (ei)->dest;
685
686      /* Check if the edge destination has been visited yet.  */
687      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
688	{
689	  /* Mark that we have visited the destination.  */
690	  SET_BIT (visited, dest->index);
691
692	  if (EDGE_COUNT (dest->succs) > 0)
693	    /* Since the DEST node has been visited for the first
694	       time, check its successors.  */
695	    stack[sp++] = ei_start (dest->succs);
696	  else
697	    post_order[post_order_num++] = dest->index;
698	}
699      else
700	{
701	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
702	   post_order[post_order_num++] = src->index;
703
704	  if (!ei_one_before_end_p (ei))
705	    ei_next (&stack[sp - 1]);
706	  else
707	    sp--;
708	}
709    }
710
711  if (include_entry_exit)
712    post_order[post_order_num++] = ENTRY_BLOCK;
713
714  free (stack);
715  sbitmap_free (visited);
716  return post_order_num;
717}
718
719/* Compute the depth first search order and store in the array
720  PRE_ORDER if nonzero, marking the nodes visited in VISITED.  If
721  REV_POST_ORDER is nonzero, return the reverse completion number for each
722  node.  Returns the number of nodes visited.  A depth first search
723  tries to get as far away from the starting point as quickly as
724  possible.
725
726  pre_order is a really a preorder numbering of the graph.
727  rev_post_order is really a reverse postorder numbering of the graph.
728 */
729
730int
731pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
732				bool include_entry_exit)
733{
734  edge_iterator *stack;
735  int sp;
736  int pre_order_num = 0;
737  int rev_post_order_num = n_basic_blocks - 1;
738  sbitmap visited;
739
740  /* Allocate stack for back-tracking up CFG.  */
741  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
742  sp = 0;
743
744  if (include_entry_exit)
745    {
746      if (pre_order)
747	pre_order[pre_order_num] = ENTRY_BLOCK;
748      pre_order_num++;
749      if (rev_post_order)
750	rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
751    }
752  else
753    rev_post_order_num -= NUM_FIXED_BLOCKS;
754
755  /* Allocate bitmap to track nodes that have been visited.  */
756  visited = sbitmap_alloc (last_basic_block);
757
758  /* None of the nodes in the CFG have been visited yet.  */
759  sbitmap_zero (visited);
760
761  /* Push the first edge on to the stack.  */
762  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
763
764  while (sp)
765    {
766      edge_iterator ei;
767      basic_block src;
768      basic_block dest;
769
770      /* Look at the edge on the top of the stack.  */
771      ei = stack[sp - 1];
772      src = ei_edge (ei)->src;
773      dest = ei_edge (ei)->dest;
774
775      /* Check if the edge destination has been visited yet.  */
776      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
777	{
778	  /* Mark that we have visited the destination.  */
779	  SET_BIT (visited, dest->index);
780
781	  if (pre_order)
782	    pre_order[pre_order_num] = dest->index;
783
784	  pre_order_num++;
785
786	  if (EDGE_COUNT (dest->succs) > 0)
787	    /* Since the DEST node has been visited for the first
788	       time, check its successors.  */
789	    stack[sp++] = ei_start (dest->succs);
790	  else if (rev_post_order)
791	    /* There are no successors for the DEST node so assign
792	       its reverse completion number.  */
793	    rev_post_order[rev_post_order_num--] = dest->index;
794	}
795      else
796	{
797	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
798	      && rev_post_order)
799	    /* There are no more successors for the SRC node
800	       so assign its reverse completion number.  */
801	    rev_post_order[rev_post_order_num--] = src->index;
802
803	  if (!ei_one_before_end_p (ei))
804	    ei_next (&stack[sp - 1]);
805	  else
806	    sp--;
807	}
808    }
809
810  free (stack);
811  sbitmap_free (visited);
812
813  if (include_entry_exit)
814    {
815      if (pre_order)
816	pre_order[pre_order_num] = EXIT_BLOCK;
817      pre_order_num++;
818      if (rev_post_order)
819	rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
820      /* The number of nodes visited should be the number of blocks.  */
821      gcc_assert (pre_order_num == n_basic_blocks);
822    }
823  else
824    /* The number of nodes visited should be the number of blocks minus
825       the entry and exit blocks which are not visited here.  */
826    gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
827
828  return pre_order_num;
829}
830
831/* Compute the depth first search order on the _reverse_ graph and
832   store in the array DFS_ORDER, marking the nodes visited in VISITED.
833   Returns the number of nodes visited.
834
835   The computation is split into three pieces:
836
837   flow_dfs_compute_reverse_init () creates the necessary data
838   structures.
839
840   flow_dfs_compute_reverse_add_bb () adds a basic block to the data
841   structures.  The block will start the search.
842
843   flow_dfs_compute_reverse_execute () continues (or starts) the
844   search using the block on the top of the stack, stopping when the
845   stack is empty.
846
847   flow_dfs_compute_reverse_finish () destroys the necessary data
848   structures.
849
850   Thus, the user will probably call ..._init(), call ..._add_bb() to
851   add a beginning basic block to the stack, call ..._execute(),
852   possibly add another bb to the stack and again call ..._execute(),
853   ..., and finally call _finish().  */
854
855/* Initialize the data structures used for depth-first search on the
856   reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
857   added to the basic block stack.  DATA is the current depth-first
858   search context.  If INITIALIZE_STACK is nonzero, there is an
859   element on the stack.  */
860
861static void
862flow_dfs_compute_reverse_init (depth_first_search_ds data)
863{
864  /* Allocate stack for back-tracking up CFG.  */
865  data->stack = XNEWVEC (basic_block, n_basic_blocks);
866  data->sp = 0;
867
868  /* Allocate bitmap to track nodes that have been visited.  */
869  data->visited_blocks = sbitmap_alloc (last_basic_block);
870
871  /* None of the nodes in the CFG have been visited yet.  */
872  sbitmap_zero (data->visited_blocks);
873
874  return;
875}
876
877/* Add the specified basic block to the top of the dfs data
878   structures.  When the search continues, it will start at the
879   block.  */
880
881static void
882flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
883{
884  data->stack[data->sp++] = bb;
885  SET_BIT (data->visited_blocks, bb->index);
886}
887
888/* Continue the depth-first search through the reverse graph starting with the
889   block at the stack's top and ending when the stack is empty.  Visited nodes
890   are marked.  Returns an unvisited basic block, or NULL if there is none
891   available.  */
892
893static basic_block
894flow_dfs_compute_reverse_execute (depth_first_search_ds data,
895				  basic_block last_unvisited)
896{
897  basic_block bb;
898  edge e;
899  edge_iterator ei;
900
901  while (data->sp > 0)
902    {
903      bb = data->stack[--data->sp];
904
905      /* Perform depth-first search on adjacent vertices.  */
906      FOR_EACH_EDGE (e, ei, bb->preds)
907	if (!TEST_BIT (data->visited_blocks, e->src->index))
908	  flow_dfs_compute_reverse_add_bb (data, e->src);
909    }
910
911  /* Determine if there are unvisited basic blocks.  */
912  FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
913    if (!TEST_BIT (data->visited_blocks, bb->index))
914      return bb;
915
916  return NULL;
917}
918
919/* Destroy the data structures needed for depth-first search on the
920   reverse graph.  */
921
922static void
923flow_dfs_compute_reverse_finish (depth_first_search_ds data)
924{
925  free (data->stack);
926  sbitmap_free (data->visited_blocks);
927}
928
929/* Performs dfs search from BB over vertices satisfying PREDICATE;
930   if REVERSE, go against direction of edges.  Returns number of blocks
931   found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
932int
933dfs_enumerate_from (basic_block bb, int reverse,
934		    bool (*predicate) (basic_block, void *),
935		    basic_block *rslt, int rslt_max, void *data)
936{
937  basic_block *st, lbb;
938  int sp = 0, tv = 0;
939  unsigned size;
940
941  /* A bitmap to keep track of visited blocks.  Allocating it each time
942     this function is called is not possible, since dfs_enumerate_from
943     is often used on small (almost) disjoint parts of cfg (bodies of
944     loops), and allocating a large sbitmap would lead to quadratic
945     behavior.  */
946  static sbitmap visited;
947  static unsigned v_size;
948
949#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
950#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
951#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
952
953  /* Resize the VISITED sbitmap if necessary.  */
954  size = last_basic_block;
955  if (size < 10)
956    size = 10;
957
958  if (!visited)
959    {
960
961      visited = sbitmap_alloc (size);
962      sbitmap_zero (visited);
963      v_size = size;
964    }
965  else if (v_size < size)
966    {
967      /* Ensure that we increase the size of the sbitmap exponentially.  */
968      if (2 * v_size > size)
969	size = 2 * v_size;
970
971      visited = sbitmap_resize (visited, size, 0);
972      v_size = size;
973    }
974
975  st = XCNEWVEC (basic_block, rslt_max);
976  rslt[tv++] = st[sp++] = bb;
977  MARK_VISITED (bb);
978  while (sp)
979    {
980      edge e;
981      edge_iterator ei;
982      lbb = st[--sp];
983      if (reverse)
984	{
985	  FOR_EACH_EDGE (e, ei, lbb->preds)
986	    if (!VISITED_P (e->src) && predicate (e->src, data))
987	      {
988		gcc_assert (tv != rslt_max);
989		rslt[tv++] = st[sp++] = e->src;
990		MARK_VISITED (e->src);
991	      }
992	}
993      else
994	{
995	  FOR_EACH_EDGE (e, ei, lbb->succs)
996	    if (!VISITED_P (e->dest) && predicate (e->dest, data))
997	      {
998		gcc_assert (tv != rslt_max);
999		rslt[tv++] = st[sp++] = e->dest;
1000		MARK_VISITED (e->dest);
1001	      }
1002	}
1003    }
1004  free (st);
1005  for (sp = 0; sp < tv; sp++)
1006    UNMARK_VISITED (rslt[sp]);
1007  return tv;
1008#undef MARK_VISITED
1009#undef UNMARK_VISITED
1010#undef VISITED_P
1011}
1012
1013
1014/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1015
1016   This algorithm can be found in Timothy Harvey's PhD thesis, at
1017   http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1018   dominance algorithms.
1019
1020   First, we identify each join point, j (any node with more than one
1021   incoming edge is a join point).
1022
1023   We then examine each predecessor, p, of j and walk up the dominator tree
1024   starting at p.
1025
1026   We stop the walk when we reach j's immediate dominator - j is in the
1027   dominance frontier of each of  the nodes in the walk, except for j's
1028   immediate dominator. Intuitively, all of the rest of j's dominators are
1029   shared by j's predecessors as well.
1030   Since they dominate j, they will not have j in their dominance frontiers.
1031
1032   The number of nodes touched by this algorithm is equal to the size
1033   of the dominance frontiers, no more, no less.
1034*/
1035
1036
1037static void
1038compute_dominance_frontiers_1 (bitmap *frontiers)
1039{
1040  edge p;
1041  edge_iterator ei;
1042  basic_block b;
1043  FOR_EACH_BB (b)
1044    {
1045      if (EDGE_COUNT (b->preds) >= 2)
1046	{
1047	  FOR_EACH_EDGE (p, ei, b->preds)
1048	    {
1049	      basic_block runner = p->src;
1050	      basic_block domsb;
1051	      if (runner == ENTRY_BLOCK_PTR)
1052		continue;
1053
1054	      domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1055	      while (runner != domsb)
1056		{
1057		  if (bitmap_bit_p (frontiers[runner->index], b->index))
1058		    break;
1059		  bitmap_set_bit (frontiers[runner->index],
1060				  b->index);
1061		  runner = get_immediate_dominator (CDI_DOMINATORS,
1062						    runner);
1063		}
1064	    }
1065	}
1066    }
1067}
1068
1069
1070void
1071compute_dominance_frontiers (bitmap *frontiers)
1072{
1073  timevar_push (TV_DOM_FRONTIERS);
1074
1075  compute_dominance_frontiers_1 (frontiers);
1076
1077  timevar_pop (TV_DOM_FRONTIERS);
1078}
1079
1080