1/*-
2 * Copyright (c) 2003 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include "opt_platform.h"
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: releng/10.3/sys/dev/uart/uart_dev_ns8250.c 294229 2016-01-17 18:18:01Z ian $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/kernel.h>
37#include <sys/sysctl.h>
38#include <machine/bus.h>
39
40#ifdef FDT
41#include <dev/fdt/fdt_common.h>
42#include <dev/ofw/ofw_bus.h>
43#include <dev/ofw/ofw_bus_subr.h>
44#endif
45
46#include <dev/uart/uart.h>
47#include <dev/uart/uart_cpu.h>
48#ifdef FDT
49#include <dev/uart/uart_cpu_fdt.h>
50#endif
51#include <dev/uart/uart_bus.h>
52#include <dev/uart/uart_dev_ns8250.h>
53#include <dev/uart/uart_ppstypes.h>
54
55#include <dev/ic/ns16550.h>
56
57#include "uart_if.h"
58
59#define	DEFAULT_RCLK	1843200
60
61static int broken_txfifo = 0;
62SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RW | CTLFLAG_TUN,
63	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
64TUNABLE_INT("hw.broken_txfifo", &broken_txfifo);
65
66/*
67 * Clear pending interrupts. THRE is cleared by reading IIR. Data
68 * that may have been received gets lost here.
69 */
70static void
71ns8250_clrint(struct uart_bas *bas)
72{
73	uint8_t iir, lsr;
74
75	iir = uart_getreg(bas, REG_IIR);
76	while ((iir & IIR_NOPEND) == 0) {
77		iir &= IIR_IMASK;
78		if (iir == IIR_RLS) {
79			lsr = uart_getreg(bas, REG_LSR);
80			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
81				(void)uart_getreg(bas, REG_DATA);
82		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
83			(void)uart_getreg(bas, REG_DATA);
84		else if (iir == IIR_MLSC)
85			(void)uart_getreg(bas, REG_MSR);
86		uart_barrier(bas);
87		iir = uart_getreg(bas, REG_IIR);
88	}
89}
90
91static int
92ns8250_delay(struct uart_bas *bas)
93{
94	int divisor;
95	u_char lcr;
96
97	lcr = uart_getreg(bas, REG_LCR);
98	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
99	uart_barrier(bas);
100	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
101	uart_barrier(bas);
102	uart_setreg(bas, REG_LCR, lcr);
103	uart_barrier(bas);
104
105	/* 1/10th the time to transmit 1 character (estimate). */
106	if (divisor <= 134)
107		return (16000000 * divisor / bas->rclk);
108	return (16000 * divisor / (bas->rclk / 1000));
109}
110
111static int
112ns8250_divisor(int rclk, int baudrate)
113{
114	int actual_baud, divisor;
115	int error;
116
117	if (baudrate == 0)
118		return (0);
119
120	divisor = (rclk / (baudrate << 3) + 1) >> 1;
121	if (divisor == 0 || divisor >= 65536)
122		return (0);
123	actual_baud = rclk / (divisor << 4);
124
125	/* 10 times error in percent: */
126	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
127
128	/* 3.0% maximum error tolerance: */
129	if (error < -30 || error > 30)
130		return (0);
131
132	return (divisor);
133}
134
135static int
136ns8250_drain(struct uart_bas *bas, int what)
137{
138	int delay, limit;
139
140	delay = ns8250_delay(bas);
141
142	if (what & UART_DRAIN_TRANSMITTER) {
143		/*
144		 * Pick an arbitrary high limit to avoid getting stuck in
145		 * an infinite loop when the hardware is broken. Make the
146		 * limit high enough to handle large FIFOs.
147		 */
148		limit = 10*1024;
149		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
150			DELAY(delay);
151		if (limit == 0) {
152			/* printf("ns8250: transmitter appears stuck... "); */
153			return (EIO);
154		}
155	}
156
157	if (what & UART_DRAIN_RECEIVER) {
158		/*
159		 * Pick an arbitrary high limit to avoid getting stuck in
160		 * an infinite loop when the hardware is broken. Make the
161		 * limit high enough to handle large FIFOs and integrated
162		 * UARTs. The HP rx2600 for example has 3 UARTs on the
163		 * management board that tend to get a lot of data send
164		 * to it when the UART is first activated.
165		 */
166		limit=10*4096;
167		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
168			(void)uart_getreg(bas, REG_DATA);
169			uart_barrier(bas);
170			DELAY(delay << 2);
171		}
172		if (limit == 0) {
173			/* printf("ns8250: receiver appears broken... "); */
174			return (EIO);
175		}
176	}
177
178	return (0);
179}
180
181/*
182 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
183 * drained. WARNING: this function clobbers the FIFO setting!
184 */
185static void
186ns8250_flush(struct uart_bas *bas, int what)
187{
188	uint8_t fcr;
189
190	fcr = FCR_ENABLE;
191	if (what & UART_FLUSH_TRANSMITTER)
192		fcr |= FCR_XMT_RST;
193	if (what & UART_FLUSH_RECEIVER)
194		fcr |= FCR_RCV_RST;
195	uart_setreg(bas, REG_FCR, fcr);
196	uart_barrier(bas);
197}
198
199static int
200ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
201    int parity)
202{
203	int divisor;
204	uint8_t lcr;
205
206	lcr = 0;
207	if (databits >= 8)
208		lcr |= LCR_8BITS;
209	else if (databits == 7)
210		lcr |= LCR_7BITS;
211	else if (databits == 6)
212		lcr |= LCR_6BITS;
213	else
214		lcr |= LCR_5BITS;
215	if (stopbits > 1)
216		lcr |= LCR_STOPB;
217	lcr |= parity << 3;
218
219	/* Set baudrate. */
220	if (baudrate > 0) {
221		divisor = ns8250_divisor(bas->rclk, baudrate);
222		if (divisor == 0)
223			return (EINVAL);
224		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
225		uart_barrier(bas);
226		uart_setreg(bas, REG_DLL, divisor & 0xff);
227		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
228		uart_barrier(bas);
229	}
230
231	/* Set LCR and clear DLAB. */
232	uart_setreg(bas, REG_LCR, lcr);
233	uart_barrier(bas);
234	return (0);
235}
236
237/*
238 * Low-level UART interface.
239 */
240static int ns8250_probe(struct uart_bas *bas);
241static void ns8250_init(struct uart_bas *bas, int, int, int, int);
242static void ns8250_term(struct uart_bas *bas);
243static void ns8250_putc(struct uart_bas *bas, int);
244static int ns8250_rxready(struct uart_bas *bas);
245static int ns8250_getc(struct uart_bas *bas, struct mtx *);
246
247struct uart_ops uart_ns8250_ops = {
248	.probe = ns8250_probe,
249	.init = ns8250_init,
250	.term = ns8250_term,
251	.putc = ns8250_putc,
252	.rxready = ns8250_rxready,
253	.getc = ns8250_getc,
254};
255
256static int
257ns8250_probe(struct uart_bas *bas)
258{
259	u_char val;
260
261	/* Check known 0 bits that don't depend on DLAB. */
262	val = uart_getreg(bas, REG_IIR);
263	if (val & 0x30)
264		return (ENXIO);
265	/*
266	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
267	 * chip, but otherwise doesn't seem to have a function. In
268	 * other words, uart(4) works regardless. Ignore that bit so
269	 * the probe succeeds.
270	 */
271	val = uart_getreg(bas, REG_MCR);
272	if (val & 0xa0)
273		return (ENXIO);
274
275	return (0);
276}
277
278static void
279ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
280    int parity)
281{
282	u_char	ier;
283
284	if (bas->rclk == 0)
285		bas->rclk = DEFAULT_RCLK;
286	ns8250_param(bas, baudrate, databits, stopbits, parity);
287
288	/* Disable all interrupt sources. */
289	/*
290	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
291	 * UARTs split the receive time-out interrupt bit out separately as
292	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
293	 */
294	ier = uart_getreg(bas, REG_IER) & 0xe0;
295	uart_setreg(bas, REG_IER, ier);
296	uart_barrier(bas);
297
298	/* Disable the FIFO (if present). */
299	uart_setreg(bas, REG_FCR, 0);
300	uart_barrier(bas);
301
302	/* Set RTS & DTR. */
303	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
304	uart_barrier(bas);
305
306	ns8250_clrint(bas);
307}
308
309static void
310ns8250_term(struct uart_bas *bas)
311{
312
313	/* Clear RTS & DTR. */
314	uart_setreg(bas, REG_MCR, MCR_IE);
315	uart_barrier(bas);
316}
317
318static void
319ns8250_putc(struct uart_bas *bas, int c)
320{
321	int limit;
322
323	limit = 250000;
324	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
325		DELAY(4);
326	uart_setreg(bas, REG_DATA, c);
327	uart_barrier(bas);
328	limit = 250000;
329	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
330		DELAY(4);
331}
332
333static int
334ns8250_rxready(struct uart_bas *bas)
335{
336
337	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
338}
339
340static int
341ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
342{
343	int c;
344
345	uart_lock(hwmtx);
346
347	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
348		uart_unlock(hwmtx);
349		DELAY(4);
350		uart_lock(hwmtx);
351	}
352
353	c = uart_getreg(bas, REG_DATA);
354
355	uart_unlock(hwmtx);
356
357	return (c);
358}
359
360static kobj_method_t ns8250_methods[] = {
361	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
362	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
363	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
364	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
365	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
366	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
367	KOBJMETHOD(uart_param,		ns8250_bus_param),
368	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
369	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
370	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
371	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
372	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
373	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
374	{ 0, 0 }
375};
376
377struct uart_class uart_ns8250_class = {
378	"ns8250",
379	ns8250_methods,
380	sizeof(struct ns8250_softc),
381	.uc_ops = &uart_ns8250_ops,
382	.uc_range = 8,
383	.uc_rclk = DEFAULT_RCLK
384};
385
386#ifdef FDT
387static struct ofw_compat_data compat_data[] = {
388	{"ns16550",		(uintptr_t)&uart_ns8250_class},
389	{NULL,			(uintptr_t)NULL},
390};
391UART_FDT_CLASS_AND_DEVICE(compat_data);
392#endif
393
394/* Use token-pasting to form SER_ and MSR_ named constants. */
395#define	SER(sig)	SER_##sig
396#define	SERD(sig)	SER_D##sig
397#define	MSR(sig)	MSR_##sig
398#define	MSRD(sig)	MSR_D##sig
399
400/*
401 * Detect signal changes using software delta detection.  The previous state of
402 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
403 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
404 * new state of both the signal and the delta bits.
405 */
406#define SIGCHGSW(var, msr, sig)					\
407	if ((msr) & MSR(sig)) {					\
408		if ((var & SER(sig)) == 0)			\
409			var |= SERD(sig) | SER(sig);		\
410	} else {						\
411		if ((var & SER(sig)) != 0)			\
412			var = SERD(sig) | (var & ~SER(sig));	\
413	}
414
415/*
416 * Detect signal changes using the hardware msr delta bits.  This is currently
417 * used only when PPS timing information is being captured using the "narrow
418 * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
419 * by time the interrupt handler is invoked.  The hardware will latch the fact
420 * that it changed in the delta bits.
421 */
422#define SIGCHGHW(var, msr, sig)					\
423	if ((msr) & MSRD(sig)) {				\
424		if (((msr) & MSR(sig)) != 0)			\
425			var |= SERD(sig) | SER(sig);		\
426		else						\
427			var = SERD(sig) | (var & ~SER(sig));	\
428	}
429
430int
431ns8250_bus_attach(struct uart_softc *sc)
432{
433	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
434	struct uart_bas *bas;
435	unsigned int ivar;
436#ifdef FDT
437	phandle_t node;
438	pcell_t cell;
439#endif
440
441	ns8250->busy_detect = 0;
442
443#ifdef FDT
444	/*
445	 * Check whether uart requires to read USR reg when IIR_BUSY and
446	 * has broken txfifo.
447	 */
448	node = ofw_bus_get_node(sc->sc_dev);
449	if ((OF_getprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
450		ns8250->busy_detect = 1;
451	if ((OF_getprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
452		broken_txfifo = 1;
453#endif
454
455	bas = &sc->sc_bas;
456
457	ns8250->mcr = uart_getreg(bas, REG_MCR);
458	ns8250->fcr = FCR_ENABLE;
459	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
460	    &ivar)) {
461		if (UART_FLAGS_FCR_RX_LOW(ivar))
462			ns8250->fcr |= FCR_RX_LOW;
463		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
464			ns8250->fcr |= FCR_RX_MEDL;
465		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
466			ns8250->fcr |= FCR_RX_HIGH;
467		else
468			ns8250->fcr |= FCR_RX_MEDH;
469	} else
470		ns8250->fcr |= FCR_RX_MEDH;
471
472	/* Get IER mask */
473	ivar = 0xf0;
474	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
475	    &ivar);
476	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
477
478	/* Get IER RX interrupt bits */
479	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
480	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
481	    &ivar);
482	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
483
484	uart_setreg(bas, REG_FCR, ns8250->fcr);
485	uart_barrier(bas);
486	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
487
488	if (ns8250->mcr & MCR_DTR)
489		sc->sc_hwsig |= SER_DTR;
490	if (ns8250->mcr & MCR_RTS)
491		sc->sc_hwsig |= SER_RTS;
492	ns8250_bus_getsig(sc);
493
494	ns8250_clrint(bas);
495	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
496	ns8250->ier |= ns8250->ier_rxbits;
497	uart_setreg(bas, REG_IER, ns8250->ier);
498	uart_barrier(bas);
499
500	/*
501	 * Timing of the H/W access was changed with r253161 of uart_core.c
502	 * It has been observed that an ITE IT8513E would signal a break
503	 * condition with pretty much every character it received, unless
504	 * it had enough time to settle between ns8250_bus_attach() and
505	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
506	 * It's not understood why the UART chip behaves this way and it
507	 * could very well be that the DELAY make the H/W work in the same
508	 * accidental manner as before. More analysis is warranted, but
509	 * at least now we fixed a known regression.
510	 */
511	DELAY(200);
512	return (0);
513}
514
515int
516ns8250_bus_detach(struct uart_softc *sc)
517{
518	struct ns8250_softc *ns8250;
519	struct uart_bas *bas;
520	u_char ier;
521
522	ns8250 = (struct ns8250_softc *)sc;
523	bas = &sc->sc_bas;
524	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
525	uart_setreg(bas, REG_IER, ier);
526	uart_barrier(bas);
527	ns8250_clrint(bas);
528	return (0);
529}
530
531int
532ns8250_bus_flush(struct uart_softc *sc, int what)
533{
534	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
535	struct uart_bas *bas;
536	int error;
537
538	bas = &sc->sc_bas;
539	uart_lock(sc->sc_hwmtx);
540	if (sc->sc_rxfifosz > 1) {
541		ns8250_flush(bas, what);
542		uart_setreg(bas, REG_FCR, ns8250->fcr);
543		uart_barrier(bas);
544		error = 0;
545	} else
546		error = ns8250_drain(bas, what);
547	uart_unlock(sc->sc_hwmtx);
548	return (error);
549}
550
551int
552ns8250_bus_getsig(struct uart_softc *sc)
553{
554	uint32_t old, sig;
555	uint8_t msr;
556
557	/*
558	 * The delta bits are reputed to be broken on some hardware, so use
559	 * software delta detection by default.  Use the hardware delta bits
560	 * when capturing PPS pulses which are too narrow for software detection
561	 * to see the edges.  Hardware delta for RI doesn't work like the
562	 * others, so always use software for it.  Other threads may be changing
563	 * other (non-MSR) bits in sc_hwsig, so loop until it can succesfully
564	 * update without other changes happening.  Note that the SIGCHGxx()
565	 * macros carefully preserve the delta bits when we have to loop several
566	 * times and a signal transitions between iterations.
567	 */
568	do {
569		old = sc->sc_hwsig;
570		sig = old;
571		uart_lock(sc->sc_hwmtx);
572		msr = uart_getreg(&sc->sc_bas, REG_MSR);
573		uart_unlock(sc->sc_hwmtx);
574		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
575			SIGCHGHW(sig, msr, DSR);
576			SIGCHGHW(sig, msr, CTS);
577			SIGCHGHW(sig, msr, DCD);
578		} else {
579			SIGCHGSW(sig, msr, DSR);
580			SIGCHGSW(sig, msr, CTS);
581			SIGCHGSW(sig, msr, DCD);
582		}
583		SIGCHGSW(sig, msr, RI);
584	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
585	return (sig);
586}
587
588int
589ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
590{
591	struct uart_bas *bas;
592	int baudrate, divisor, error;
593	uint8_t efr, lcr;
594
595	bas = &sc->sc_bas;
596	error = 0;
597	uart_lock(sc->sc_hwmtx);
598	switch (request) {
599	case UART_IOCTL_BREAK:
600		lcr = uart_getreg(bas, REG_LCR);
601		if (data)
602			lcr |= LCR_SBREAK;
603		else
604			lcr &= ~LCR_SBREAK;
605		uart_setreg(bas, REG_LCR, lcr);
606		uart_barrier(bas);
607		break;
608	case UART_IOCTL_IFLOW:
609		lcr = uart_getreg(bas, REG_LCR);
610		uart_barrier(bas);
611		uart_setreg(bas, REG_LCR, 0xbf);
612		uart_barrier(bas);
613		efr = uart_getreg(bas, REG_EFR);
614		if (data)
615			efr |= EFR_RTS;
616		else
617			efr &= ~EFR_RTS;
618		uart_setreg(bas, REG_EFR, efr);
619		uart_barrier(bas);
620		uart_setreg(bas, REG_LCR, lcr);
621		uart_barrier(bas);
622		break;
623	case UART_IOCTL_OFLOW:
624		lcr = uart_getreg(bas, REG_LCR);
625		uart_barrier(bas);
626		uart_setreg(bas, REG_LCR, 0xbf);
627		uart_barrier(bas);
628		efr = uart_getreg(bas, REG_EFR);
629		if (data)
630			efr |= EFR_CTS;
631		else
632			efr &= ~EFR_CTS;
633		uart_setreg(bas, REG_EFR, efr);
634		uart_barrier(bas);
635		uart_setreg(bas, REG_LCR, lcr);
636		uart_barrier(bas);
637		break;
638	case UART_IOCTL_BAUD:
639		lcr = uart_getreg(bas, REG_LCR);
640		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
641		uart_barrier(bas);
642		divisor = uart_getreg(bas, REG_DLL) |
643		    (uart_getreg(bas, REG_DLH) << 8);
644		uart_barrier(bas);
645		uart_setreg(bas, REG_LCR, lcr);
646		uart_barrier(bas);
647		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
648		if (baudrate > 0)
649			*(int*)data = baudrate;
650		else
651			error = ENXIO;
652		break;
653	default:
654		error = EINVAL;
655		break;
656	}
657	uart_unlock(sc->sc_hwmtx);
658	return (error);
659}
660
661int
662ns8250_bus_ipend(struct uart_softc *sc)
663{
664	struct uart_bas *bas;
665	struct ns8250_softc *ns8250;
666	int ipend;
667	uint8_t iir, lsr;
668
669	ns8250 = (struct ns8250_softc *)sc;
670	bas = &sc->sc_bas;
671	uart_lock(sc->sc_hwmtx);
672	iir = uart_getreg(bas, REG_IIR);
673
674	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
675		(void)uart_getreg(bas, DW_REG_USR);
676		uart_unlock(sc->sc_hwmtx);
677		return (0);
678	}
679	if (iir & IIR_NOPEND) {
680		uart_unlock(sc->sc_hwmtx);
681		return (0);
682	}
683	ipend = 0;
684	if (iir & IIR_RXRDY) {
685		lsr = uart_getreg(bas, REG_LSR);
686		if (lsr & LSR_OE)
687			ipend |= SER_INT_OVERRUN;
688		if (lsr & LSR_BI)
689			ipend |= SER_INT_BREAK;
690		if (lsr & LSR_RXRDY)
691			ipend |= SER_INT_RXREADY;
692	} else {
693		if (iir & IIR_TXRDY) {
694			ipend |= SER_INT_TXIDLE;
695			uart_setreg(bas, REG_IER, ns8250->ier);
696		} else
697			ipend |= SER_INT_SIGCHG;
698	}
699	if (ipend == 0)
700		ns8250_clrint(bas);
701	uart_unlock(sc->sc_hwmtx);
702	return (ipend);
703}
704
705int
706ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
707    int stopbits, int parity)
708{
709	struct ns8250_softc *ns8250;
710	struct uart_bas *bas;
711	int error, limit;
712
713	ns8250 = (struct ns8250_softc*)sc;
714	bas = &sc->sc_bas;
715	uart_lock(sc->sc_hwmtx);
716	/*
717	 * When using DW UART with BUSY detection it is necessary to wait
718	 * until all serial transfers are finished before manipulating the
719	 * line control. LCR will not be affected when UART is busy.
720	 */
721	if (ns8250->busy_detect != 0) {
722		/*
723		 * Pick an arbitrary high limit to avoid getting stuck in
724		 * an infinite loop in case when the hardware is broken.
725		 */
726		limit = 10 * 1024;
727		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
728		    --limit)
729			DELAY(4);
730
731		if (limit <= 0) {
732			/* UART appears to be stuck */
733			uart_unlock(sc->sc_hwmtx);
734			return (EIO);
735		}
736	}
737
738	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
739	uart_unlock(sc->sc_hwmtx);
740	return (error);
741}
742
743int
744ns8250_bus_probe(struct uart_softc *sc)
745{
746	struct ns8250_softc *ns8250;
747	struct uart_bas *bas;
748	int count, delay, error, limit;
749	uint8_t lsr, mcr, ier;
750
751	ns8250 = (struct ns8250_softc *)sc;
752	bas = &sc->sc_bas;
753
754	error = ns8250_probe(bas);
755	if (error)
756		return (error);
757
758	mcr = MCR_IE;
759	if (sc->sc_sysdev == NULL) {
760		/* By using ns8250_init() we also set DTR and RTS. */
761		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
762	} else
763		mcr |= MCR_DTR | MCR_RTS;
764
765	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
766	if (error)
767		return (error);
768
769	/*
770	 * Set loopback mode. This avoids having garbage on the wire and
771	 * also allows us send and receive data. We set DTR and RTS to
772	 * avoid the possibility that automatic flow-control prevents
773	 * any data from being sent.
774	 */
775	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
776	uart_barrier(bas);
777
778	/*
779	 * Enable FIFOs. And check that the UART has them. If not, we're
780	 * done. Since this is the first time we enable the FIFOs, we reset
781	 * them.
782	 */
783	uart_setreg(bas, REG_FCR, FCR_ENABLE);
784	uart_barrier(bas);
785	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
786		/*
787		 * NS16450 or INS8250. We don't bother to differentiate
788		 * between them. They're too old to be interesting.
789		 */
790		uart_setreg(bas, REG_MCR, mcr);
791		uart_barrier(bas);
792		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
793		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
794		return (0);
795	}
796
797	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
798	uart_barrier(bas);
799
800	count = 0;
801	delay = ns8250_delay(bas);
802
803	/* We have FIFOs. Drain the transmitter and receiver. */
804	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
805	if (error) {
806		uart_setreg(bas, REG_MCR, mcr);
807		uart_setreg(bas, REG_FCR, 0);
808		uart_barrier(bas);
809		goto describe;
810	}
811
812	/*
813	 * We should have a sufficiently clean "pipe" to determine the
814	 * size of the FIFOs. We send as much characters as is reasonable
815	 * and wait for the overflow bit in the LSR register to be
816	 * asserted, counting the characters as we send them. Based on
817	 * that count we know the FIFO size.
818	 */
819	do {
820		uart_setreg(bas, REG_DATA, 0);
821		uart_barrier(bas);
822		count++;
823
824		limit = 30;
825		lsr = 0;
826		/*
827		 * LSR bits are cleared upon read, so we must accumulate
828		 * them to be able to test LSR_OE below.
829		 */
830		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
831		    --limit)
832			DELAY(delay);
833		if (limit == 0) {
834			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
835			uart_setreg(bas, REG_IER, ier);
836			uart_setreg(bas, REG_MCR, mcr);
837			uart_setreg(bas, REG_FCR, 0);
838			uart_barrier(bas);
839			count = 0;
840			goto describe;
841		}
842	} while ((lsr & LSR_OE) == 0 && count < 130);
843	count--;
844
845	uart_setreg(bas, REG_MCR, mcr);
846
847	/* Reset FIFOs. */
848	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
849
850 describe:
851	if (count >= 14 && count <= 16) {
852		sc->sc_rxfifosz = 16;
853		device_set_desc(sc->sc_dev, "16550 or compatible");
854	} else if (count >= 28 && count <= 32) {
855		sc->sc_rxfifosz = 32;
856		device_set_desc(sc->sc_dev, "16650 or compatible");
857	} else if (count >= 56 && count <= 64) {
858		sc->sc_rxfifosz = 64;
859		device_set_desc(sc->sc_dev, "16750 or compatible");
860	} else if (count >= 112 && count <= 128) {
861		sc->sc_rxfifosz = 128;
862		device_set_desc(sc->sc_dev, "16950 or compatible");
863	} else {
864		sc->sc_rxfifosz = 16;
865		device_set_desc(sc->sc_dev,
866		    "Non-standard ns8250 class UART with FIFOs");
867	}
868
869	/*
870	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
871	 * Tx trigger. Also, we assume that all data has been sent when the
872	 * interrupt happens.
873	 */
874	sc->sc_txfifosz = 16;
875
876#if 0
877	/*
878	 * XXX there are some issues related to hardware flow control and
879	 * it's likely that uart(4) is the cause. This basicly needs more
880	 * investigation, but we avoid using for hardware flow control
881	 * until then.
882	 */
883	/* 16650s or higher have automatic flow control. */
884	if (sc->sc_rxfifosz > 16) {
885		sc->sc_hwiflow = 1;
886		sc->sc_hwoflow = 1;
887	}
888#endif
889
890	return (0);
891}
892
893int
894ns8250_bus_receive(struct uart_softc *sc)
895{
896	struct uart_bas *bas;
897	int xc;
898	uint8_t lsr;
899
900	bas = &sc->sc_bas;
901	uart_lock(sc->sc_hwmtx);
902	lsr = uart_getreg(bas, REG_LSR);
903	while (lsr & LSR_RXRDY) {
904		if (uart_rx_full(sc)) {
905			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
906			break;
907		}
908		xc = uart_getreg(bas, REG_DATA);
909		if (lsr & LSR_FE)
910			xc |= UART_STAT_FRAMERR;
911		if (lsr & LSR_PE)
912			xc |= UART_STAT_PARERR;
913		uart_rx_put(sc, xc);
914		lsr = uart_getreg(bas, REG_LSR);
915	}
916	/* Discard everything left in the Rx FIFO. */
917	while (lsr & LSR_RXRDY) {
918		(void)uart_getreg(bas, REG_DATA);
919		uart_barrier(bas);
920		lsr = uart_getreg(bas, REG_LSR);
921	}
922	uart_unlock(sc->sc_hwmtx);
923 	return (0);
924}
925
926int
927ns8250_bus_setsig(struct uart_softc *sc, int sig)
928{
929	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
930	struct uart_bas *bas;
931	uint32_t new, old;
932
933	bas = &sc->sc_bas;
934	do {
935		old = sc->sc_hwsig;
936		new = old;
937		if (sig & SER_DDTR) {
938			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
939		}
940		if (sig & SER_DRTS) {
941			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
942		}
943	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
944	uart_lock(sc->sc_hwmtx);
945	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
946	if (new & SER_DTR)
947		ns8250->mcr |= MCR_DTR;
948	if (new & SER_RTS)
949		ns8250->mcr |= MCR_RTS;
950	uart_setreg(bas, REG_MCR, ns8250->mcr);
951	uart_barrier(bas);
952	uart_unlock(sc->sc_hwmtx);
953	return (0);
954}
955
956int
957ns8250_bus_transmit(struct uart_softc *sc)
958{
959	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
960	struct uart_bas *bas;
961	int i;
962
963	bas = &sc->sc_bas;
964	uart_lock(sc->sc_hwmtx);
965	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
966		;
967	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
968	uart_barrier(bas);
969	for (i = 0; i < sc->sc_txdatasz; i++) {
970		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
971		uart_barrier(bas);
972	}
973	if (broken_txfifo)
974		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
975	else
976		sc->sc_txbusy = 1;
977	uart_unlock(sc->sc_hwmtx);
978	if (broken_txfifo)
979		uart_sched_softih(sc, SER_INT_TXIDLE);
980	return (0);
981}
982
983void
984ns8250_bus_grab(struct uart_softc *sc)
985{
986	struct uart_bas *bas = &sc->sc_bas;
987
988	/*
989	 * turn off all interrupts to enter polling mode. Leave the
990	 * saved mask alone. We'll restore whatever it was in ungrab.
991	 * All pending interupt signals are reset when IER is set to 0.
992	 */
993	uart_lock(sc->sc_hwmtx);
994	uart_setreg(bas, REG_IER, 0);
995	uart_barrier(bas);
996	uart_unlock(sc->sc_hwmtx);
997}
998
999void
1000ns8250_bus_ungrab(struct uart_softc *sc)
1001{
1002	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1003	struct uart_bas *bas = &sc->sc_bas;
1004
1005	/*
1006	 * Restore previous interrupt mask
1007	 */
1008	uart_lock(sc->sc_hwmtx);
1009	uart_setreg(bas, REG_IER, ns8250->ier);
1010	uart_barrier(bas);
1011	uart_unlock(sc->sc_hwmtx);
1012}
1013