1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: releng/10.3/sys/kern/sched_4bsd.c 288463 2015-10-01 21:54:43Z jhb $");
37
38#include "opt_hwpmc_hooks.h"
39#include "opt_sched.h"
40#include "opt_kdtrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/cpuset.h>
45#include <sys/kernel.h>
46#include <sys/ktr.h>
47#include <sys/lock.h>
48#include <sys/kthread.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sdt.h>
54#include <sys/smp.h>
55#include <sys/sysctl.h>
56#include <sys/sx.h>
57#include <sys/turnstile.h>
58#include <sys/umtx.h>
59#include <machine/pcb.h>
60#include <machine/smp.h>
61
62#ifdef HWPMC_HOOKS
63#include <sys/pmckern.h>
64#endif
65
66#ifdef KDTRACE_HOOKS
67#include <sys/dtrace_bsd.h>
68int				dtrace_vtime_active;
69dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
70#endif
71
72/*
73 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
74 * the range 100-256 Hz (approximately).
75 */
76#define	ESTCPULIM(e) \
77    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
78    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
79#ifdef SMP
80#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
81#else
82#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
83#endif
84#define	NICE_WEIGHT		1	/* Priorities per nice level. */
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87
88/*
89 * The schedulable entity that runs a context.
90 * This is  an extension to the thread structure and is tailored to
91 * the requirements of this scheduler
92 */
93struct td_sched {
94	fixpt_t		ts_pctcpu;	/* (j) %cpu during p_swtime. */
95	int		ts_cpticks;	/* (j) Ticks of cpu time. */
96	int		ts_slptime;	/* (j) Seconds !RUNNING. */
97	int		ts_slice;	/* Remaining part of time slice. */
98	int		ts_flags;
99	struct runq	*ts_runq;	/* runq the thread is currently on */
100#ifdef KTR
101	char		ts_name[TS_NAME_LEN];
102#endif
103};
104
105/* flags kept in td_flags */
106#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
107#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
108#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
109
110/* flags kept in ts_flags */
111#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
112
113#define SKE_RUNQ_PCPU(ts)						\
114    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
115
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119static struct td_sched td_sched0;
120struct mtx sched_lock;
121
122static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
123static int	sched_tdcnt;	/* Total runnable threads in the system. */
124static int	sched_slice = 12; /* Thread run time before rescheduling. */
125
126static void	setup_runqs(void);
127static void	schedcpu(void);
128static void	schedcpu_thread(void);
129static void	sched_priority(struct thread *td, u_char prio);
130static void	sched_setup(void *dummy);
131static void	maybe_resched(struct thread *td);
132static void	updatepri(struct thread *td);
133static void	resetpriority(struct thread *td);
134static void	resetpriority_thread(struct thread *td);
135#ifdef SMP
136static int	sched_pickcpu(struct thread *td);
137static int	forward_wakeup(int cpunum);
138static void	kick_other_cpu(int pri, int cpuid);
139#endif
140
141static struct kproc_desc sched_kp = {
142        "schedcpu",
143        schedcpu_thread,
144        NULL
145};
146SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
147    &sched_kp);
148SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
149
150static void sched_initticks(void *dummy);
151SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
152    NULL);
153
154/*
155 * Global run queue.
156 */
157static struct runq runq;
158
159#ifdef SMP
160/*
161 * Per-CPU run queues
162 */
163static struct runq runq_pcpu[MAXCPU];
164long runq_length[MAXCPU];
165
166static cpuset_t idle_cpus_mask;
167#endif
168
169struct pcpuidlestat {
170	u_int idlecalls;
171	u_int oldidlecalls;
172};
173static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
174
175static void
176setup_runqs(void)
177{
178#ifdef SMP
179	int i;
180
181	for (i = 0; i < MAXCPU; ++i)
182		runq_init(&runq_pcpu[i]);
183#endif
184
185	runq_init(&runq);
186}
187
188static int
189sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
190{
191	int error, new_val, period;
192
193	period = 1000000 / realstathz;
194	new_val = period * sched_slice;
195	error = sysctl_handle_int(oidp, &new_val, 0, req);
196	if (error != 0 || req->newptr == NULL)
197		return (error);
198	if (new_val <= 0)
199		return (EINVAL);
200	sched_slice = imax(1, (new_val + period / 2) / period);
201	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
202	    realstathz);
203	return (0);
204}
205
206SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
207
208SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
209    "Scheduler name");
210SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
211    NULL, 0, sysctl_kern_quantum, "I",
212    "Quantum for timeshare threads in microseconds");
213SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
214    "Quantum for timeshare threads in stathz ticks");
215#ifdef SMP
216/* Enable forwarding of wakeups to all other cpus */
217static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
218    "Kernel SMP");
219
220static int runq_fuzz = 1;
221SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
222
223static int forward_wakeup_enabled = 1;
224SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
225	   &forward_wakeup_enabled, 0,
226	   "Forwarding of wakeup to idle CPUs");
227
228static int forward_wakeups_requested = 0;
229SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
230	   &forward_wakeups_requested, 0,
231	   "Requests for Forwarding of wakeup to idle CPUs");
232
233static int forward_wakeups_delivered = 0;
234SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
235	   &forward_wakeups_delivered, 0,
236	   "Completed Forwarding of wakeup to idle CPUs");
237
238static int forward_wakeup_use_mask = 1;
239SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
240	   &forward_wakeup_use_mask, 0,
241	   "Use the mask of idle cpus");
242
243static int forward_wakeup_use_loop = 0;
244SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
245	   &forward_wakeup_use_loop, 0,
246	   "Use a loop to find idle cpus");
247
248#endif
249#if 0
250static int sched_followon = 0;
251SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
252	   &sched_followon, 0,
253	   "allow threads to share a quantum");
254#endif
255
256SDT_PROVIDER_DEFINE(sched);
257
258SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
259    "struct proc *", "uint8_t");
260SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
261    "struct proc *", "void *");
262SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
263    "struct proc *", "void *", "int");
264SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
265    "struct proc *", "uint8_t", "struct thread *");
266SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
267SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
268    "struct proc *");
269SDT_PROBE_DEFINE(sched, , , on__cpu);
270SDT_PROBE_DEFINE(sched, , , remain__cpu);
271SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
272    "struct proc *");
273
274static __inline void
275sched_load_add(void)
276{
277
278	sched_tdcnt++;
279	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
280	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
281}
282
283static __inline void
284sched_load_rem(void)
285{
286
287	sched_tdcnt--;
288	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
289	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
290}
291/*
292 * Arrange to reschedule if necessary, taking the priorities and
293 * schedulers into account.
294 */
295static void
296maybe_resched(struct thread *td)
297{
298
299	THREAD_LOCK_ASSERT(td, MA_OWNED);
300	if (td->td_priority < curthread->td_priority)
301		curthread->td_flags |= TDF_NEEDRESCHED;
302}
303
304/*
305 * This function is called when a thread is about to be put on run queue
306 * because it has been made runnable or its priority has been adjusted.  It
307 * determines if the new thread should be immediately preempted to.  If so,
308 * it switches to it and eventually returns true.  If not, it returns false
309 * so that the caller may place the thread on an appropriate run queue.
310 */
311int
312maybe_preempt(struct thread *td)
313{
314#ifdef PREEMPTION
315	struct thread *ctd;
316	int cpri, pri;
317
318	/*
319	 * The new thread should not preempt the current thread if any of the
320	 * following conditions are true:
321	 *
322	 *  - The kernel is in the throes of crashing (panicstr).
323	 *  - The current thread has a higher (numerically lower) or
324	 *    equivalent priority.  Note that this prevents curthread from
325	 *    trying to preempt to itself.
326	 *  - It is too early in the boot for context switches (cold is set).
327	 *  - The current thread has an inhibitor set or is in the process of
328	 *    exiting.  In this case, the current thread is about to switch
329	 *    out anyways, so there's no point in preempting.  If we did,
330	 *    the current thread would not be properly resumed as well, so
331	 *    just avoid that whole landmine.
332	 *  - If the new thread's priority is not a realtime priority and
333	 *    the current thread's priority is not an idle priority and
334	 *    FULL_PREEMPTION is disabled.
335	 *
336	 * If all of these conditions are false, but the current thread is in
337	 * a nested critical section, then we have to defer the preemption
338	 * until we exit the critical section.  Otherwise, switch immediately
339	 * to the new thread.
340	 */
341	ctd = curthread;
342	THREAD_LOCK_ASSERT(td, MA_OWNED);
343	KASSERT((td->td_inhibitors == 0),
344			("maybe_preempt: trying to run inhibited thread"));
345	pri = td->td_priority;
346	cpri = ctd->td_priority;
347	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
348	    TD_IS_INHIBITED(ctd))
349		return (0);
350#ifndef FULL_PREEMPTION
351	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
352		return (0);
353#endif
354
355	if (ctd->td_critnest > 1) {
356		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
357		    ctd->td_critnest);
358		ctd->td_owepreempt = 1;
359		return (0);
360	}
361	/*
362	 * Thread is runnable but not yet put on system run queue.
363	 */
364	MPASS(ctd->td_lock == td->td_lock);
365	MPASS(TD_ON_RUNQ(td));
366	TD_SET_RUNNING(td);
367	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
368	    td->td_proc->p_pid, td->td_name);
369	mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
370	/*
371	 * td's lock pointer may have changed.  We have to return with it
372	 * locked.
373	 */
374	spinlock_enter();
375	thread_unlock(ctd);
376	thread_lock(td);
377	spinlock_exit();
378	return (1);
379#else
380	return (0);
381#endif
382}
383
384/*
385 * Constants for digital decay and forget:
386 *	90% of (td_estcpu) usage in 5 * loadav time
387 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
388 *          Note that, as ps(1) mentions, this can let percentages
389 *          total over 100% (I've seen 137.9% for 3 processes).
390 *
391 * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
392 *
393 * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
394 * That is, the system wants to compute a value of decay such
395 * that the following for loop:
396 * 	for (i = 0; i < (5 * loadavg); i++)
397 * 		td_estcpu *= decay;
398 * will compute
399 * 	td_estcpu *= 0.1;
400 * for all values of loadavg:
401 *
402 * Mathematically this loop can be expressed by saying:
403 * 	decay ** (5 * loadavg) ~= .1
404 *
405 * The system computes decay as:
406 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
407 *
408 * We wish to prove that the system's computation of decay
409 * will always fulfill the equation:
410 * 	decay ** (5 * loadavg) ~= .1
411 *
412 * If we compute b as:
413 * 	b = 2 * loadavg
414 * then
415 * 	decay = b / (b + 1)
416 *
417 * We now need to prove two things:
418 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
419 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
420 *
421 * Facts:
422 *         For x close to zero, exp(x) =~ 1 + x, since
423 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
424 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
425 *         For x close to zero, ln(1+x) =~ x, since
426 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
427 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
428 *         ln(.1) =~ -2.30
429 *
430 * Proof of (1):
431 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
432 *	solving for factor,
433 *      ln(factor) =~ (-2.30/5*loadav), or
434 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
435 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
436 *
437 * Proof of (2):
438 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
439 *	solving for power,
440 *      power*ln(b/(b+1)) =~ -2.30, or
441 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
442 *
443 * Actual power values for the implemented algorithm are as follows:
444 *      loadav: 1       2       3       4
445 *      power:  5.68    10.32   14.94   19.55
446 */
447
448/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
449#define	loadfactor(loadav)	(2 * (loadav))
450#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
451
452/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
453static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
454SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
455
456/*
457 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
458 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
459 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
460 *
461 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
462 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
463 *
464 * If you don't want to bother with the faster/more-accurate formula, you
465 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
466 * (more general) method of calculating the %age of CPU used by a process.
467 */
468#define	CCPU_SHIFT	11
469
470/*
471 * Recompute process priorities, every hz ticks.
472 * MP-safe, called without the Giant mutex.
473 */
474/* ARGSUSED */
475static void
476schedcpu(void)
477{
478	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
479	struct thread *td;
480	struct proc *p;
481	struct td_sched *ts;
482	int awake;
483
484	sx_slock(&allproc_lock);
485	FOREACH_PROC_IN_SYSTEM(p) {
486		PROC_LOCK(p);
487		if (p->p_state == PRS_NEW) {
488			PROC_UNLOCK(p);
489			continue;
490		}
491		FOREACH_THREAD_IN_PROC(p, td) {
492			awake = 0;
493			thread_lock(td);
494			ts = td->td_sched;
495			/*
496			 * Increment sleep time (if sleeping).  We
497			 * ignore overflow, as above.
498			 */
499			/*
500			 * The td_sched slptimes are not touched in wakeup
501			 * because the thread may not HAVE everything in
502			 * memory? XXX I think this is out of date.
503			 */
504			if (TD_ON_RUNQ(td)) {
505				awake = 1;
506				td->td_flags &= ~TDF_DIDRUN;
507			} else if (TD_IS_RUNNING(td)) {
508				awake = 1;
509				/* Do not clear TDF_DIDRUN */
510			} else if (td->td_flags & TDF_DIDRUN) {
511				awake = 1;
512				td->td_flags &= ~TDF_DIDRUN;
513			}
514
515			/*
516			 * ts_pctcpu is only for ps and ttyinfo().
517			 */
518			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
519			/*
520			 * If the td_sched has been idle the entire second,
521			 * stop recalculating its priority until
522			 * it wakes up.
523			 */
524			if (ts->ts_cpticks != 0) {
525#if	(FSHIFT >= CCPU_SHIFT)
526				ts->ts_pctcpu += (realstathz == 100)
527				    ? ((fixpt_t) ts->ts_cpticks) <<
528				    (FSHIFT - CCPU_SHIFT) :
529				    100 * (((fixpt_t) ts->ts_cpticks)
530				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
531#else
532				ts->ts_pctcpu += ((FSCALE - ccpu) *
533				    (ts->ts_cpticks *
534				    FSCALE / realstathz)) >> FSHIFT;
535#endif
536				ts->ts_cpticks = 0;
537			}
538			/*
539			 * If there are ANY running threads in this process,
540			 * then don't count it as sleeping.
541			 * XXX: this is broken.
542			 */
543			if (awake) {
544				if (ts->ts_slptime > 1) {
545					/*
546					 * In an ideal world, this should not
547					 * happen, because whoever woke us
548					 * up from the long sleep should have
549					 * unwound the slptime and reset our
550					 * priority before we run at the stale
551					 * priority.  Should KASSERT at some
552					 * point when all the cases are fixed.
553					 */
554					updatepri(td);
555				}
556				ts->ts_slptime = 0;
557			} else
558				ts->ts_slptime++;
559			if (ts->ts_slptime > 1) {
560				thread_unlock(td);
561				continue;
562			}
563			td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
564		      	resetpriority(td);
565			resetpriority_thread(td);
566			thread_unlock(td);
567		}
568		PROC_UNLOCK(p);
569	}
570	sx_sunlock(&allproc_lock);
571}
572
573/*
574 * Main loop for a kthread that executes schedcpu once a second.
575 */
576static void
577schedcpu_thread(void)
578{
579
580	for (;;) {
581		schedcpu();
582		pause("-", hz);
583	}
584}
585
586/*
587 * Recalculate the priority of a process after it has slept for a while.
588 * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
589 * least six times the loadfactor will decay td_estcpu to zero.
590 */
591static void
592updatepri(struct thread *td)
593{
594	struct td_sched *ts;
595	fixpt_t loadfac;
596	unsigned int newcpu;
597
598	ts = td->td_sched;
599	loadfac = loadfactor(averunnable.ldavg[0]);
600	if (ts->ts_slptime > 5 * loadfac)
601		td->td_estcpu = 0;
602	else {
603		newcpu = td->td_estcpu;
604		ts->ts_slptime--;	/* was incremented in schedcpu() */
605		while (newcpu && --ts->ts_slptime)
606			newcpu = decay_cpu(loadfac, newcpu);
607		td->td_estcpu = newcpu;
608	}
609}
610
611/*
612 * Compute the priority of a process when running in user mode.
613 * Arrange to reschedule if the resulting priority is better
614 * than that of the current process.
615 */
616static void
617resetpriority(struct thread *td)
618{
619	register unsigned int newpriority;
620
621	if (td->td_pri_class == PRI_TIMESHARE) {
622		newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
623		    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
624		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
625		    PRI_MAX_TIMESHARE);
626		sched_user_prio(td, newpriority);
627	}
628}
629
630/*
631 * Update the thread's priority when the associated process's user
632 * priority changes.
633 */
634static void
635resetpriority_thread(struct thread *td)
636{
637
638	/* Only change threads with a time sharing user priority. */
639	if (td->td_priority < PRI_MIN_TIMESHARE ||
640	    td->td_priority > PRI_MAX_TIMESHARE)
641		return;
642
643	/* XXX the whole needresched thing is broken, but not silly. */
644	maybe_resched(td);
645
646	sched_prio(td, td->td_user_pri);
647}
648
649/* ARGSUSED */
650static void
651sched_setup(void *dummy)
652{
653
654	setup_runqs();
655
656	/* Account for thread0. */
657	sched_load_add();
658}
659
660/*
661 * This routine determines time constants after stathz and hz are setup.
662 */
663static void
664sched_initticks(void *dummy)
665{
666
667	realstathz = stathz ? stathz : hz;
668	sched_slice = realstathz / 10;	/* ~100ms */
669	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
670	    realstathz);
671}
672
673/* External interfaces start here */
674
675/*
676 * Very early in the boot some setup of scheduler-specific
677 * parts of proc0 and of some scheduler resources needs to be done.
678 * Called from:
679 *  proc0_init()
680 */
681void
682schedinit(void)
683{
684	/*
685	 * Set up the scheduler specific parts of proc0.
686	 */
687	proc0.p_sched = NULL; /* XXX */
688	thread0.td_sched = &td_sched0;
689	thread0.td_lock = &sched_lock;
690	td_sched0.ts_slice = sched_slice;
691	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
692}
693
694int
695sched_runnable(void)
696{
697#ifdef SMP
698	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
699#else
700	return runq_check(&runq);
701#endif
702}
703
704int
705sched_rr_interval(void)
706{
707
708	/* Convert sched_slice from stathz to hz. */
709	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
710}
711
712/*
713 * We adjust the priority of the current process.  The priority of
714 * a process gets worse as it accumulates CPU time.  The cpu usage
715 * estimator (td_estcpu) is increased here.  resetpriority() will
716 * compute a different priority each time td_estcpu increases by
717 * INVERSE_ESTCPU_WEIGHT
718 * (until MAXPRI is reached).  The cpu usage estimator ramps up
719 * quite quickly when the process is running (linearly), and decays
720 * away exponentially, at a rate which is proportionally slower when
721 * the system is busy.  The basic principle is that the system will
722 * 90% forget that the process used a lot of CPU time in 5 * loadav
723 * seconds.  This causes the system to favor processes which haven't
724 * run much recently, and to round-robin among other processes.
725 */
726void
727sched_clock(struct thread *td)
728{
729	struct pcpuidlestat *stat;
730	struct td_sched *ts;
731
732	THREAD_LOCK_ASSERT(td, MA_OWNED);
733	ts = td->td_sched;
734
735	ts->ts_cpticks++;
736	td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
737	if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
738		resetpriority(td);
739		resetpriority_thread(td);
740	}
741
742	/*
743	 * Force a context switch if the current thread has used up a full
744	 * time slice (default is 100ms).
745	 */
746	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
747		ts->ts_slice = sched_slice;
748		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
749	}
750
751	stat = DPCPU_PTR(idlestat);
752	stat->oldidlecalls = stat->idlecalls;
753	stat->idlecalls = 0;
754}
755
756/*
757 * Charge child's scheduling CPU usage to parent.
758 */
759void
760sched_exit(struct proc *p, struct thread *td)
761{
762
763	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
764	    "prio:%d", td->td_priority);
765
766	PROC_LOCK_ASSERT(p, MA_OWNED);
767	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
768}
769
770void
771sched_exit_thread(struct thread *td, struct thread *child)
772{
773
774	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
775	    "prio:%d", child->td_priority);
776	thread_lock(td);
777	td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
778	thread_unlock(td);
779	thread_lock(child);
780	if ((child->td_flags & TDF_NOLOAD) == 0)
781		sched_load_rem();
782	thread_unlock(child);
783}
784
785void
786sched_fork(struct thread *td, struct thread *childtd)
787{
788	sched_fork_thread(td, childtd);
789}
790
791void
792sched_fork_thread(struct thread *td, struct thread *childtd)
793{
794	struct td_sched *ts;
795
796	childtd->td_oncpu = NOCPU;
797	childtd->td_lastcpu = NOCPU;
798	childtd->td_estcpu = td->td_estcpu;
799	childtd->td_lock = &sched_lock;
800	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
801	childtd->td_priority = childtd->td_base_pri;
802	ts = childtd->td_sched;
803	bzero(ts, sizeof(*ts));
804	ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
805	ts->ts_slice = 1;
806}
807
808void
809sched_nice(struct proc *p, int nice)
810{
811	struct thread *td;
812
813	PROC_LOCK_ASSERT(p, MA_OWNED);
814	p->p_nice = nice;
815	FOREACH_THREAD_IN_PROC(p, td) {
816		thread_lock(td);
817		resetpriority(td);
818		resetpriority_thread(td);
819		thread_unlock(td);
820	}
821}
822
823void
824sched_class(struct thread *td, int class)
825{
826	THREAD_LOCK_ASSERT(td, MA_OWNED);
827	td->td_pri_class = class;
828}
829
830/*
831 * Adjust the priority of a thread.
832 */
833static void
834sched_priority(struct thread *td, u_char prio)
835{
836
837
838	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
839	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
840	    sched_tdname(curthread));
841	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
842	if (td != curthread && prio > td->td_priority) {
843		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
844		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
845		    prio, KTR_ATTR_LINKED, sched_tdname(td));
846		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
847		    curthread);
848	}
849	THREAD_LOCK_ASSERT(td, MA_OWNED);
850	if (td->td_priority == prio)
851		return;
852	td->td_priority = prio;
853	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
854		sched_rem(td);
855		sched_add(td, SRQ_BORING);
856	}
857}
858
859/*
860 * Update a thread's priority when it is lent another thread's
861 * priority.
862 */
863void
864sched_lend_prio(struct thread *td, u_char prio)
865{
866
867	td->td_flags |= TDF_BORROWING;
868	sched_priority(td, prio);
869}
870
871/*
872 * Restore a thread's priority when priority propagation is
873 * over.  The prio argument is the minimum priority the thread
874 * needs to have to satisfy other possible priority lending
875 * requests.  If the thread's regulary priority is less
876 * important than prio the thread will keep a priority boost
877 * of prio.
878 */
879void
880sched_unlend_prio(struct thread *td, u_char prio)
881{
882	u_char base_pri;
883
884	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
885	    td->td_base_pri <= PRI_MAX_TIMESHARE)
886		base_pri = td->td_user_pri;
887	else
888		base_pri = td->td_base_pri;
889	if (prio >= base_pri) {
890		td->td_flags &= ~TDF_BORROWING;
891		sched_prio(td, base_pri);
892	} else
893		sched_lend_prio(td, prio);
894}
895
896void
897sched_prio(struct thread *td, u_char prio)
898{
899	u_char oldprio;
900
901	/* First, update the base priority. */
902	td->td_base_pri = prio;
903
904	/*
905	 * If the thread is borrowing another thread's priority, don't ever
906	 * lower the priority.
907	 */
908	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
909		return;
910
911	/* Change the real priority. */
912	oldprio = td->td_priority;
913	sched_priority(td, prio);
914
915	/*
916	 * If the thread is on a turnstile, then let the turnstile update
917	 * its state.
918	 */
919	if (TD_ON_LOCK(td) && oldprio != prio)
920		turnstile_adjust(td, oldprio);
921}
922
923void
924sched_user_prio(struct thread *td, u_char prio)
925{
926
927	THREAD_LOCK_ASSERT(td, MA_OWNED);
928	td->td_base_user_pri = prio;
929	if (td->td_lend_user_pri <= prio)
930		return;
931	td->td_user_pri = prio;
932}
933
934void
935sched_lend_user_prio(struct thread *td, u_char prio)
936{
937
938	THREAD_LOCK_ASSERT(td, MA_OWNED);
939	td->td_lend_user_pri = prio;
940	td->td_user_pri = min(prio, td->td_base_user_pri);
941	if (td->td_priority > td->td_user_pri)
942		sched_prio(td, td->td_user_pri);
943	else if (td->td_priority != td->td_user_pri)
944		td->td_flags |= TDF_NEEDRESCHED;
945}
946
947void
948sched_sleep(struct thread *td, int pri)
949{
950
951	THREAD_LOCK_ASSERT(td, MA_OWNED);
952	td->td_slptick = ticks;
953	td->td_sched->ts_slptime = 0;
954	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
955		sched_prio(td, pri);
956	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
957		td->td_flags |= TDF_CANSWAP;
958}
959
960void
961sched_switch(struct thread *td, struct thread *newtd, int flags)
962{
963	struct mtx *tmtx;
964	struct td_sched *ts;
965	struct proc *p;
966	int preempted;
967
968	tmtx = NULL;
969	ts = td->td_sched;
970	p = td->td_proc;
971
972	THREAD_LOCK_ASSERT(td, MA_OWNED);
973
974	/*
975	 * Switch to the sched lock to fix things up and pick
976	 * a new thread.
977	 * Block the td_lock in order to avoid breaking the critical path.
978	 */
979	if (td->td_lock != &sched_lock) {
980		mtx_lock_spin(&sched_lock);
981		tmtx = thread_lock_block(td);
982	}
983
984	if ((td->td_flags & TDF_NOLOAD) == 0)
985		sched_load_rem();
986
987	td->td_lastcpu = td->td_oncpu;
988	preempted = !((td->td_flags & TDF_SLICEEND) ||
989	    (flags & SWT_RELINQUISH));
990	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
991	td->td_owepreempt = 0;
992	td->td_oncpu = NOCPU;
993
994	/*
995	 * At the last moment, if this thread is still marked RUNNING,
996	 * then put it back on the run queue as it has not been suspended
997	 * or stopped or any thing else similar.  We never put the idle
998	 * threads on the run queue, however.
999	 */
1000	if (td->td_flags & TDF_IDLETD) {
1001		TD_SET_CAN_RUN(td);
1002#ifdef SMP
1003		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1004#endif
1005	} else {
1006		if (TD_IS_RUNNING(td)) {
1007			/* Put us back on the run queue. */
1008			sched_add(td, preempted ?
1009			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1010			    SRQ_OURSELF|SRQ_YIELDING);
1011		}
1012	}
1013	if (newtd) {
1014		/*
1015		 * The thread we are about to run needs to be counted
1016		 * as if it had been added to the run queue and selected.
1017		 * It came from:
1018		 * * A preemption
1019		 * * An upcall
1020		 * * A followon
1021		 */
1022		KASSERT((newtd->td_inhibitors == 0),
1023			("trying to run inhibited thread"));
1024		newtd->td_flags |= TDF_DIDRUN;
1025        	TD_SET_RUNNING(newtd);
1026		if ((newtd->td_flags & TDF_NOLOAD) == 0)
1027			sched_load_add();
1028	} else {
1029		newtd = choosethread();
1030		MPASS(newtd->td_lock == &sched_lock);
1031	}
1032
1033	if (td != newtd) {
1034#ifdef	HWPMC_HOOKS
1035		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1036			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1037#endif
1038
1039		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1040
1041                /* I feel sleepy */
1042		lock_profile_release_lock(&sched_lock.lock_object);
1043#ifdef KDTRACE_HOOKS
1044		/*
1045		 * If DTrace has set the active vtime enum to anything
1046		 * other than INACTIVE (0), then it should have set the
1047		 * function to call.
1048		 */
1049		if (dtrace_vtime_active)
1050			(*dtrace_vtime_switch_func)(newtd);
1051#endif
1052
1053		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
1054		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1055		    0, 0, __FILE__, __LINE__);
1056		/*
1057		 * Where am I?  What year is it?
1058		 * We are in the same thread that went to sleep above,
1059		 * but any amount of time may have passed. All our context
1060		 * will still be available as will local variables.
1061		 * PCPU values however may have changed as we may have
1062		 * changed CPU so don't trust cached values of them.
1063		 * New threads will go to fork_exit() instead of here
1064		 * so if you change things here you may need to change
1065		 * things there too.
1066		 *
1067		 * If the thread above was exiting it will never wake
1068		 * up again here, so either it has saved everything it
1069		 * needed to, or the thread_wait() or wait() will
1070		 * need to reap it.
1071		 */
1072
1073		SDT_PROBE0(sched, , , on__cpu);
1074#ifdef	HWPMC_HOOKS
1075		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1076			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1077#endif
1078	} else
1079		SDT_PROBE0(sched, , , remain__cpu);
1080
1081#ifdef SMP
1082	if (td->td_flags & TDF_IDLETD)
1083		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1084#endif
1085	sched_lock.mtx_lock = (uintptr_t)td;
1086	td->td_oncpu = PCPU_GET(cpuid);
1087	MPASS(td->td_lock == &sched_lock);
1088}
1089
1090void
1091sched_wakeup(struct thread *td)
1092{
1093	struct td_sched *ts;
1094
1095	THREAD_LOCK_ASSERT(td, MA_OWNED);
1096	ts = td->td_sched;
1097	td->td_flags &= ~TDF_CANSWAP;
1098	if (ts->ts_slptime > 1) {
1099		updatepri(td);
1100		resetpriority(td);
1101	}
1102	td->td_slptick = 0;
1103	ts->ts_slptime = 0;
1104	ts->ts_slice = sched_slice;
1105	sched_add(td, SRQ_BORING);
1106}
1107
1108#ifdef SMP
1109static int
1110forward_wakeup(int cpunum)
1111{
1112	struct pcpu *pc;
1113	cpuset_t dontuse, map, map2;
1114	u_int id, me;
1115	int iscpuset;
1116
1117	mtx_assert(&sched_lock, MA_OWNED);
1118
1119	CTR0(KTR_RUNQ, "forward_wakeup()");
1120
1121	if ((!forward_wakeup_enabled) ||
1122	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1123		return (0);
1124	if (!smp_started || cold || panicstr)
1125		return (0);
1126
1127	forward_wakeups_requested++;
1128
1129	/*
1130	 * Check the idle mask we received against what we calculated
1131	 * before in the old version.
1132	 */
1133	me = PCPU_GET(cpuid);
1134
1135	/* Don't bother if we should be doing it ourself. */
1136	if (CPU_ISSET(me, &idle_cpus_mask) &&
1137	    (cpunum == NOCPU || me == cpunum))
1138		return (0);
1139
1140	CPU_SETOF(me, &dontuse);
1141	CPU_OR(&dontuse, &stopped_cpus);
1142	CPU_OR(&dontuse, &hlt_cpus_mask);
1143	CPU_ZERO(&map2);
1144	if (forward_wakeup_use_loop) {
1145		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1146			id = pc->pc_cpuid;
1147			if (!CPU_ISSET(id, &dontuse) &&
1148			    pc->pc_curthread == pc->pc_idlethread) {
1149				CPU_SET(id, &map2);
1150			}
1151		}
1152	}
1153
1154	if (forward_wakeup_use_mask) {
1155		map = idle_cpus_mask;
1156		CPU_NAND(&map, &dontuse);
1157
1158		/* If they are both on, compare and use loop if different. */
1159		if (forward_wakeup_use_loop) {
1160			if (CPU_CMP(&map, &map2)) {
1161				printf("map != map2, loop method preferred\n");
1162				map = map2;
1163			}
1164		}
1165	} else {
1166		map = map2;
1167	}
1168
1169	/* If we only allow a specific CPU, then mask off all the others. */
1170	if (cpunum != NOCPU) {
1171		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1172		iscpuset = CPU_ISSET(cpunum, &map);
1173		if (iscpuset == 0)
1174			CPU_ZERO(&map);
1175		else
1176			CPU_SETOF(cpunum, &map);
1177	}
1178	if (!CPU_EMPTY(&map)) {
1179		forward_wakeups_delivered++;
1180		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1181			id = pc->pc_cpuid;
1182			if (!CPU_ISSET(id, &map))
1183				continue;
1184			if (cpu_idle_wakeup(pc->pc_cpuid))
1185				CPU_CLR(id, &map);
1186		}
1187		if (!CPU_EMPTY(&map))
1188			ipi_selected(map, IPI_AST);
1189		return (1);
1190	}
1191	if (cpunum == NOCPU)
1192		printf("forward_wakeup: Idle processor not found\n");
1193	return (0);
1194}
1195
1196static void
1197kick_other_cpu(int pri, int cpuid)
1198{
1199	struct pcpu *pcpu;
1200	int cpri;
1201
1202	pcpu = pcpu_find(cpuid);
1203	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1204		forward_wakeups_delivered++;
1205		if (!cpu_idle_wakeup(cpuid))
1206			ipi_cpu(cpuid, IPI_AST);
1207		return;
1208	}
1209
1210	cpri = pcpu->pc_curthread->td_priority;
1211	if (pri >= cpri)
1212		return;
1213
1214#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1215#if !defined(FULL_PREEMPTION)
1216	if (pri <= PRI_MAX_ITHD)
1217#endif /* ! FULL_PREEMPTION */
1218	{
1219		ipi_cpu(cpuid, IPI_PREEMPT);
1220		return;
1221	}
1222#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1223
1224	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1225	ipi_cpu(cpuid, IPI_AST);
1226	return;
1227}
1228#endif /* SMP */
1229
1230#ifdef SMP
1231static int
1232sched_pickcpu(struct thread *td)
1233{
1234	int best, cpu;
1235
1236	mtx_assert(&sched_lock, MA_OWNED);
1237
1238	if (THREAD_CAN_SCHED(td, td->td_lastcpu))
1239		best = td->td_lastcpu;
1240	else
1241		best = NOCPU;
1242	CPU_FOREACH(cpu) {
1243		if (!THREAD_CAN_SCHED(td, cpu))
1244			continue;
1245
1246		if (best == NOCPU)
1247			best = cpu;
1248		else if (runq_length[cpu] < runq_length[best])
1249			best = cpu;
1250	}
1251	KASSERT(best != NOCPU, ("no valid CPUs"));
1252
1253	return (best);
1254}
1255#endif
1256
1257void
1258sched_add(struct thread *td, int flags)
1259#ifdef SMP
1260{
1261	cpuset_t tidlemsk;
1262	struct td_sched *ts;
1263	u_int cpu, cpuid;
1264	int forwarded = 0;
1265	int single_cpu = 0;
1266
1267	ts = td->td_sched;
1268	THREAD_LOCK_ASSERT(td, MA_OWNED);
1269	KASSERT((td->td_inhibitors == 0),
1270	    ("sched_add: trying to run inhibited thread"));
1271	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1272	    ("sched_add: bad thread state"));
1273	KASSERT(td->td_flags & TDF_INMEM,
1274	    ("sched_add: thread swapped out"));
1275
1276	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1277	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1278	    sched_tdname(curthread));
1279	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1280	    KTR_ATTR_LINKED, sched_tdname(td));
1281	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1282	    flags & SRQ_PREEMPTED);
1283
1284
1285	/*
1286	 * Now that the thread is moving to the run-queue, set the lock
1287	 * to the scheduler's lock.
1288	 */
1289	if (td->td_lock != &sched_lock) {
1290		mtx_lock_spin(&sched_lock);
1291		thread_lock_set(td, &sched_lock);
1292	}
1293	TD_SET_RUNQ(td);
1294
1295	/*
1296	 * If SMP is started and the thread is pinned or otherwise limited to
1297	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1298	 * Otherwise, queue the thread to the global run queue.
1299	 *
1300	 * If SMP has not yet been started we must use the global run queue
1301	 * as per-CPU state may not be initialized yet and we may crash if we
1302	 * try to access the per-CPU run queues.
1303	 */
1304	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1305	    ts->ts_flags & TSF_AFFINITY)) {
1306		if (td->td_pinned != 0)
1307			cpu = td->td_lastcpu;
1308		else if (td->td_flags & TDF_BOUND) {
1309			/* Find CPU from bound runq. */
1310			KASSERT(SKE_RUNQ_PCPU(ts),
1311			    ("sched_add: bound td_sched not on cpu runq"));
1312			cpu = ts->ts_runq - &runq_pcpu[0];
1313		} else
1314			/* Find a valid CPU for our cpuset */
1315			cpu = sched_pickcpu(td);
1316		ts->ts_runq = &runq_pcpu[cpu];
1317		single_cpu = 1;
1318		CTR3(KTR_RUNQ,
1319		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1320		    cpu);
1321	} else {
1322		CTR2(KTR_RUNQ,
1323		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1324		    td);
1325		cpu = NOCPU;
1326		ts->ts_runq = &runq;
1327	}
1328
1329	cpuid = PCPU_GET(cpuid);
1330	if (single_cpu && cpu != cpuid) {
1331	        kick_other_cpu(td->td_priority, cpu);
1332	} else {
1333		if (!single_cpu) {
1334			tidlemsk = idle_cpus_mask;
1335			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
1336			CPU_CLR(cpuid, &tidlemsk);
1337
1338			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1339			    ((flags & SRQ_INTR) == 0) &&
1340			    !CPU_EMPTY(&tidlemsk))
1341				forwarded = forward_wakeup(cpu);
1342		}
1343
1344		if (!forwarded) {
1345			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1346				return;
1347			else
1348				maybe_resched(td);
1349		}
1350	}
1351
1352	if ((td->td_flags & TDF_NOLOAD) == 0)
1353		sched_load_add();
1354	runq_add(ts->ts_runq, td, flags);
1355	if (cpu != NOCPU)
1356		runq_length[cpu]++;
1357}
1358#else /* SMP */
1359{
1360	struct td_sched *ts;
1361
1362	ts = td->td_sched;
1363	THREAD_LOCK_ASSERT(td, MA_OWNED);
1364	KASSERT((td->td_inhibitors == 0),
1365	    ("sched_add: trying to run inhibited thread"));
1366	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1367	    ("sched_add: bad thread state"));
1368	KASSERT(td->td_flags & TDF_INMEM,
1369	    ("sched_add: thread swapped out"));
1370	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1371	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1372	    sched_tdname(curthread));
1373	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1374	    KTR_ATTR_LINKED, sched_tdname(td));
1375	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1376	    flags & SRQ_PREEMPTED);
1377
1378	/*
1379	 * Now that the thread is moving to the run-queue, set the lock
1380	 * to the scheduler's lock.
1381	 */
1382	if (td->td_lock != &sched_lock) {
1383		mtx_lock_spin(&sched_lock);
1384		thread_lock_set(td, &sched_lock);
1385	}
1386	TD_SET_RUNQ(td);
1387	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1388	ts->ts_runq = &runq;
1389
1390	/*
1391	 * If we are yielding (on the way out anyhow) or the thread
1392	 * being saved is US, then don't try be smart about preemption
1393	 * or kicking off another CPU as it won't help and may hinder.
1394	 * In the YIEDLING case, we are about to run whoever is being
1395	 * put in the queue anyhow, and in the OURSELF case, we are
1396	 * puting ourself on the run queue which also only happens
1397	 * when we are about to yield.
1398	 */
1399	if ((flags & SRQ_YIELDING) == 0) {
1400		if (maybe_preempt(td))
1401			return;
1402	}
1403	if ((td->td_flags & TDF_NOLOAD) == 0)
1404		sched_load_add();
1405	runq_add(ts->ts_runq, td, flags);
1406	maybe_resched(td);
1407}
1408#endif /* SMP */
1409
1410void
1411sched_rem(struct thread *td)
1412{
1413	struct td_sched *ts;
1414
1415	ts = td->td_sched;
1416	KASSERT(td->td_flags & TDF_INMEM,
1417	    ("sched_rem: thread swapped out"));
1418	KASSERT(TD_ON_RUNQ(td),
1419	    ("sched_rem: thread not on run queue"));
1420	mtx_assert(&sched_lock, MA_OWNED);
1421	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1422	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1423	    sched_tdname(curthread));
1424	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1425
1426	if ((td->td_flags & TDF_NOLOAD) == 0)
1427		sched_load_rem();
1428#ifdef SMP
1429	if (ts->ts_runq != &runq)
1430		runq_length[ts->ts_runq - runq_pcpu]--;
1431#endif
1432	runq_remove(ts->ts_runq, td);
1433	TD_SET_CAN_RUN(td);
1434}
1435
1436/*
1437 * Select threads to run.  Note that running threads still consume a
1438 * slot.
1439 */
1440struct thread *
1441sched_choose(void)
1442{
1443	struct thread *td;
1444	struct runq *rq;
1445
1446	mtx_assert(&sched_lock,  MA_OWNED);
1447#ifdef SMP
1448	struct thread *tdcpu;
1449
1450	rq = &runq;
1451	td = runq_choose_fuzz(&runq, runq_fuzz);
1452	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1453
1454	if (td == NULL ||
1455	    (tdcpu != NULL &&
1456	     tdcpu->td_priority < td->td_priority)) {
1457		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1458		     PCPU_GET(cpuid));
1459		td = tdcpu;
1460		rq = &runq_pcpu[PCPU_GET(cpuid)];
1461	} else {
1462		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1463	}
1464
1465#else
1466	rq = &runq;
1467	td = runq_choose(&runq);
1468#endif
1469
1470	if (td) {
1471#ifdef SMP
1472		if (td == tdcpu)
1473			runq_length[PCPU_GET(cpuid)]--;
1474#endif
1475		runq_remove(rq, td);
1476		td->td_flags |= TDF_DIDRUN;
1477
1478		KASSERT(td->td_flags & TDF_INMEM,
1479		    ("sched_choose: thread swapped out"));
1480		return (td);
1481	}
1482	return (PCPU_GET(idlethread));
1483}
1484
1485void
1486sched_preempt(struct thread *td)
1487{
1488
1489	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1490	thread_lock(td);
1491	if (td->td_critnest > 1)
1492		td->td_owepreempt = 1;
1493	else
1494		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1495	thread_unlock(td);
1496}
1497
1498void
1499sched_userret(struct thread *td)
1500{
1501	/*
1502	 * XXX we cheat slightly on the locking here to avoid locking in
1503	 * the usual case.  Setting td_priority here is essentially an
1504	 * incomplete workaround for not setting it properly elsewhere.
1505	 * Now that some interrupt handlers are threads, not setting it
1506	 * properly elsewhere can clobber it in the window between setting
1507	 * it here and returning to user mode, so don't waste time setting
1508	 * it perfectly here.
1509	 */
1510	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1511	    ("thread with borrowed priority returning to userland"));
1512	if (td->td_priority != td->td_user_pri) {
1513		thread_lock(td);
1514		td->td_priority = td->td_user_pri;
1515		td->td_base_pri = td->td_user_pri;
1516		thread_unlock(td);
1517	}
1518}
1519
1520void
1521sched_bind(struct thread *td, int cpu)
1522{
1523	struct td_sched *ts;
1524
1525	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1526	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1527
1528	ts = td->td_sched;
1529
1530	td->td_flags |= TDF_BOUND;
1531#ifdef SMP
1532	ts->ts_runq = &runq_pcpu[cpu];
1533	if (PCPU_GET(cpuid) == cpu)
1534		return;
1535
1536	mi_switch(SW_VOL, NULL);
1537#endif
1538}
1539
1540void
1541sched_unbind(struct thread* td)
1542{
1543	THREAD_LOCK_ASSERT(td, MA_OWNED);
1544	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1545	td->td_flags &= ~TDF_BOUND;
1546}
1547
1548int
1549sched_is_bound(struct thread *td)
1550{
1551	THREAD_LOCK_ASSERT(td, MA_OWNED);
1552	return (td->td_flags & TDF_BOUND);
1553}
1554
1555void
1556sched_relinquish(struct thread *td)
1557{
1558	thread_lock(td);
1559	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1560	thread_unlock(td);
1561}
1562
1563int
1564sched_load(void)
1565{
1566	return (sched_tdcnt);
1567}
1568
1569int
1570sched_sizeof_proc(void)
1571{
1572	return (sizeof(struct proc));
1573}
1574
1575int
1576sched_sizeof_thread(void)
1577{
1578	return (sizeof(struct thread) + sizeof(struct td_sched));
1579}
1580
1581fixpt_t
1582sched_pctcpu(struct thread *td)
1583{
1584	struct td_sched *ts;
1585
1586	THREAD_LOCK_ASSERT(td, MA_OWNED);
1587	ts = td->td_sched;
1588	return (ts->ts_pctcpu);
1589}
1590
1591#ifdef RACCT
1592/*
1593 * Calculates the contribution to the thread cpu usage for the latest
1594 * (unfinished) second.
1595 */
1596fixpt_t
1597sched_pctcpu_delta(struct thread *td)
1598{
1599	struct td_sched *ts;
1600	fixpt_t delta;
1601	int realstathz;
1602
1603	THREAD_LOCK_ASSERT(td, MA_OWNED);
1604	ts = td->td_sched;
1605	delta = 0;
1606	realstathz = stathz ? stathz : hz;
1607	if (ts->ts_cpticks != 0) {
1608#if	(FSHIFT >= CCPU_SHIFT)
1609		delta = (realstathz == 100)
1610		    ? ((fixpt_t) ts->ts_cpticks) <<
1611		    (FSHIFT - CCPU_SHIFT) :
1612		    100 * (((fixpt_t) ts->ts_cpticks)
1613		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1614#else
1615		delta = ((FSCALE - ccpu) *
1616		    (ts->ts_cpticks *
1617		    FSCALE / realstathz)) >> FSHIFT;
1618#endif
1619	}
1620
1621	return (delta);
1622}
1623#endif
1624
1625void
1626sched_tick(int cnt)
1627{
1628}
1629
1630/*
1631 * The actual idle process.
1632 */
1633void
1634sched_idletd(void *dummy)
1635{
1636	struct pcpuidlestat *stat;
1637
1638	THREAD_NO_SLEEPING();
1639	stat = DPCPU_PTR(idlestat);
1640	for (;;) {
1641		mtx_assert(&Giant, MA_NOTOWNED);
1642
1643		while (sched_runnable() == 0) {
1644			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1645			stat->idlecalls++;
1646		}
1647
1648		mtx_lock_spin(&sched_lock);
1649		mi_switch(SW_VOL | SWT_IDLE, NULL);
1650		mtx_unlock_spin(&sched_lock);
1651	}
1652}
1653
1654/*
1655 * A CPU is entering for the first time or a thread is exiting.
1656 */
1657void
1658sched_throw(struct thread *td)
1659{
1660	/*
1661	 * Correct spinlock nesting.  The idle thread context that we are
1662	 * borrowing was created so that it would start out with a single
1663	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1664	 * explicitly acquired locks in this function, the nesting count
1665	 * is now 2 rather than 1.  Since we are nested, calling
1666	 * spinlock_exit() will simply adjust the counts without allowing
1667	 * spin lock using code to interrupt us.
1668	 */
1669	if (td == NULL) {
1670		mtx_lock_spin(&sched_lock);
1671		spinlock_exit();
1672		PCPU_SET(switchtime, cpu_ticks());
1673		PCPU_SET(switchticks, ticks);
1674	} else {
1675		lock_profile_release_lock(&sched_lock.lock_object);
1676		MPASS(td->td_lock == &sched_lock);
1677		td->td_lastcpu = td->td_oncpu;
1678		td->td_oncpu = NOCPU;
1679	}
1680	mtx_assert(&sched_lock, MA_OWNED);
1681	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1682	cpu_throw(td, choosethread());	/* doesn't return */
1683}
1684
1685void
1686sched_fork_exit(struct thread *td)
1687{
1688
1689	/*
1690	 * Finish setting up thread glue so that it begins execution in a
1691	 * non-nested critical section with sched_lock held but not recursed.
1692	 */
1693	td->td_oncpu = PCPU_GET(cpuid);
1694	sched_lock.mtx_lock = (uintptr_t)td;
1695	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1696	    0, 0, __FILE__, __LINE__);
1697	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1698}
1699
1700char *
1701sched_tdname(struct thread *td)
1702{
1703#ifdef KTR
1704	struct td_sched *ts;
1705
1706	ts = td->td_sched;
1707	if (ts->ts_name[0] == '\0')
1708		snprintf(ts->ts_name, sizeof(ts->ts_name),
1709		    "%s tid %d", td->td_name, td->td_tid);
1710	return (ts->ts_name);
1711#else
1712	return (td->td_name);
1713#endif
1714}
1715
1716#ifdef KTR
1717void
1718sched_clear_tdname(struct thread *td)
1719{
1720	struct td_sched *ts;
1721
1722	ts = td->td_sched;
1723	ts->ts_name[0] = '\0';
1724}
1725#endif
1726
1727void
1728sched_affinity(struct thread *td)
1729{
1730#ifdef SMP
1731	struct td_sched *ts;
1732	int cpu;
1733
1734	THREAD_LOCK_ASSERT(td, MA_OWNED);
1735
1736	/*
1737	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1738	 * thread can't run on.
1739	 */
1740	ts = td->td_sched;
1741	ts->ts_flags &= ~TSF_AFFINITY;
1742	CPU_FOREACH(cpu) {
1743		if (!THREAD_CAN_SCHED(td, cpu)) {
1744			ts->ts_flags |= TSF_AFFINITY;
1745			break;
1746		}
1747	}
1748
1749	/*
1750	 * If this thread can run on all CPUs, nothing else to do.
1751	 */
1752	if (!(ts->ts_flags & TSF_AFFINITY))
1753		return;
1754
1755	/* Pinned threads and bound threads should be left alone. */
1756	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1757		return;
1758
1759	switch (td->td_state) {
1760	case TDS_RUNQ:
1761		/*
1762		 * If we are on a per-CPU runqueue that is in the set,
1763		 * then nothing needs to be done.
1764		 */
1765		if (ts->ts_runq != &runq &&
1766		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1767			return;
1768
1769		/* Put this thread on a valid per-CPU runqueue. */
1770		sched_rem(td);
1771		sched_add(td, SRQ_BORING);
1772		break;
1773	case TDS_RUNNING:
1774		/*
1775		 * See if our current CPU is in the set.  If not, force a
1776		 * context switch.
1777		 */
1778		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1779			return;
1780
1781		td->td_flags |= TDF_NEEDRESCHED;
1782		if (td != curthread)
1783			ipi_cpu(cpu, IPI_AST);
1784		break;
1785	default:
1786		break;
1787	}
1788#endif
1789}
1790