1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: releng/10.3/sys/dev/ixgbe/ixgbe_common.c 295528 2016-02-11 16:54:23Z smh $*/
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47					u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55					 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57					     u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59					      u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61						 u16 offset);
62
63/**
64 *  ixgbe_init_ops_generic - Inits function ptrs
65 *  @hw: pointer to the hardware structure
66 *
67 *  Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72	struct ixgbe_mac_info *mac = &hw->mac;
73	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75	DEBUGFUNC("ixgbe_init_ops_generic");
76
77	/* EEPROM */
78	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80	if (eec & IXGBE_EEC_PRES) {
81		eeprom->ops.read = ixgbe_read_eerd_generic;
82		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83	} else {
84		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85		eeprom->ops.read_buffer =
86				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87	}
88	eeprom->ops.write = ixgbe_write_eeprom_generic;
89	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90	eeprom->ops.validate_checksum =
91				      ixgbe_validate_eeprom_checksum_generic;
92	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95	/* MAC */
96	mac->ops.init_hw = ixgbe_init_hw_generic;
97	mac->ops.reset_hw = NULL;
98	mac->ops.start_hw = ixgbe_start_hw_generic;
99	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100	mac->ops.get_media_type = NULL;
101	mac->ops.get_supported_physical_layer = NULL;
102	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112	/* LEDs */
113	mac->ops.led_on = ixgbe_led_on_generic;
114	mac->ops.led_off = ixgbe_led_off_generic;
115	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117
118	/* RAR, Multicast, VLAN */
119	mac->ops.set_rar = ixgbe_set_rar_generic;
120	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121	mac->ops.insert_mac_addr = NULL;
122	mac->ops.set_vmdq = NULL;
123	mac->ops.clear_vmdq = NULL;
124	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129	mac->ops.clear_vfta = NULL;
130	mac->ops.set_vfta = NULL;
131	mac->ops.set_vlvf = NULL;
132	mac->ops.init_uta_tables = NULL;
133	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135
136	/* Flow Control */
137	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139
140	/* Link */
141	mac->ops.get_link_capabilities = NULL;
142	mac->ops.setup_link = NULL;
143	mac->ops.check_link = NULL;
144	mac->ops.dmac_config = NULL;
145	mac->ops.dmac_update_tcs = NULL;
146	mac->ops.dmac_config_tcs = NULL;
147
148	return IXGBE_SUCCESS;
149}
150
151/**
152 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153 * of flow control
154 * @hw: pointer to hardware structure
155 *
156 * This function returns TRUE if the device supports flow control
157 * autonegotiation, and FALSE if it does not.
158 *
159 **/
160bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161{
162	bool supported = FALSE;
163	ixgbe_link_speed speed;
164	bool link_up;
165
166	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167
168	switch (hw->phy.media_type) {
169	case ixgbe_media_type_fiber_fixed:
170	case ixgbe_media_type_fiber_qsfp:
171	case ixgbe_media_type_fiber:
172		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173		/* if link is down, assume supported */
174		if (link_up)
175			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176				TRUE : FALSE;
177		else
178			supported = TRUE;
179		break;
180	case ixgbe_media_type_backplane:
181		supported = TRUE;
182		break;
183	case ixgbe_media_type_copper:
184		/* only some copper devices support flow control autoneg */
185		switch (hw->device_id) {
186		case IXGBE_DEV_ID_82599_T3_LOM:
187		case IXGBE_DEV_ID_X540T:
188		case IXGBE_DEV_ID_X540T1:
189		case IXGBE_DEV_ID_X540_BYPASS:
190		case IXGBE_DEV_ID_X550T:
191		case IXGBE_DEV_ID_X550T1:
192		case IXGBE_DEV_ID_X550EM_X_10G_T:
193			supported = TRUE;
194			break;
195		default:
196			supported = FALSE;
197		}
198	default:
199		break;
200	}
201
202	if (!supported) {
203		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
204		      "Device %x does not support flow control autoneg",
205		      hw->device_id);
206	}
207
208	return supported;
209}
210
211/**
212 *  ixgbe_setup_fc_generic - Set up flow control
213 *  @hw: pointer to hardware structure
214 *
215 *  Called at init time to set up flow control.
216 **/
217s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
218{
219	s32 ret_val = IXGBE_SUCCESS;
220	u32 reg = 0, reg_bp = 0;
221	u16 reg_cu = 0;
222	bool locked = FALSE;
223
224	DEBUGFUNC("ixgbe_setup_fc_generic");
225
226	/* Validate the requested mode */
227	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
228		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
229			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
230		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
231		goto out;
232	}
233
234	/*
235	 * 10gig parts do not have a word in the EEPROM to determine the
236	 * default flow control setting, so we explicitly set it to full.
237	 */
238	if (hw->fc.requested_mode == ixgbe_fc_default)
239		hw->fc.requested_mode = ixgbe_fc_full;
240
241	/*
242	 * Set up the 1G and 10G flow control advertisement registers so the
243	 * HW will be able to do fc autoneg once the cable is plugged in.  If
244	 * we link at 10G, the 1G advertisement is harmless and vice versa.
245	 */
246	switch (hw->phy.media_type) {
247	case ixgbe_media_type_backplane:
248		/* some MAC's need RMW protection on AUTOC */
249		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
250		if (ret_val != IXGBE_SUCCESS)
251			goto out;
252
253		/* only backplane uses autoc so fall though */
254	case ixgbe_media_type_fiber_fixed:
255	case ixgbe_media_type_fiber_qsfp:
256	case ixgbe_media_type_fiber:
257		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
258
259		break;
260	case ixgbe_media_type_copper:
261		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
262				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
263		break;
264	default:
265		break;
266	}
267
268	/*
269	 * The possible values of fc.requested_mode are:
270	 * 0: Flow control is completely disabled
271	 * 1: Rx flow control is enabled (we can receive pause frames,
272	 *    but not send pause frames).
273	 * 2: Tx flow control is enabled (we can send pause frames but
274	 *    we do not support receiving pause frames).
275	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
276	 * other: Invalid.
277	 */
278	switch (hw->fc.requested_mode) {
279	case ixgbe_fc_none:
280		/* Flow control completely disabled by software override. */
281		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
282		if (hw->phy.media_type == ixgbe_media_type_backplane)
283			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
284				    IXGBE_AUTOC_ASM_PAUSE);
285		else if (hw->phy.media_type == ixgbe_media_type_copper)
286			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
287		break;
288	case ixgbe_fc_tx_pause:
289		/*
290		 * Tx Flow control is enabled, and Rx Flow control is
291		 * disabled by software override.
292		 */
293		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
294		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
295		if (hw->phy.media_type == ixgbe_media_type_backplane) {
296			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
297			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
298		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
299			reg_cu |= IXGBE_TAF_ASM_PAUSE;
300			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
301		}
302		break;
303	case ixgbe_fc_rx_pause:
304		/*
305		 * Rx Flow control is enabled and Tx Flow control is
306		 * disabled by software override. Since there really
307		 * isn't a way to advertise that we are capable of RX
308		 * Pause ONLY, we will advertise that we support both
309		 * symmetric and asymmetric Rx PAUSE, as such we fall
310		 * through to the fc_full statement.  Later, we will
311		 * disable the adapter's ability to send PAUSE frames.
312		 */
313	case ixgbe_fc_full:
314		/* Flow control (both Rx and Tx) is enabled by SW override. */
315		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
316		if (hw->phy.media_type == ixgbe_media_type_backplane)
317			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
318				  IXGBE_AUTOC_ASM_PAUSE;
319		else if (hw->phy.media_type == ixgbe_media_type_copper)
320			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
321		break;
322	default:
323		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
324			     "Flow control param set incorrectly\n");
325		ret_val = IXGBE_ERR_CONFIG;
326		goto out;
327		break;
328	}
329
330	if (hw->mac.type < ixgbe_mac_X540) {
331		/*
332		 * Enable auto-negotiation between the MAC & PHY;
333		 * the MAC will advertise clause 37 flow control.
334		 */
335		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
336		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
337
338		/* Disable AN timeout */
339		if (hw->fc.strict_ieee)
340			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
341
342		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
343		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
344	}
345
346	/*
347	 * AUTOC restart handles negotiation of 1G and 10G on backplane
348	 * and copper. There is no need to set the PCS1GCTL register.
349	 *
350	 */
351	if (hw->phy.media_type == ixgbe_media_type_backplane) {
352		reg_bp |= IXGBE_AUTOC_AN_RESTART;
353		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
354		if (ret_val)
355			goto out;
356	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
357		    (ixgbe_device_supports_autoneg_fc(hw))) {
358		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
359				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
360	}
361
362	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363out:
364	return ret_val;
365}
366
367/**
368 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
369 *  @hw: pointer to hardware structure
370 *
371 *  Starts the hardware by filling the bus info structure and media type, clears
372 *  all on chip counters, initializes receive address registers, multicast
373 *  table, VLAN filter table, calls routine to set up link and flow control
374 *  settings, and leaves transmit and receive units disabled and uninitialized
375 **/
376s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
377{
378	s32 ret_val;
379	u32 ctrl_ext;
380
381	DEBUGFUNC("ixgbe_start_hw_generic");
382
383	/* Set the media type */
384	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
385
386	/* PHY ops initialization must be done in reset_hw() */
387
388	/* Clear the VLAN filter table */
389	hw->mac.ops.clear_vfta(hw);
390
391	/* Clear statistics registers */
392	hw->mac.ops.clear_hw_cntrs(hw);
393
394	/* Set No Snoop Disable */
395	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
396	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
397	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
398	IXGBE_WRITE_FLUSH(hw);
399
400	/* Setup flow control */
401	ret_val = ixgbe_setup_fc(hw);
402	if (ret_val != IXGBE_SUCCESS)
403		goto out;
404
405	/* Clear adapter stopped flag */
406	hw->adapter_stopped = FALSE;
407
408out:
409	return ret_val;
410}
411
412/**
413 *  ixgbe_start_hw_gen2 - Init sequence for common device family
414 *  @hw: pointer to hw structure
415 *
416 * Performs the init sequence common to the second generation
417 * of 10 GbE devices.
418 * Devices in the second generation:
419 *     82599
420 *     X540
421 **/
422s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
423{
424	u32 i;
425	u32 regval;
426
427	/* Clear the rate limiters */
428	for (i = 0; i < hw->mac.max_tx_queues; i++) {
429		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
430		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
431	}
432	IXGBE_WRITE_FLUSH(hw);
433
434	/* Disable relaxed ordering */
435	for (i = 0; i < hw->mac.max_tx_queues; i++) {
436		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
437		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
438		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
439	}
440
441	for (i = 0; i < hw->mac.max_rx_queues; i++) {
442		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
443		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
444			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
445		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
446	}
447
448	return IXGBE_SUCCESS;
449}
450
451/**
452 *  ixgbe_init_hw_generic - Generic hardware initialization
453 *  @hw: pointer to hardware structure
454 *
455 *  Initialize the hardware by resetting the hardware, filling the bus info
456 *  structure and media type, clears all on chip counters, initializes receive
457 *  address registers, multicast table, VLAN filter table, calls routine to set
458 *  up link and flow control settings, and leaves transmit and receive units
459 *  disabled and uninitialized
460 **/
461s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
462{
463	s32 status;
464
465	DEBUGFUNC("ixgbe_init_hw_generic");
466
467	/* Reset the hardware */
468	status = hw->mac.ops.reset_hw(hw);
469
470	if (status == IXGBE_SUCCESS) {
471		/* Start the HW */
472		status = hw->mac.ops.start_hw(hw);
473	}
474
475	return status;
476}
477
478/**
479 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
480 *  @hw: pointer to hardware structure
481 *
482 *  Clears all hardware statistics counters by reading them from the hardware
483 *  Statistics counters are clear on read.
484 **/
485s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
486{
487	u16 i = 0;
488
489	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
490
491	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
492	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
493	IXGBE_READ_REG(hw, IXGBE_ERRBC);
494	IXGBE_READ_REG(hw, IXGBE_MSPDC);
495	for (i = 0; i < 8; i++)
496		IXGBE_READ_REG(hw, IXGBE_MPC(i));
497
498	IXGBE_READ_REG(hw, IXGBE_MLFC);
499	IXGBE_READ_REG(hw, IXGBE_MRFC);
500	IXGBE_READ_REG(hw, IXGBE_RLEC);
501	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
502	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
503	if (hw->mac.type >= ixgbe_mac_82599EB) {
504		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
505		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
506	} else {
507		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
508		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
509	}
510
511	for (i = 0; i < 8; i++) {
512		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
513		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
514		if (hw->mac.type >= ixgbe_mac_82599EB) {
515			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
516			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
517		} else {
518			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
519			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
520		}
521	}
522	if (hw->mac.type >= ixgbe_mac_82599EB)
523		for (i = 0; i < 8; i++)
524			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
525	IXGBE_READ_REG(hw, IXGBE_PRC64);
526	IXGBE_READ_REG(hw, IXGBE_PRC127);
527	IXGBE_READ_REG(hw, IXGBE_PRC255);
528	IXGBE_READ_REG(hw, IXGBE_PRC511);
529	IXGBE_READ_REG(hw, IXGBE_PRC1023);
530	IXGBE_READ_REG(hw, IXGBE_PRC1522);
531	IXGBE_READ_REG(hw, IXGBE_GPRC);
532	IXGBE_READ_REG(hw, IXGBE_BPRC);
533	IXGBE_READ_REG(hw, IXGBE_MPRC);
534	IXGBE_READ_REG(hw, IXGBE_GPTC);
535	IXGBE_READ_REG(hw, IXGBE_GORCL);
536	IXGBE_READ_REG(hw, IXGBE_GORCH);
537	IXGBE_READ_REG(hw, IXGBE_GOTCL);
538	IXGBE_READ_REG(hw, IXGBE_GOTCH);
539	if (hw->mac.type == ixgbe_mac_82598EB)
540		for (i = 0; i < 8; i++)
541			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
542	IXGBE_READ_REG(hw, IXGBE_RUC);
543	IXGBE_READ_REG(hw, IXGBE_RFC);
544	IXGBE_READ_REG(hw, IXGBE_ROC);
545	IXGBE_READ_REG(hw, IXGBE_RJC);
546	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
547	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
548	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
549	IXGBE_READ_REG(hw, IXGBE_TORL);
550	IXGBE_READ_REG(hw, IXGBE_TORH);
551	IXGBE_READ_REG(hw, IXGBE_TPR);
552	IXGBE_READ_REG(hw, IXGBE_TPT);
553	IXGBE_READ_REG(hw, IXGBE_PTC64);
554	IXGBE_READ_REG(hw, IXGBE_PTC127);
555	IXGBE_READ_REG(hw, IXGBE_PTC255);
556	IXGBE_READ_REG(hw, IXGBE_PTC511);
557	IXGBE_READ_REG(hw, IXGBE_PTC1023);
558	IXGBE_READ_REG(hw, IXGBE_PTC1522);
559	IXGBE_READ_REG(hw, IXGBE_MPTC);
560	IXGBE_READ_REG(hw, IXGBE_BPTC);
561	for (i = 0; i < 16; i++) {
562		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
563		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
564		if (hw->mac.type >= ixgbe_mac_82599EB) {
565			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
566			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
567			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
568			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
569			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
570		} else {
571			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
572			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
573		}
574	}
575
576	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
577		if (hw->phy.id == 0)
578			ixgbe_identify_phy(hw);
579		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
580				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
581		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
582				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
583		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
584				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
585		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
586				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
587	}
588
589	return IXGBE_SUCCESS;
590}
591
592/**
593 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
594 *  @hw: pointer to hardware structure
595 *  @pba_num: stores the part number string from the EEPROM
596 *  @pba_num_size: part number string buffer length
597 *
598 *  Reads the part number string from the EEPROM.
599 **/
600s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
601				  u32 pba_num_size)
602{
603	s32 ret_val;
604	u16 data;
605	u16 pba_ptr;
606	u16 offset;
607	u16 length;
608
609	DEBUGFUNC("ixgbe_read_pba_string_generic");
610
611	if (pba_num == NULL) {
612		DEBUGOUT("PBA string buffer was null\n");
613		return IXGBE_ERR_INVALID_ARGUMENT;
614	}
615
616	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
617	if (ret_val) {
618		DEBUGOUT("NVM Read Error\n");
619		return ret_val;
620	}
621
622	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
623	if (ret_val) {
624		DEBUGOUT("NVM Read Error\n");
625		return ret_val;
626	}
627
628	/*
629	 * if data is not ptr guard the PBA must be in legacy format which
630	 * means pba_ptr is actually our second data word for the PBA number
631	 * and we can decode it into an ascii string
632	 */
633	if (data != IXGBE_PBANUM_PTR_GUARD) {
634		DEBUGOUT("NVM PBA number is not stored as string\n");
635
636		/* we will need 11 characters to store the PBA */
637		if (pba_num_size < 11) {
638			DEBUGOUT("PBA string buffer too small\n");
639			return IXGBE_ERR_NO_SPACE;
640		}
641
642		/* extract hex string from data and pba_ptr */
643		pba_num[0] = (data >> 12) & 0xF;
644		pba_num[1] = (data >> 8) & 0xF;
645		pba_num[2] = (data >> 4) & 0xF;
646		pba_num[3] = data & 0xF;
647		pba_num[4] = (pba_ptr >> 12) & 0xF;
648		pba_num[5] = (pba_ptr >> 8) & 0xF;
649		pba_num[6] = '-';
650		pba_num[7] = 0;
651		pba_num[8] = (pba_ptr >> 4) & 0xF;
652		pba_num[9] = pba_ptr & 0xF;
653
654		/* put a null character on the end of our string */
655		pba_num[10] = '\0';
656
657		/* switch all the data but the '-' to hex char */
658		for (offset = 0; offset < 10; offset++) {
659			if (pba_num[offset] < 0xA)
660				pba_num[offset] += '0';
661			else if (pba_num[offset] < 0x10)
662				pba_num[offset] += 'A' - 0xA;
663		}
664
665		return IXGBE_SUCCESS;
666	}
667
668	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
669	if (ret_val) {
670		DEBUGOUT("NVM Read Error\n");
671		return ret_val;
672	}
673
674	if (length == 0xFFFF || length == 0) {
675		DEBUGOUT("NVM PBA number section invalid length\n");
676		return IXGBE_ERR_PBA_SECTION;
677	}
678
679	/* check if pba_num buffer is big enough */
680	if (pba_num_size  < (((u32)length * 2) - 1)) {
681		DEBUGOUT("PBA string buffer too small\n");
682		return IXGBE_ERR_NO_SPACE;
683	}
684
685	/* trim pba length from start of string */
686	pba_ptr++;
687	length--;
688
689	for (offset = 0; offset < length; offset++) {
690		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
691		if (ret_val) {
692			DEBUGOUT("NVM Read Error\n");
693			return ret_val;
694		}
695		pba_num[offset * 2] = (u8)(data >> 8);
696		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
697	}
698	pba_num[offset * 2] = '\0';
699
700	return IXGBE_SUCCESS;
701}
702
703/**
704 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
705 *  @hw: pointer to hardware structure
706 *  @pba_num: stores the part number from the EEPROM
707 *
708 *  Reads the part number from the EEPROM.
709 **/
710s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
711{
712	s32 ret_val;
713	u16 data;
714
715	DEBUGFUNC("ixgbe_read_pba_num_generic");
716
717	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
718	if (ret_val) {
719		DEBUGOUT("NVM Read Error\n");
720		return ret_val;
721	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
722		DEBUGOUT("NVM Not supported\n");
723		return IXGBE_NOT_IMPLEMENTED;
724	}
725	*pba_num = (u32)(data << 16);
726
727	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
728	if (ret_val) {
729		DEBUGOUT("NVM Read Error\n");
730		return ret_val;
731	}
732	*pba_num |= data;
733
734	return IXGBE_SUCCESS;
735}
736
737/**
738 *  ixgbe_read_pba_raw
739 *  @hw: pointer to the HW structure
740 *  @eeprom_buf: optional pointer to EEPROM image
741 *  @eeprom_buf_size: size of EEPROM image in words
742 *  @max_pba_block_size: PBA block size limit
743 *  @pba: pointer to output PBA structure
744 *
745 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
746 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
747 *
748 **/
749s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
750		       u32 eeprom_buf_size, u16 max_pba_block_size,
751		       struct ixgbe_pba *pba)
752{
753	s32 ret_val;
754	u16 pba_block_size;
755
756	if (pba == NULL)
757		return IXGBE_ERR_PARAM;
758
759	if (eeprom_buf == NULL) {
760		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
761						     &pba->word[0]);
762		if (ret_val)
763			return ret_val;
764	} else {
765		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
766			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
767			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
768		} else {
769			return IXGBE_ERR_PARAM;
770		}
771	}
772
773	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
774		if (pba->pba_block == NULL)
775			return IXGBE_ERR_PARAM;
776
777		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
778						   eeprom_buf_size,
779						   &pba_block_size);
780		if (ret_val)
781			return ret_val;
782
783		if (pba_block_size > max_pba_block_size)
784			return IXGBE_ERR_PARAM;
785
786		if (eeprom_buf == NULL) {
787			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
788							     pba_block_size,
789							     pba->pba_block);
790			if (ret_val)
791				return ret_val;
792		} else {
793			if (eeprom_buf_size > (u32)(pba->word[1] +
794					      pba_block_size)) {
795				memcpy(pba->pba_block,
796				       &eeprom_buf[pba->word[1]],
797				       pba_block_size * sizeof(u16));
798			} else {
799				return IXGBE_ERR_PARAM;
800			}
801		}
802	}
803
804	return IXGBE_SUCCESS;
805}
806
807/**
808 *  ixgbe_write_pba_raw
809 *  @hw: pointer to the HW structure
810 *  @eeprom_buf: optional pointer to EEPROM image
811 *  @eeprom_buf_size: size of EEPROM image in words
812 *  @pba: pointer to PBA structure
813 *
814 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
815 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
816 *
817 **/
818s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
819			u32 eeprom_buf_size, struct ixgbe_pba *pba)
820{
821	s32 ret_val;
822
823	if (pba == NULL)
824		return IXGBE_ERR_PARAM;
825
826	if (eeprom_buf == NULL) {
827		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
828						      &pba->word[0]);
829		if (ret_val)
830			return ret_val;
831	} else {
832		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
833			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
834			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
835		} else {
836			return IXGBE_ERR_PARAM;
837		}
838	}
839
840	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
841		if (pba->pba_block == NULL)
842			return IXGBE_ERR_PARAM;
843
844		if (eeprom_buf == NULL) {
845			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
846							      pba->pba_block[0],
847							      pba->pba_block);
848			if (ret_val)
849				return ret_val;
850		} else {
851			if (eeprom_buf_size > (u32)(pba->word[1] +
852					      pba->pba_block[0])) {
853				memcpy(&eeprom_buf[pba->word[1]],
854				       pba->pba_block,
855				       pba->pba_block[0] * sizeof(u16));
856			} else {
857				return IXGBE_ERR_PARAM;
858			}
859		}
860	}
861
862	return IXGBE_SUCCESS;
863}
864
865/**
866 *  ixgbe_get_pba_block_size
867 *  @hw: pointer to the HW structure
868 *  @eeprom_buf: optional pointer to EEPROM image
869 *  @eeprom_buf_size: size of EEPROM image in words
870 *  @pba_data_size: pointer to output variable
871 *
872 *  Returns the size of the PBA block in words. Function operates on EEPROM
873 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
874 *  EEPROM device.
875 *
876 **/
877s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
878			     u32 eeprom_buf_size, u16 *pba_block_size)
879{
880	s32 ret_val;
881	u16 pba_word[2];
882	u16 length;
883
884	DEBUGFUNC("ixgbe_get_pba_block_size");
885
886	if (eeprom_buf == NULL) {
887		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
888						     &pba_word[0]);
889		if (ret_val)
890			return ret_val;
891	} else {
892		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
893			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
894			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
895		} else {
896			return IXGBE_ERR_PARAM;
897		}
898	}
899
900	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
901		if (eeprom_buf == NULL) {
902			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
903						      &length);
904			if (ret_val)
905				return ret_val;
906		} else {
907			if (eeprom_buf_size > pba_word[1])
908				length = eeprom_buf[pba_word[1] + 0];
909			else
910				return IXGBE_ERR_PARAM;
911		}
912
913		if (length == 0xFFFF || length == 0)
914			return IXGBE_ERR_PBA_SECTION;
915	} else {
916		/* PBA number in legacy format, there is no PBA Block. */
917		length = 0;
918	}
919
920	if (pba_block_size != NULL)
921		*pba_block_size = length;
922
923	return IXGBE_SUCCESS;
924}
925
926/**
927 *  ixgbe_get_mac_addr_generic - Generic get MAC address
928 *  @hw: pointer to hardware structure
929 *  @mac_addr: Adapter MAC address
930 *
931 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
932 *  A reset of the adapter must be performed prior to calling this function
933 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
934 **/
935s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
936{
937	u32 rar_high;
938	u32 rar_low;
939	u16 i;
940
941	DEBUGFUNC("ixgbe_get_mac_addr_generic");
942
943	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
944	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
945
946	for (i = 0; i < 4; i++)
947		mac_addr[i] = (u8)(rar_low >> (i*8));
948
949	for (i = 0; i < 2; i++)
950		mac_addr[i+4] = (u8)(rar_high >> (i*8));
951
952	return IXGBE_SUCCESS;
953}
954
955/**
956 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
957 *  @hw: pointer to hardware structure
958 *  @link_status: the link status returned by the PCI config space
959 *
960 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
961 **/
962void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
963{
964	struct ixgbe_mac_info *mac = &hw->mac;
965
966	if (hw->bus.type == ixgbe_bus_type_unknown)
967		hw->bus.type = ixgbe_bus_type_pci_express;
968
969	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
970	case IXGBE_PCI_LINK_WIDTH_1:
971		hw->bus.width = ixgbe_bus_width_pcie_x1;
972		break;
973	case IXGBE_PCI_LINK_WIDTH_2:
974		hw->bus.width = ixgbe_bus_width_pcie_x2;
975		break;
976	case IXGBE_PCI_LINK_WIDTH_4:
977		hw->bus.width = ixgbe_bus_width_pcie_x4;
978		break;
979	case IXGBE_PCI_LINK_WIDTH_8:
980		hw->bus.width = ixgbe_bus_width_pcie_x8;
981		break;
982	default:
983		hw->bus.width = ixgbe_bus_width_unknown;
984		break;
985	}
986
987	switch (link_status & IXGBE_PCI_LINK_SPEED) {
988	case IXGBE_PCI_LINK_SPEED_2500:
989		hw->bus.speed = ixgbe_bus_speed_2500;
990		break;
991	case IXGBE_PCI_LINK_SPEED_5000:
992		hw->bus.speed = ixgbe_bus_speed_5000;
993		break;
994	case IXGBE_PCI_LINK_SPEED_8000:
995		hw->bus.speed = ixgbe_bus_speed_8000;
996		break;
997	default:
998		hw->bus.speed = ixgbe_bus_speed_unknown;
999		break;
1000	}
1001
1002	mac->ops.set_lan_id(hw);
1003}
1004
1005/**
1006 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1007 *  @hw: pointer to hardware structure
1008 *
1009 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1010 *  store this data within the ixgbe_hw structure.
1011 **/
1012s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1013{
1014	u16 link_status;
1015
1016	DEBUGFUNC("ixgbe_get_bus_info_generic");
1017
1018	/* Get the negotiated link width and speed from PCI config space */
1019	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1020
1021	ixgbe_set_pci_config_data_generic(hw, link_status);
1022
1023	return IXGBE_SUCCESS;
1024}
1025
1026/**
1027 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1028 *  @hw: pointer to the HW structure
1029 *
1030 *  Determines the LAN function id by reading memory-mapped registers
1031 *  and swaps the port value if requested.
1032 **/
1033void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1034{
1035	struct ixgbe_bus_info *bus = &hw->bus;
1036	u32 reg;
1037
1038	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1039
1040	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1041	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1042	bus->lan_id = bus->func;
1043
1044	/* check for a port swap */
1045	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1046	if (reg & IXGBE_FACTPS_LFS)
1047		bus->func ^= 0x1;
1048}
1049
1050/**
1051 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1052 *  @hw: pointer to hardware structure
1053 *
1054 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1055 *  disables transmit and receive units. The adapter_stopped flag is used by
1056 *  the shared code and drivers to determine if the adapter is in a stopped
1057 *  state and should not touch the hardware.
1058 **/
1059s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1060{
1061	u32 reg_val;
1062	u16 i;
1063
1064	DEBUGFUNC("ixgbe_stop_adapter_generic");
1065
1066	/*
1067	 * Set the adapter_stopped flag so other driver functions stop touching
1068	 * the hardware
1069	 */
1070	hw->adapter_stopped = TRUE;
1071
1072	/* Disable the receive unit */
1073	ixgbe_disable_rx(hw);
1074
1075	/* Clear interrupt mask to stop interrupts from being generated */
1076	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1077
1078	/* Clear any pending interrupts, flush previous writes */
1079	IXGBE_READ_REG(hw, IXGBE_EICR);
1080
1081	/* Disable the transmit unit.  Each queue must be disabled. */
1082	for (i = 0; i < hw->mac.max_tx_queues; i++)
1083		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1084
1085	/* Disable the receive unit by stopping each queue */
1086	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1087		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1088		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1089		reg_val |= IXGBE_RXDCTL_SWFLSH;
1090		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1091	}
1092
1093	/* flush all queues disables */
1094	IXGBE_WRITE_FLUSH(hw);
1095	msec_delay(2);
1096
1097	/*
1098	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1099	 * access and verify no pending requests
1100	 */
1101	return ixgbe_disable_pcie_master(hw);
1102}
1103
1104/**
1105 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1106 *  @hw: pointer to hardware structure
1107 *  @index: led number to turn on
1108 **/
1109s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1110{
1111	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1112
1113	DEBUGFUNC("ixgbe_led_on_generic");
1114
1115	/* To turn on the LED, set mode to ON. */
1116	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1117	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1118	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1119	IXGBE_WRITE_FLUSH(hw);
1120
1121	return IXGBE_SUCCESS;
1122}
1123
1124/**
1125 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1126 *  @hw: pointer to hardware structure
1127 *  @index: led number to turn off
1128 **/
1129s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1130{
1131	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1132
1133	DEBUGFUNC("ixgbe_led_off_generic");
1134
1135	/* To turn off the LED, set mode to OFF. */
1136	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1137	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1138	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1139	IXGBE_WRITE_FLUSH(hw);
1140
1141	return IXGBE_SUCCESS;
1142}
1143
1144/**
1145 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1146 *  @hw: pointer to hardware structure
1147 *
1148 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1149 *  ixgbe_hw struct in order to set up EEPROM access.
1150 **/
1151s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1152{
1153	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1154	u32 eec;
1155	u16 eeprom_size;
1156
1157	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1158
1159	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1160		eeprom->type = ixgbe_eeprom_none;
1161		/* Set default semaphore delay to 10ms which is a well
1162		 * tested value */
1163		eeprom->semaphore_delay = 10;
1164		/* Clear EEPROM page size, it will be initialized as needed */
1165		eeprom->word_page_size = 0;
1166
1167		/*
1168		 * Check for EEPROM present first.
1169		 * If not present leave as none
1170		 */
1171		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1172		if (eec & IXGBE_EEC_PRES) {
1173			eeprom->type = ixgbe_eeprom_spi;
1174
1175			/*
1176			 * SPI EEPROM is assumed here.  This code would need to
1177			 * change if a future EEPROM is not SPI.
1178			 */
1179			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1180					    IXGBE_EEC_SIZE_SHIFT);
1181			eeprom->word_size = 1 << (eeprom_size +
1182					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1183		}
1184
1185		if (eec & IXGBE_EEC_ADDR_SIZE)
1186			eeprom->address_bits = 16;
1187		else
1188			eeprom->address_bits = 8;
1189		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1190			  "%d\n", eeprom->type, eeprom->word_size,
1191			  eeprom->address_bits);
1192	}
1193
1194	return IXGBE_SUCCESS;
1195}
1196
1197/**
1198 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1199 *  @hw: pointer to hardware structure
1200 *  @offset: offset within the EEPROM to write
1201 *  @words: number of word(s)
1202 *  @data: 16 bit word(s) to write to EEPROM
1203 *
1204 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1205 **/
1206s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1207					       u16 words, u16 *data)
1208{
1209	s32 status = IXGBE_SUCCESS;
1210	u16 i, count;
1211
1212	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1213
1214	hw->eeprom.ops.init_params(hw);
1215
1216	if (words == 0) {
1217		status = IXGBE_ERR_INVALID_ARGUMENT;
1218		goto out;
1219	}
1220
1221	if (offset + words > hw->eeprom.word_size) {
1222		status = IXGBE_ERR_EEPROM;
1223		goto out;
1224	}
1225
1226	/*
1227	 * The EEPROM page size cannot be queried from the chip. We do lazy
1228	 * initialization. It is worth to do that when we write large buffer.
1229	 */
1230	if ((hw->eeprom.word_page_size == 0) &&
1231	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1232		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1233
1234	/*
1235	 * We cannot hold synchronization semaphores for too long
1236	 * to avoid other entity starvation. However it is more efficient
1237	 * to read in bursts than synchronizing access for each word.
1238	 */
1239	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1240		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1241			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1242		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1243							    count, &data[i]);
1244
1245		if (status != IXGBE_SUCCESS)
1246			break;
1247	}
1248
1249out:
1250	return status;
1251}
1252
1253/**
1254 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1255 *  @hw: pointer to hardware structure
1256 *  @offset: offset within the EEPROM to be written to
1257 *  @words: number of word(s)
1258 *  @data: 16 bit word(s) to be written to the EEPROM
1259 *
1260 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1261 *  EEPROM will most likely contain an invalid checksum.
1262 **/
1263static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1264					      u16 words, u16 *data)
1265{
1266	s32 status;
1267	u16 word;
1268	u16 page_size;
1269	u16 i;
1270	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1271
1272	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1273
1274	/* Prepare the EEPROM for writing  */
1275	status = ixgbe_acquire_eeprom(hw);
1276
1277	if (status == IXGBE_SUCCESS) {
1278		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1279			ixgbe_release_eeprom(hw);
1280			status = IXGBE_ERR_EEPROM;
1281		}
1282	}
1283
1284	if (status == IXGBE_SUCCESS) {
1285		for (i = 0; i < words; i++) {
1286			ixgbe_standby_eeprom(hw);
1287
1288			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1289			ixgbe_shift_out_eeprom_bits(hw,
1290						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1291						   IXGBE_EEPROM_OPCODE_BITS);
1292
1293			ixgbe_standby_eeprom(hw);
1294
1295			/*
1296			 * Some SPI eeproms use the 8th address bit embedded
1297			 * in the opcode
1298			 */
1299			if ((hw->eeprom.address_bits == 8) &&
1300			    ((offset + i) >= 128))
1301				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1302
1303			/* Send the Write command (8-bit opcode + addr) */
1304			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1305						    IXGBE_EEPROM_OPCODE_BITS);
1306			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1307						    hw->eeprom.address_bits);
1308
1309			page_size = hw->eeprom.word_page_size;
1310
1311			/* Send the data in burst via SPI*/
1312			do {
1313				word = data[i];
1314				word = (word >> 8) | (word << 8);
1315				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1316
1317				if (page_size == 0)
1318					break;
1319
1320				/* do not wrap around page */
1321				if (((offset + i) & (page_size - 1)) ==
1322				    (page_size - 1))
1323					break;
1324			} while (++i < words);
1325
1326			ixgbe_standby_eeprom(hw);
1327			msec_delay(10);
1328		}
1329		/* Done with writing - release the EEPROM */
1330		ixgbe_release_eeprom(hw);
1331	}
1332
1333	return status;
1334}
1335
1336/**
1337 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1338 *  @hw: pointer to hardware structure
1339 *  @offset: offset within the EEPROM to be written to
1340 *  @data: 16 bit word to be written to the EEPROM
1341 *
1342 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1343 *  EEPROM will most likely contain an invalid checksum.
1344 **/
1345s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1346{
1347	s32 status;
1348
1349	DEBUGFUNC("ixgbe_write_eeprom_generic");
1350
1351	hw->eeprom.ops.init_params(hw);
1352
1353	if (offset >= hw->eeprom.word_size) {
1354		status = IXGBE_ERR_EEPROM;
1355		goto out;
1356	}
1357
1358	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1359
1360out:
1361	return status;
1362}
1363
1364/**
1365 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1366 *  @hw: pointer to hardware structure
1367 *  @offset: offset within the EEPROM to be read
1368 *  @data: read 16 bit words(s) from EEPROM
1369 *  @words: number of word(s)
1370 *
1371 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1372 **/
1373s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1374					      u16 words, u16 *data)
1375{
1376	s32 status = IXGBE_SUCCESS;
1377	u16 i, count;
1378
1379	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1380
1381	hw->eeprom.ops.init_params(hw);
1382
1383	if (words == 0) {
1384		status = IXGBE_ERR_INVALID_ARGUMENT;
1385		goto out;
1386	}
1387
1388	if (offset + words > hw->eeprom.word_size) {
1389		status = IXGBE_ERR_EEPROM;
1390		goto out;
1391	}
1392
1393	/*
1394	 * We cannot hold synchronization semaphores for too long
1395	 * to avoid other entity starvation. However it is more efficient
1396	 * to read in bursts than synchronizing access for each word.
1397	 */
1398	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1399		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1400			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1401
1402		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1403							   count, &data[i]);
1404
1405		if (status != IXGBE_SUCCESS)
1406			break;
1407	}
1408
1409out:
1410	return status;
1411}
1412
1413/**
1414 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1415 *  @hw: pointer to hardware structure
1416 *  @offset: offset within the EEPROM to be read
1417 *  @words: number of word(s)
1418 *  @data: read 16 bit word(s) from EEPROM
1419 *
1420 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1421 **/
1422static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1423					     u16 words, u16 *data)
1424{
1425	s32 status;
1426	u16 word_in;
1427	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1428	u16 i;
1429
1430	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1431
1432	/* Prepare the EEPROM for reading  */
1433	status = ixgbe_acquire_eeprom(hw);
1434
1435	if (status == IXGBE_SUCCESS) {
1436		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1437			ixgbe_release_eeprom(hw);
1438			status = IXGBE_ERR_EEPROM;
1439		}
1440	}
1441
1442	if (status == IXGBE_SUCCESS) {
1443		for (i = 0; i < words; i++) {
1444			ixgbe_standby_eeprom(hw);
1445			/*
1446			 * Some SPI eeproms use the 8th address bit embedded
1447			 * in the opcode
1448			 */
1449			if ((hw->eeprom.address_bits == 8) &&
1450			    ((offset + i) >= 128))
1451				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1452
1453			/* Send the READ command (opcode + addr) */
1454			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1455						    IXGBE_EEPROM_OPCODE_BITS);
1456			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1457						    hw->eeprom.address_bits);
1458
1459			/* Read the data. */
1460			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1461			data[i] = (word_in >> 8) | (word_in << 8);
1462		}
1463
1464		/* End this read operation */
1465		ixgbe_release_eeprom(hw);
1466	}
1467
1468	return status;
1469}
1470
1471/**
1472 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1473 *  @hw: pointer to hardware structure
1474 *  @offset: offset within the EEPROM to be read
1475 *  @data: read 16 bit value from EEPROM
1476 *
1477 *  Reads 16 bit value from EEPROM through bit-bang method
1478 **/
1479s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1480				       u16 *data)
1481{
1482	s32 status;
1483
1484	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1485
1486	hw->eeprom.ops.init_params(hw);
1487
1488	if (offset >= hw->eeprom.word_size) {
1489		status = IXGBE_ERR_EEPROM;
1490		goto out;
1491	}
1492
1493	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1494
1495out:
1496	return status;
1497}
1498
1499/**
1500 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1501 *  @hw: pointer to hardware structure
1502 *  @offset: offset of word in the EEPROM to read
1503 *  @words: number of word(s)
1504 *  @data: 16 bit word(s) from the EEPROM
1505 *
1506 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1507 **/
1508s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1509				   u16 words, u16 *data)
1510{
1511	u32 eerd;
1512	s32 status = IXGBE_SUCCESS;
1513	u32 i;
1514
1515	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1516
1517	hw->eeprom.ops.init_params(hw);
1518
1519	if (words == 0) {
1520		status = IXGBE_ERR_INVALID_ARGUMENT;
1521		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1522		goto out;
1523	}
1524
1525	if (offset >= hw->eeprom.word_size) {
1526		status = IXGBE_ERR_EEPROM;
1527		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1528		goto out;
1529	}
1530
1531	for (i = 0; i < words; i++) {
1532		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1533		       IXGBE_EEPROM_RW_REG_START;
1534
1535		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1536		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1537
1538		if (status == IXGBE_SUCCESS) {
1539			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1540				   IXGBE_EEPROM_RW_REG_DATA);
1541		} else {
1542			DEBUGOUT("Eeprom read timed out\n");
1543			goto out;
1544		}
1545	}
1546out:
1547	return status;
1548}
1549
1550/**
1551 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1552 *  @hw: pointer to hardware structure
1553 *  @offset: offset within the EEPROM to be used as a scratch pad
1554 *
1555 *  Discover EEPROM page size by writing marching data at given offset.
1556 *  This function is called only when we are writing a new large buffer
1557 *  at given offset so the data would be overwritten anyway.
1558 **/
1559static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1560						 u16 offset)
1561{
1562	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1563	s32 status = IXGBE_SUCCESS;
1564	u16 i;
1565
1566	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1567
1568	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1569		data[i] = i;
1570
1571	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1572	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1573					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1574	hw->eeprom.word_page_size = 0;
1575	if (status != IXGBE_SUCCESS)
1576		goto out;
1577
1578	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1579	if (status != IXGBE_SUCCESS)
1580		goto out;
1581
1582	/*
1583	 * When writing in burst more than the actual page size
1584	 * EEPROM address wraps around current page.
1585	 */
1586	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1587
1588	DEBUGOUT1("Detected EEPROM page size = %d words.",
1589		  hw->eeprom.word_page_size);
1590out:
1591	return status;
1592}
1593
1594/**
1595 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1596 *  @hw: pointer to hardware structure
1597 *  @offset: offset of  word in the EEPROM to read
1598 *  @data: word read from the EEPROM
1599 *
1600 *  Reads a 16 bit word from the EEPROM using the EERD register.
1601 **/
1602s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1603{
1604	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1605}
1606
1607/**
1608 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1609 *  @hw: pointer to hardware structure
1610 *  @offset: offset of  word in the EEPROM to write
1611 *  @words: number of word(s)
1612 *  @data: word(s) write to the EEPROM
1613 *
1614 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1615 **/
1616s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1617				    u16 words, u16 *data)
1618{
1619	u32 eewr;
1620	s32 status = IXGBE_SUCCESS;
1621	u16 i;
1622
1623	DEBUGFUNC("ixgbe_write_eewr_generic");
1624
1625	hw->eeprom.ops.init_params(hw);
1626
1627	if (words == 0) {
1628		status = IXGBE_ERR_INVALID_ARGUMENT;
1629		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1630		goto out;
1631	}
1632
1633	if (offset >= hw->eeprom.word_size) {
1634		status = IXGBE_ERR_EEPROM;
1635		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1636		goto out;
1637	}
1638
1639	for (i = 0; i < words; i++) {
1640		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1641			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1642			IXGBE_EEPROM_RW_REG_START;
1643
1644		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1645		if (status != IXGBE_SUCCESS) {
1646			DEBUGOUT("Eeprom write EEWR timed out\n");
1647			goto out;
1648		}
1649
1650		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1651
1652		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1653		if (status != IXGBE_SUCCESS) {
1654			DEBUGOUT("Eeprom write EEWR timed out\n");
1655			goto out;
1656		}
1657	}
1658
1659out:
1660	return status;
1661}
1662
1663/**
1664 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1665 *  @hw: pointer to hardware structure
1666 *  @offset: offset of  word in the EEPROM to write
1667 *  @data: word write to the EEPROM
1668 *
1669 *  Write a 16 bit word to the EEPROM using the EEWR register.
1670 **/
1671s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1672{
1673	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1674}
1675
1676/**
1677 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1678 *  @hw: pointer to hardware structure
1679 *  @ee_reg: EEPROM flag for polling
1680 *
1681 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1682 *  read or write is done respectively.
1683 **/
1684s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1685{
1686	u32 i;
1687	u32 reg;
1688	s32 status = IXGBE_ERR_EEPROM;
1689
1690	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1691
1692	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1693		if (ee_reg == IXGBE_NVM_POLL_READ)
1694			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1695		else
1696			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1697
1698		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1699			status = IXGBE_SUCCESS;
1700			break;
1701		}
1702		usec_delay(5);
1703	}
1704
1705	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1706		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1707			     "EEPROM read/write done polling timed out");
1708
1709	return status;
1710}
1711
1712/**
1713 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1714 *  @hw: pointer to hardware structure
1715 *
1716 *  Prepares EEPROM for access using bit-bang method. This function should
1717 *  be called before issuing a command to the EEPROM.
1718 **/
1719static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1720{
1721	s32 status = IXGBE_SUCCESS;
1722	u32 eec;
1723	u32 i;
1724
1725	DEBUGFUNC("ixgbe_acquire_eeprom");
1726
1727	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1728	    != IXGBE_SUCCESS)
1729		status = IXGBE_ERR_SWFW_SYNC;
1730
1731	if (status == IXGBE_SUCCESS) {
1732		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1733
1734		/* Request EEPROM Access */
1735		eec |= IXGBE_EEC_REQ;
1736		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1737
1738		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1739			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1740			if (eec & IXGBE_EEC_GNT)
1741				break;
1742			usec_delay(5);
1743		}
1744
1745		/* Release if grant not acquired */
1746		if (!(eec & IXGBE_EEC_GNT)) {
1747			eec &= ~IXGBE_EEC_REQ;
1748			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1749			DEBUGOUT("Could not acquire EEPROM grant\n");
1750
1751			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1752			status = IXGBE_ERR_EEPROM;
1753		}
1754
1755		/* Setup EEPROM for Read/Write */
1756		if (status == IXGBE_SUCCESS) {
1757			/* Clear CS and SK */
1758			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1759			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1760			IXGBE_WRITE_FLUSH(hw);
1761			usec_delay(1);
1762		}
1763	}
1764	return status;
1765}
1766
1767/**
1768 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1769 *  @hw: pointer to hardware structure
1770 *
1771 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1772 **/
1773static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1774{
1775	s32 status = IXGBE_ERR_EEPROM;
1776	u32 timeout = 2000;
1777	u32 i;
1778	u32 swsm;
1779
1780	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1781
1782
1783	/* Get SMBI software semaphore between device drivers first */
1784	for (i = 0; i < timeout; i++) {
1785		/*
1786		 * If the SMBI bit is 0 when we read it, then the bit will be
1787		 * set and we have the semaphore
1788		 */
1789		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1790		if (!(swsm & IXGBE_SWSM_SMBI)) {
1791			status = IXGBE_SUCCESS;
1792			break;
1793		}
1794		usec_delay(50);
1795	}
1796
1797	if (i == timeout) {
1798		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1799			 "not granted.\n");
1800		/*
1801		 * this release is particularly important because our attempts
1802		 * above to get the semaphore may have succeeded, and if there
1803		 * was a timeout, we should unconditionally clear the semaphore
1804		 * bits to free the driver to make progress
1805		 */
1806		ixgbe_release_eeprom_semaphore(hw);
1807
1808		usec_delay(50);
1809		/*
1810		 * one last try
1811		 * If the SMBI bit is 0 when we read it, then the bit will be
1812		 * set and we have the semaphore
1813		 */
1814		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1815		if (!(swsm & IXGBE_SWSM_SMBI))
1816			status = IXGBE_SUCCESS;
1817	}
1818
1819	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1820	if (status == IXGBE_SUCCESS) {
1821		for (i = 0; i < timeout; i++) {
1822			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1823
1824			/* Set the SW EEPROM semaphore bit to request access */
1825			swsm |= IXGBE_SWSM_SWESMBI;
1826			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1827
1828			/*
1829			 * If we set the bit successfully then we got the
1830			 * semaphore.
1831			 */
1832			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1833			if (swsm & IXGBE_SWSM_SWESMBI)
1834				break;
1835
1836			usec_delay(50);
1837		}
1838
1839		/*
1840		 * Release semaphores and return error if SW EEPROM semaphore
1841		 * was not granted because we don't have access to the EEPROM
1842		 */
1843		if (i >= timeout) {
1844			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1845			    "SWESMBI Software EEPROM semaphore not granted.\n");
1846			ixgbe_release_eeprom_semaphore(hw);
1847			status = IXGBE_ERR_EEPROM;
1848		}
1849	} else {
1850		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1851			     "Software semaphore SMBI between device drivers "
1852			     "not granted.\n");
1853	}
1854
1855	return status;
1856}
1857
1858/**
1859 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1860 *  @hw: pointer to hardware structure
1861 *
1862 *  This function clears hardware semaphore bits.
1863 **/
1864static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1865{
1866	u32 swsm;
1867
1868	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1869
1870	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1871
1872	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1873	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1874	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1875	IXGBE_WRITE_FLUSH(hw);
1876}
1877
1878/**
1879 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1880 *  @hw: pointer to hardware structure
1881 **/
1882static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1883{
1884	s32 status = IXGBE_SUCCESS;
1885	u16 i;
1886	u8 spi_stat_reg;
1887
1888	DEBUGFUNC("ixgbe_ready_eeprom");
1889
1890	/*
1891	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1892	 * EEPROM will signal that the command has been completed by clearing
1893	 * bit 0 of the internal status register.  If it's not cleared within
1894	 * 5 milliseconds, then error out.
1895	 */
1896	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1897		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1898					    IXGBE_EEPROM_OPCODE_BITS);
1899		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1900		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1901			break;
1902
1903		usec_delay(5);
1904		ixgbe_standby_eeprom(hw);
1905	};
1906
1907	/*
1908	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1909	 * devices (and only 0-5mSec on 5V devices)
1910	 */
1911	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1912		DEBUGOUT("SPI EEPROM Status error\n");
1913		status = IXGBE_ERR_EEPROM;
1914	}
1915
1916	return status;
1917}
1918
1919/**
1920 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1921 *  @hw: pointer to hardware structure
1922 **/
1923static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1924{
1925	u32 eec;
1926
1927	DEBUGFUNC("ixgbe_standby_eeprom");
1928
1929	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1930
1931	/* Toggle CS to flush commands */
1932	eec |= IXGBE_EEC_CS;
1933	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1934	IXGBE_WRITE_FLUSH(hw);
1935	usec_delay(1);
1936	eec &= ~IXGBE_EEC_CS;
1937	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1938	IXGBE_WRITE_FLUSH(hw);
1939	usec_delay(1);
1940}
1941
1942/**
1943 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1944 *  @hw: pointer to hardware structure
1945 *  @data: data to send to the EEPROM
1946 *  @count: number of bits to shift out
1947 **/
1948static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1949					u16 count)
1950{
1951	u32 eec;
1952	u32 mask;
1953	u32 i;
1954
1955	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1956
1957	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1958
1959	/*
1960	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1961	 * one bit at a time.  Determine the starting bit based on count
1962	 */
1963	mask = 0x01 << (count - 1);
1964
1965	for (i = 0; i < count; i++) {
1966		/*
1967		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1968		 * "1", and then raising and then lowering the clock (the SK
1969		 * bit controls the clock input to the EEPROM).  A "0" is
1970		 * shifted out to the EEPROM by setting "DI" to "0" and then
1971		 * raising and then lowering the clock.
1972		 */
1973		if (data & mask)
1974			eec |= IXGBE_EEC_DI;
1975		else
1976			eec &= ~IXGBE_EEC_DI;
1977
1978		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1979		IXGBE_WRITE_FLUSH(hw);
1980
1981		usec_delay(1);
1982
1983		ixgbe_raise_eeprom_clk(hw, &eec);
1984		ixgbe_lower_eeprom_clk(hw, &eec);
1985
1986		/*
1987		 * Shift mask to signify next bit of data to shift in to the
1988		 * EEPROM
1989		 */
1990		mask = mask >> 1;
1991	};
1992
1993	/* We leave the "DI" bit set to "0" when we leave this routine. */
1994	eec &= ~IXGBE_EEC_DI;
1995	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1996	IXGBE_WRITE_FLUSH(hw);
1997}
1998
1999/**
2000 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2001 *  @hw: pointer to hardware structure
2002 **/
2003static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2004{
2005	u32 eec;
2006	u32 i;
2007	u16 data = 0;
2008
2009	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2010
2011	/*
2012	 * In order to read a register from the EEPROM, we need to shift
2013	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2014	 * the clock input to the EEPROM (setting the SK bit), and then reading
2015	 * the value of the "DO" bit.  During this "shifting in" process the
2016	 * "DI" bit should always be clear.
2017	 */
2018	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2019
2020	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2021
2022	for (i = 0; i < count; i++) {
2023		data = data << 1;
2024		ixgbe_raise_eeprom_clk(hw, &eec);
2025
2026		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2027
2028		eec &= ~(IXGBE_EEC_DI);
2029		if (eec & IXGBE_EEC_DO)
2030			data |= 1;
2031
2032		ixgbe_lower_eeprom_clk(hw, &eec);
2033	}
2034
2035	return data;
2036}
2037
2038/**
2039 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2040 *  @hw: pointer to hardware structure
2041 *  @eec: EEC register's current value
2042 **/
2043static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2044{
2045	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2046
2047	/*
2048	 * Raise the clock input to the EEPROM
2049	 * (setting the SK bit), then delay
2050	 */
2051	*eec = *eec | IXGBE_EEC_SK;
2052	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2053	IXGBE_WRITE_FLUSH(hw);
2054	usec_delay(1);
2055}
2056
2057/**
2058 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2059 *  @hw: pointer to hardware structure
2060 *  @eecd: EECD's current value
2061 **/
2062static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2063{
2064	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2065
2066	/*
2067	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2068	 * delay
2069	 */
2070	*eec = *eec & ~IXGBE_EEC_SK;
2071	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2072	IXGBE_WRITE_FLUSH(hw);
2073	usec_delay(1);
2074}
2075
2076/**
2077 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2078 *  @hw: pointer to hardware structure
2079 **/
2080static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2081{
2082	u32 eec;
2083
2084	DEBUGFUNC("ixgbe_release_eeprom");
2085
2086	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2087
2088	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2089	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2090
2091	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2092	IXGBE_WRITE_FLUSH(hw);
2093
2094	usec_delay(1);
2095
2096	/* Stop requesting EEPROM access */
2097	eec &= ~IXGBE_EEC_REQ;
2098	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2099
2100	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2101
2102	/* Delay before attempt to obtain semaphore again to allow FW access */
2103	msec_delay(hw->eeprom.semaphore_delay);
2104}
2105
2106/**
2107 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2108 *  @hw: pointer to hardware structure
2109 *
2110 *  Returns a negative error code on error, or the 16-bit checksum
2111 **/
2112s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2113{
2114	u16 i;
2115	u16 j;
2116	u16 checksum = 0;
2117	u16 length = 0;
2118	u16 pointer = 0;
2119	u16 word = 0;
2120
2121	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2122
2123	/* Include 0x0-0x3F in the checksum */
2124	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2125		if (hw->eeprom.ops.read(hw, i, &word)) {
2126			DEBUGOUT("EEPROM read failed\n");
2127			return IXGBE_ERR_EEPROM;
2128		}
2129		checksum += word;
2130	}
2131
2132	/* Include all data from pointers except for the fw pointer */
2133	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2134		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2135			DEBUGOUT("EEPROM read failed\n");
2136			return IXGBE_ERR_EEPROM;
2137		}
2138
2139		/* If the pointer seems invalid */
2140		if (pointer == 0xFFFF || pointer == 0)
2141			continue;
2142
2143		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2144			DEBUGOUT("EEPROM read failed\n");
2145			return IXGBE_ERR_EEPROM;
2146		}
2147
2148		if (length == 0xFFFF || length == 0)
2149			continue;
2150
2151		for (j = pointer + 1; j <= pointer + length; j++) {
2152			if (hw->eeprom.ops.read(hw, j, &word)) {
2153				DEBUGOUT("EEPROM read failed\n");
2154				return IXGBE_ERR_EEPROM;
2155			}
2156			checksum += word;
2157		}
2158	}
2159
2160	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2161
2162	return (s32)checksum;
2163}
2164
2165/**
2166 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2167 *  @hw: pointer to hardware structure
2168 *  @checksum_val: calculated checksum
2169 *
2170 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2171 *  caller does not need checksum_val, the value can be NULL.
2172 **/
2173s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2174					   u16 *checksum_val)
2175{
2176	s32 status;
2177	u16 checksum;
2178	u16 read_checksum = 0;
2179
2180	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2181
2182	/* Read the first word from the EEPROM. If this times out or fails, do
2183	 * not continue or we could be in for a very long wait while every
2184	 * EEPROM read fails
2185	 */
2186	status = hw->eeprom.ops.read(hw, 0, &checksum);
2187	if (status) {
2188		DEBUGOUT("EEPROM read failed\n");
2189		return status;
2190	}
2191
2192	status = hw->eeprom.ops.calc_checksum(hw);
2193	if (status < 0)
2194		return status;
2195
2196	checksum = (u16)(status & 0xffff);
2197
2198	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2199	if (status) {
2200		DEBUGOUT("EEPROM read failed\n");
2201		return status;
2202	}
2203
2204	/* Verify read checksum from EEPROM is the same as
2205	 * calculated checksum
2206	 */
2207	if (read_checksum != checksum)
2208		status = IXGBE_ERR_EEPROM_CHECKSUM;
2209
2210	/* If the user cares, return the calculated checksum */
2211	if (checksum_val)
2212		*checksum_val = checksum;
2213
2214	return status;
2215}
2216
2217/**
2218 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2219 *  @hw: pointer to hardware structure
2220 **/
2221s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2222{
2223	s32 status;
2224	u16 checksum;
2225
2226	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2227
2228	/* Read the first word from the EEPROM. If this times out or fails, do
2229	 * not continue or we could be in for a very long wait while every
2230	 * EEPROM read fails
2231	 */
2232	status = hw->eeprom.ops.read(hw, 0, &checksum);
2233	if (status) {
2234		DEBUGOUT("EEPROM read failed\n");
2235		return status;
2236	}
2237
2238	status = hw->eeprom.ops.calc_checksum(hw);
2239	if (status < 0)
2240		return status;
2241
2242	checksum = (u16)(status & 0xffff);
2243
2244	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2245
2246	return status;
2247}
2248
2249/**
2250 *  ixgbe_validate_mac_addr - Validate MAC address
2251 *  @mac_addr: pointer to MAC address.
2252 *
2253 *  Tests a MAC address to ensure it is a valid Individual Address
2254 **/
2255s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2256{
2257	s32 status = IXGBE_SUCCESS;
2258
2259	DEBUGFUNC("ixgbe_validate_mac_addr");
2260
2261	/* Make sure it is not a multicast address */
2262	if (IXGBE_IS_MULTICAST(mac_addr)) {
2263		DEBUGOUT("MAC address is multicast\n");
2264		status = IXGBE_ERR_INVALID_MAC_ADDR;
2265	/* Not a broadcast address */
2266	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2267		DEBUGOUT("MAC address is broadcast\n");
2268		status = IXGBE_ERR_INVALID_MAC_ADDR;
2269	/* Reject the zero address */
2270	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2271		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2272		DEBUGOUT("MAC address is all zeros\n");
2273		status = IXGBE_ERR_INVALID_MAC_ADDR;
2274	}
2275	return status;
2276}
2277
2278/**
2279 *  ixgbe_set_rar_generic - Set Rx address register
2280 *  @hw: pointer to hardware structure
2281 *  @index: Receive address register to write
2282 *  @addr: Address to put into receive address register
2283 *  @vmdq: VMDq "set" or "pool" index
2284 *  @enable_addr: set flag that address is active
2285 *
2286 *  Puts an ethernet address into a receive address register.
2287 **/
2288s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2289			  u32 enable_addr)
2290{
2291	u32 rar_low, rar_high;
2292	u32 rar_entries = hw->mac.num_rar_entries;
2293
2294	DEBUGFUNC("ixgbe_set_rar_generic");
2295
2296	/* Make sure we are using a valid rar index range */
2297	if (index >= rar_entries) {
2298		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2299			     "RAR index %d is out of range.\n", index);
2300		return IXGBE_ERR_INVALID_ARGUMENT;
2301	}
2302
2303	/* setup VMDq pool selection before this RAR gets enabled */
2304	hw->mac.ops.set_vmdq(hw, index, vmdq);
2305
2306	/*
2307	 * HW expects these in little endian so we reverse the byte
2308	 * order from network order (big endian) to little endian
2309	 */
2310	rar_low = ((u32)addr[0] |
2311		   ((u32)addr[1] << 8) |
2312		   ((u32)addr[2] << 16) |
2313		   ((u32)addr[3] << 24));
2314	/*
2315	 * Some parts put the VMDq setting in the extra RAH bits,
2316	 * so save everything except the lower 16 bits that hold part
2317	 * of the address and the address valid bit.
2318	 */
2319	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2320	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2321	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2322
2323	if (enable_addr != 0)
2324		rar_high |= IXGBE_RAH_AV;
2325
2326	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2327	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2328
2329	return IXGBE_SUCCESS;
2330}
2331
2332/**
2333 *  ixgbe_clear_rar_generic - Remove Rx address register
2334 *  @hw: pointer to hardware structure
2335 *  @index: Receive address register to write
2336 *
2337 *  Clears an ethernet address from a receive address register.
2338 **/
2339s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2340{
2341	u32 rar_high;
2342	u32 rar_entries = hw->mac.num_rar_entries;
2343
2344	DEBUGFUNC("ixgbe_clear_rar_generic");
2345
2346	/* Make sure we are using a valid rar index range */
2347	if (index >= rar_entries) {
2348		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2349			     "RAR index %d is out of range.\n", index);
2350		return IXGBE_ERR_INVALID_ARGUMENT;
2351	}
2352
2353	/*
2354	 * Some parts put the VMDq setting in the extra RAH bits,
2355	 * so save everything except the lower 16 bits that hold part
2356	 * of the address and the address valid bit.
2357	 */
2358	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2359	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2360
2361	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2362	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2363
2364	/* clear VMDq pool/queue selection for this RAR */
2365	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2366
2367	return IXGBE_SUCCESS;
2368}
2369
2370/**
2371 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2372 *  @hw: pointer to hardware structure
2373 *
2374 *  Places the MAC address in receive address register 0 and clears the rest
2375 *  of the receive address registers. Clears the multicast table. Assumes
2376 *  the receiver is in reset when the routine is called.
2377 **/
2378s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2379{
2380	u32 i;
2381	u32 rar_entries = hw->mac.num_rar_entries;
2382
2383	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2384
2385	/*
2386	 * If the current mac address is valid, assume it is a software override
2387	 * to the permanent address.
2388	 * Otherwise, use the permanent address from the eeprom.
2389	 */
2390	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2391	    IXGBE_ERR_INVALID_MAC_ADDR) {
2392		/* Get the MAC address from the RAR0 for later reference */
2393		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2394
2395		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2396			  hw->mac.addr[0], hw->mac.addr[1],
2397			  hw->mac.addr[2]);
2398		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2399			  hw->mac.addr[4], hw->mac.addr[5]);
2400	} else {
2401		/* Setup the receive address. */
2402		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2403		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2404			  hw->mac.addr[0], hw->mac.addr[1],
2405			  hw->mac.addr[2]);
2406		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2407			  hw->mac.addr[4], hw->mac.addr[5]);
2408
2409		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2410
2411		/* clear VMDq pool/queue selection for RAR 0 */
2412		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2413	}
2414	hw->addr_ctrl.overflow_promisc = 0;
2415
2416	hw->addr_ctrl.rar_used_count = 1;
2417
2418	/* Zero out the other receive addresses. */
2419	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2420	for (i = 1; i < rar_entries; i++) {
2421		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2422		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2423	}
2424
2425	/* Clear the MTA */
2426	hw->addr_ctrl.mta_in_use = 0;
2427	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2428
2429	DEBUGOUT(" Clearing MTA\n");
2430	for (i = 0; i < hw->mac.mcft_size; i++)
2431		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2432
2433	ixgbe_init_uta_tables(hw);
2434
2435	return IXGBE_SUCCESS;
2436}
2437
2438/**
2439 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2440 *  @hw: pointer to hardware structure
2441 *  @addr: new address
2442 *
2443 *  Adds it to unused receive address register or goes into promiscuous mode.
2444 **/
2445void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2446{
2447	u32 rar_entries = hw->mac.num_rar_entries;
2448	u32 rar;
2449
2450	DEBUGFUNC("ixgbe_add_uc_addr");
2451
2452	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2453		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2454
2455	/*
2456	 * Place this address in the RAR if there is room,
2457	 * else put the controller into promiscuous mode
2458	 */
2459	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2460		rar = hw->addr_ctrl.rar_used_count;
2461		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2462		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2463		hw->addr_ctrl.rar_used_count++;
2464	} else {
2465		hw->addr_ctrl.overflow_promisc++;
2466	}
2467
2468	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2469}
2470
2471/**
2472 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2473 *  @hw: pointer to hardware structure
2474 *  @addr_list: the list of new addresses
2475 *  @addr_count: number of addresses
2476 *  @next: iterator function to walk the address list
2477 *
2478 *  The given list replaces any existing list.  Clears the secondary addrs from
2479 *  receive address registers.  Uses unused receive address registers for the
2480 *  first secondary addresses, and falls back to promiscuous mode as needed.
2481 *
2482 *  Drivers using secondary unicast addresses must set user_set_promisc when
2483 *  manually putting the device into promiscuous mode.
2484 **/
2485s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2486				      u32 addr_count, ixgbe_mc_addr_itr next)
2487{
2488	u8 *addr;
2489	u32 i;
2490	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2491	u32 uc_addr_in_use;
2492	u32 fctrl;
2493	u32 vmdq;
2494
2495	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2496
2497	/*
2498	 * Clear accounting of old secondary address list,
2499	 * don't count RAR[0]
2500	 */
2501	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2502	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2503	hw->addr_ctrl.overflow_promisc = 0;
2504
2505	/* Zero out the other receive addresses */
2506	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2507	for (i = 0; i < uc_addr_in_use; i++) {
2508		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2509		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2510	}
2511
2512	/* Add the new addresses */
2513	for (i = 0; i < addr_count; i++) {
2514		DEBUGOUT(" Adding the secondary addresses:\n");
2515		addr = next(hw, &addr_list, &vmdq);
2516		ixgbe_add_uc_addr(hw, addr, vmdq);
2517	}
2518
2519	if (hw->addr_ctrl.overflow_promisc) {
2520		/* enable promisc if not already in overflow or set by user */
2521		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2522			DEBUGOUT(" Entering address overflow promisc mode\n");
2523			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2524			fctrl |= IXGBE_FCTRL_UPE;
2525			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2526		}
2527	} else {
2528		/* only disable if set by overflow, not by user */
2529		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2530			DEBUGOUT(" Leaving address overflow promisc mode\n");
2531			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2532			fctrl &= ~IXGBE_FCTRL_UPE;
2533			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2534		}
2535	}
2536
2537	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2538	return IXGBE_SUCCESS;
2539}
2540
2541/**
2542 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2543 *  @hw: pointer to hardware structure
2544 *  @mc_addr: the multicast address
2545 *
2546 *  Extracts the 12 bits, from a multicast address, to determine which
2547 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2548 *  incoming rx multicast addresses, to determine the bit-vector to check in
2549 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2550 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2551 *  to mc_filter_type.
2552 **/
2553static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2554{
2555	u32 vector = 0;
2556
2557	DEBUGFUNC("ixgbe_mta_vector");
2558
2559	switch (hw->mac.mc_filter_type) {
2560	case 0:   /* use bits [47:36] of the address */
2561		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2562		break;
2563	case 1:   /* use bits [46:35] of the address */
2564		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2565		break;
2566	case 2:   /* use bits [45:34] of the address */
2567		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2568		break;
2569	case 3:   /* use bits [43:32] of the address */
2570		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2571		break;
2572	default:  /* Invalid mc_filter_type */
2573		DEBUGOUT("MC filter type param set incorrectly\n");
2574		ASSERT(0);
2575		break;
2576	}
2577
2578	/* vector can only be 12-bits or boundary will be exceeded */
2579	vector &= 0xFFF;
2580	return vector;
2581}
2582
2583/**
2584 *  ixgbe_set_mta - Set bit-vector in multicast table
2585 *  @hw: pointer to hardware structure
2586 *  @hash_value: Multicast address hash value
2587 *
2588 *  Sets the bit-vector in the multicast table.
2589 **/
2590void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2591{
2592	u32 vector;
2593	u32 vector_bit;
2594	u32 vector_reg;
2595
2596	DEBUGFUNC("ixgbe_set_mta");
2597
2598	hw->addr_ctrl.mta_in_use++;
2599
2600	vector = ixgbe_mta_vector(hw, mc_addr);
2601	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2602
2603	/*
2604	 * The MTA is a register array of 128 32-bit registers. It is treated
2605	 * like an array of 4096 bits.  We want to set bit
2606	 * BitArray[vector_value]. So we figure out what register the bit is
2607	 * in, read it, OR in the new bit, then write back the new value.  The
2608	 * register is determined by the upper 7 bits of the vector value and
2609	 * the bit within that register are determined by the lower 5 bits of
2610	 * the value.
2611	 */
2612	vector_reg = (vector >> 5) & 0x7F;
2613	vector_bit = vector & 0x1F;
2614	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2615}
2616
2617/**
2618 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2619 *  @hw: pointer to hardware structure
2620 *  @mc_addr_list: the list of new multicast addresses
2621 *  @mc_addr_count: number of addresses
2622 *  @next: iterator function to walk the multicast address list
2623 *  @clear: flag, when set clears the table beforehand
2624 *
2625 *  When the clear flag is set, the given list replaces any existing list.
2626 *  Hashes the given addresses into the multicast table.
2627 **/
2628s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2629				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2630				      bool clear)
2631{
2632	u32 i;
2633	u32 vmdq;
2634
2635	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2636
2637	/*
2638	 * Set the new number of MC addresses that we are being requested to
2639	 * use.
2640	 */
2641	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2642	hw->addr_ctrl.mta_in_use = 0;
2643
2644	/* Clear mta_shadow */
2645	if (clear) {
2646		DEBUGOUT(" Clearing MTA\n");
2647		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2648	}
2649
2650	/* Update mta_shadow */
2651	for (i = 0; i < mc_addr_count; i++) {
2652		DEBUGOUT(" Adding the multicast addresses:\n");
2653		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2654	}
2655
2656	/* Enable mta */
2657	for (i = 0; i < hw->mac.mcft_size; i++)
2658		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2659				      hw->mac.mta_shadow[i]);
2660
2661	if (hw->addr_ctrl.mta_in_use > 0)
2662		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2663				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2664
2665	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2666	return IXGBE_SUCCESS;
2667}
2668
2669/**
2670 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2671 *  @hw: pointer to hardware structure
2672 *
2673 *  Enables multicast address in RAR and the use of the multicast hash table.
2674 **/
2675s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2676{
2677	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2678
2679	DEBUGFUNC("ixgbe_enable_mc_generic");
2680
2681	if (a->mta_in_use > 0)
2682		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2683				hw->mac.mc_filter_type);
2684
2685	return IXGBE_SUCCESS;
2686}
2687
2688/**
2689 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2690 *  @hw: pointer to hardware structure
2691 *
2692 *  Disables multicast address in RAR and the use of the multicast hash table.
2693 **/
2694s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2695{
2696	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2697
2698	DEBUGFUNC("ixgbe_disable_mc_generic");
2699
2700	if (a->mta_in_use > 0)
2701		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2702
2703	return IXGBE_SUCCESS;
2704}
2705
2706/**
2707 *  ixgbe_fc_enable_generic - Enable flow control
2708 *  @hw: pointer to hardware structure
2709 *
2710 *  Enable flow control according to the current settings.
2711 **/
2712s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2713{
2714	s32 ret_val = IXGBE_SUCCESS;
2715	u32 mflcn_reg, fccfg_reg;
2716	u32 reg;
2717	u32 fcrtl, fcrth;
2718	int i;
2719
2720	DEBUGFUNC("ixgbe_fc_enable_generic");
2721
2722	/* Validate the water mark configuration */
2723	if (!hw->fc.pause_time) {
2724		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2725		goto out;
2726	}
2727
2728	/* Low water mark of zero causes XOFF floods */
2729	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2730		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2731		    hw->fc.high_water[i]) {
2732			if (!hw->fc.low_water[i] ||
2733			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2734				DEBUGOUT("Invalid water mark configuration\n");
2735				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2736				goto out;
2737			}
2738		}
2739	}
2740
2741	/* Negotiate the fc mode to use */
2742	ixgbe_fc_autoneg(hw);
2743
2744	/* Disable any previous flow control settings */
2745	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2746	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2747
2748	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2749	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2750
2751	/*
2752	 * The possible values of fc.current_mode are:
2753	 * 0: Flow control is completely disabled
2754	 * 1: Rx flow control is enabled (we can receive pause frames,
2755	 *    but not send pause frames).
2756	 * 2: Tx flow control is enabled (we can send pause frames but
2757	 *    we do not support receiving pause frames).
2758	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2759	 * other: Invalid.
2760	 */
2761	switch (hw->fc.current_mode) {
2762	case ixgbe_fc_none:
2763		/*
2764		 * Flow control is disabled by software override or autoneg.
2765		 * The code below will actually disable it in the HW.
2766		 */
2767		break;
2768	case ixgbe_fc_rx_pause:
2769		/*
2770		 * Rx Flow control is enabled and Tx Flow control is
2771		 * disabled by software override. Since there really
2772		 * isn't a way to advertise that we are capable of RX
2773		 * Pause ONLY, we will advertise that we support both
2774		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2775		 * disable the adapter's ability to send PAUSE frames.
2776		 */
2777		mflcn_reg |= IXGBE_MFLCN_RFCE;
2778		break;
2779	case ixgbe_fc_tx_pause:
2780		/*
2781		 * Tx Flow control is enabled, and Rx Flow control is
2782		 * disabled by software override.
2783		 */
2784		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2785		break;
2786	case ixgbe_fc_full:
2787		/* Flow control (both Rx and Tx) is enabled by SW override. */
2788		mflcn_reg |= IXGBE_MFLCN_RFCE;
2789		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2790		break;
2791	default:
2792		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2793			     "Flow control param set incorrectly\n");
2794		ret_val = IXGBE_ERR_CONFIG;
2795		goto out;
2796		break;
2797	}
2798
2799	/* Set 802.3x based flow control settings. */
2800	mflcn_reg |= IXGBE_MFLCN_DPF;
2801	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2802	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2803
2804
2805	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2806	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2807		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2808		    hw->fc.high_water[i]) {
2809			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2810			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2811			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2812		} else {
2813			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2814			/*
2815			 * In order to prevent Tx hangs when the internal Tx
2816			 * switch is enabled we must set the high water mark
2817			 * to the Rx packet buffer size - 24KB.  This allows
2818			 * the Tx switch to function even under heavy Rx
2819			 * workloads.
2820			 */
2821			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2822		}
2823
2824		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2825	}
2826
2827	/* Configure pause time (2 TCs per register) */
2828	reg = hw->fc.pause_time * 0x00010001;
2829	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2830		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2831
2832	/* Configure flow control refresh threshold value */
2833	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2834
2835out:
2836	return ret_val;
2837}
2838
2839/**
2840 *  ixgbe_negotiate_fc - Negotiate flow control
2841 *  @hw: pointer to hardware structure
2842 *  @adv_reg: flow control advertised settings
2843 *  @lp_reg: link partner's flow control settings
2844 *  @adv_sym: symmetric pause bit in advertisement
2845 *  @adv_asm: asymmetric pause bit in advertisement
2846 *  @lp_sym: symmetric pause bit in link partner advertisement
2847 *  @lp_asm: asymmetric pause bit in link partner advertisement
2848 *
2849 *  Find the intersection between advertised settings and link partner's
2850 *  advertised settings
2851 **/
2852static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2853			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2854{
2855	if ((!(adv_reg)) ||  (!(lp_reg))) {
2856		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2857			     "Local or link partner's advertised flow control "
2858			     "settings are NULL. Local: %x, link partner: %x\n",
2859			     adv_reg, lp_reg);
2860		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2861	}
2862
2863	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2864		/*
2865		 * Now we need to check if the user selected Rx ONLY
2866		 * of pause frames.  In this case, we had to advertise
2867		 * FULL flow control because we could not advertise RX
2868		 * ONLY. Hence, we must now check to see if we need to
2869		 * turn OFF the TRANSMISSION of PAUSE frames.
2870		 */
2871		if (hw->fc.requested_mode == ixgbe_fc_full) {
2872			hw->fc.current_mode = ixgbe_fc_full;
2873			DEBUGOUT("Flow Control = FULL.\n");
2874		} else {
2875			hw->fc.current_mode = ixgbe_fc_rx_pause;
2876			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2877		}
2878	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880		hw->fc.current_mode = ixgbe_fc_tx_pause;
2881		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2882	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2883		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2884		hw->fc.current_mode = ixgbe_fc_rx_pause;
2885		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2886	} else {
2887		hw->fc.current_mode = ixgbe_fc_none;
2888		DEBUGOUT("Flow Control = NONE.\n");
2889	}
2890	return IXGBE_SUCCESS;
2891}
2892
2893/**
2894 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2895 *  @hw: pointer to hardware structure
2896 *
2897 *  Enable flow control according on 1 gig fiber.
2898 **/
2899static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2900{
2901	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2902	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2903
2904	/*
2905	 * On multispeed fiber at 1g, bail out if
2906	 * - link is up but AN did not complete, or if
2907	 * - link is up and AN completed but timed out
2908	 */
2909
2910	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2911	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2912	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2913		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2914		goto out;
2915	}
2916
2917	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2918	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2919
2920	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2921				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2922				      IXGBE_PCS1GANA_ASM_PAUSE,
2923				      IXGBE_PCS1GANA_SYM_PAUSE,
2924				      IXGBE_PCS1GANA_ASM_PAUSE);
2925
2926out:
2927	return ret_val;
2928}
2929
2930/**
2931 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2932 *  @hw: pointer to hardware structure
2933 *
2934 *  Enable flow control according to IEEE clause 37.
2935 **/
2936static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2937{
2938	u32 links2, anlp1_reg, autoc_reg, links;
2939	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2940
2941	/*
2942	 * On backplane, bail out if
2943	 * - backplane autoneg was not completed, or if
2944	 * - we are 82599 and link partner is not AN enabled
2945	 */
2946	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2947	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2948		DEBUGOUT("Auto-Negotiation did not complete\n");
2949		goto out;
2950	}
2951
2952	if (hw->mac.type == ixgbe_mac_82599EB) {
2953		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2954		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2955			DEBUGOUT("Link partner is not AN enabled\n");
2956			goto out;
2957		}
2958	}
2959	/*
2960	 * Read the 10g AN autoc and LP ability registers and resolve
2961	 * local flow control settings accordingly
2962	 */
2963	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2964	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2965
2966	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2967		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2968		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2969
2970out:
2971	return ret_val;
2972}
2973
2974/**
2975 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2976 *  @hw: pointer to hardware structure
2977 *
2978 *  Enable flow control according to IEEE clause 37.
2979 **/
2980static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2981{
2982	u16 technology_ability_reg = 0;
2983	u16 lp_technology_ability_reg = 0;
2984
2985	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2986			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987			     &technology_ability_reg);
2988	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2989			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2990			     &lp_technology_ability_reg);
2991
2992	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2993				  (u32)lp_technology_ability_reg,
2994				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2995				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2996}
2997
2998/**
2999 *  ixgbe_fc_autoneg - Configure flow control
3000 *  @hw: pointer to hardware structure
3001 *
3002 *  Compares our advertised flow control capabilities to those advertised by
3003 *  our link partner, and determines the proper flow control mode to use.
3004 **/
3005void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3006{
3007	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3008	ixgbe_link_speed speed;
3009	bool link_up;
3010
3011	DEBUGFUNC("ixgbe_fc_autoneg");
3012
3013	/*
3014	 * AN should have completed when the cable was plugged in.
3015	 * Look for reasons to bail out.  Bail out if:
3016	 * - FC autoneg is disabled, or if
3017	 * - link is not up.
3018	 */
3019	if (hw->fc.disable_fc_autoneg) {
3020		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3021			     "Flow control autoneg is disabled");
3022		goto out;
3023	}
3024
3025	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3026	if (!link_up) {
3027		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3028		goto out;
3029	}
3030
3031	switch (hw->phy.media_type) {
3032	/* Autoneg flow control on fiber adapters */
3033	case ixgbe_media_type_fiber_fixed:
3034	case ixgbe_media_type_fiber_qsfp:
3035	case ixgbe_media_type_fiber:
3036		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3037			ret_val = ixgbe_fc_autoneg_fiber(hw);
3038		break;
3039
3040	/* Autoneg flow control on backplane adapters */
3041	case ixgbe_media_type_backplane:
3042		ret_val = ixgbe_fc_autoneg_backplane(hw);
3043		break;
3044
3045	/* Autoneg flow control on copper adapters */
3046	case ixgbe_media_type_copper:
3047		if (ixgbe_device_supports_autoneg_fc(hw))
3048			ret_val = ixgbe_fc_autoneg_copper(hw);
3049		break;
3050
3051	default:
3052		break;
3053	}
3054
3055out:
3056	if (ret_val == IXGBE_SUCCESS) {
3057		hw->fc.fc_was_autonegged = TRUE;
3058	} else {
3059		hw->fc.fc_was_autonegged = FALSE;
3060		hw->fc.current_mode = hw->fc.requested_mode;
3061	}
3062}
3063
3064/*
3065 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3066 * @hw: pointer to hardware structure
3067 *
3068 * System-wide timeout range is encoded in PCIe Device Control2 register.
3069 *
3070 * Add 10% to specified maximum and return the number of times to poll for
3071 * completion timeout, in units of 100 microsec.  Never return less than
3072 * 800 = 80 millisec.
3073 */
3074static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3075{
3076	s16 devctl2;
3077	u32 pollcnt;
3078
3079	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3080	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3081
3082	switch (devctl2) {
3083	case IXGBE_PCIDEVCTRL2_65_130ms:
3084		pollcnt = 1300;		/* 130 millisec */
3085		break;
3086	case IXGBE_PCIDEVCTRL2_260_520ms:
3087		pollcnt = 5200;		/* 520 millisec */
3088		break;
3089	case IXGBE_PCIDEVCTRL2_1_2s:
3090		pollcnt = 20000;	/* 2 sec */
3091		break;
3092	case IXGBE_PCIDEVCTRL2_4_8s:
3093		pollcnt = 80000;	/* 8 sec */
3094		break;
3095	case IXGBE_PCIDEVCTRL2_17_34s:
3096		pollcnt = 34000;	/* 34 sec */
3097		break;
3098	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3099	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3100	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3101	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3102	default:
3103		pollcnt = 800;		/* 80 millisec minimum */
3104		break;
3105	}
3106
3107	/* add 10% to spec maximum */
3108	return (pollcnt * 11) / 10;
3109}
3110
3111/**
3112 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3113 *  @hw: pointer to hardware structure
3114 *
3115 *  Disables PCI-Express master access and verifies there are no pending
3116 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3117 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3118 *  is returned signifying master requests disabled.
3119 **/
3120s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3121{
3122	s32 status = IXGBE_SUCCESS;
3123	u32 i, poll;
3124	u16 value;
3125
3126	DEBUGFUNC("ixgbe_disable_pcie_master");
3127
3128	/* Always set this bit to ensure any future transactions are blocked */
3129	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3130
3131	/* Exit if master requests are blocked */
3132	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3133	    IXGBE_REMOVED(hw->hw_addr))
3134		goto out;
3135
3136	/* Poll for master request bit to clear */
3137	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3138		usec_delay(100);
3139		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3140			goto out;
3141	}
3142
3143	/*
3144	 * Two consecutive resets are required via CTRL.RST per datasheet
3145	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3146	 * of this need.  The first reset prevents new master requests from
3147	 * being issued by our device.  We then must wait 1usec or more for any
3148	 * remaining completions from the PCIe bus to trickle in, and then reset
3149	 * again to clear out any effects they may have had on our device.
3150	 */
3151	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3152	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3153
3154	if (hw->mac.type >= ixgbe_mac_X550)
3155		goto out;
3156
3157	/*
3158	 * Before proceeding, make sure that the PCIe block does not have
3159	 * transactions pending.
3160	 */
3161	poll = ixgbe_pcie_timeout_poll(hw);
3162	for (i = 0; i < poll; i++) {
3163		usec_delay(100);
3164		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3165		if (IXGBE_REMOVED(hw->hw_addr))
3166			goto out;
3167		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3168			goto out;
3169	}
3170
3171	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3172		     "PCIe transaction pending bit also did not clear.\n");
3173	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3174
3175out:
3176	return status;
3177}
3178
3179/**
3180 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3181 *  @hw: pointer to hardware structure
3182 *  @mask: Mask to specify which semaphore to acquire
3183 *
3184 *  Acquires the SWFW semaphore through the GSSR register for the specified
3185 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3186 **/
3187s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3188{
3189	u32 gssr = 0;
3190	u32 swmask = mask;
3191	u32 fwmask = mask << 5;
3192	u32 timeout = 200;
3193	u32 i;
3194
3195	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3196
3197	for (i = 0; i < timeout; i++) {
3198		/*
3199		 * SW NVM semaphore bit is used for access to all
3200		 * SW_FW_SYNC bits (not just NVM)
3201		 */
3202		if (ixgbe_get_eeprom_semaphore(hw))
3203			return IXGBE_ERR_SWFW_SYNC;
3204
3205		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3206		if (!(gssr & (fwmask | swmask))) {
3207			gssr |= swmask;
3208			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3209			ixgbe_release_eeprom_semaphore(hw);
3210			return IXGBE_SUCCESS;
3211		} else {
3212			/* Resource is currently in use by FW or SW */
3213			ixgbe_release_eeprom_semaphore(hw);
3214			msec_delay(5);
3215		}
3216	}
3217
3218	/* If time expired clear the bits holding the lock and retry */
3219	if (gssr & (fwmask | swmask))
3220		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3221
3222	msec_delay(5);
3223	return IXGBE_ERR_SWFW_SYNC;
3224}
3225
3226/**
3227 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3228 *  @hw: pointer to hardware structure
3229 *  @mask: Mask to specify which semaphore to release
3230 *
3231 *  Releases the SWFW semaphore through the GSSR register for the specified
3232 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3233 **/
3234void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3235{
3236	u32 gssr;
3237	u32 swmask = mask;
3238
3239	DEBUGFUNC("ixgbe_release_swfw_sync");
3240
3241	ixgbe_get_eeprom_semaphore(hw);
3242
3243	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3244	gssr &= ~swmask;
3245	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3246
3247	ixgbe_release_eeprom_semaphore(hw);
3248}
3249
3250/**
3251 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3252 *  @hw: pointer to hardware structure
3253 *
3254 *  Stops the receive data path and waits for the HW to internally empty
3255 *  the Rx security block
3256 **/
3257s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3258{
3259#define IXGBE_MAX_SECRX_POLL 40
3260
3261	int i;
3262	int secrxreg;
3263
3264	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3265
3266
3267	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3268	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3269	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3270	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3271		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3272		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3273			break;
3274		else
3275			/* Use interrupt-safe sleep just in case */
3276			usec_delay(1000);
3277	}
3278
3279	/* For informational purposes only */
3280	if (i >= IXGBE_MAX_SECRX_POLL)
3281		DEBUGOUT("Rx unit being enabled before security "
3282			 "path fully disabled.  Continuing with init.\n");
3283
3284	return IXGBE_SUCCESS;
3285}
3286
3287/**
3288 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3289 *  @hw: pointer to hardware structure
3290 *  @reg_val: Value we read from AUTOC
3291 *
3292 *  The default case requires no protection so just to the register read.
3293 */
3294s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3295{
3296	*locked = FALSE;
3297	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3298	return IXGBE_SUCCESS;
3299}
3300
3301/**
3302 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3303 * @hw: pointer to hardware structure
3304 * @reg_val: value to write to AUTOC
3305 * @locked: bool to indicate whether the SW/FW lock was already taken by
3306 *           previous read.
3307 *
3308 * The default case requires no protection so just to the register write.
3309 */
3310s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3311{
3312	UNREFERENCED_1PARAMETER(locked);
3313
3314	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3315	return IXGBE_SUCCESS;
3316}
3317
3318/**
3319 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3320 *  @hw: pointer to hardware structure
3321 *
3322 *  Enables the receive data path.
3323 **/
3324s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3325{
3326	int secrxreg;
3327
3328	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3329
3330	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3331	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3332	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3333	IXGBE_WRITE_FLUSH(hw);
3334
3335	return IXGBE_SUCCESS;
3336}
3337
3338/**
3339 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3340 *  @hw: pointer to hardware structure
3341 *  @regval: register value to write to RXCTRL
3342 *
3343 *  Enables the Rx DMA unit
3344 **/
3345s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3346{
3347	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3348
3349	if (regval & IXGBE_RXCTRL_RXEN)
3350		ixgbe_enable_rx(hw);
3351	else
3352		ixgbe_disable_rx(hw);
3353
3354	return IXGBE_SUCCESS;
3355}
3356
3357/**
3358 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3359 *  @hw: pointer to hardware structure
3360 *  @index: led number to blink
3361 **/
3362s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3363{
3364	ixgbe_link_speed speed = 0;
3365	bool link_up = 0;
3366	u32 autoc_reg = 0;
3367	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3368	s32 ret_val = IXGBE_SUCCESS;
3369	bool locked = FALSE;
3370
3371	DEBUGFUNC("ixgbe_blink_led_start_generic");
3372
3373	/*
3374	 * Link must be up to auto-blink the LEDs;
3375	 * Force it if link is down.
3376	 */
3377	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3378
3379	if (!link_up) {
3380		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3381		if (ret_val != IXGBE_SUCCESS)
3382			goto out;
3383
3384		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3385		autoc_reg |= IXGBE_AUTOC_FLU;
3386
3387		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3388		if (ret_val != IXGBE_SUCCESS)
3389			goto out;
3390
3391		IXGBE_WRITE_FLUSH(hw);
3392		msec_delay(10);
3393	}
3394
3395	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3396	led_reg |= IXGBE_LED_BLINK(index);
3397	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3398	IXGBE_WRITE_FLUSH(hw);
3399
3400out:
3401	return ret_val;
3402}
3403
3404/**
3405 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3406 *  @hw: pointer to hardware structure
3407 *  @index: led number to stop blinking
3408 **/
3409s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3410{
3411	u32 autoc_reg = 0;
3412	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3413	s32 ret_val = IXGBE_SUCCESS;
3414	bool locked = FALSE;
3415
3416	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3417
3418	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3419	if (ret_val != IXGBE_SUCCESS)
3420		goto out;
3421
3422	autoc_reg &= ~IXGBE_AUTOC_FLU;
3423	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3424
3425	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3426	if (ret_val != IXGBE_SUCCESS)
3427		goto out;
3428
3429	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3430	led_reg &= ~IXGBE_LED_BLINK(index);
3431	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3432	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3433	IXGBE_WRITE_FLUSH(hw);
3434
3435out:
3436	return ret_val;
3437}
3438
3439/**
3440 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3441 *  @hw: pointer to hardware structure
3442 *  @san_mac_offset: SAN MAC address offset
3443 *
3444 *  This function will read the EEPROM location for the SAN MAC address
3445 *  pointer, and returns the value at that location.  This is used in both
3446 *  get and set mac_addr routines.
3447 **/
3448static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3449					 u16 *san_mac_offset)
3450{
3451	s32 ret_val;
3452
3453	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3454
3455	/*
3456	 * First read the EEPROM pointer to see if the MAC addresses are
3457	 * available.
3458	 */
3459	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3460				      san_mac_offset);
3461	if (ret_val) {
3462		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3463			      "eeprom at offset %d failed",
3464			      IXGBE_SAN_MAC_ADDR_PTR);
3465	}
3466
3467	return ret_val;
3468}
3469
3470/**
3471 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3472 *  @hw: pointer to hardware structure
3473 *  @san_mac_addr: SAN MAC address
3474 *
3475 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3476 *  per-port, so set_lan_id() must be called before reading the addresses.
3477 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3478 *  upon for non-SFP connections, so we must call it here.
3479 **/
3480s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3481{
3482	u16 san_mac_data, san_mac_offset;
3483	u8 i;
3484	s32 ret_val;
3485
3486	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3487
3488	/*
3489	 * First read the EEPROM pointer to see if the MAC addresses are
3490	 * available.  If they're not, no point in calling set_lan_id() here.
3491	 */
3492	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3493	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3494		goto san_mac_addr_out;
3495
3496	/* make sure we know which port we need to program */
3497	hw->mac.ops.set_lan_id(hw);
3498	/* apply the port offset to the address offset */
3499	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3500			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3501	for (i = 0; i < 3; i++) {
3502		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3503					      &san_mac_data);
3504		if (ret_val) {
3505			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3506				      "eeprom read at offset %d failed",
3507				      san_mac_offset);
3508			goto san_mac_addr_out;
3509		}
3510		san_mac_addr[i * 2] = (u8)(san_mac_data);
3511		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3512		san_mac_offset++;
3513	}
3514	return IXGBE_SUCCESS;
3515
3516san_mac_addr_out:
3517	/*
3518	 * No addresses available in this EEPROM.  It's not an
3519	 * error though, so just wipe the local address and return.
3520	 */
3521	for (i = 0; i < 6; i++)
3522		san_mac_addr[i] = 0xFF;
3523	return IXGBE_SUCCESS;
3524}
3525
3526/**
3527 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3528 *  @hw: pointer to hardware structure
3529 *  @san_mac_addr: SAN MAC address
3530 *
3531 *  Write a SAN MAC address to the EEPROM.
3532 **/
3533s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3534{
3535	s32 ret_val;
3536	u16 san_mac_data, san_mac_offset;
3537	u8 i;
3538
3539	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3540
3541	/* Look for SAN mac address pointer.  If not defined, return */
3542	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3543	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3544		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3545
3546	/* Make sure we know which port we need to write */
3547	hw->mac.ops.set_lan_id(hw);
3548	/* Apply the port offset to the address offset */
3549	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3550			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3551
3552	for (i = 0; i < 3; i++) {
3553		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3554		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3555		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3556		san_mac_offset++;
3557	}
3558
3559	return IXGBE_SUCCESS;
3560}
3561
3562/**
3563 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3564 *  @hw: pointer to hardware structure
3565 *
3566 *  Read PCIe configuration space, and get the MSI-X vector count from
3567 *  the capabilities table.
3568 **/
3569u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3570{
3571	u16 msix_count = 1;
3572	u16 max_msix_count;
3573	u16 pcie_offset;
3574
3575	switch (hw->mac.type) {
3576	case ixgbe_mac_82598EB:
3577		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3578		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3579		break;
3580	case ixgbe_mac_82599EB:
3581	case ixgbe_mac_X540:
3582	case ixgbe_mac_X550:
3583	case ixgbe_mac_X550EM_x:
3584		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3585		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3586		break;
3587	default:
3588		return msix_count;
3589	}
3590
3591	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3592	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3593	if (IXGBE_REMOVED(hw->hw_addr))
3594		msix_count = 0;
3595	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3596
3597	/* MSI-X count is zero-based in HW */
3598	msix_count++;
3599
3600	if (msix_count > max_msix_count)
3601		msix_count = max_msix_count;
3602
3603	return msix_count;
3604}
3605
3606/**
3607 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3608 *  @hw: pointer to hardware structure
3609 *  @addr: Address to put into receive address register
3610 *  @vmdq: VMDq pool to assign
3611 *
3612 *  Puts an ethernet address into a receive address register, or
3613 *  finds the rar that it is aleady in; adds to the pool list
3614 **/
3615s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3616{
3617	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3618	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3619	u32 rar;
3620	u32 rar_low, rar_high;
3621	u32 addr_low, addr_high;
3622
3623	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3624
3625	/* swap bytes for HW little endian */
3626	addr_low  = addr[0] | (addr[1] << 8)
3627			    | (addr[2] << 16)
3628			    | (addr[3] << 24);
3629	addr_high = addr[4] | (addr[5] << 8);
3630
3631	/*
3632	 * Either find the mac_id in rar or find the first empty space.
3633	 * rar_highwater points to just after the highest currently used
3634	 * rar in order to shorten the search.  It grows when we add a new
3635	 * rar to the top.
3636	 */
3637	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3638		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3639
3640		if (((IXGBE_RAH_AV & rar_high) == 0)
3641		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3642			first_empty_rar = rar;
3643		} else if ((rar_high & 0xFFFF) == addr_high) {
3644			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3645			if (rar_low == addr_low)
3646				break;    /* found it already in the rars */
3647		}
3648	}
3649
3650	if (rar < hw->mac.rar_highwater) {
3651		/* already there so just add to the pool bits */
3652		ixgbe_set_vmdq(hw, rar, vmdq);
3653	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3654		/* stick it into first empty RAR slot we found */
3655		rar = first_empty_rar;
3656		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657	} else if (rar == hw->mac.rar_highwater) {
3658		/* add it to the top of the list and inc the highwater mark */
3659		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3660		hw->mac.rar_highwater++;
3661	} else if (rar >= hw->mac.num_rar_entries) {
3662		return IXGBE_ERR_INVALID_MAC_ADDR;
3663	}
3664
3665	/*
3666	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3667	 * remains cleared to be sure default pool packets will get delivered
3668	 */
3669	if (rar == 0)
3670		ixgbe_clear_vmdq(hw, rar, 0);
3671
3672	return rar;
3673}
3674
3675/**
3676 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3677 *  @hw: pointer to hardware struct
3678 *  @rar: receive address register index to disassociate
3679 *  @vmdq: VMDq pool index to remove from the rar
3680 **/
3681s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3682{
3683	u32 mpsar_lo, mpsar_hi;
3684	u32 rar_entries = hw->mac.num_rar_entries;
3685
3686	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3687
3688	/* Make sure we are using a valid rar index range */
3689	if (rar >= rar_entries) {
3690		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3691			     "RAR index %d is out of range.\n", rar);
3692		return IXGBE_ERR_INVALID_ARGUMENT;
3693	}
3694
3695	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3696	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3697
3698	if (IXGBE_REMOVED(hw->hw_addr))
3699		goto done;
3700
3701	if (!mpsar_lo && !mpsar_hi)
3702		goto done;
3703
3704	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3705		if (mpsar_lo) {
3706			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3707			mpsar_lo = 0;
3708		}
3709		if (mpsar_hi) {
3710			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3711			mpsar_hi = 0;
3712		}
3713	} else if (vmdq < 32) {
3714		mpsar_lo &= ~(1 << vmdq);
3715		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3716	} else {
3717		mpsar_hi &= ~(1 << (vmdq - 32));
3718		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3719	}
3720
3721	/* was that the last pool using this rar? */
3722	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3723		hw->mac.ops.clear_rar(hw, rar);
3724done:
3725	return IXGBE_SUCCESS;
3726}
3727
3728/**
3729 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3730 *  @hw: pointer to hardware struct
3731 *  @rar: receive address register index to associate with a VMDq index
3732 *  @vmdq: VMDq pool index
3733 **/
3734s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3735{
3736	u32 mpsar;
3737	u32 rar_entries = hw->mac.num_rar_entries;
3738
3739	DEBUGFUNC("ixgbe_set_vmdq_generic");
3740
3741	/* Make sure we are using a valid rar index range */
3742	if (rar >= rar_entries) {
3743		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3744			     "RAR index %d is out of range.\n", rar);
3745		return IXGBE_ERR_INVALID_ARGUMENT;
3746	}
3747
3748	if (vmdq < 32) {
3749		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3750		mpsar |= 1 << vmdq;
3751		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3752	} else {
3753		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3754		mpsar |= 1 << (vmdq - 32);
3755		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3756	}
3757	return IXGBE_SUCCESS;
3758}
3759
3760/**
3761 *  This function should only be involved in the IOV mode.
3762 *  In IOV mode, Default pool is next pool after the number of
3763 *  VFs advertized and not 0.
3764 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3765 *
3766 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3767 *  @hw: pointer to hardware struct
3768 *  @vmdq: VMDq pool index
3769 **/
3770s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3771{
3772	u32 rar = hw->mac.san_mac_rar_index;
3773
3774	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3775
3776	if (vmdq < 32) {
3777		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3778		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3779	} else {
3780		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3781		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3782	}
3783
3784	return IXGBE_SUCCESS;
3785}
3786
3787/**
3788 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3789 *  @hw: pointer to hardware structure
3790 **/
3791s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3792{
3793	int i;
3794
3795	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3796	DEBUGOUT(" Clearing UTA\n");
3797
3798	for (i = 0; i < 128; i++)
3799		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3800
3801	return IXGBE_SUCCESS;
3802}
3803
3804/**
3805 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3806 *  @hw: pointer to hardware structure
3807 *  @vlan: VLAN id to write to VLAN filter
3808 *
3809 *  return the VLVF index where this VLAN id should be placed
3810 *
3811 **/
3812s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3813{
3814	u32 bits = 0;
3815	u32 first_empty_slot = 0;
3816	s32 regindex;
3817
3818	/* short cut the special case */
3819	if (vlan == 0)
3820		return 0;
3821
3822	/*
3823	  * Search for the vlan id in the VLVF entries. Save off the first empty
3824	  * slot found along the way
3825	  */
3826	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3827		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3828		if (!bits && !(first_empty_slot))
3829			first_empty_slot = regindex;
3830		else if ((bits & 0x0FFF) == vlan)
3831			break;
3832	}
3833
3834	/*
3835	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3836	  * in the VLVF. Else use the first empty VLVF register for this
3837	  * vlan id.
3838	  */
3839	if (regindex >= IXGBE_VLVF_ENTRIES) {
3840		if (first_empty_slot)
3841			regindex = first_empty_slot;
3842		else {
3843			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3844				     "No space in VLVF.\n");
3845			regindex = IXGBE_ERR_NO_SPACE;
3846		}
3847	}
3848
3849	return regindex;
3850}
3851
3852/**
3853 *  ixgbe_set_vfta_generic - Set VLAN filter table
3854 *  @hw: pointer to hardware structure
3855 *  @vlan: VLAN id to write to VLAN filter
3856 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3857 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3858 *
3859 *  Turn on/off specified VLAN in the VLAN filter table.
3860 **/
3861s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3862			   bool vlan_on)
3863{
3864	s32 regindex;
3865	u32 bitindex;
3866	u32 vfta;
3867	u32 targetbit;
3868	s32 ret_val = IXGBE_SUCCESS;
3869	bool vfta_changed = FALSE;
3870
3871	DEBUGFUNC("ixgbe_set_vfta_generic");
3872
3873	if (vlan > 4095)
3874		return IXGBE_ERR_PARAM;
3875
3876	/*
3877	 * this is a 2 part operation - first the VFTA, then the
3878	 * VLVF and VLVFB if VT Mode is set
3879	 * We don't write the VFTA until we know the VLVF part succeeded.
3880	 */
3881
3882	/* Part 1
3883	 * The VFTA is a bitstring made up of 128 32-bit registers
3884	 * that enable the particular VLAN id, much like the MTA:
3885	 *    bits[11-5]: which register
3886	 *    bits[4-0]:  which bit in the register
3887	 */
3888	regindex = (vlan >> 5) & 0x7F;
3889	bitindex = vlan & 0x1F;
3890	targetbit = (1 << bitindex);
3891	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3892
3893	if (vlan_on) {
3894		if (!(vfta & targetbit)) {
3895			vfta |= targetbit;
3896			vfta_changed = TRUE;
3897		}
3898	} else {
3899		if ((vfta & targetbit)) {
3900			vfta &= ~targetbit;
3901			vfta_changed = TRUE;
3902		}
3903	}
3904
3905	/* Part 2
3906	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3907	 */
3908	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3909					 &vfta_changed);
3910	if (ret_val != IXGBE_SUCCESS)
3911		return ret_val;
3912
3913	if (vfta_changed)
3914		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3915
3916	return IXGBE_SUCCESS;
3917}
3918
3919/**
3920 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3921 *  @hw: pointer to hardware structure
3922 *  @vlan: VLAN id to write to VLAN filter
3923 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3924 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3925 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3926 *                 should be changed
3927 *
3928 *  Turn on/off specified bit in VLVF table.
3929 **/
3930s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3931			    bool vlan_on, bool *vfta_changed)
3932{
3933	u32 vt;
3934
3935	DEBUGFUNC("ixgbe_set_vlvf_generic");
3936
3937	if (vlan > 4095)
3938		return IXGBE_ERR_PARAM;
3939
3940	/* If VT Mode is set
3941	 *   Either vlan_on
3942	 *     make sure the vlan is in VLVF
3943	 *     set the vind bit in the matching VLVFB
3944	 *   Or !vlan_on
3945	 *     clear the pool bit and possibly the vind
3946	 */
3947	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3948	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3949		s32 vlvf_index;
3950		u32 bits;
3951
3952		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3953		if (vlvf_index < 0)
3954			return vlvf_index;
3955
3956		if (vlan_on) {
3957			/* set the pool bit */
3958			if (vind < 32) {
3959				bits = IXGBE_READ_REG(hw,
3960						IXGBE_VLVFB(vlvf_index * 2));
3961				bits |= (1 << vind);
3962				IXGBE_WRITE_REG(hw,
3963						IXGBE_VLVFB(vlvf_index * 2),
3964						bits);
3965			} else {
3966				bits = IXGBE_READ_REG(hw,
3967					IXGBE_VLVFB((vlvf_index * 2) + 1));
3968				bits |= (1 << (vind - 32));
3969				IXGBE_WRITE_REG(hw,
3970					IXGBE_VLVFB((vlvf_index * 2) + 1),
3971					bits);
3972			}
3973		} else {
3974			/* clear the pool bit */
3975			if (vind < 32) {
3976				bits = IXGBE_READ_REG(hw,
3977						IXGBE_VLVFB(vlvf_index * 2));
3978				bits &= ~(1 << vind);
3979				IXGBE_WRITE_REG(hw,
3980						IXGBE_VLVFB(vlvf_index * 2),
3981						bits);
3982				bits |= IXGBE_READ_REG(hw,
3983					IXGBE_VLVFB((vlvf_index * 2) + 1));
3984			} else {
3985				bits = IXGBE_READ_REG(hw,
3986					IXGBE_VLVFB((vlvf_index * 2) + 1));
3987				bits &= ~(1 << (vind - 32));
3988				IXGBE_WRITE_REG(hw,
3989					IXGBE_VLVFB((vlvf_index * 2) + 1),
3990					bits);
3991				bits |= IXGBE_READ_REG(hw,
3992						IXGBE_VLVFB(vlvf_index * 2));
3993			}
3994		}
3995
3996		/*
3997		 * If there are still bits set in the VLVFB registers
3998		 * for the VLAN ID indicated we need to see if the
3999		 * caller is requesting that we clear the VFTA entry bit.
4000		 * If the caller has requested that we clear the VFTA
4001		 * entry bit but there are still pools/VFs using this VLAN
4002		 * ID entry then ignore the request.  We're not worried
4003		 * about the case where we're turning the VFTA VLAN ID
4004		 * entry bit on, only when requested to turn it off as
4005		 * there may be multiple pools and/or VFs using the
4006		 * VLAN ID entry.  In that case we cannot clear the
4007		 * VFTA bit until all pools/VFs using that VLAN ID have also
4008		 * been cleared.  This will be indicated by "bits" being
4009		 * zero.
4010		 */
4011		if (bits) {
4012			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4013					(IXGBE_VLVF_VIEN | vlan));
4014			if ((!vlan_on) && (vfta_changed != NULL)) {
4015				/* someone wants to clear the vfta entry
4016				 * but some pools/VFs are still using it.
4017				 * Ignore it. */
4018				*vfta_changed = FALSE;
4019			}
4020		} else
4021			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4022	}
4023
4024	return IXGBE_SUCCESS;
4025}
4026
4027/**
4028 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4029 *  @hw: pointer to hardware structure
4030 *
4031 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4032 **/
4033s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4034{
4035	u32 offset;
4036
4037	DEBUGFUNC("ixgbe_clear_vfta_generic");
4038
4039	for (offset = 0; offset < hw->mac.vft_size; offset++)
4040		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4041
4042	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4043		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4044		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4045		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4046	}
4047
4048	return IXGBE_SUCCESS;
4049}
4050
4051/**
4052 *  ixgbe_check_mac_link_generic - Determine link and speed status
4053 *  @hw: pointer to hardware structure
4054 *  @speed: pointer to link speed
4055 *  @link_up: TRUE when link is up
4056 *  @link_up_wait_to_complete: bool used to wait for link up or not
4057 *
4058 *  Reads the links register to determine if link is up and the current speed
4059 **/
4060s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4061				 bool *link_up, bool link_up_wait_to_complete)
4062{
4063	u32 links_reg, links_orig;
4064	u32 i;
4065
4066	DEBUGFUNC("ixgbe_check_mac_link_generic");
4067
4068	/* clear the old state */
4069	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4070
4071	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4072
4073	if (links_orig != links_reg) {
4074		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4075			  links_orig, links_reg);
4076	}
4077
4078	if (link_up_wait_to_complete) {
4079		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4080			if (links_reg & IXGBE_LINKS_UP) {
4081				*link_up = TRUE;
4082				break;
4083			} else {
4084				*link_up = FALSE;
4085			}
4086			msec_delay(100);
4087			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4088		}
4089	} else {
4090		if (links_reg & IXGBE_LINKS_UP)
4091			*link_up = TRUE;
4092		else
4093			*link_up = FALSE;
4094	}
4095
4096	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4097	case IXGBE_LINKS_SPEED_10G_82599:
4098		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4099		if (hw->mac.type >= ixgbe_mac_X550) {
4100			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4101				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4102		}
4103		break;
4104	case IXGBE_LINKS_SPEED_1G_82599:
4105		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4106		break;
4107	case IXGBE_LINKS_SPEED_100_82599:
4108		*speed = IXGBE_LINK_SPEED_100_FULL;
4109		if (hw->mac.type >= ixgbe_mac_X550) {
4110			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4111				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4112		}
4113		break;
4114	default:
4115		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4116	}
4117
4118	return IXGBE_SUCCESS;
4119}
4120
4121/**
4122 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4123 *  the EEPROM
4124 *  @hw: pointer to hardware structure
4125 *  @wwnn_prefix: the alternative WWNN prefix
4126 *  @wwpn_prefix: the alternative WWPN prefix
4127 *
4128 *  This function will read the EEPROM from the alternative SAN MAC address
4129 *  block to check the support for the alternative WWNN/WWPN prefix support.
4130 **/
4131s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4132				 u16 *wwpn_prefix)
4133{
4134	u16 offset, caps;
4135	u16 alt_san_mac_blk_offset;
4136
4137	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4138
4139	/* clear output first */
4140	*wwnn_prefix = 0xFFFF;
4141	*wwpn_prefix = 0xFFFF;
4142
4143	/* check if alternative SAN MAC is supported */
4144	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4145	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4146		goto wwn_prefix_err;
4147
4148	if ((alt_san_mac_blk_offset == 0) ||
4149	    (alt_san_mac_blk_offset == 0xFFFF))
4150		goto wwn_prefix_out;
4151
4152	/* check capability in alternative san mac address block */
4153	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4154	if (hw->eeprom.ops.read(hw, offset, &caps))
4155		goto wwn_prefix_err;
4156	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4157		goto wwn_prefix_out;
4158
4159	/* get the corresponding prefix for WWNN/WWPN */
4160	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4161	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4162		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4163			      "eeprom read at offset %d failed", offset);
4164	}
4165
4166	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4167	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4168		goto wwn_prefix_err;
4169
4170wwn_prefix_out:
4171	return IXGBE_SUCCESS;
4172
4173wwn_prefix_err:
4174	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4175		      "eeprom read at offset %d failed", offset);
4176	return IXGBE_SUCCESS;
4177}
4178
4179/**
4180 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4181 *  @hw: pointer to hardware structure
4182 *  @bs: the fcoe boot status
4183 *
4184 *  This function will read the FCOE boot status from the iSCSI FCOE block
4185 **/
4186s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4187{
4188	u16 offset, caps, flags;
4189	s32 status;
4190
4191	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4192
4193	/* clear output first */
4194	*bs = ixgbe_fcoe_bootstatus_unavailable;
4195
4196	/* check if FCOE IBA block is present */
4197	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4198	status = hw->eeprom.ops.read(hw, offset, &caps);
4199	if (status != IXGBE_SUCCESS)
4200		goto out;
4201
4202	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4203		goto out;
4204
4205	/* check if iSCSI FCOE block is populated */
4206	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4207	if (status != IXGBE_SUCCESS)
4208		goto out;
4209
4210	if ((offset == 0) || (offset == 0xFFFF))
4211		goto out;
4212
4213	/* read fcoe flags in iSCSI FCOE block */
4214	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4215	status = hw->eeprom.ops.read(hw, offset, &flags);
4216	if (status != IXGBE_SUCCESS)
4217		goto out;
4218
4219	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4220		*bs = ixgbe_fcoe_bootstatus_enabled;
4221	else
4222		*bs = ixgbe_fcoe_bootstatus_disabled;
4223
4224out:
4225	return status;
4226}
4227
4228/**
4229 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4230 *  @hw: pointer to hardware structure
4231 *  @enable: enable or disable switch for anti-spoofing
4232 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4233 *
4234 **/
4235void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4236{
4237	int j;
4238	int pf_target_reg = pf >> 3;
4239	int pf_target_shift = pf % 8;
4240	u32 pfvfspoof = 0;
4241
4242	if (hw->mac.type == ixgbe_mac_82598EB)
4243		return;
4244
4245	if (enable)
4246		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4247
4248	/*
4249	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4250	 * MAC anti-spoof enables in each register array element.
4251	 */
4252	for (j = 0; j < pf_target_reg; j++)
4253		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4254
4255	/*
4256	 * The PF should be allowed to spoof so that it can support
4257	 * emulation mode NICs.  Do not set the bits assigned to the PF
4258	 */
4259	pfvfspoof &= (1 << pf_target_shift) - 1;
4260	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4261
4262	/*
4263	 * Remaining pools belong to the PF so they do not need to have
4264	 * anti-spoofing enabled.
4265	 */
4266	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4267		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4268}
4269
4270/**
4271 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4272 *  @hw: pointer to hardware structure
4273 *  @enable: enable or disable switch for VLAN anti-spoofing
4274 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4275 *
4276 **/
4277void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4278{
4279	int vf_target_reg = vf >> 3;
4280	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4281	u32 pfvfspoof;
4282
4283	if (hw->mac.type == ixgbe_mac_82598EB)
4284		return;
4285
4286	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4287	if (enable)
4288		pfvfspoof |= (1 << vf_target_shift);
4289	else
4290		pfvfspoof &= ~(1 << vf_target_shift);
4291	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4292}
4293
4294/**
4295 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4296 *  @hw: pointer to hardware structure
4297 *  @device_caps: the EEPROM word with the extra device capabilities
4298 *
4299 *  This function will read the EEPROM location for the device capabilities,
4300 *  and return the word through device_caps.
4301 **/
4302s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4303{
4304	DEBUGFUNC("ixgbe_get_device_caps_generic");
4305
4306	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4307
4308	return IXGBE_SUCCESS;
4309}
4310
4311/**
4312 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4313 *  @hw: pointer to hardware structure
4314 *
4315 **/
4316void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4317{
4318	u32 regval;
4319	u32 i;
4320
4321	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4322
4323	/* Enable relaxed ordering */
4324	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4325		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4326		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4327		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4328	}
4329
4330	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4331		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4332		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4333			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4334		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4335	}
4336
4337}
4338
4339/**
4340 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4341 *  @buffer: pointer to EEPROM
4342 *  @length: size of EEPROM to calculate a checksum for
4343 *  Calculates the checksum for some buffer on a specified length.  The
4344 *  checksum calculated is returned.
4345 **/
4346u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4347{
4348	u32 i;
4349	u8 sum = 0;
4350
4351	DEBUGFUNC("ixgbe_calculate_checksum");
4352
4353	if (!buffer)
4354		return 0;
4355
4356	for (i = 0; i < length; i++)
4357		sum += buffer[i];
4358
4359	return (u8) (0 - sum);
4360}
4361
4362/**
4363 *  ixgbe_host_interface_command - Issue command to manageability block
4364 *  @hw: pointer to the HW structure
4365 *  @buffer: contains the command to write and where the return status will
4366 *   be placed
4367 *  @length: length of buffer, must be multiple of 4 bytes
4368 *  @timeout: time in ms to wait for command completion
4369 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4370 *   Needed because FW structures are big endian and decoding of
4371 *   these fields can be 8 bit or 16 bit based on command. Decoding
4372 *   is not easily understood without making a table of commands.
4373 *   So we will leave this up to the caller to read back the data
4374 *   in these cases.
4375 *
4376 *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4377 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4378 **/
4379s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4380				 u32 length, u32 timeout, bool return_data)
4381{
4382	u32 hicr, i, bi, fwsts;
4383	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4384	u16 buf_len;
4385	u16 dword_len;
4386
4387	DEBUGFUNC("ixgbe_host_interface_command");
4388
4389	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4390		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4391		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4392	}
4393	/* Set bit 9 of FWSTS clearing FW reset indication */
4394	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4395	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4396
4397	/* Check that the host interface is enabled. */
4398	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4399	if ((hicr & IXGBE_HICR_EN) == 0) {
4400		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4401		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4402	}
4403
4404	/* Calculate length in DWORDs. We must be DWORD aligned */
4405	if ((length % (sizeof(u32))) != 0) {
4406		DEBUGOUT("Buffer length failure, not aligned to dword");
4407		return IXGBE_ERR_INVALID_ARGUMENT;
4408	}
4409
4410	dword_len = length >> 2;
4411
4412	/* The device driver writes the relevant command block
4413	 * into the ram area.
4414	 */
4415	for (i = 0; i < dword_len; i++)
4416		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4417				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4418
4419	/* Setting this bit tells the ARC that a new command is pending. */
4420	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4421
4422	for (i = 0; i < timeout; i++) {
4423		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4424		if (!(hicr & IXGBE_HICR_C))
4425			break;
4426		msec_delay(1);
4427	}
4428
4429	/* Check command completion */
4430	if ((timeout != 0 && i == timeout) ||
4431	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4432		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4433			     "Command has failed with no status valid.\n");
4434		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4435	}
4436
4437	if (!return_data)
4438		return 0;
4439
4440	/* Calculate length in DWORDs */
4441	dword_len = hdr_size >> 2;
4442
4443	/* first pull in the header so we know the buffer length */
4444	for (bi = 0; bi < dword_len; bi++) {
4445		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4446		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4447	}
4448
4449	/* If there is any thing in data position pull it in */
4450	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4451	if (buf_len == 0)
4452		return 0;
4453
4454	if (length < buf_len + hdr_size) {
4455		DEBUGOUT("Buffer not large enough for reply message.\n");
4456		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4457	}
4458
4459	/* Calculate length in DWORDs, add 3 for odd lengths */
4460	dword_len = (buf_len + 3) >> 2;
4461
4462	/* Pull in the rest of the buffer (bi is where we left off) */
4463	for (; bi <= dword_len; bi++) {
4464		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4465		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4466	}
4467
4468	return 0;
4469}
4470
4471/**
4472 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4473 *  @hw: pointer to the HW structure
4474 *  @maj: driver version major number
4475 *  @min: driver version minor number
4476 *  @build: driver version build number
4477 *  @sub: driver version sub build number
4478 *
4479 *  Sends driver version number to firmware through the manageability
4480 *  block.  On success return IXGBE_SUCCESS
4481 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4482 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4483 **/
4484s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4485				 u8 build, u8 sub)
4486{
4487	struct ixgbe_hic_drv_info fw_cmd;
4488	int i;
4489	s32 ret_val = IXGBE_SUCCESS;
4490
4491	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4492
4493	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4494	    != IXGBE_SUCCESS) {
4495		ret_val = IXGBE_ERR_SWFW_SYNC;
4496		goto out;
4497	}
4498
4499	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4500	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4501	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4502	fw_cmd.port_num = (u8)hw->bus.func;
4503	fw_cmd.ver_maj = maj;
4504	fw_cmd.ver_min = min;
4505	fw_cmd.ver_build = build;
4506	fw_cmd.ver_sub = sub;
4507	fw_cmd.hdr.checksum = 0;
4508	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4509				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4510	fw_cmd.pad = 0;
4511	fw_cmd.pad2 = 0;
4512
4513	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4514		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4515						       sizeof(fw_cmd),
4516						       IXGBE_HI_COMMAND_TIMEOUT,
4517						       TRUE);
4518		if (ret_val != IXGBE_SUCCESS)
4519			continue;
4520
4521		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4522		    FW_CEM_RESP_STATUS_SUCCESS)
4523			ret_val = IXGBE_SUCCESS;
4524		else
4525			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526
4527		break;
4528	}
4529
4530	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4531out:
4532	return ret_val;
4533}
4534
4535/**
4536 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4537 * @hw: pointer to hardware structure
4538 * @num_pb: number of packet buffers to allocate
4539 * @headroom: reserve n KB of headroom
4540 * @strategy: packet buffer allocation strategy
4541 **/
4542void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4543			     int strategy)
4544{
4545	u32 pbsize = hw->mac.rx_pb_size;
4546	int i = 0;
4547	u32 rxpktsize, txpktsize, txpbthresh;
4548
4549	/* Reserve headroom */
4550	pbsize -= headroom;
4551
4552	if (!num_pb)
4553		num_pb = 1;
4554
4555	/* Divide remaining packet buffer space amongst the number of packet
4556	 * buffers requested using supplied strategy.
4557	 */
4558	switch (strategy) {
4559	case PBA_STRATEGY_WEIGHTED:
4560		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4561		 * buffer with 5/8 of the packet buffer space.
4562		 */
4563		rxpktsize = (pbsize * 5) / (num_pb * 4);
4564		pbsize -= rxpktsize * (num_pb / 2);
4565		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4566		for (; i < (num_pb / 2); i++)
4567			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4568		/* Fall through to configure remaining packet buffers */
4569	case PBA_STRATEGY_EQUAL:
4570		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4571		for (; i < num_pb; i++)
4572			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4573		break;
4574	default:
4575		break;
4576	}
4577
4578	/* Only support an equally distributed Tx packet buffer strategy. */
4579	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4580	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4581	for (i = 0; i < num_pb; i++) {
4582		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4583		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4584	}
4585
4586	/* Clear unused TCs, if any, to zero buffer size*/
4587	for (; i < IXGBE_MAX_PB; i++) {
4588		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4589		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4590		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4591	}
4592}
4593
4594/**
4595 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4596 * @hw: pointer to the hardware structure
4597 *
4598 * The 82599 and x540 MACs can experience issues if TX work is still pending
4599 * when a reset occurs.  This function prevents this by flushing the PCIe
4600 * buffers on the system.
4601 **/
4602void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4603{
4604	u32 gcr_ext, hlreg0, i, poll;
4605	u16 value;
4606
4607	/*
4608	 * If double reset is not requested then all transactions should
4609	 * already be clear and as such there is no work to do
4610	 */
4611	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4612		return;
4613
4614	/*
4615	 * Set loopback enable to prevent any transmits from being sent
4616	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4617	 * has already been cleared.
4618	 */
4619	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4620	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4621
4622	/* Wait for a last completion before clearing buffers */
4623	IXGBE_WRITE_FLUSH(hw);
4624	msec_delay(3);
4625
4626	/*
4627	 * Before proceeding, make sure that the PCIe block does not have
4628	 * transactions pending.
4629	 */
4630	poll = ixgbe_pcie_timeout_poll(hw);
4631	for (i = 0; i < poll; i++) {
4632		usec_delay(100);
4633		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4634		if (IXGBE_REMOVED(hw->hw_addr))
4635			goto out;
4636		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4637			goto out;
4638	}
4639
4640out:
4641	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4642	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4643	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4644			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4645
4646	/* Flush all writes and allow 20usec for all transactions to clear */
4647	IXGBE_WRITE_FLUSH(hw);
4648	usec_delay(20);
4649
4650	/* restore previous register values */
4651	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4652	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4653}
4654
4655
4656/**
4657 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4658 * @hw: pointer to hardware structure
4659 * @map: pointer to u8 arr for returning map
4660 *
4661 * Read the rtrup2tc HW register and resolve its content into map
4662 **/
4663void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4664{
4665	u32 reg, i;
4666
4667	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4668	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4669		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4670			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4671	return;
4672}
4673
4674void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4675{
4676	u32 pfdtxgswc;
4677	u32 rxctrl;
4678
4679	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4680	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4681		if (hw->mac.type != ixgbe_mac_82598EB) {
4682			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4683			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4684				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4685				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4686				hw->mac.set_lben = TRUE;
4687			} else {
4688				hw->mac.set_lben = FALSE;
4689			}
4690		}
4691		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4692		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4693	}
4694}
4695
4696void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4697{
4698	u32 pfdtxgswc;
4699	u32 rxctrl;
4700
4701	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4702	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4703
4704	if (hw->mac.type != ixgbe_mac_82598EB) {
4705		if (hw->mac.set_lben) {
4706			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4707			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4708			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4709			hw->mac.set_lben = FALSE;
4710		}
4711	}
4712}
4713
4714/**
4715 * ixgbe_mng_present - returns TRUE when management capability is present
4716 * @hw: pointer to hardware structure
4717 */
4718bool ixgbe_mng_present(struct ixgbe_hw *hw)
4719{
4720	u32 fwsm;
4721
4722	if (hw->mac.type < ixgbe_mac_82599EB)
4723		return FALSE;
4724
4725	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4726	fwsm &= IXGBE_FWSM_MODE_MASK;
4727	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4728}
4729
4730/**
4731 * ixgbe_mng_enabled - Is the manageability engine enabled?
4732 * @hw: pointer to hardware structure
4733 *
4734 * Returns TRUE if the manageability engine is enabled.
4735 **/
4736bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4737{
4738	u32 fwsm, manc, factps;
4739
4740	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4741	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4742		return FALSE;
4743
4744	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4745	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4746		return FALSE;
4747
4748	if (hw->mac.type <= ixgbe_mac_X540) {
4749		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4750		if (factps & IXGBE_FACTPS_MNGCG)
4751			return FALSE;
4752	}
4753
4754	return TRUE;
4755}
4756
4757/**
4758 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4759 *  @hw: pointer to hardware structure
4760 *  @speed: new link speed
4761 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4762 *
4763 *  Set the link speed in the MAC and/or PHY register and restarts link.
4764 **/
4765s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4766					  ixgbe_link_speed speed,
4767					  bool autoneg_wait_to_complete)
4768{
4769	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4770	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4771	s32 status = IXGBE_SUCCESS;
4772	u32 speedcnt = 0;
4773	u32 i = 0;
4774	bool autoneg, link_up = FALSE;
4775
4776	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4777
4778	/* Mask off requested but non-supported speeds */
4779	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4780	if (status != IXGBE_SUCCESS)
4781		return status;
4782
4783	speed &= link_speed;
4784
4785	/* Try each speed one by one, highest priority first.  We do this in
4786	 * software because 10Gb fiber doesn't support speed autonegotiation.
4787	 */
4788	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4789		speedcnt++;
4790		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4791
4792		/* If we already have link at this speed, just jump out */
4793		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4794		if (status != IXGBE_SUCCESS)
4795			return status;
4796
4797		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4798			goto out;
4799
4800		/* Set the module link speed */
4801		switch (hw->phy.media_type) {
4802		case ixgbe_media_type_fiber_fixed:
4803		case ixgbe_media_type_fiber:
4804			ixgbe_set_rate_select_speed(hw,
4805						    IXGBE_LINK_SPEED_10GB_FULL);
4806			break;
4807		case ixgbe_media_type_fiber_qsfp:
4808			/* QSFP module automatically detects MAC link speed */
4809			break;
4810		default:
4811			DEBUGOUT("Unexpected media type.\n");
4812			break;
4813		}
4814
4815		/* Allow module to change analog characteristics (1G->10G) */
4816		msec_delay(40);
4817
4818		status = ixgbe_setup_mac_link(hw,
4819					      IXGBE_LINK_SPEED_10GB_FULL,
4820					      autoneg_wait_to_complete);
4821		if (status != IXGBE_SUCCESS)
4822			return status;
4823
4824		/* Flap the Tx laser if it has not already been done */
4825		ixgbe_flap_tx_laser(hw);
4826
4827		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4828		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4829		 * attempted.  82599 uses the same timing for 10g SFI.
4830		 */
4831		for (i = 0; i < 5; i++) {
4832			/* Wait for the link partner to also set speed */
4833			msec_delay(100);
4834
4835			/* If we have link, just jump out */
4836			status = ixgbe_check_link(hw, &link_speed,
4837						  &link_up, FALSE);
4838			if (status != IXGBE_SUCCESS)
4839				return status;
4840
4841			if (link_up)
4842				goto out;
4843		}
4844	}
4845
4846	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4847		speedcnt++;
4848		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4849			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4850
4851		/* If we already have link at this speed, just jump out */
4852		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4853		if (status != IXGBE_SUCCESS)
4854			return status;
4855
4856		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4857			goto out;
4858
4859		/* Set the module link speed */
4860		switch (hw->phy.media_type) {
4861		case ixgbe_media_type_fiber_fixed:
4862		case ixgbe_media_type_fiber:
4863			ixgbe_set_rate_select_speed(hw,
4864						    IXGBE_LINK_SPEED_1GB_FULL);
4865			break;
4866		case ixgbe_media_type_fiber_qsfp:
4867			/* QSFP module automatically detects link speed */
4868			break;
4869		default:
4870			DEBUGOUT("Unexpected media type.\n");
4871			break;
4872		}
4873
4874		/* Allow module to change analog characteristics (10G->1G) */
4875		msec_delay(40);
4876
4877		status = ixgbe_setup_mac_link(hw,
4878					      IXGBE_LINK_SPEED_1GB_FULL,
4879					      autoneg_wait_to_complete);
4880		if (status != IXGBE_SUCCESS)
4881			return status;
4882
4883		/* Flap the Tx laser if it has not already been done */
4884		ixgbe_flap_tx_laser(hw);
4885
4886		/* Wait for the link partner to also set speed */
4887		msec_delay(100);
4888
4889		/* If we have link, just jump out */
4890		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4891		if (status != IXGBE_SUCCESS)
4892			return status;
4893
4894		if (link_up)
4895			goto out;
4896	}
4897
4898	/* We didn't get link.  Configure back to the highest speed we tried,
4899	 * (if there was more than one).  We call ourselves back with just the
4900	 * single highest speed that the user requested.
4901	 */
4902	if (speedcnt > 1)
4903		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4904						      highest_link_speed,
4905						      autoneg_wait_to_complete);
4906
4907out:
4908	/* Set autoneg_advertised value based on input link speed */
4909	hw->phy.autoneg_advertised = 0;
4910
4911	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4912		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4913
4914	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4915		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4916
4917	return status;
4918}
4919
4920/**
4921 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4922 *  @hw: pointer to hardware structure
4923 *  @speed: link speed to set
4924 *
4925 *  Set module link speed via the soft rate select.
4926 */
4927void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4928					ixgbe_link_speed speed)
4929{
4930	s32 status;
4931	u8 rs, eeprom_data;
4932
4933	switch (speed) {
4934	case IXGBE_LINK_SPEED_10GB_FULL:
4935		/* one bit mask same as setting on */
4936		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4937		break;
4938	case IXGBE_LINK_SPEED_1GB_FULL:
4939		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4940		break;
4941	default:
4942		DEBUGOUT("Invalid fixed module speed\n");
4943		return;
4944	}
4945
4946	/* Set RS0 */
4947	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4948					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4949					   &eeprom_data);
4950	if (status) {
4951		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4952		goto out;
4953	}
4954
4955	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4956
4957	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4958					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4959					    eeprom_data);
4960	if (status) {
4961		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4962		goto out;
4963	}
4964
4965	/* Set RS1 */
4966	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4967					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4968					   &eeprom_data);
4969	if (status) {
4970		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4971		goto out;
4972	}
4973
4974	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4975
4976	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4977					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4978					    eeprom_data);
4979	if (status) {
4980		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4981		goto out;
4982	}
4983out:
4984	return;
4985}
4986