1/*
2 * Copyright (c) 2011-2012 Qlogic Corporation
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File: qla_hw.c
30 * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31 * Content: Contains Hardware dependant functions
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: releng/10.3/sys/dev/qlxgb/qla_hw.c 261864 2014-02-14 02:48:14Z davidcs $");
36
37#include "qla_os.h"
38#include "qla_reg.h"
39#include "qla_hw.h"
40#include "qla_def.h"
41#include "qla_inline.h"
42#include "qla_ver.h"
43#include "qla_glbl.h"
44#include "qla_dbg.h"
45
46static uint32_t sysctl_num_rds_rings = 2;
47static uint32_t sysctl_num_sds_rings = 4;
48
49/*
50 * Static Functions
51 */
52
53static void qla_init_cntxt_regions(qla_host_t *ha);
54static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57		uint16_t cntxt_id, uint32_t add_multi);
58static void qla_del_rcv_cntxt(qla_host_t *ha);
59static int qla_init_rcv_cntxt(qla_host_t *ha);
60static void qla_del_xmt_cntxt(qla_host_t *ha);
61static int qla_init_xmt_cntxt(qla_host_t *ha);
62static int qla_get_max_rds(qla_host_t *ha);
63static int qla_get_max_sds(qla_host_t *ha);
64static int qla_get_max_rules(qla_host_t *ha);
65static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66static int qla_get_max_tx_cntxts(qla_host_t *ha);
67static int qla_get_max_mtu(qla_host_t *ha);
68static int qla_get_max_lro(qla_host_t *ha);
69static int qla_get_flow_control(qla_host_t *ha);
70static void qla_hw_tx_done_locked(qla_host_t *ha);
71
72int
73qla_get_msix_count(qla_host_t *ha)
74{
75	return (sysctl_num_sds_rings);
76}
77
78/*
79 * Name: qla_hw_add_sysctls
80 * Function: Add P3Plus specific sysctls
81 */
82void
83qla_hw_add_sysctls(qla_host_t *ha)
84{
85        device_t	dev;
86
87        dev = ha->pci_dev;
88
89        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93
94        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98}
99
100/*
101 * Name: qla_free_dma
102 * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103 */
104void
105qla_free_dma(qla_host_t *ha)
106{
107	uint32_t i;
108
109        if (ha->hw.dma_buf.flags.context) {
110		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111        	ha->hw.dma_buf.flags.context = 0;
112	}
113
114        if (ha->hw.dma_buf.flags.sds_ring) {
115		for (i = 0; i < ha->hw.num_sds_rings; i++)
116			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117        	ha->hw.dma_buf.flags.sds_ring = 0;
118	}
119
120        if (ha->hw.dma_buf.flags.rds_ring) {
121		for (i = 0; i < ha->hw.num_rds_rings; i++)
122			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123        	ha->hw.dma_buf.flags.rds_ring = 0;
124	}
125
126        if (ha->hw.dma_buf.flags.tx_ring) {
127		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128        	ha->hw.dma_buf.flags.tx_ring = 0;
129	}
130}
131
132/*
133 * Name: qla_alloc_dma
134 * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135 */
136int
137qla_alloc_dma(qla_host_t *ha)
138{
139        device_t                dev;
140	uint32_t		i, j, size;
141
142        dev = ha->pci_dev;
143
144        QL_DPRINT2((dev, "%s: enter\n", __func__));
145
146	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148
149	/*
150	 * Allocate Transmit Ring
151	 */
152
153	ha->hw.dma_buf.tx_ring.alignment = 8;
154	ha->hw.dma_buf.tx_ring.size =
155		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156
157        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                goto qla_alloc_dma_exit;
160        }
161        ha->hw.dma_buf.flags.tx_ring = 1;
162
163	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165		ha->hw.dma_buf.tx_ring.dma_b));
166	/*
167	 * Allocate Receive Descriptor Rings
168	 */
169
170	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172
173		if (i == RDS_RING_INDEX_NORMAL) {
174			ha->hw.dma_buf.rds_ring[i].size =
175				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176		} else if (i == RDS_RING_INDEX_JUMBO) {
177			ha->hw.dma_buf.rds_ring[i].size =
178				(sizeof(q80_recv_desc_t)) *
179					NUM_RX_JUMBO_DESCRIPTORS;
180		} else
181			break;
182
183		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185				__func__));
186
187			for (j = 0; j < i; j++)
188				qla_free_dmabuf(ha,
189					&ha->hw.dma_buf.rds_ring[j]);
190
191			goto qla_alloc_dma_exit;
192		}
193		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194			__func__, i,
195			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196			ha->hw.dma_buf.rds_ring[i].dma_b));
197	}
198	ha->hw.dma_buf.flags.rds_ring = 1;
199
200	/*
201	 * Allocate Status Descriptor Rings
202	 */
203
204	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206		ha->hw.dma_buf.sds_ring[i].size =
207			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208
209		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210			device_printf(dev, "%s: sds ring alloc failed\n",
211				__func__);
212
213			for (j = 0; j < i; j++)
214				qla_free_dmabuf(ha,
215					&ha->hw.dma_buf.sds_ring[j]);
216
217			goto qla_alloc_dma_exit;
218		}
219		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220			__func__, i,
221			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222			ha->hw.dma_buf.sds_ring[i].dma_b));
223	}
224	ha->hw.dma_buf.flags.sds_ring = 1;
225
226	/*
227	 * Allocate Context Area
228	 */
229	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230
231	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232
233	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234
235	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236
237	size += sizeof (uint32_t); /* for tx consumer index */
238
239	size = QL_ALIGN(size, PAGE_SIZE);
240
241	ha->hw.dma_buf.context.alignment = 8;
242	ha->hw.dma_buf.context.size = size;
243
244        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                device_printf(dev, "%s: context alloc failed\n", __func__);
246                goto qla_alloc_dma_exit;
247        }
248        ha->hw.dma_buf.flags.context = 1;
249	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251		ha->hw.dma_buf.context.dma_b));
252
253	qla_init_cntxt_regions(ha);
254
255	return 0;
256
257qla_alloc_dma_exit:
258	qla_free_dma(ha);
259	return -1;
260}
261
262/*
263 * Name: qla_init_cntxt_regions
264 * Function: Initializes Tx/Rx Contexts.
265 */
266static void
267qla_init_cntxt_regions(qla_host_t *ha)
268{
269	qla_hw_t		*hw;
270	q80_tx_cntxt_req_t	*tx_cntxt_req;
271	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272	bus_addr_t		phys_addr;
273	uint32_t		i;
274        device_t                dev;
275	uint32_t		size;
276
277        dev = ha->pci_dev;
278
279	hw = &ha->hw;
280
281	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
282
283	for (i = 0; i < ha->hw.num_sds_rings; i++)
284		hw->sds[i].sds_ring_base =
285			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
286
287
288	phys_addr = hw->dma_buf.context.dma_addr;
289
290	memset((void *)hw->dma_buf.context.dma_b, 0,
291		ha->hw.dma_buf.context.size);
292
293	hw->tx_cntxt_req	=
294		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
295	hw->tx_cntxt_req_paddr	= phys_addr;
296
297	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
298
299	hw->tx_cntxt_rsp	=
300		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
301	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
302
303	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
304
305	hw->rx_cntxt_req =
306		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
307	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
308
309	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
310
311	hw->rx_cntxt_rsp =
312		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
313	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
314
315	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
316
317	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
318	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
319
320	/*
321	 * Initialize the Transmit Context Request so that we don't need to
322	 * do it everytime we need to create a context
323	 */
324	tx_cntxt_req = hw->tx_cntxt_req;
325
326	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
327
328	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
329
330	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
331					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
332
333	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
334
335	tx_cntxt_req->phys_addr =
336		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
337
338	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
339
340	/*
341	 * Initialize the Receive Context Request
342	 */
343
344	rx_cntxt_req = hw->rx_cntxt_req;
345
346	rx_cntxt_req->rx_req.rsp_dma_addr =
347		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
348
349	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
350						CNTXT_CAP0_LEGACY_MN |
351						CNTXT_CAP0_JUMBO |
352						CNTXT_CAP0_LRO|
353						CNTXT_CAP0_HW_LRO);
354
355	rx_cntxt_req->rx_req.intr_mode =
356		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
357
358	rx_cntxt_req->rx_req.rds_intr_mode =
359		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
360
361	rx_cntxt_req->rx_req.rds_ring_offset = 0;
362	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
363		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
364	rx_cntxt_req->rx_req.num_rds_rings =
365		qla_host_to_le16(hw->num_rds_rings);
366	rx_cntxt_req->rx_req.num_sds_rings =
367		qla_host_to_le16(hw->num_sds_rings);
368
369	for (i = 0; i < hw->num_rds_rings; i++) {
370		rx_cntxt_req->rds_req[i].phys_addr =
371			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
372
373		if (i == RDS_RING_INDEX_NORMAL) {
374			rx_cntxt_req->rds_req[i].buf_size =
375				qla_host_to_le64(MCLBYTES);
376			rx_cntxt_req->rds_req[i].size =
377				qla_host_to_le32(NUM_RX_DESCRIPTORS);
378		} else {
379			rx_cntxt_req->rds_req[i].buf_size =
380				qla_host_to_le64(MJUM9BYTES);
381			rx_cntxt_req->rds_req[i].size =
382				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
383		}
384	}
385
386	for (i = 0; i < hw->num_sds_rings; i++) {
387		rx_cntxt_req->sds_req[i].phys_addr =
388			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
389		rx_cntxt_req->sds_req[i].size =
390			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
391		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
392	}
393
394	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
395		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
396	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
397		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
398	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
399		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
400	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
401		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
402	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
403		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
404}
405
406/*
407 * Name: qla_issue_cmd
408 * Function: Issues commands on the CDRP interface and returns responses.
409 */
410static int
411qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
412{
413	int	ret = 0;
414	uint32_t signature;
415	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
416	uint32_t data;
417	device_t dev;
418
419	dev = ha->pci_dev;
420
421	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
422
423	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
424
425	if (ret) {
426		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
427		return (ret);
428	}
429
430	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
431
432	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
433	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
434	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
435
436	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
437
438	while (count) {
439		qla_mdelay(__func__, 10);
440
441		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
442
443		if ((!(data & 0x80000000)))
444			break;
445		count--;
446	}
447	if ((!count) || (data != 1))
448		ret = -1;
449
450	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
451	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
452	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
453	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
454
455	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
456
457	if (ret) {
458		device_printf(dev, "%s: "
459			"cmd[0x%08x] = 0x%08x\n"
460			"\tsig[0x%08x] = 0x%08x\n"
461			"\targ1[0x%08x] = 0x%08x\n"
462			"\targ2[0x%08x] = 0x%08x\n"
463			"\targ3[0x%08x] = 0x%08x\n",
464			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
465			Q8_NX_CDRP_SIGNATURE, signature,
466			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
467			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
468			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
469
470		device_printf(dev, "%s: exit (ret = 0x%x)\n"
471			"\t\t rsp = 0x%08x\n"
472			"\t\t arg1 = 0x%08x\n"
473			"\t\t arg2 = 0x%08x\n"
474			"\t\t arg3 = 0x%08x\n",
475			__func__, ret, cdrp->rsp,
476			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
477	}
478
479	return (ret);
480}
481
482#define QLA_TX_MIN_FREE	2
483
484/*
485 * Name: qla_fw_cmd
486 * Function: Issues firmware control commands on the Tx Ring.
487 */
488static int
489qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
490{
491	device_t dev;
492        q80_tx_cmd_t *tx_cmd;
493        qla_hw_t *hw = &ha->hw;
494	int count = 100;
495
496	dev = ha->pci_dev;
497
498	QLA_TX_LOCK(ha);
499
500        if (hw->txr_free <= QLA_TX_MIN_FREE) {
501		while (count--) {
502			qla_hw_tx_done_locked(ha);
503			if (hw->txr_free > QLA_TX_MIN_FREE)
504				break;
505
506			QLA_TX_UNLOCK(ha);
507			qla_mdelay(__func__, 10);
508			QLA_TX_LOCK(ha);
509		}
510        	if (hw->txr_free <= QLA_TX_MIN_FREE) {
511			QLA_TX_UNLOCK(ha);
512			device_printf(dev, "%s: xmit queue full\n", __func__);
513                	return (-1);
514		}
515        }
516        tx_cmd = &hw->tx_ring_base[hw->txr_next];
517
518        bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
519
520	bcopy(fw_cmd, tx_cmd, size);
521
522	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
523	hw->txr_free--;
524
525	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
526
527	QLA_TX_UNLOCK(ha);
528
529	return (0);
530}
531
532/*
533 * Name: qla_config_rss
534 * Function: Configure RSS for the context/interface.
535 */
536const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
537			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
538			0x255b0ec26d5a56daULL };
539
540static int
541qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
542{
543	qla_fw_cds_config_rss_t rss_config;
544	int ret, i;
545
546	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
547
548	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
549	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
550	rss_config.hdr.cntxt_id = cntxt_id;
551
552	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
553					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
554	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
555
556	rss_config.ind_tbl_mask = 0x7;
557
558	for (i = 0; i < 5; i++)
559		rss_config.rss_key[i] = rss_key[i];
560
561	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
562
563	return ret;
564}
565
566/*
567 * Name: qla_config_intr_coalesce
568 * Function: Configure Interrupt Coalescing.
569 */
570static int
571qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
572{
573	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
574	int ret;
575
576	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
577
578	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
579	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
580	intr_coalesce.hdr.cntxt_id = cntxt_id;
581
582	intr_coalesce.flags = 0x04;
583	intr_coalesce.max_rcv_pkts = 256;
584	intr_coalesce.max_rcv_usecs = 3;
585	intr_coalesce.max_snd_pkts = 64;
586	intr_coalesce.max_snd_usecs = 4;
587
588	if (tenable) {
589		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
590		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
591		intr_coalesce.sds_ring_bitmask =
592			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
593	}
594
595	ret = qla_fw_cmd(ha, &intr_coalesce,
596			sizeof(qla_fw_cds_config_intr_coalesc_t));
597
598	return ret;
599}
600
601
602/*
603 * Name: qla_config_mac_addr
604 * Function: binds a MAC address to the context/interface.
605 *	Can be unicast, multicast or broadcast.
606 */
607static int
608qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
609	uint32_t add_multi)
610{
611	qla_fw_cds_config_mac_addr_t mac_config;
612	int ret;
613
614//	device_printf(ha->pci_dev,
615//		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
616//		mac_addr[0], mac_addr[1], mac_addr[2],
617//		mac_addr[3], mac_addr[4], mac_addr[5]);
618
619	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
620
621	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
622	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
623	mac_config.hdr.cntxt_id = cntxt_id;
624
625	if (add_multi)
626		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
627	else
628		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
629	bcopy(mac_addr, mac_config.mac_addr,6);
630
631	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
632
633	return ret;
634}
635
636
637/*
638 * Name: qla_set_mac_rcv_mode
639 * Function: Enable/Disable AllMulticast and Promiscous Modes.
640 */
641static int
642qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
643{
644	qla_set_mac_rcv_mode_t rcv_mode;
645	int ret;
646
647	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
648
649	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
650	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
651	rcv_mode.hdr.cntxt_id = cntxt_id;
652
653	rcv_mode.mode = mode;
654
655	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
656
657	return ret;
658}
659
660void
661qla_set_promisc(qla_host_t *ha)
662{
663	(void)qla_set_mac_rcv_mode(ha,
664		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
665		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
666}
667
668void
669qla_set_allmulti(qla_host_t *ha)
670{
671	(void)qla_set_mac_rcv_mode(ha,
672		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
673		Q8_MAC_RCV_ENABLE_ALLMULTI);
674}
675
676void
677qla_reset_promisc_allmulti(qla_host_t *ha)
678{
679	(void)qla_set_mac_rcv_mode(ha,
680		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
681		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
682}
683
684/*
685 * Name: qla_config_ipv4_addr
686 * Function: Configures the Destination IP Addr for LRO.
687 */
688void
689qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
690{
691	qla_config_ipv4_t ip_conf;
692
693	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
694
695	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
696	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
697	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
698
699	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
700	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
701
702	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
703
704	return;
705}
706
707/*
708 * Name: qla_tx_tso
709 * Function: Checks if the packet to be transmitted is a candidate for
710 *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
711 *	Ring Structure are plugged in.
712 */
713static int
714qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
715{
716	struct ether_vlan_header *eh;
717	struct ip *ip = NULL;
718	struct tcphdr *th = NULL;
719	uint32_t ehdrlen,  hdrlen = 0, ip_hlen, tcp_hlen, tcp_opt_off;
720	uint16_t etype, opcode, offload = 1;
721	uint8_t *tcp_opt;
722	device_t dev;
723
724	dev = ha->pci_dev;
725
726	eh = mtod(mp, struct ether_vlan_header *);
727
728	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
729		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
730		etype = ntohs(eh->evl_proto);
731	} else {
732		ehdrlen = ETHER_HDR_LEN;
733		etype = ntohs(eh->evl_encap_proto);
734	}
735
736	switch (etype) {
737		case ETHERTYPE_IP:
738
739			tcp_opt_off = ehdrlen + sizeof(struct ip) +
740					sizeof(struct tcphdr);
741
742			if (mp->m_len < tcp_opt_off) {
743				m_copydata(mp, 0, tcp_opt_off, hdr);
744				ip = (struct ip *)hdr;
745			} else {
746				ip = (struct ip *)(mp->m_data + ehdrlen);
747			}
748
749			ip_hlen = ip->ip_hl << 2;
750			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
751
752			if ((ip->ip_p != IPPROTO_TCP) ||
753				(ip_hlen != sizeof (struct ip))) {
754				offload = 0;
755			} else {
756				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
757			}
758		break;
759
760		default:
761			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
762			offload = 0;
763		break;
764	}
765
766	if (!offload)
767		return (-1);
768
769	tcp_hlen = th->th_off << 2;
770
771
772	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
773
774	if (mp->m_len < hdrlen) {
775		if (mp->m_len < tcp_opt_off) {
776			if (tcp_hlen > sizeof(struct tcphdr)) {
777				m_copydata(mp, tcp_opt_off,
778					(tcp_hlen - sizeof(struct tcphdr)),
779					&hdr[tcp_opt_off]);
780			}
781		} else {
782			m_copydata(mp, 0, hdrlen, hdr);
783		}
784	}
785
786	if ((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
787
788		/* If TCP options are preset only time stamp option is supported */
789		if ((tcp_hlen - sizeof(struct tcphdr)) != 10)
790			return -1;
791		else {
792
793			if (mp->m_len < hdrlen) {
794				tcp_opt = &hdr[tcp_opt_off];
795			} else {
796				tcp_opt = (uint8_t *)(mp->m_data + tcp_opt_off);
797			}
798
799			if ((*tcp_opt != 0x01) || (*(tcp_opt + 1) != 0x01) ||
800				(*(tcp_opt + 2) != 0x08) || (*(tcp_opt + 2) != 10)) {
801				return -1;
802			}
803		}
804
805		tx_cmd->mss = ha->max_frame_size - ETHER_CRC_LEN - hdrlen;
806	} else {
807		tx_cmd->mss = mp->m_pkthdr.tso_segsz;
808	}
809
810	tx_cmd->flags_opcode = opcode ;
811	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
812	tx_cmd->ip_hdr_off = ehdrlen;
813	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
814	tx_cmd->total_hdr_len = hdrlen;
815
816	/* Check for Multicast least significant bit of MSB == 1 */
817	if (eh->evl_dhost[0] & 0x01) {
818		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
819	}
820
821	if (mp->m_len < hdrlen) {
822		return (1);
823	}
824
825	return (0);
826}
827
828/*
829 * Name: qla_tx_chksum
830 * Function: Checks if the packet to be transmitted is a candidate for
831 *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
832 *	Ring Structure are plugged in.
833 */
834static int
835qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
836{
837	struct ether_vlan_header *eh;
838	struct ip *ip;
839	struct ip6_hdr *ip6;
840	uint32_t ehdrlen, ip_hlen;
841	uint16_t etype, opcode, offload = 1;
842	device_t dev;
843
844	dev = ha->pci_dev;
845
846	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
847		return (-1);
848
849	eh = mtod(mp, struct ether_vlan_header *);
850
851	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
852		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
853		etype = ntohs(eh->evl_proto);
854	} else {
855		ehdrlen = ETHER_HDR_LEN;
856		etype = ntohs(eh->evl_encap_proto);
857	}
858
859
860	switch (etype) {
861		case ETHERTYPE_IP:
862			ip = (struct ip *)(mp->m_data + ehdrlen);
863
864			ip_hlen = sizeof (struct ip);
865
866			if (mp->m_len < (ehdrlen + ip_hlen)) {
867				device_printf(dev, "%s: ipv4 mlen\n", __func__);
868				offload = 0;
869				break;
870			}
871
872			if (ip->ip_p == IPPROTO_TCP)
873				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
874			else if (ip->ip_p == IPPROTO_UDP)
875				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
876			else {
877				device_printf(dev, "%s: ipv4\n", __func__);
878				offload = 0;
879			}
880		break;
881
882		case ETHERTYPE_IPV6:
883			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
884
885			ip_hlen = sizeof(struct ip6_hdr);
886
887			if (mp->m_len < (ehdrlen + ip_hlen)) {
888				device_printf(dev, "%s: ipv6 mlen\n", __func__);
889				offload = 0;
890				break;
891			}
892
893			if (ip6->ip6_nxt == IPPROTO_TCP)
894				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
895			else if (ip6->ip6_nxt == IPPROTO_UDP)
896				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
897			else {
898				device_printf(dev, "%s: ipv6\n", __func__);
899				offload = 0;
900			}
901		break;
902
903		default:
904			offload = 0;
905		break;
906	}
907	if (!offload)
908		return (-1);
909
910	tx_cmd->flags_opcode = opcode;
911
912	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
913
914	return (0);
915}
916
917/*
918 * Name: qla_hw_send
919 * Function: Transmits a packet. It first checks if the packet is a
920 *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
921 *	offload. If either of these creteria are not met, it is transmitted
922 *	as a regular ethernet frame.
923 */
924int
925qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
926	uint32_t *tx_idx,  struct mbuf *mp)
927{
928	struct ether_vlan_header *eh;
929	qla_hw_t *hw = &ha->hw;
930	q80_tx_cmd_t *tx_cmd, tso_cmd;
931	bus_dma_segment_t *c_seg;
932	uint32_t num_tx_cmds, hdr_len = 0;
933	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
934	device_t dev;
935	int i, ret;
936	uint8_t *src = NULL, *dst = NULL;
937
938	dev = ha->pci_dev;
939
940	/*
941	 * Always make sure there is atleast one empty slot in the tx_ring
942	 * tx_ring is considered full when there only one entry available
943	 */
944        num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
945
946	total_length = mp->m_pkthdr.len;
947	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
948		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
949			__func__, total_length);
950		return (-1);
951	}
952	eh = mtod(mp, struct ether_vlan_header *);
953
954	if ((mp->m_pkthdr.len > ha->max_frame_size)||(nsegs > Q8_TX_MAX_SEGMENTS)) {
955
956		bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
957
958		src = ha->hw.frame_hdr;
959		ret = qla_tx_tso(ha, mp, &tso_cmd, src);
960
961		if (!(ret & ~1)) {
962			/* find the additional tx_cmd descriptors required */
963
964			hdr_len = tso_cmd.total_hdr_len;
965
966			bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
967			bytes = QL_MIN(bytes, hdr_len);
968
969			num_tx_cmds++;
970			hdr_len -= bytes;
971
972			while (hdr_len) {
973				bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
974				hdr_len -= bytes;
975				num_tx_cmds++;
976			}
977			hdr_len = tso_cmd.total_hdr_len;
978
979			if (ret == 0)
980				src = (uint8_t *)eh;
981		}
982	}
983
984	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
985		qla_hw_tx_done_locked(ha);
986		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
987        		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
988				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
989				__func__));
990			return (-1);
991		}
992	}
993
994	*tx_idx = hw->txr_next;
995
996        tx_cmd = &hw->tx_ring_base[hw->txr_next];
997
998	if (hdr_len == 0) {
999		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
1000			(mp->m_pkthdr.len > ha->max_frame_size)){
1001        		device_printf(dev,
1002				"%s: (nsegs[%d, %d, 0x%b] > Q8_TX_MAX_SEGMENTS)\n",
1003				__func__, nsegs, mp->m_pkthdr.len,
1004				(int)mp->m_pkthdr.csum_flags, CSUM_BITS);
1005			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
1006				mtod(mp, char *), mp->m_len);
1007			return (EINVAL);
1008		}
1009		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1010		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
1011        		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
1012	} else {
1013		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
1014	}
1015
1016	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
1017        	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
1018	else if (mp->m_flags & M_VLANTAG) {
1019        	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
1020						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
1021		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
1022	}
1023
1024
1025        tx_cmd->n_bufs = (uint8_t)nsegs;
1026        tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
1027        tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
1028	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
1029
1030	c_seg = segs;
1031
1032	while (1) {
1033		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
1034
1035			switch (i) {
1036			case 0:
1037				tx_cmd->buf1_addr = c_seg->ds_addr;
1038				tx_cmd->buf1_len = c_seg->ds_len;
1039				break;
1040
1041			case 1:
1042				tx_cmd->buf2_addr = c_seg->ds_addr;
1043				tx_cmd->buf2_len = c_seg->ds_len;
1044				break;
1045
1046			case 2:
1047				tx_cmd->buf3_addr = c_seg->ds_addr;
1048				tx_cmd->buf3_len = c_seg->ds_len;
1049				break;
1050
1051			case 3:
1052				tx_cmd->buf4_addr = c_seg->ds_addr;
1053				tx_cmd->buf4_len = c_seg->ds_len;
1054				break;
1055			}
1056
1057			c_seg++;
1058			nsegs--;
1059		}
1060
1061		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1062		tx_cmd_count++;
1063
1064		if (!nsegs)
1065			break;
1066
1067        	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1068		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1069	}
1070
1071	if (hdr_len) {
1072		/* TSO : Copy the header in the following tx cmd descriptors */
1073
1074		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1075		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1076
1077		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1078		bytes = QL_MIN(bytes, hdr_len);
1079
1080		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1081
1082		if (mp->m_flags & M_VLANTAG) {
1083			/* first copy the src/dst MAC addresses */
1084			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1085			dst += (ETHER_ADDR_LEN * 2);
1086			src += (ETHER_ADDR_LEN * 2);
1087
1088			hdr_len -= (ETHER_ADDR_LEN * 2);
1089
1090			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1091			dst += 2;
1092			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1093			dst += 2;
1094
1095			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1096
1097			bcopy(src, dst, bytes);
1098			src += bytes;
1099			hdr_len -= bytes;
1100		} else {
1101			bcopy(src, dst, bytes);
1102			src += bytes;
1103			hdr_len -= bytes;
1104		}
1105
1106		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1107		tx_cmd_count++;
1108
1109		while (hdr_len) {
1110			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1111			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1112
1113			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1114
1115			bcopy(src, tx_cmd, bytes);
1116			src += bytes;
1117			hdr_len -= bytes;
1118			hw->txr_next =
1119				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1120			tx_cmd_count++;
1121		}
1122	}
1123
1124	hw->txr_free = hw->txr_free - tx_cmd_count;
1125
1126	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1127       	QL_DPRINT8((dev, "%s: return\n", __func__));
1128	return (0);
1129}
1130
1131/*
1132 * Name: qla_del_hw_if
1133 * Function: Destroys the hardware specific entities corresponding to an
1134 *	Ethernet Interface
1135 */
1136void
1137qla_del_hw_if(qla_host_t *ha)
1138{
1139	int	i;
1140
1141	for (i = 0; i < ha->hw.num_sds_rings; i++)
1142		QL_DISABLE_INTERRUPTS(ha, i);
1143
1144	qla_del_rcv_cntxt(ha);
1145	qla_del_xmt_cntxt(ha);
1146
1147	ha->hw.flags.lro = 0;
1148}
1149
1150/*
1151 * Name: qla_init_hw_if
1152 * Function: Creates the hardware specific entities corresponding to an
1153 *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1154 *	corresponding to the interface. Enables LRO if allowed.
1155 */
1156int
1157qla_init_hw_if(qla_host_t *ha)
1158{
1159	device_t	dev;
1160	int		i;
1161	uint8_t		bcast_mac[6];
1162
1163	qla_get_hw_caps(ha);
1164
1165	dev = ha->pci_dev;
1166
1167	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1168		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1169			ha->hw.dma_buf.sds_ring[i].size);
1170	}
1171	/*
1172	 * Create Receive Context
1173	 */
1174	if (qla_init_rcv_cntxt(ha)) {
1175		return (-1);
1176	}
1177
1178	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1179	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1180	ha->hw.rx_in = ha->hw.rxj_in = 0;
1181
1182	/* Update the RDS Producer Indices */
1183	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1184	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1185
1186	/*
1187	 * Create Transmit Context
1188	 */
1189	if (qla_init_xmt_cntxt(ha)) {
1190		qla_del_rcv_cntxt(ha);
1191		return (-1);
1192	}
1193
1194	qla_config_mac_addr(ha, ha->hw.mac_addr,
1195		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1196
1197	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1198	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1199	qla_config_mac_addr(ha, bcast_mac,
1200		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1201
1202	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1203
1204	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1205
1206	for (i = 0; i < ha->hw.num_sds_rings; i++)
1207		QL_ENABLE_INTERRUPTS(ha, i);
1208
1209	return (0);
1210}
1211
1212/*
1213 * Name: qla_init_rcv_cntxt
1214 * Function: Creates the Receive Context.
1215 */
1216static int
1217qla_init_rcv_cntxt(qla_host_t *ha)
1218{
1219	device_t		dev;
1220	qla_cdrp_t		cdrp;
1221	q80_rcv_cntxt_rsp_t	*rsp;
1222	q80_stat_desc_t		*sdesc;
1223	bus_addr_t		phys_addr;
1224	int			i, j;
1225        qla_hw_t		*hw = &ha->hw;
1226
1227	dev = ha->pci_dev;
1228
1229	/*
1230	 * Create Receive Context
1231	 */
1232
1233	for (i = 0; i < hw->num_sds_rings; i++) {
1234		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1235		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1236			sdesc->data[0] =
1237				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1238		}
1239	}
1240
1241	phys_addr = ha->hw.rx_cntxt_req_paddr;
1242
1243	bzero(&cdrp, sizeof(qla_cdrp_t));
1244
1245	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1246	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1247	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1248	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1249
1250	if (qla_issue_cmd(ha, &cdrp)) {
1251		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1252			__func__);
1253		return (-1);
1254	} else {
1255		rsp = ha->hw.rx_cntxt_rsp;
1256
1257		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1258			" rds_ring_offset = 0x%08x"
1259			" sds_ring_offset = 0x%08x"
1260			" cntxt_state = 0x%08x"
1261			" funcs_per_port = 0x%08x"
1262			" num_rds_rings = 0x%04x"
1263			" num_sds_rings = 0x%04x"
1264			" cntxt_id = 0x%04x"
1265			" phys_port = 0x%02x"
1266			" virt_port = 0x%02x\n",
1267			__func__,
1268			rsp->rx_rsp.rds_ring_offset,
1269			rsp->rx_rsp.sds_ring_offset,
1270			rsp->rx_rsp.cntxt_state,
1271			rsp->rx_rsp.funcs_per_port,
1272			rsp->rx_rsp.num_rds_rings,
1273			rsp->rx_rsp.num_sds_rings,
1274			rsp->rx_rsp.cntxt_id,
1275			rsp->rx_rsp.phys_port,
1276			rsp->rx_rsp.virt_port));
1277
1278		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1279			QL_DPRINT2((dev,
1280				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1281				__func__, i, rsp->rds_rsp[i].producer_reg));
1282		}
1283		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1284			QL_DPRINT2((dev,
1285				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1286				" sds[%i].intr_mask_reg = 0x%08x\n",
1287				__func__, i, rsp->sds_rsp[i].consumer_reg,
1288				i, rsp->sds_rsp[i].intr_mask_reg));
1289		}
1290	}
1291	ha->hw.flags.init_rx_cnxt = 1;
1292	return (0);
1293}
1294
1295/*
1296 * Name: qla_del_rcv_cntxt
1297 * Function: Destroys the Receive Context.
1298 */
1299void
1300qla_del_rcv_cntxt(qla_host_t *ha)
1301{
1302	qla_cdrp_t	cdrp;
1303	device_t	dev = ha->pci_dev;
1304
1305	if (!ha->hw.flags.init_rx_cnxt)
1306		return;
1307
1308	bzero(&cdrp, sizeof(qla_cdrp_t));
1309
1310	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1311	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1312
1313	if (qla_issue_cmd(ha, &cdrp)) {
1314		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1315			__func__);
1316	}
1317	ha->hw.flags.init_rx_cnxt = 0;
1318}
1319
1320/*
1321 * Name: qla_init_xmt_cntxt
1322 * Function: Creates the Transmit Context.
1323 */
1324static int
1325qla_init_xmt_cntxt(qla_host_t *ha)
1326{
1327	bus_addr_t		phys_addr;
1328	device_t		dev;
1329	q80_tx_cntxt_rsp_t	*tx_rsp;
1330	qla_cdrp_t		cdrp;
1331        qla_hw_t		*hw = &ha->hw;
1332
1333	dev = ha->pci_dev;
1334
1335	/*
1336	 * Create Transmit Context
1337	 */
1338	phys_addr = ha->hw.tx_cntxt_req_paddr;
1339	tx_rsp = ha->hw.tx_cntxt_rsp;
1340
1341	hw->txr_comp = hw->txr_next = 0;
1342	*(hw->tx_cons) = 0;
1343
1344	bzero(&cdrp, sizeof(qla_cdrp_t));
1345
1346	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1347	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1348	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1349	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1350
1351	if (qla_issue_cmd(ha, &cdrp)) {
1352		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1353			__func__);
1354		return (-1);
1355	} else {
1356		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1357
1358		QL_DPRINT2((dev, "%s: tx cntxt successful"
1359			" cntxt_state = 0x%08x "
1360			" cntxt_id = 0x%04x "
1361			" phys_port_id = 0x%02x "
1362			" virt_port_id = 0x%02x "
1363			" producer_reg = 0x%08x "
1364			" intr_mask_reg = 0x%08x\n",
1365			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1366			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1367			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1368	}
1369	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1370
1371	ha->hw.flags.init_tx_cnxt = 1;
1372	return (0);
1373}
1374
1375/*
1376 * Name: qla_del_xmt_cntxt
1377 * Function: Destroys the Transmit Context.
1378 */
1379static void
1380qla_del_xmt_cntxt(qla_host_t *ha)
1381{
1382	qla_cdrp_t	cdrp;
1383	device_t	dev = ha->pci_dev;
1384
1385	if (!ha->hw.flags.init_tx_cnxt)
1386		return;
1387
1388	bzero(&cdrp, sizeof(qla_cdrp_t));
1389
1390	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1391	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1392
1393	if (qla_issue_cmd(ha, &cdrp)) {
1394		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1395			__func__);
1396	}
1397	ha->hw.flags.init_tx_cnxt = 0;
1398}
1399
1400/*
1401 * Name: qla_get_max_rds
1402 * Function: Returns the maximum number of Receive Descriptor Rings per context.
1403 */
1404static int
1405qla_get_max_rds(qla_host_t *ha)
1406{
1407	qla_cdrp_t	cdrp;
1408	device_t	dev;
1409
1410	dev = ha->pci_dev;
1411
1412	bzero(&cdrp, sizeof(qla_cdrp_t));
1413
1414	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1415
1416	if (qla_issue_cmd(ha, &cdrp)) {
1417		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1418			__func__);
1419		return (-1);
1420	} else {
1421		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1422		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1423			__func__, ha->hw.max_rds_per_cntxt));
1424	}
1425	return 0;
1426}
1427
1428/*
1429 * Name: qla_get_max_sds
1430 * Function: Returns the maximum number of Status Descriptor Rings per context.
1431 */
1432static int
1433qla_get_max_sds(qla_host_t *ha)
1434{
1435	qla_cdrp_t	cdrp;
1436	device_t	dev;
1437
1438	dev = ha->pci_dev;
1439
1440	bzero(&cdrp, sizeof(qla_cdrp_t));
1441
1442	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1443
1444	if (qla_issue_cmd(ha, &cdrp)) {
1445		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1446			__func__);
1447		return (-1);
1448	} else {
1449		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1450		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1451			__func__, ha->hw.max_sds_per_cntxt));
1452	}
1453	return 0;
1454}
1455
1456/*
1457 * Name: qla_get_max_rules
1458 * Function: Returns the maximum number of Rules per context.
1459 */
1460static int
1461qla_get_max_rules(qla_host_t *ha)
1462{
1463	qla_cdrp_t	cdrp;
1464	device_t	dev;
1465
1466	dev = ha->pci_dev;
1467
1468	bzero(&cdrp, sizeof(qla_cdrp_t));
1469
1470	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1471
1472	if (qla_issue_cmd(ha, &cdrp)) {
1473		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1474			__func__);
1475		return (-1);
1476	} else {
1477		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1478		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1479			__func__, ha->hw.max_rules_per_cntxt));
1480	}
1481	return 0;
1482}
1483
1484/*
1485 * Name: qla_get_max_rcv_cntxts
1486 * Function: Returns the maximum number of Receive Contexts supported.
1487 */
1488static int
1489qla_get_max_rcv_cntxts(qla_host_t *ha)
1490{
1491	qla_cdrp_t	cdrp;
1492	device_t	dev;
1493
1494	dev = ha->pci_dev;
1495
1496	bzero(&cdrp, sizeof(qla_cdrp_t));
1497
1498	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1499
1500	if (qla_issue_cmd(ha, &cdrp)) {
1501		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1502			__func__);
1503		return (-1);
1504	} else {
1505		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1506		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1507			__func__, ha->hw.max_rcv_cntxts));
1508	}
1509	return 0;
1510}
1511
1512/*
1513 * Name: qla_get_max_tx_cntxts
1514 * Function: Returns the maximum number of Transmit Contexts supported.
1515 */
1516static int
1517qla_get_max_tx_cntxts(qla_host_t *ha)
1518{
1519	qla_cdrp_t	cdrp;
1520	device_t	dev;
1521
1522	dev = ha->pci_dev;
1523
1524	bzero(&cdrp, sizeof(qla_cdrp_t));
1525
1526	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1527
1528	if (qla_issue_cmd(ha, &cdrp)) {
1529		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1530			__func__);
1531		return (-1);
1532	} else {
1533		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1534		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1535			__func__, ha->hw.max_xmt_cntxts));
1536	}
1537	return 0;
1538}
1539
1540/*
1541 * Name: qla_get_max_mtu
1542 * Function: Returns the MTU supported for a context.
1543 */
1544static int
1545qla_get_max_mtu(qla_host_t *ha)
1546{
1547	qla_cdrp_t	cdrp;
1548	device_t	dev;
1549
1550	dev = ha->pci_dev;
1551
1552	bzero(&cdrp, sizeof(qla_cdrp_t));
1553
1554	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1555
1556	if (qla_issue_cmd(ha, &cdrp)) {
1557		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1558		return (-1);
1559	} else {
1560		ha->hw.max_mtu = cdrp.rsp_arg1;
1561		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1562			ha->hw.max_mtu));
1563	}
1564	return 0;
1565}
1566
1567/*
1568 * Name: qla_set_max_mtu
1569 * Function:
1570 *	Sets the maximum transfer unit size for the specified rcv context.
1571 */
1572int
1573qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1574{
1575	qla_cdrp_t	cdrp;
1576	device_t	dev;
1577
1578	dev = ha->pci_dev;
1579
1580	bzero(&cdrp, sizeof(qla_cdrp_t));
1581
1582	cdrp.cmd = Q8_CMD_SET_MTU;
1583	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1584	cdrp.cmd_arg2 = mtu;
1585
1586	if (qla_issue_cmd(ha, &cdrp)) {
1587		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1588		return (-1);
1589	} else {
1590		ha->hw.max_mtu = cdrp.rsp_arg1;
1591	}
1592	return 0;
1593}
1594
1595/*
1596 * Name: qla_get_max_lro
1597 * Function: Returns the maximum number of TCP Connection which can be supported
1598 *	with LRO.
1599 */
1600static int
1601qla_get_max_lro(qla_host_t *ha)
1602{
1603	qla_cdrp_t	cdrp;
1604	device_t	dev;
1605
1606	dev = ha->pci_dev;
1607
1608	bzero(&cdrp, sizeof(qla_cdrp_t));
1609
1610	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1611
1612	if (qla_issue_cmd(ha, &cdrp)) {
1613		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1614		return (-1);
1615	} else {
1616		ha->hw.max_lro = cdrp.rsp_arg1;
1617		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1618			ha->hw.max_lro));
1619	}
1620	return 0;
1621}
1622
1623/*
1624 * Name: qla_get_flow_control
1625 * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1626 *	PCI function.
1627 */
1628static int
1629qla_get_flow_control(qla_host_t *ha)
1630{
1631	qla_cdrp_t	cdrp;
1632	device_t	dev;
1633
1634	dev = ha->pci_dev;
1635
1636	bzero(&cdrp, sizeof(qla_cdrp_t));
1637
1638	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1639
1640	if (qla_issue_cmd(ha, &cdrp)) {
1641		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1642			__func__);
1643		return (-1);
1644	} else {
1645		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1646			cdrp.rsp_arg1));
1647	}
1648	return 0;
1649}
1650
1651/*
1652 * Name: qla_get_flow_control
1653 * Function: Retrieves hardware capabilities
1654 */
1655void
1656qla_get_hw_caps(qla_host_t *ha)
1657{
1658	//qla_read_mac_addr(ha);
1659	qla_get_max_rds(ha);
1660	qla_get_max_sds(ha);
1661	qla_get_max_rules(ha);
1662	qla_get_max_rcv_cntxts(ha);
1663	qla_get_max_tx_cntxts(ha);
1664	qla_get_max_mtu(ha);
1665	qla_get_max_lro(ha);
1666	qla_get_flow_control(ha);
1667	return;
1668}
1669
1670/*
1671 * Name: qla_hw_set_multi
1672 * Function: Sets the Multicast Addresses provided the host O.S into the
1673 *	hardware (for the given interface)
1674 */
1675void
1676qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1677	uint32_t add_multi)
1678{
1679	q80_rcv_cntxt_rsp_t	*rsp;
1680	int i;
1681
1682	rsp = ha->hw.rx_cntxt_rsp;
1683	for (i = 0; i < mcnt; i++) {
1684		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1685		mta += Q8_MAC_ADDR_LEN;
1686	}
1687	return;
1688}
1689
1690/*
1691 * Name: qla_hw_tx_done_locked
1692 * Function: Handle Transmit Completions
1693 */
1694static void
1695qla_hw_tx_done_locked(qla_host_t *ha)
1696{
1697	qla_tx_buf_t *txb;
1698        qla_hw_t *hw = &ha->hw;
1699	uint32_t comp_idx, comp_count = 0;
1700
1701	/* retrieve index of last entry in tx ring completed */
1702	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1703
1704	while (comp_idx != hw->txr_comp) {
1705
1706		txb = &ha->tx_buf[hw->txr_comp];
1707
1708		hw->txr_comp++;
1709		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1710			hw->txr_comp = 0;
1711
1712		comp_count++;
1713
1714		if (txb->m_head) {
1715			bus_dmamap_sync(ha->tx_tag, txb->map,
1716				BUS_DMASYNC_POSTWRITE);
1717			bus_dmamap_unload(ha->tx_tag, txb->map);
1718			bus_dmamap_destroy(ha->tx_tag, txb->map);
1719			m_freem(txb->m_head);
1720
1721			txb->map = (bus_dmamap_t)0;
1722			txb->m_head = NULL;
1723		}
1724	}
1725
1726	hw->txr_free += comp_count;
1727
1728       	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1729		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1730
1731	return;
1732}
1733
1734/*
1735 * Name: qla_hw_tx_done
1736 * Function: Handle Transmit Completions
1737 */
1738void
1739qla_hw_tx_done(qla_host_t *ha)
1740{
1741	if (!mtx_trylock(&ha->tx_lock)) {
1742       		QL_DPRINT8((ha->pci_dev,
1743			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1744		return;
1745	}
1746	qla_hw_tx_done_locked(ha);
1747
1748	if (ha->hw.txr_free > free_pkt_thres)
1749		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1750
1751	mtx_unlock(&ha->tx_lock);
1752	return;
1753}
1754
1755void
1756qla_update_link_state(qla_host_t *ha)
1757{
1758	uint32_t link_state;
1759	uint32_t prev_link_state;
1760
1761	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1762		ha->hw.flags.link_up = 0;
1763		return;
1764	}
1765	link_state = READ_REG32(ha, Q8_LINK_STATE);
1766
1767	prev_link_state =  ha->hw.flags.link_up;
1768
1769	if (ha->pci_func == 0)
1770		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1771	else
1772		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1773
1774	if (prev_link_state !=  ha->hw.flags.link_up) {
1775		if (ha->hw.flags.link_up) {
1776			if_link_state_change(ha->ifp, LINK_STATE_UP);
1777		} else {
1778			if_link_state_change(ha->ifp, LINK_STATE_DOWN);
1779		}
1780	}
1781}
1782
1783int
1784qla_config_lro(qla_host_t *ha)
1785{
1786	int i;
1787        qla_hw_t *hw = &ha->hw;
1788	struct lro_ctrl *lro;
1789
1790	for (i = 0; i < hw->num_sds_rings; i++) {
1791		lro = &hw->sds[i].lro;
1792		if (tcp_lro_init(lro)) {
1793			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1794				__func__);
1795			return (-1);
1796		}
1797		lro->ifp = ha->ifp;
1798	}
1799	ha->flags.lro_init = 1;
1800
1801	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1802	return (0);
1803}
1804
1805void
1806qla_free_lro(qla_host_t *ha)
1807{
1808	int i;
1809        qla_hw_t *hw = &ha->hw;
1810	struct lro_ctrl *lro;
1811
1812	if (!ha->flags.lro_init)
1813		return;
1814
1815	for (i = 0; i < hw->num_sds_rings; i++) {
1816		lro = &hw->sds[i].lro;
1817		tcp_lro_free(lro);
1818	}
1819	ha->flags.lro_init = 0;
1820}
1821
1822void
1823qla_hw_stop_rcv(qla_host_t *ha)
1824{
1825	int i, done, count = 100;
1826
1827	while (count--) {
1828		done = 1;
1829		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1830			if (ha->hw.sds[i].rcv_active)
1831				done = 0;
1832		}
1833		if (done)
1834			break;
1835		else
1836			qla_mdelay(__func__, 10);
1837	}
1838}
1839
1840