if_bge.c revision 221818
1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/bge/if_bge.c 221818 2011-05-12 17:15:57Z yongari $");
36
37/*
38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39 *
40 * The Broadcom BCM5700 is based on technology originally developed by
41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45 * frames, highly configurable RX filtering, and 16 RX and TX queues
46 * (which, along with RX filter rules, can be used for QOS applications).
47 * Other features, such as TCP segmentation, may be available as part
48 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49 * firmware images can be stored in hardware and need not be compiled
50 * into the driver.
51 *
52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54 *
55 * The BCM5701 is a single-chip solution incorporating both the BCM5700
56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57 * does not support external SSRAM.
58 *
59 * Broadcom also produces a variation of the BCM5700 under the "Altima"
60 * brand name, which is functionally similar but lacks PCI-X support.
61 *
62 * Without external SSRAM, you can only have at most 4 TX rings,
63 * and the use of the mini RX ring is disabled. This seems to imply
64 * that these features are simply not available on the BCM5701. As a
65 * result, this driver does not implement any support for the mini RX
66 * ring.
67 */
68
69#ifdef HAVE_KERNEL_OPTION_HEADERS
70#include "opt_device_polling.h"
71#endif
72
73#include <sys/param.h>
74#include <sys/endian.h>
75#include <sys/systm.h>
76#include <sys/sockio.h>
77#include <sys/mbuf.h>
78#include <sys/malloc.h>
79#include <sys/kernel.h>
80#include <sys/module.h>
81#include <sys/socket.h>
82#include <sys/sysctl.h>
83#include <sys/taskqueue.h>
84
85#include <net/if.h>
86#include <net/if_arp.h>
87#include <net/ethernet.h>
88#include <net/if_dl.h>
89#include <net/if_media.h>
90
91#include <net/bpf.h>
92
93#include <net/if_types.h>
94#include <net/if_vlan_var.h>
95
96#include <netinet/in_systm.h>
97#include <netinet/in.h>
98#include <netinet/ip.h>
99#include <netinet/tcp.h>
100
101#include <machine/bus.h>
102#include <machine/resource.h>
103#include <sys/bus.h>
104#include <sys/rman.h>
105
106#include <dev/mii/mii.h>
107#include <dev/mii/miivar.h>
108#include "miidevs.h"
109#include <dev/mii/brgphyreg.h>
110
111#ifdef __sparc64__
112#include <dev/ofw/ofw_bus.h>
113#include <dev/ofw/openfirm.h>
114#include <machine/ofw_machdep.h>
115#include <machine/ver.h>
116#endif
117
118#include <dev/pci/pcireg.h>
119#include <dev/pci/pcivar.h>
120
121#include <dev/bge/if_bgereg.h>
122
123#define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124#define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126MODULE_DEPEND(bge, pci, 1, 1, 1);
127MODULE_DEPEND(bge, ether, 1, 1, 1);
128MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130/* "device miibus" required.  See GENERIC if you get errors here. */
131#include "miibus_if.h"
132
133/*
134 * Various supported device vendors/types and their names. Note: the
135 * spec seems to indicate that the hardware still has Alteon's vendor
136 * ID burned into it, though it will always be overriden by the vendor
137 * ID in the EEPROM. Just to be safe, we cover all possibilities.
138 */
139static const struct bge_type {
140	uint16_t	bge_vid;
141	uint16_t	bge_did;
142} const bge_devs[] = {
143	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145
146	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149
150	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151
152	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227
228	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229
230	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231
232	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235
236	{ 0, 0 }
237};
238
239static const struct bge_vendor {
240	uint16_t	v_id;
241	const char	*v_name;
242} const bge_vendors[] = {
243	{ ALTEON_VENDORID,	"Alteon" },
244	{ ALTIMA_VENDORID,	"Altima" },
245	{ APPLE_VENDORID,	"Apple" },
246	{ BCOM_VENDORID,	"Broadcom" },
247	{ SK_VENDORID,		"SysKonnect" },
248	{ TC_VENDORID,		"3Com" },
249	{ FJTSU_VENDORID,	"Fujitsu" },
250
251	{ 0, NULL }
252};
253
254static const struct bge_revision {
255	uint32_t	br_chipid;
256	const char	*br_name;
257} const bge_revisions[] = {
258	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
305	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
306	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
307	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
308	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
309	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
310	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
311	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
312	/* 5754 and 5787 share the same ASIC ID */
313	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
314	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
315	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
316	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
317	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
318	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
319	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
320	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
321	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
322
323	{ 0, NULL }
324};
325
326/*
327 * Some defaults for major revisions, so that newer steppings
328 * that we don't know about have a shot at working.
329 */
330static const struct bge_revision const bge_majorrevs[] = {
331	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
332	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
333	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
334	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
335	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
336	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
337	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
338	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
339	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
340	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
341	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
342	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
343	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
344	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
345	/* 5754 and 5787 share the same ASIC ID */
346	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
347	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
348	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
349	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
350	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
351	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
352
353	{ 0, NULL }
354};
355
356#define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
357#define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
358#define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
359#define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
360#define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
361#define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
362#define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
363
364const struct bge_revision * bge_lookup_rev(uint32_t);
365const struct bge_vendor * bge_lookup_vendor(uint16_t);
366
367typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
368
369static int bge_probe(device_t);
370static int bge_attach(device_t);
371static int bge_detach(device_t);
372static int bge_suspend(device_t);
373static int bge_resume(device_t);
374static void bge_release_resources(struct bge_softc *);
375static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
376static int bge_dma_alloc(struct bge_softc *);
377static void bge_dma_free(struct bge_softc *);
378static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
379    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
380
381static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
382static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
383static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
384static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
385static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
386
387static void bge_txeof(struct bge_softc *, uint16_t);
388static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
389static int bge_rxeof(struct bge_softc *, uint16_t, int);
390
391static void bge_asf_driver_up (struct bge_softc *);
392static void bge_tick(void *);
393static void bge_stats_clear_regs(struct bge_softc *);
394static void bge_stats_update(struct bge_softc *);
395static void bge_stats_update_regs(struct bge_softc *);
396static struct mbuf *bge_check_short_dma(struct mbuf *);
397static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
398    uint16_t *, uint16_t *);
399static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
400
401static void bge_intr(void *);
402static int bge_msi_intr(void *);
403static void bge_intr_task(void *, int);
404static void bge_start_locked(struct ifnet *);
405static void bge_start(struct ifnet *);
406static int bge_ioctl(struct ifnet *, u_long, caddr_t);
407static void bge_init_locked(struct bge_softc *);
408static void bge_init(void *);
409static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
410static void bge_stop(struct bge_softc *);
411static void bge_watchdog(struct bge_softc *);
412static int bge_shutdown(device_t);
413static int bge_ifmedia_upd_locked(struct ifnet *);
414static int bge_ifmedia_upd(struct ifnet *);
415static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
416
417static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
418static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
419
420static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
421static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
422
423static void bge_setpromisc(struct bge_softc *);
424static void bge_setmulti(struct bge_softc *);
425static void bge_setvlan(struct bge_softc *);
426
427static __inline void bge_rxreuse_std(struct bge_softc *, int);
428static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
429static int bge_newbuf_std(struct bge_softc *, int);
430static int bge_newbuf_jumbo(struct bge_softc *, int);
431static int bge_init_rx_ring_std(struct bge_softc *);
432static void bge_free_rx_ring_std(struct bge_softc *);
433static int bge_init_rx_ring_jumbo(struct bge_softc *);
434static void bge_free_rx_ring_jumbo(struct bge_softc *);
435static void bge_free_tx_ring(struct bge_softc *);
436static int bge_init_tx_ring(struct bge_softc *);
437
438static int bge_chipinit(struct bge_softc *);
439static int bge_blockinit(struct bge_softc *);
440
441static int bge_has_eaddr(struct bge_softc *);
442static uint32_t bge_readmem_ind(struct bge_softc *, int);
443static void bge_writemem_ind(struct bge_softc *, int, int);
444static void bge_writembx(struct bge_softc *, int, int);
445#ifdef notdef
446static uint32_t bge_readreg_ind(struct bge_softc *, int);
447#endif
448static void bge_writemem_direct(struct bge_softc *, int, int);
449static void bge_writereg_ind(struct bge_softc *, int, int);
450
451static int bge_miibus_readreg(device_t, int, int);
452static int bge_miibus_writereg(device_t, int, int, int);
453static void bge_miibus_statchg(device_t);
454#ifdef DEVICE_POLLING
455static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
456#endif
457
458#define	BGE_RESET_START 1
459#define	BGE_RESET_STOP  2
460static void bge_sig_post_reset(struct bge_softc *, int);
461static void bge_sig_legacy(struct bge_softc *, int);
462static void bge_sig_pre_reset(struct bge_softc *, int);
463static void bge_stop_fw(struct bge_softc *);
464static int bge_reset(struct bge_softc *);
465static void bge_link_upd(struct bge_softc *);
466
467/*
468 * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
469 * leak information to untrusted users.  It is also known to cause alignment
470 * traps on certain architectures.
471 */
472#ifdef BGE_REGISTER_DEBUG
473static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
474static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
475static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
476#endif
477static void bge_add_sysctls(struct bge_softc *);
478static void bge_add_sysctl_stats_regs(struct bge_softc *,
479    struct sysctl_ctx_list *, struct sysctl_oid_list *);
480static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
481    struct sysctl_oid_list *);
482static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
483
484static device_method_t bge_methods[] = {
485	/* Device interface */
486	DEVMETHOD(device_probe,		bge_probe),
487	DEVMETHOD(device_attach,	bge_attach),
488	DEVMETHOD(device_detach,	bge_detach),
489	DEVMETHOD(device_shutdown,	bge_shutdown),
490	DEVMETHOD(device_suspend,	bge_suspend),
491	DEVMETHOD(device_resume,	bge_resume),
492
493	/* bus interface */
494	DEVMETHOD(bus_print_child,	bus_generic_print_child),
495	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
496
497	/* MII interface */
498	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
499	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
500	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
501
502	{ 0, 0 }
503};
504
505static driver_t bge_driver = {
506	"bge",
507	bge_methods,
508	sizeof(struct bge_softc)
509};
510
511static devclass_t bge_devclass;
512
513DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
514DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
515
516static int bge_allow_asf = 1;
517
518TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
519
520SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
521SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
522	"Allow ASF mode if available");
523
524#define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
525#define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
526#define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
527#define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
528#define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
529
530static int
531bge_has_eaddr(struct bge_softc *sc)
532{
533#ifdef __sparc64__
534	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
535	device_t dev;
536	uint32_t subvendor;
537
538	dev = sc->bge_dev;
539
540	/*
541	 * The on-board BGEs found in sun4u machines aren't fitted with
542	 * an EEPROM which means that we have to obtain the MAC address
543	 * via OFW and that some tests will always fail.  We distinguish
544	 * such BGEs by the subvendor ID, which also has to be obtained
545	 * from OFW instead of the PCI configuration space as the latter
546	 * indicates Broadcom as the subvendor of the netboot interface.
547	 * For early Blade 1500 and 2500 we even have to check the OFW
548	 * device path as the subvendor ID always defaults to Broadcom
549	 * there.
550	 */
551	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
552	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
553	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
554		return (0);
555	memset(buf, 0, sizeof(buf));
556	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
557		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
558		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
559			return (0);
560		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
561		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
562			return (0);
563	}
564#endif
565	return (1);
566}
567
568static uint32_t
569bge_readmem_ind(struct bge_softc *sc, int off)
570{
571	device_t dev;
572	uint32_t val;
573
574	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
575	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
576		return (0);
577
578	dev = sc->bge_dev;
579
580	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
581	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
582	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
583	return (val);
584}
585
586static void
587bge_writemem_ind(struct bge_softc *sc, int off, int val)
588{
589	device_t dev;
590
591	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
592	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
593		return;
594
595	dev = sc->bge_dev;
596
597	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
598	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
599	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
600}
601
602#ifdef notdef
603static uint32_t
604bge_readreg_ind(struct bge_softc *sc, int off)
605{
606	device_t dev;
607
608	dev = sc->bge_dev;
609
610	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
612}
613#endif
614
615static void
616bge_writereg_ind(struct bge_softc *sc, int off, int val)
617{
618	device_t dev;
619
620	dev = sc->bge_dev;
621
622	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
623	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
624}
625
626static void
627bge_writemem_direct(struct bge_softc *sc, int off, int val)
628{
629	CSR_WRITE_4(sc, off, val);
630}
631
632static void
633bge_writembx(struct bge_softc *sc, int off, int val)
634{
635	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
636		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
637
638	CSR_WRITE_4(sc, off, val);
639}
640
641/*
642 * Map a single buffer address.
643 */
644
645static void
646bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
647{
648	struct bge_dmamap_arg *ctx;
649
650	if (error)
651		return;
652
653	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
654
655	ctx = arg;
656	ctx->bge_busaddr = segs->ds_addr;
657}
658
659static uint8_t
660bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
661{
662	uint32_t access, byte = 0;
663	int i;
664
665	/* Lock. */
666	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
667	for (i = 0; i < 8000; i++) {
668		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
669			break;
670		DELAY(20);
671	}
672	if (i == 8000)
673		return (1);
674
675	/* Enable access. */
676	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
677	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
678
679	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
680	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
681	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
682		DELAY(10);
683		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
684			DELAY(10);
685			break;
686		}
687	}
688
689	if (i == BGE_TIMEOUT * 10) {
690		if_printf(sc->bge_ifp, "nvram read timed out\n");
691		return (1);
692	}
693
694	/* Get result. */
695	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
696
697	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
698
699	/* Disable access. */
700	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
701
702	/* Unlock. */
703	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
704	CSR_READ_4(sc, BGE_NVRAM_SWARB);
705
706	return (0);
707}
708
709/*
710 * Read a sequence of bytes from NVRAM.
711 */
712static int
713bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
714{
715	int err = 0, i;
716	uint8_t byte = 0;
717
718	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
719		return (1);
720
721	for (i = 0; i < cnt; i++) {
722		err = bge_nvram_getbyte(sc, off + i, &byte);
723		if (err)
724			break;
725		*(dest + i) = byte;
726	}
727
728	return (err ? 1 : 0);
729}
730
731/*
732 * Read a byte of data stored in the EEPROM at address 'addr.' The
733 * BCM570x supports both the traditional bitbang interface and an
734 * auto access interface for reading the EEPROM. We use the auto
735 * access method.
736 */
737static uint8_t
738bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
739{
740	int i;
741	uint32_t byte = 0;
742
743	/*
744	 * Enable use of auto EEPROM access so we can avoid
745	 * having to use the bitbang method.
746	 */
747	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
748
749	/* Reset the EEPROM, load the clock period. */
750	CSR_WRITE_4(sc, BGE_EE_ADDR,
751	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
752	DELAY(20);
753
754	/* Issue the read EEPROM command. */
755	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
756
757	/* Wait for completion */
758	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
759		DELAY(10);
760		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
761			break;
762	}
763
764	if (i == BGE_TIMEOUT * 10) {
765		device_printf(sc->bge_dev, "EEPROM read timed out\n");
766		return (1);
767	}
768
769	/* Get result. */
770	byte = CSR_READ_4(sc, BGE_EE_DATA);
771
772	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
773
774	return (0);
775}
776
777/*
778 * Read a sequence of bytes from the EEPROM.
779 */
780static int
781bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
782{
783	int i, error = 0;
784	uint8_t byte = 0;
785
786	for (i = 0; i < cnt; i++) {
787		error = bge_eeprom_getbyte(sc, off + i, &byte);
788		if (error)
789			break;
790		*(dest + i) = byte;
791	}
792
793	return (error ? 1 : 0);
794}
795
796static int
797bge_miibus_readreg(device_t dev, int phy, int reg)
798{
799	struct bge_softc *sc;
800	uint32_t val;
801	int i;
802
803	sc = device_get_softc(dev);
804
805	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
806	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
807		CSR_WRITE_4(sc, BGE_MI_MODE,
808		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
809		DELAY(80);
810	}
811
812	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
813	    BGE_MIPHY(phy) | BGE_MIREG(reg));
814
815	/* Poll for the PHY register access to complete. */
816	for (i = 0; i < BGE_TIMEOUT; i++) {
817		DELAY(10);
818		val = CSR_READ_4(sc, BGE_MI_COMM);
819		if ((val & BGE_MICOMM_BUSY) == 0) {
820			DELAY(5);
821			val = CSR_READ_4(sc, BGE_MI_COMM);
822			break;
823		}
824	}
825
826	if (i == BGE_TIMEOUT) {
827		device_printf(sc->bge_dev,
828		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829		    phy, reg, val);
830		val = 0;
831	}
832
833	/* Restore the autopoll bit if necessary. */
834	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
835		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
836		DELAY(80);
837	}
838
839	if (val & BGE_MICOMM_READFAIL)
840		return (0);
841
842	return (val & 0xFFFF);
843}
844
845static int
846bge_miibus_writereg(device_t dev, int phy, int reg, int val)
847{
848	struct bge_softc *sc;
849	int i;
850
851	sc = device_get_softc(dev);
852
853	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
854	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
855		return (0);
856
857	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
858	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
859		CSR_WRITE_4(sc, BGE_MI_MODE,
860		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
861		DELAY(80);
862	}
863
864	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
865	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
866
867	for (i = 0; i < BGE_TIMEOUT; i++) {
868		DELAY(10);
869		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
870			DELAY(5);
871			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
872			break;
873		}
874	}
875
876	/* Restore the autopoll bit if necessary. */
877	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
878		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
879		DELAY(80);
880	}
881
882	if (i == BGE_TIMEOUT)
883		device_printf(sc->bge_dev,
884		    "PHY write timed out (phy %d, reg %d, val %d)\n",
885		    phy, reg, val);
886
887	return (0);
888}
889
890static void
891bge_miibus_statchg(device_t dev)
892{
893	struct bge_softc *sc;
894	struct mii_data *mii;
895	sc = device_get_softc(dev);
896	mii = device_get_softc(sc->bge_miibus);
897
898	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
899	    (IFM_ACTIVE | IFM_AVALID)) {
900		switch (IFM_SUBTYPE(mii->mii_media_active)) {
901		case IFM_10_T:
902		case IFM_100_TX:
903			sc->bge_link = 1;
904			break;
905		case IFM_1000_T:
906		case IFM_1000_SX:
907		case IFM_2500_SX:
908			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
909				sc->bge_link = 1;
910			else
911				sc->bge_link = 0;
912			break;
913		default:
914			sc->bge_link = 0;
915			break;
916		}
917	} else
918		sc->bge_link = 0;
919	if (sc->bge_link == 0)
920		return;
921	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
922	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
923	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
924		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
925	else
926		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
927
928	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
929		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
930		if ((IFM_OPTIONS(mii->mii_media_active) &
931		    IFM_ETH_TXPAUSE) != 0)
932			BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
933		else
934			BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
935		if ((IFM_OPTIONS(mii->mii_media_active) &
936		    IFM_ETH_RXPAUSE) != 0)
937			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
938		else
939			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
940	} else {
941		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
942		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
943		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
944	}
945}
946
947/*
948 * Intialize a standard receive ring descriptor.
949 */
950static int
951bge_newbuf_std(struct bge_softc *sc, int i)
952{
953	struct mbuf *m;
954	struct bge_rx_bd *r;
955	bus_dma_segment_t segs[1];
956	bus_dmamap_t map;
957	int error, nsegs;
958
959	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
960	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
961	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
962		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963		if (m == NULL)
964			return (ENOBUFS);
965		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966	} else {
967		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
968		if (m == NULL)
969			return (ENOBUFS);
970		m->m_len = m->m_pkthdr.len = MCLBYTES;
971	}
972	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
973		m_adj(m, ETHER_ALIGN);
974
975	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
976	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
977	if (error != 0) {
978		m_freem(m);
979		return (error);
980	}
981	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
982		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
983		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
984		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
985		    sc->bge_cdata.bge_rx_std_dmamap[i]);
986	}
987	map = sc->bge_cdata.bge_rx_std_dmamap[i];
988	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
989	sc->bge_cdata.bge_rx_std_sparemap = map;
990	sc->bge_cdata.bge_rx_std_chain[i] = m;
991	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
992	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
993	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
994	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
995	r->bge_flags = BGE_RXBDFLAG_END;
996	r->bge_len = segs[0].ds_len;
997	r->bge_idx = i;
998
999	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1000	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1001
1002	return (0);
1003}
1004
1005/*
1006 * Initialize a jumbo receive ring descriptor. This allocates
1007 * a jumbo buffer from the pool managed internally by the driver.
1008 */
1009static int
1010bge_newbuf_jumbo(struct bge_softc *sc, int i)
1011{
1012	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1013	bus_dmamap_t map;
1014	struct bge_extrx_bd *r;
1015	struct mbuf *m;
1016	int error, nsegs;
1017
1018	MGETHDR(m, M_DONTWAIT, MT_DATA);
1019	if (m == NULL)
1020		return (ENOBUFS);
1021
1022	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1023	if (!(m->m_flags & M_EXT)) {
1024		m_freem(m);
1025		return (ENOBUFS);
1026	}
1027	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1028	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1029		m_adj(m, ETHER_ALIGN);
1030
1031	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1032	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1033	if (error != 0) {
1034		m_freem(m);
1035		return (error);
1036	}
1037
1038	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1039		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1040		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1041		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1042		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1043	}
1044	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1045	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1046	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1047	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1048	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1049	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1050	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1051	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1052	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1053
1054	/*
1055	 * Fill in the extended RX buffer descriptor.
1056	 */
1057	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1058	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1059	r->bge_idx = i;
1060	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1061	switch (nsegs) {
1062	case 4:
1063		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1064		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1065		r->bge_len3 = segs[3].ds_len;
1066		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1067	case 3:
1068		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1069		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1070		r->bge_len2 = segs[2].ds_len;
1071		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1072	case 2:
1073		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1074		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1075		r->bge_len1 = segs[1].ds_len;
1076		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1077	case 1:
1078		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1079		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1080		r->bge_len0 = segs[0].ds_len;
1081		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1082		break;
1083	default:
1084		panic("%s: %d segments\n", __func__, nsegs);
1085	}
1086
1087	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1088	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1089
1090	return (0);
1091}
1092
1093static int
1094bge_init_rx_ring_std(struct bge_softc *sc)
1095{
1096	int error, i;
1097
1098	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1099	sc->bge_std = 0;
1100	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1101		if ((error = bge_newbuf_std(sc, i)) != 0)
1102			return (error);
1103		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1104	}
1105
1106	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1107	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1108
1109	sc->bge_std = 0;
1110	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1111
1112	return (0);
1113}
1114
1115static void
1116bge_free_rx_ring_std(struct bge_softc *sc)
1117{
1118	int i;
1119
1120	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1121		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1122			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1123			    sc->bge_cdata.bge_rx_std_dmamap[i],
1124			    BUS_DMASYNC_POSTREAD);
1125			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1126			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1127			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1128			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1129		}
1130		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1131		    sizeof(struct bge_rx_bd));
1132	}
1133}
1134
1135static int
1136bge_init_rx_ring_jumbo(struct bge_softc *sc)
1137{
1138	struct bge_rcb *rcb;
1139	int error, i;
1140
1141	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1142	sc->bge_jumbo = 0;
1143	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1144		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1145			return (error);
1146		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1147	}
1148
1149	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1150	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1151
1152	sc->bge_jumbo = 0;
1153
1154	/* Enable the jumbo receive producer ring. */
1155	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1156	rcb->bge_maxlen_flags =
1157	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1158	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1159
1160	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1161
1162	return (0);
1163}
1164
1165static void
1166bge_free_rx_ring_jumbo(struct bge_softc *sc)
1167{
1168	int i;
1169
1170	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1171		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1172			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1173			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1174			    BUS_DMASYNC_POSTREAD);
1175			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1176			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1177			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1178			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1179		}
1180		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1181		    sizeof(struct bge_extrx_bd));
1182	}
1183}
1184
1185static void
1186bge_free_tx_ring(struct bge_softc *sc)
1187{
1188	int i;
1189
1190	if (sc->bge_ldata.bge_tx_ring == NULL)
1191		return;
1192
1193	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1194		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1195			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1196			    sc->bge_cdata.bge_tx_dmamap[i],
1197			    BUS_DMASYNC_POSTWRITE);
1198			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1199			    sc->bge_cdata.bge_tx_dmamap[i]);
1200			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1201			sc->bge_cdata.bge_tx_chain[i] = NULL;
1202		}
1203		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1204		    sizeof(struct bge_tx_bd));
1205	}
1206}
1207
1208static int
1209bge_init_tx_ring(struct bge_softc *sc)
1210{
1211	sc->bge_txcnt = 0;
1212	sc->bge_tx_saved_considx = 0;
1213
1214	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1215	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1216	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1217
1218	/* Initialize transmit producer index for host-memory send ring. */
1219	sc->bge_tx_prodidx = 0;
1220	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1221
1222	/* 5700 b2 errata */
1223	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1224		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225
1226	/* NIC-memory send ring not used; initialize to zero. */
1227	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1228	/* 5700 b2 errata */
1229	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1230		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231
1232	return (0);
1233}
1234
1235static void
1236bge_setpromisc(struct bge_softc *sc)
1237{
1238	struct ifnet *ifp;
1239
1240	BGE_LOCK_ASSERT(sc);
1241
1242	ifp = sc->bge_ifp;
1243
1244	/* Enable or disable promiscuous mode as needed. */
1245	if (ifp->if_flags & IFF_PROMISC)
1246		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1247	else
1248		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1249}
1250
1251static void
1252bge_setmulti(struct bge_softc *sc)
1253{
1254	struct ifnet *ifp;
1255	struct ifmultiaddr *ifma;
1256	uint32_t hashes[4] = { 0, 0, 0, 0 };
1257	int h, i;
1258
1259	BGE_LOCK_ASSERT(sc);
1260
1261	ifp = sc->bge_ifp;
1262
1263	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1264		for (i = 0; i < 4; i++)
1265			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1266		return;
1267	}
1268
1269	/* First, zot all the existing filters. */
1270	for (i = 0; i < 4; i++)
1271		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1272
1273	/* Now program new ones. */
1274	if_maddr_rlock(ifp);
1275	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1276		if (ifma->ifma_addr->sa_family != AF_LINK)
1277			continue;
1278		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1279		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1280		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1281	}
1282	if_maddr_runlock(ifp);
1283
1284	for (i = 0; i < 4; i++)
1285		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1286}
1287
1288static void
1289bge_setvlan(struct bge_softc *sc)
1290{
1291	struct ifnet *ifp;
1292
1293	BGE_LOCK_ASSERT(sc);
1294
1295	ifp = sc->bge_ifp;
1296
1297	/* Enable or disable VLAN tag stripping as needed. */
1298	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1299		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1300	else
1301		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1302}
1303
1304static void
1305bge_sig_pre_reset(struct bge_softc *sc, int type)
1306{
1307
1308	/*
1309	 * Some chips don't like this so only do this if ASF is enabled
1310	 */
1311	if (sc->bge_asf_mode)
1312		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1313
1314	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1315		switch (type) {
1316		case BGE_RESET_START:
1317			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1318			break;
1319		case BGE_RESET_STOP:
1320			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1321			break;
1322		}
1323	}
1324}
1325
1326static void
1327bge_sig_post_reset(struct bge_softc *sc, int type)
1328{
1329
1330	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1331		switch (type) {
1332		case BGE_RESET_START:
1333			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1334			/* START DONE */
1335			break;
1336		case BGE_RESET_STOP:
1337			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1338			break;
1339		}
1340	}
1341}
1342
1343static void
1344bge_sig_legacy(struct bge_softc *sc, int type)
1345{
1346
1347	if (sc->bge_asf_mode) {
1348		switch (type) {
1349		case BGE_RESET_START:
1350			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1351			break;
1352		case BGE_RESET_STOP:
1353			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1354			break;
1355		}
1356	}
1357}
1358
1359static void
1360bge_stop_fw(struct bge_softc *sc)
1361{
1362	int i;
1363
1364	if (sc->bge_asf_mode) {
1365		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1366		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1367		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1368
1369		for (i = 0; i < 100; i++ ) {
1370			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1371				break;
1372			DELAY(10);
1373		}
1374	}
1375}
1376
1377/*
1378 * Do endian, PCI and DMA initialization.
1379 */
1380static int
1381bge_chipinit(struct bge_softc *sc)
1382{
1383	uint32_t dma_rw_ctl, misc_ctl;
1384	uint16_t val;
1385	int i;
1386
1387	/* Set endianness before we access any non-PCI registers. */
1388	misc_ctl = BGE_INIT;
1389	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1390		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1391	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1392
1393	/* Clear the MAC control register */
1394	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1395
1396	/*
1397	 * Clear the MAC statistics block in the NIC's
1398	 * internal memory.
1399	 */
1400	for (i = BGE_STATS_BLOCK;
1401	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1402		BGE_MEMWIN_WRITE(sc, i, 0);
1403
1404	for (i = BGE_STATUS_BLOCK;
1405	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1406		BGE_MEMWIN_WRITE(sc, i, 0);
1407
1408	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1409		/*
1410		 *  Fix data corruption caused by non-qword write with WB.
1411		 *  Fix master abort in PCI mode.
1412		 *  Fix PCI latency timer.
1413		 */
1414		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1415		val |= (1 << 10) | (1 << 12) | (1 << 13);
1416		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1417	}
1418
1419	/*
1420	 * Set up the PCI DMA control register.
1421	 */
1422	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1423	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1424	if (sc->bge_flags & BGE_FLAG_PCIE) {
1425		/* Read watermark not used, 128 bytes for write. */
1426		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1427	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1428		if (BGE_IS_5714_FAMILY(sc)) {
1429			/* 256 bytes for read and write. */
1430			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1431			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1432			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1433			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1434			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1435		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1436			/*
1437			 * In the BCM5703, the DMA read watermark should
1438			 * be set to less than or equal to the maximum
1439			 * memory read byte count of the PCI-X command
1440			 * register.
1441			 */
1442			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1443			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1444		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1445			/* 1536 bytes for read, 384 bytes for write. */
1446			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1447			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1448		} else {
1449			/* 384 bytes for read and write. */
1450			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1451			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1452			    0x0F;
1453		}
1454		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1455		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1456			uint32_t tmp;
1457
1458			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1459			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1460			if (tmp == 6 || tmp == 7)
1461				dma_rw_ctl |=
1462				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1463
1464			/* Set PCI-X DMA write workaround. */
1465			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1466		}
1467	} else {
1468		/* Conventional PCI bus: 256 bytes for read and write. */
1469		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1470		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1471
1472		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1473		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1474			dma_rw_ctl |= 0x0F;
1475	}
1476	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1477	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1478		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1479		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1480	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1481	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1482		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1483	if (BGE_IS_5717_PLUS(sc)) {
1484		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1485		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1486			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1487		/*
1488		 * Enable HW workaround for controllers that misinterpret
1489		 * a status tag update and leave interrupts permanently
1490		 * disabled.
1491		 */
1492		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1493		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1494			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1495	}
1496	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1497
1498	/*
1499	 * Set up general mode register.
1500	 */
1501	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1502	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1503	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1504
1505	/*
1506	 * BCM5701 B5 have a bug causing data corruption when using
1507	 * 64-bit DMA reads, which can be terminated early and then
1508	 * completed later as 32-bit accesses, in combination with
1509	 * certain bridges.
1510	 */
1511	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1512	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1513		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1514
1515	/*
1516	 * Tell the firmware the driver is running
1517	 */
1518	if (sc->bge_asf_mode & ASF_STACKUP)
1519		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1520
1521	/*
1522	 * Disable memory write invalidate.  Apparently it is not supported
1523	 * properly by these devices.  Also ensure that INTx isn't disabled,
1524	 * as these chips need it even when using MSI.
1525	 */
1526	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1527	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1528
1529	/* Set the timer prescaler (always 66Mhz) */
1530	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1531
1532	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1533	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1534		DELAY(40);	/* XXX */
1535
1536		/* Put PHY into ready state */
1537		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1538		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1539		DELAY(40);
1540	}
1541
1542	return (0);
1543}
1544
1545static int
1546bge_blockinit(struct bge_softc *sc)
1547{
1548	struct bge_rcb *rcb;
1549	bus_size_t vrcb;
1550	bge_hostaddr taddr;
1551	uint32_t dmactl, val;
1552	int i, limit;
1553
1554	/*
1555	 * Initialize the memory window pointer register so that
1556	 * we can access the first 32K of internal NIC RAM. This will
1557	 * allow us to set up the TX send ring RCBs and the RX return
1558	 * ring RCBs, plus other things which live in NIC memory.
1559	 */
1560	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1561
1562	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1563
1564	if (!(BGE_IS_5705_PLUS(sc))) {
1565		/* Configure mbuf memory pool */
1566		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1567		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1568			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1569		else
1570			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1571
1572		/* Configure DMA resource pool */
1573		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1574		    BGE_DMA_DESCRIPTORS);
1575		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1576	}
1577
1578	/* Configure mbuf pool watermarks */
1579	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1580	    sc->bge_asicrev == BGE_ASICREV_BCM57765) {
1581		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1582		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1583			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1584			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1585		} else {
1586			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1587			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1588		}
1589	} else if (!BGE_IS_5705_PLUS(sc)) {
1590		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1591		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1592		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1593	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1594		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1595		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1596		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1597	} else {
1598		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1599		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1600		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1601	}
1602
1603	/* Configure DMA resource watermarks */
1604	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1605	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1606
1607	/* Enable buffer manager */
1608	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1609	/*
1610	 * Change the arbitration algorithm of TXMBUF read request to
1611	 * round-robin instead of priority based for BCM5719.  When
1612	 * TXFIFO is almost empty, RDMA will hold its request until
1613	 * TXFIFO is not almost empty.
1614	 */
1615	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1616		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1617	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1618
1619	/* Poll for buffer manager start indication */
1620	for (i = 0; i < BGE_TIMEOUT; i++) {
1621		DELAY(10);
1622		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1623			break;
1624	}
1625
1626	if (i == BGE_TIMEOUT) {
1627		device_printf(sc->bge_dev, "buffer manager failed to start\n");
1628		return (ENXIO);
1629	}
1630
1631	/* Enable flow-through queues */
1632	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1633	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1634
1635	/* Wait until queue initialization is complete */
1636	for (i = 0; i < BGE_TIMEOUT; i++) {
1637		DELAY(10);
1638		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1639			break;
1640	}
1641
1642	if (i == BGE_TIMEOUT) {
1643		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1644		return (ENXIO);
1645	}
1646
1647	/*
1648	 * Summary of rings supported by the controller:
1649	 *
1650	 * Standard Receive Producer Ring
1651	 * - This ring is used to feed receive buffers for "standard"
1652	 *   sized frames (typically 1536 bytes) to the controller.
1653	 *
1654	 * Jumbo Receive Producer Ring
1655	 * - This ring is used to feed receive buffers for jumbo sized
1656	 *   frames (i.e. anything bigger than the "standard" frames)
1657	 *   to the controller.
1658	 *
1659	 * Mini Receive Producer Ring
1660	 * - This ring is used to feed receive buffers for "mini"
1661	 *   sized frames to the controller.
1662	 * - This feature required external memory for the controller
1663	 *   but was never used in a production system.  Should always
1664	 *   be disabled.
1665	 *
1666	 * Receive Return Ring
1667	 * - After the controller has placed an incoming frame into a
1668	 *   receive buffer that buffer is moved into a receive return
1669	 *   ring.  The driver is then responsible to passing the
1670	 *   buffer up to the stack.  Many versions of the controller
1671	 *   support multiple RR rings.
1672	 *
1673	 * Send Ring
1674	 * - This ring is used for outgoing frames.  Many versions of
1675	 *   the controller support multiple send rings.
1676	 */
1677
1678	/* Initialize the standard receive producer ring control block. */
1679	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1680	rcb->bge_hostaddr.bge_addr_lo =
1681	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1682	rcb->bge_hostaddr.bge_addr_hi =
1683	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1684	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1685	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1686	if (BGE_IS_5717_PLUS(sc)) {
1687		/*
1688		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1689		 * Bits 15-2 : Maximum RX frame size
1690		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1691		 * Bit 0     : Reserved
1692		 */
1693		rcb->bge_maxlen_flags =
1694		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1695	} else if (BGE_IS_5705_PLUS(sc)) {
1696		/*
1697		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1698		 * Bits 15-2 : Reserved (should be 0)
1699		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1700		 * Bit 0     : Reserved
1701		 */
1702		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1703	} else {
1704		/*
1705		 * Ring size is always XXX entries
1706		 * Bits 31-16: Maximum RX frame size
1707		 * Bits 15-2 : Reserved (should be 0)
1708		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1709		 * Bit 0     : Reserved
1710		 */
1711		rcb->bge_maxlen_flags =
1712		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1713	}
1714	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1715	    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1716		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1717	else
1718		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1719	/* Write the standard receive producer ring control block. */
1720	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1721	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1722	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1723	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1724
1725	/* Reset the standard receive producer ring producer index. */
1726	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1727
1728	/*
1729	 * Initialize the jumbo RX producer ring control
1730	 * block.  We set the 'ring disabled' bit in the
1731	 * flags field until we're actually ready to start
1732	 * using this ring (i.e. once we set the MTU
1733	 * high enough to require it).
1734	 */
1735	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1736		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1737		/* Get the jumbo receive producer ring RCB parameters. */
1738		rcb->bge_hostaddr.bge_addr_lo =
1739		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1740		rcb->bge_hostaddr.bge_addr_hi =
1741		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1742		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1743		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1744		    BUS_DMASYNC_PREREAD);
1745		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1746		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1747		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1748		    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1749			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1750		else
1751			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1752		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1753		    rcb->bge_hostaddr.bge_addr_hi);
1754		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1755		    rcb->bge_hostaddr.bge_addr_lo);
1756		/* Program the jumbo receive producer ring RCB parameters. */
1757		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1758		    rcb->bge_maxlen_flags);
1759		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1760		/* Reset the jumbo receive producer ring producer index. */
1761		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1762	}
1763
1764	/* Disable the mini receive producer ring RCB. */
1765	if (BGE_IS_5700_FAMILY(sc)) {
1766		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1767		rcb->bge_maxlen_flags =
1768		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1769		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1770		    rcb->bge_maxlen_flags);
1771		/* Reset the mini receive producer ring producer index. */
1772		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1773	}
1774
1775	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1776	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1777		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1778		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1779		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1780			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1781			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1782	}
1783	/*
1784	 * The BD ring replenish thresholds control how often the
1785	 * hardware fetches new BD's from the producer rings in host
1786	 * memory.  Setting the value too low on a busy system can
1787	 * starve the hardware and recue the throughpout.
1788	 *
1789	 * Set the BD ring replentish thresholds. The recommended
1790	 * values are 1/8th the number of descriptors allocated to
1791	 * each ring.
1792	 * XXX The 5754 requires a lower threshold, so it might be a
1793	 * requirement of all 575x family chips.  The Linux driver sets
1794	 * the lower threshold for all 5705 family chips as well, but there
1795	 * are reports that it might not need to be so strict.
1796	 *
1797	 * XXX Linux does some extra fiddling here for the 5906 parts as
1798	 * well.
1799	 */
1800	if (BGE_IS_5705_PLUS(sc))
1801		val = 8;
1802	else
1803		val = BGE_STD_RX_RING_CNT / 8;
1804	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1805	if (BGE_IS_JUMBO_CAPABLE(sc))
1806		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1807		    BGE_JUMBO_RX_RING_CNT/8);
1808	if (BGE_IS_5717_PLUS(sc)) {
1809		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1810		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1811	}
1812
1813	/*
1814	 * Disable all send rings by setting the 'ring disabled' bit
1815	 * in the flags field of all the TX send ring control blocks,
1816	 * located in NIC memory.
1817	 */
1818	if (!BGE_IS_5705_PLUS(sc))
1819		/* 5700 to 5704 had 16 send rings. */
1820		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1821	else
1822		limit = 1;
1823	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1824	for (i = 0; i < limit; i++) {
1825		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1826		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1827		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1828		vrcb += sizeof(struct bge_rcb);
1829	}
1830
1831	/* Configure send ring RCB 0 (we use only the first ring) */
1832	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1833	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1834	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1835	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1836	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1837	    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1838		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1839	else
1840		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1841		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1842	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1843	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1844
1845	/*
1846	 * Disable all receive return rings by setting the
1847	 * 'ring diabled' bit in the flags field of all the receive
1848	 * return ring control blocks, located in NIC memory.
1849	 */
1850	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1851	    sc->bge_asicrev == BGE_ASICREV_BCM5719) {
1852		/* Should be 17, use 16 until we get an SRAM map. */
1853		limit = 16;
1854	} else if (!BGE_IS_5705_PLUS(sc))
1855		limit = BGE_RX_RINGS_MAX;
1856	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1857	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
1858		limit = 4;
1859	else
1860		limit = 1;
1861	/* Disable all receive return rings. */
1862	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1863	for (i = 0; i < limit; i++) {
1864		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1865		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1866		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1867		    BGE_RCB_FLAG_RING_DISABLED);
1868		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1869		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1870		    (i * (sizeof(uint64_t))), 0);
1871		vrcb += sizeof(struct bge_rcb);
1872	}
1873
1874	/*
1875	 * Set up receive return ring 0.  Note that the NIC address
1876	 * for RX return rings is 0x0.  The return rings live entirely
1877	 * within the host, so the nicaddr field in the RCB isn't used.
1878	 */
1879	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1880	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1881	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1882	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1883	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1884	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1885	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1886
1887	/* Set random backoff seed for TX */
1888	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1889	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1890	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1891	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1892	    BGE_TX_BACKOFF_SEED_MASK);
1893
1894	/* Set inter-packet gap */
1895	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1896
1897	/*
1898	 * Specify which ring to use for packets that don't match
1899	 * any RX rules.
1900	 */
1901	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1902
1903	/*
1904	 * Configure number of RX lists. One interrupt distribution
1905	 * list, sixteen active lists, one bad frames class.
1906	 */
1907	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1908
1909	/* Inialize RX list placement stats mask. */
1910	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1911	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1912
1913	/* Disable host coalescing until we get it set up */
1914	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1915
1916	/* Poll to make sure it's shut down. */
1917	for (i = 0; i < BGE_TIMEOUT; i++) {
1918		DELAY(10);
1919		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1920			break;
1921	}
1922
1923	if (i == BGE_TIMEOUT) {
1924		device_printf(sc->bge_dev,
1925		    "host coalescing engine failed to idle\n");
1926		return (ENXIO);
1927	}
1928
1929	/* Set up host coalescing defaults */
1930	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1931	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1932	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1933	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1934	if (!(BGE_IS_5705_PLUS(sc))) {
1935		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1936		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1937	}
1938	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1939	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1940
1941	/* Set up address of statistics block */
1942	if (!(BGE_IS_5705_PLUS(sc))) {
1943		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1944		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1945		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1946		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1947		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1948		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1949		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1950	}
1951
1952	/* Set up address of status block */
1953	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1954	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1955	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1956	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1957
1958	/* Set up status block size. */
1959	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1960	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1961		val = BGE_STATBLKSZ_FULL;
1962		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1963	} else {
1964		val = BGE_STATBLKSZ_32BYTE;
1965		bzero(sc->bge_ldata.bge_status_block, 32);
1966	}
1967	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
1968	    sc->bge_cdata.bge_status_map,
1969	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1970
1971	/* Turn on host coalescing state machine */
1972	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1973
1974	/* Turn on RX BD completion state machine and enable attentions */
1975	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1976	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1977
1978	/* Turn on RX list placement state machine */
1979	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1980
1981	/* Turn on RX list selector state machine. */
1982	if (!(BGE_IS_5705_PLUS(sc)))
1983		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1984
1985	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1986	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1987	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1988	    BGE_MACMODE_FRMHDR_DMA_ENB;
1989
1990	if (sc->bge_flags & BGE_FLAG_TBI)
1991		val |= BGE_PORTMODE_TBI;
1992	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1993		val |= BGE_PORTMODE_GMII;
1994	else
1995		val |= BGE_PORTMODE_MII;
1996
1997	/* Turn on DMA, clear stats */
1998	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1999
2000	/* Set misc. local control, enable interrupts on attentions */
2001	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2002
2003#ifdef notdef
2004	/* Assert GPIO pins for PHY reset */
2005	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2006	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2007	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2008	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2009#endif
2010
2011	/* Turn on DMA completion state machine */
2012	if (!(BGE_IS_5705_PLUS(sc)))
2013		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2014
2015	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2016
2017	/* Enable host coalescing bug fix. */
2018	if (BGE_IS_5755_PLUS(sc))
2019		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2020
2021	/* Request larger DMA burst size to get better performance. */
2022	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2023		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2024
2025	/* Turn on write DMA state machine */
2026	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2027	DELAY(40);
2028
2029	/* Turn on read DMA state machine */
2030	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2031
2032	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2033		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2034
2035	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2036	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2037	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2038		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2039		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2040		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2041	if (sc->bge_flags & BGE_FLAG_PCIE)
2042		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2043	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2044		val |= BGE_RDMAMODE_TSO4_ENABLE;
2045		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2046		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2047		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2048			val |= BGE_RDMAMODE_TSO6_ENABLE;
2049	}
2050	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2051	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2052	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2053	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2054	    BGE_IS_5717_PLUS(sc)) {
2055		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2056		/*
2057		 * Adjust tx margin to prevent TX data corruption and
2058		 * fix internal FIFO overflow.
2059		 */
2060		if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2061			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2062			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2063			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2064			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2065			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2066			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2067		}
2068		/*
2069		 * Enable fix for read DMA FIFO overruns.
2070		 * The fix is to limit the number of RX BDs
2071		 * the hardware would fetch at a fime.
2072		 */
2073		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2074		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2075	}
2076
2077	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2078		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2079		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2080		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2081		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2082	}
2083
2084	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2085	DELAY(40);
2086
2087	/* Turn on RX data completion state machine */
2088	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2089
2090	/* Turn on RX BD initiator state machine */
2091	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2092
2093	/* Turn on RX data and RX BD initiator state machine */
2094	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2095
2096	/* Turn on Mbuf cluster free state machine */
2097	if (!(BGE_IS_5705_PLUS(sc)))
2098		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2099
2100	/* Turn on send BD completion state machine */
2101	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2102
2103	/* Turn on send data completion state machine */
2104	val = BGE_SDCMODE_ENABLE;
2105	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2106		val |= BGE_SDCMODE_CDELAY;
2107	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2108
2109	/* Turn on send data initiator state machine */
2110	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2111		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2112		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2113	else
2114		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2115
2116	/* Turn on send BD initiator state machine */
2117	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2118
2119	/* Turn on send BD selector state machine */
2120	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2121
2122	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2123	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2124	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2125
2126	/* ack/clear link change events */
2127	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2128	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2129	    BGE_MACSTAT_LINK_CHANGED);
2130	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2131
2132	/*
2133	 * Enable attention when the link has changed state for
2134	 * devices that use auto polling.
2135	 */
2136	if (sc->bge_flags & BGE_FLAG_TBI) {
2137		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2138	} else {
2139		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2140			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2141			DELAY(80);
2142		}
2143		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2144		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2145			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2146			    BGE_EVTENB_MI_INTERRUPT);
2147	}
2148
2149	/*
2150	 * Clear any pending link state attention.
2151	 * Otherwise some link state change events may be lost until attention
2152	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2153	 * It's not necessary on newer BCM chips - perhaps enabling link
2154	 * state change attentions implies clearing pending attention.
2155	 */
2156	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2157	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2158	    BGE_MACSTAT_LINK_CHANGED);
2159
2160	/* Enable link state change attentions. */
2161	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2162
2163	return (0);
2164}
2165
2166const struct bge_revision *
2167bge_lookup_rev(uint32_t chipid)
2168{
2169	const struct bge_revision *br;
2170
2171	for (br = bge_revisions; br->br_name != NULL; br++) {
2172		if (br->br_chipid == chipid)
2173			return (br);
2174	}
2175
2176	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2177		if (br->br_chipid == BGE_ASICREV(chipid))
2178			return (br);
2179	}
2180
2181	return (NULL);
2182}
2183
2184const struct bge_vendor *
2185bge_lookup_vendor(uint16_t vid)
2186{
2187	const struct bge_vendor *v;
2188
2189	for (v = bge_vendors; v->v_name != NULL; v++)
2190		if (v->v_id == vid)
2191			return (v);
2192
2193	panic("%s: unknown vendor %d", __func__, vid);
2194	return (NULL);
2195}
2196
2197/*
2198 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2199 * against our list and return its name if we find a match.
2200 *
2201 * Note that since the Broadcom controller contains VPD support, we
2202 * try to get the device name string from the controller itself instead
2203 * of the compiled-in string. It guarantees we'll always announce the
2204 * right product name. We fall back to the compiled-in string when
2205 * VPD is unavailable or corrupt.
2206 */
2207static int
2208bge_probe(device_t dev)
2209{
2210	char buf[96];
2211	char model[64];
2212	const struct bge_revision *br;
2213	const char *pname;
2214	struct bge_softc *sc = device_get_softc(dev);
2215	const struct bge_type *t = bge_devs;
2216	const struct bge_vendor *v;
2217	uint32_t id;
2218	uint16_t did, vid;
2219
2220	sc->bge_dev = dev;
2221	vid = pci_get_vendor(dev);
2222	did = pci_get_device(dev);
2223	while(t->bge_vid != 0) {
2224		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2225			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2226			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2227			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2228				/*
2229				 * Find the ASCI revision.  Different chips
2230				 * use different registers.
2231				 */
2232				switch (pci_get_device(dev)) {
2233				case BCOM_DEVICEID_BCM5717:
2234				case BCOM_DEVICEID_BCM5718:
2235				case BCOM_DEVICEID_BCM5719:
2236					id = pci_read_config(dev,
2237					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2238					break;
2239				case BCOM_DEVICEID_BCM57761:
2240				case BCOM_DEVICEID_BCM57765:
2241				case BCOM_DEVICEID_BCM57781:
2242				case BCOM_DEVICEID_BCM57785:
2243				case BCOM_DEVICEID_BCM57791:
2244				case BCOM_DEVICEID_BCM57795:
2245					id = pci_read_config(dev,
2246					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2247					break;
2248				default:
2249					id = pci_read_config(dev,
2250					    BGE_PCI_PRODID_ASICREV, 4);
2251				}
2252			}
2253			br = bge_lookup_rev(id);
2254			v = bge_lookup_vendor(vid);
2255			if (bge_has_eaddr(sc) &&
2256			    pci_get_vpd_ident(dev, &pname) == 0)
2257				snprintf(model, 64, "%s", pname);
2258			else
2259				snprintf(model, 64, "%s %s", v->v_name,
2260				    br != NULL ? br->br_name :
2261				    "NetXtreme Ethernet Controller");
2262			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2263			    br != NULL ? "" : "unknown ", id);
2264			device_set_desc_copy(dev, buf);
2265			return (0);
2266		}
2267		t++;
2268	}
2269
2270	return (ENXIO);
2271}
2272
2273static void
2274bge_dma_free(struct bge_softc *sc)
2275{
2276	int i;
2277
2278	/* Destroy DMA maps for RX buffers. */
2279	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2280		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2281			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2282			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2283	}
2284	if (sc->bge_cdata.bge_rx_std_sparemap)
2285		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2286		    sc->bge_cdata.bge_rx_std_sparemap);
2287
2288	/* Destroy DMA maps for jumbo RX buffers. */
2289	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2290		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2291			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2292			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2293	}
2294	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2295		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2296		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2297
2298	/* Destroy DMA maps for TX buffers. */
2299	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2300		if (sc->bge_cdata.bge_tx_dmamap[i])
2301			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2302			    sc->bge_cdata.bge_tx_dmamap[i]);
2303	}
2304
2305	if (sc->bge_cdata.bge_rx_mtag)
2306		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2307	if (sc->bge_cdata.bge_tx_mtag)
2308		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2309
2310
2311	/* Destroy standard RX ring. */
2312	if (sc->bge_cdata.bge_rx_std_ring_map)
2313		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2314		    sc->bge_cdata.bge_rx_std_ring_map);
2315	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2316		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2317		    sc->bge_ldata.bge_rx_std_ring,
2318		    sc->bge_cdata.bge_rx_std_ring_map);
2319
2320	if (sc->bge_cdata.bge_rx_std_ring_tag)
2321		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2322
2323	/* Destroy jumbo RX ring. */
2324	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2325		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2326		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2327
2328	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2329	    sc->bge_ldata.bge_rx_jumbo_ring)
2330		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2331		    sc->bge_ldata.bge_rx_jumbo_ring,
2332		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2333
2334	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2335		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2336
2337	/* Destroy RX return ring. */
2338	if (sc->bge_cdata.bge_rx_return_ring_map)
2339		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2340		    sc->bge_cdata.bge_rx_return_ring_map);
2341
2342	if (sc->bge_cdata.bge_rx_return_ring_map &&
2343	    sc->bge_ldata.bge_rx_return_ring)
2344		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2345		    sc->bge_ldata.bge_rx_return_ring,
2346		    sc->bge_cdata.bge_rx_return_ring_map);
2347
2348	if (sc->bge_cdata.bge_rx_return_ring_tag)
2349		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2350
2351	/* Destroy TX ring. */
2352	if (sc->bge_cdata.bge_tx_ring_map)
2353		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2354		    sc->bge_cdata.bge_tx_ring_map);
2355
2356	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2357		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2358		    sc->bge_ldata.bge_tx_ring,
2359		    sc->bge_cdata.bge_tx_ring_map);
2360
2361	if (sc->bge_cdata.bge_tx_ring_tag)
2362		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2363
2364	/* Destroy status block. */
2365	if (sc->bge_cdata.bge_status_map)
2366		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2367		    sc->bge_cdata.bge_status_map);
2368
2369	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2370		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2371		    sc->bge_ldata.bge_status_block,
2372		    sc->bge_cdata.bge_status_map);
2373
2374	if (sc->bge_cdata.bge_status_tag)
2375		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2376
2377	/* Destroy statistics block. */
2378	if (sc->bge_cdata.bge_stats_map)
2379		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2380		    sc->bge_cdata.bge_stats_map);
2381
2382	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2383		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2384		    sc->bge_ldata.bge_stats,
2385		    sc->bge_cdata.bge_stats_map);
2386
2387	if (sc->bge_cdata.bge_stats_tag)
2388		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2389
2390	if (sc->bge_cdata.bge_buffer_tag)
2391		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2392
2393	/* Destroy the parent tag. */
2394	if (sc->bge_cdata.bge_parent_tag)
2395		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2396}
2397
2398static int
2399bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2400    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2401    bus_addr_t *paddr, const char *msg)
2402{
2403	struct bge_dmamap_arg ctx;
2404	bus_addr_t lowaddr;
2405	bus_size_t ring_end;
2406	int error;
2407
2408	lowaddr = BUS_SPACE_MAXADDR;
2409again:
2410	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2411	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2412	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2413	if (error != 0) {
2414		device_printf(sc->bge_dev,
2415		    "could not create %s dma tag\n", msg);
2416		return (ENOMEM);
2417	}
2418	/* Allocate DMA'able memory for ring. */
2419	error = bus_dmamem_alloc(*tag, (void **)ring,
2420	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2421	if (error != 0) {
2422		device_printf(sc->bge_dev,
2423		    "could not allocate DMA'able memory for %s\n", msg);
2424		return (ENOMEM);
2425	}
2426	/* Load the address of the ring. */
2427	ctx.bge_busaddr = 0;
2428	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2429	    &ctx, BUS_DMA_NOWAIT);
2430	if (error != 0) {
2431		device_printf(sc->bge_dev,
2432		    "could not load DMA'able memory for %s\n", msg);
2433		return (ENOMEM);
2434	}
2435	*paddr = ctx.bge_busaddr;
2436	ring_end = *paddr + maxsize;
2437	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2438	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2439		/*
2440		 * 4GB boundary crossed.  Limit maximum allowable DMA
2441		 * address space to 32bit and try again.
2442		 */
2443		bus_dmamap_unload(*tag, *map);
2444		bus_dmamem_free(*tag, *ring, *map);
2445		bus_dma_tag_destroy(*tag);
2446		if (bootverbose)
2447			device_printf(sc->bge_dev, "4GB boundary crossed, "
2448			    "limit DMA address space to 32bit for %s\n", msg);
2449		*ring = NULL;
2450		*tag = NULL;
2451		*map = NULL;
2452		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2453		goto again;
2454	}
2455	return (0);
2456}
2457
2458static int
2459bge_dma_alloc(struct bge_softc *sc)
2460{
2461	bus_addr_t lowaddr;
2462	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2463	int i, error;
2464
2465	lowaddr = BUS_SPACE_MAXADDR;
2466	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2467		lowaddr = BGE_DMA_MAXADDR;
2468	/*
2469	 * Allocate the parent bus DMA tag appropriate for PCI.
2470	 */
2471	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2472	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2473	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2474	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2475	if (error != 0) {
2476		device_printf(sc->bge_dev,
2477		    "could not allocate parent dma tag\n");
2478		return (ENOMEM);
2479	}
2480
2481	/* Create tag for standard RX ring. */
2482	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2483	    &sc->bge_cdata.bge_rx_std_ring_tag,
2484	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2485	    &sc->bge_cdata.bge_rx_std_ring_map,
2486	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2487	if (error)
2488		return (error);
2489
2490	/* Create tag for RX return ring. */
2491	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2492	    &sc->bge_cdata.bge_rx_return_ring_tag,
2493	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2494	    &sc->bge_cdata.bge_rx_return_ring_map,
2495	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2496	if (error)
2497		return (error);
2498
2499	/* Create tag for TX ring. */
2500	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2501	    &sc->bge_cdata.bge_tx_ring_tag,
2502	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2503	    &sc->bge_cdata.bge_tx_ring_map,
2504	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2505	if (error)
2506		return (error);
2507
2508	/*
2509	 * Create tag for status block.
2510	 * Because we only use single Tx/Rx/Rx return ring, use
2511	 * minimum status block size except BCM5700 AX/BX which
2512	 * seems to want to see full status block size regardless
2513	 * of configured number of ring.
2514	 */
2515	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2516	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2517		sbsz = BGE_STATUS_BLK_SZ;
2518	else
2519		sbsz = 32;
2520	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2521	    &sc->bge_cdata.bge_status_tag,
2522	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2523	    &sc->bge_cdata.bge_status_map,
2524	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2525	if (error)
2526		return (error);
2527
2528	/* Create tag for statistics block. */
2529	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2530	    &sc->bge_cdata.bge_stats_tag,
2531	    (uint8_t **)&sc->bge_ldata.bge_stats,
2532	    &sc->bge_cdata.bge_stats_map,
2533	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2534	if (error)
2535		return (error);
2536
2537	/* Create tag for jumbo RX ring. */
2538	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2539		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2540		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2541		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2542		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2543		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2544		if (error)
2545			return (error);
2546	}
2547
2548	/* Create parent tag for buffers. */
2549	boundary = 0;
2550	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2551		boundary = BGE_DMA_BNDRY;
2552		/*
2553		 * XXX
2554		 * watchdog timeout issue was observed on BCM5704 which
2555		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2556		 * Limiting DMA address space to 32bits seems to address
2557		 * it.
2558		 */
2559		if (sc->bge_flags & BGE_FLAG_PCIX)
2560			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2561	}
2562	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2563	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2564	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2565	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2566	if (error != 0) {
2567		device_printf(sc->bge_dev,
2568		    "could not allocate buffer dma tag\n");
2569		return (ENOMEM);
2570	}
2571	/* Create tag for Tx mbufs. */
2572	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2573		txsegsz = BGE_TSOSEG_SZ;
2574		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2575	} else {
2576		txsegsz = MCLBYTES;
2577		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2578	}
2579	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2580	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2581	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2582	    &sc->bge_cdata.bge_tx_mtag);
2583
2584	if (error) {
2585		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2586		return (ENOMEM);
2587	}
2588
2589	/* Create tag for Rx mbufs. */
2590	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2591		rxmaxsegsz = MJUM9BYTES;
2592	else
2593		rxmaxsegsz = MCLBYTES;
2594	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2595	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2596	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2597
2598	if (error) {
2599		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2600		return (ENOMEM);
2601	}
2602
2603	/* Create DMA maps for RX buffers. */
2604	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2605	    &sc->bge_cdata.bge_rx_std_sparemap);
2606	if (error) {
2607		device_printf(sc->bge_dev,
2608		    "can't create spare DMA map for RX\n");
2609		return (ENOMEM);
2610	}
2611	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2612		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2613			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2614		if (error) {
2615			device_printf(sc->bge_dev,
2616			    "can't create DMA map for RX\n");
2617			return (ENOMEM);
2618		}
2619	}
2620
2621	/* Create DMA maps for TX buffers. */
2622	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2623		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2624			    &sc->bge_cdata.bge_tx_dmamap[i]);
2625		if (error) {
2626			device_printf(sc->bge_dev,
2627			    "can't create DMA map for TX\n");
2628			return (ENOMEM);
2629		}
2630	}
2631
2632	/* Create tags for jumbo RX buffers. */
2633	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2634		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2635		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2636		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2637		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2638		if (error) {
2639			device_printf(sc->bge_dev,
2640			    "could not allocate jumbo dma tag\n");
2641			return (ENOMEM);
2642		}
2643		/* Create DMA maps for jumbo RX buffers. */
2644		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2645		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2646		if (error) {
2647			device_printf(sc->bge_dev,
2648			    "can't create spare DMA map for jumbo RX\n");
2649			return (ENOMEM);
2650		}
2651		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2652			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2653				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2654			if (error) {
2655				device_printf(sc->bge_dev,
2656				    "can't create DMA map for jumbo RX\n");
2657				return (ENOMEM);
2658			}
2659		}
2660	}
2661
2662	return (0);
2663}
2664
2665/*
2666 * Return true if this device has more than one port.
2667 */
2668static int
2669bge_has_multiple_ports(struct bge_softc *sc)
2670{
2671	device_t dev = sc->bge_dev;
2672	u_int b, d, f, fscan, s;
2673
2674	d = pci_get_domain(dev);
2675	b = pci_get_bus(dev);
2676	s = pci_get_slot(dev);
2677	f = pci_get_function(dev);
2678	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2679		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2680			return (1);
2681	return (0);
2682}
2683
2684/*
2685 * Return true if MSI can be used with this device.
2686 */
2687static int
2688bge_can_use_msi(struct bge_softc *sc)
2689{
2690	int can_use_msi = 0;
2691
2692	/* Disable MSI for polling(4). */
2693#ifdef DEVICE_POLLING
2694	return (0);
2695#endif
2696	switch (sc->bge_asicrev) {
2697	case BGE_ASICREV_BCM5714_A0:
2698	case BGE_ASICREV_BCM5714:
2699		/*
2700		 * Apparently, MSI doesn't work when these chips are
2701		 * configured in single-port mode.
2702		 */
2703		if (bge_has_multiple_ports(sc))
2704			can_use_msi = 1;
2705		break;
2706	case BGE_ASICREV_BCM5750:
2707		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2708		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2709			can_use_msi = 1;
2710		break;
2711	default:
2712		if (BGE_IS_575X_PLUS(sc))
2713			can_use_msi = 1;
2714	}
2715	return (can_use_msi);
2716}
2717
2718static int
2719bge_attach(device_t dev)
2720{
2721	struct ifnet *ifp;
2722	struct bge_softc *sc;
2723	uint32_t hwcfg = 0, misccfg;
2724	u_char eaddr[ETHER_ADDR_LEN];
2725	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2726
2727	sc = device_get_softc(dev);
2728	sc->bge_dev = dev;
2729
2730	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2731
2732	/*
2733	 * Map control/status registers.
2734	 */
2735	pci_enable_busmaster(dev);
2736
2737	rid = PCIR_BAR(0);
2738	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2739	    RF_ACTIVE);
2740
2741	if (sc->bge_res == NULL) {
2742		device_printf (sc->bge_dev, "couldn't map memory\n");
2743		error = ENXIO;
2744		goto fail;
2745	}
2746
2747	/* Save various chip information. */
2748	sc->bge_chipid =
2749	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2750	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2751	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2752		/*
2753		 * Find the ASCI revision.  Different chips use different
2754		 * registers.
2755		 */
2756		switch (pci_get_device(dev)) {
2757		case BCOM_DEVICEID_BCM5717:
2758		case BCOM_DEVICEID_BCM5718:
2759		case BCOM_DEVICEID_BCM5719:
2760			sc->bge_chipid = pci_read_config(dev,
2761			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2762			break;
2763		case BCOM_DEVICEID_BCM57761:
2764		case BCOM_DEVICEID_BCM57765:
2765		case BCOM_DEVICEID_BCM57781:
2766		case BCOM_DEVICEID_BCM57785:
2767		case BCOM_DEVICEID_BCM57791:
2768		case BCOM_DEVICEID_BCM57795:
2769			sc->bge_chipid = pci_read_config(dev,
2770			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2771			break;
2772		default:
2773			sc->bge_chipid = pci_read_config(dev,
2774			    BGE_PCI_PRODID_ASICREV, 4);
2775		}
2776	}
2777	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2778	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2779
2780	/* Set default PHY address. */
2781	phy_addr = 1;
2782	 /*
2783	  * PHY address mapping for various devices.
2784	  *
2785	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2786	  * ---------+-------+-------+-------+-------+
2787	  * BCM57XX  |   1   |   X   |   X   |   X   |
2788	  * BCM5704  |   1   |   X   |   1   |   X   |
2789	  * BCM5717  |   1   |   8   |   2   |   9   |
2790	  * BCM5719  |   1   |   8   |   2   |   9   |
2791	  *
2792	  * Other addresses may respond but they are not
2793	  * IEEE compliant PHYs and should be ignored.
2794	  */
2795	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2796	    sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2797		f = pci_get_function(dev);
2798		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2799			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2800			    BGE_SGDIGSTS_IS_SERDES)
2801				phy_addr = f + 8;
2802			else
2803				phy_addr = f + 1;
2804		} else {
2805			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2806			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2807				phy_addr = f + 8;
2808			else
2809				phy_addr = f + 1;
2810		}
2811	}
2812
2813	/*
2814	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2815	 * 5705 A0 and A1 chips.
2816	 */
2817	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2818	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2819	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2820	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2821	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2822		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2823
2824	if (bge_has_eaddr(sc))
2825		sc->bge_flags |= BGE_FLAG_EADDR;
2826
2827	/* Save chipset family. */
2828	switch (sc->bge_asicrev) {
2829	case BGE_ASICREV_BCM5717:
2830	case BGE_ASICREV_BCM5719:
2831		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2832	case BGE_ASICREV_BCM57765:
2833		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2834		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2835		    BGE_FLAG_JUMBO_FRAME;
2836		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2837		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2838			/* Jumbo frame on BCM5719 A0 does not work. */
2839			sc->bge_flags &= ~BGE_FLAG_JUMBO_FRAME;
2840		}
2841		break;
2842	case BGE_ASICREV_BCM5755:
2843	case BGE_ASICREV_BCM5761:
2844	case BGE_ASICREV_BCM5784:
2845	case BGE_ASICREV_BCM5785:
2846	case BGE_ASICREV_BCM5787:
2847	case BGE_ASICREV_BCM57780:
2848		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2849		    BGE_FLAG_5705_PLUS;
2850		break;
2851	case BGE_ASICREV_BCM5700:
2852	case BGE_ASICREV_BCM5701:
2853	case BGE_ASICREV_BCM5703:
2854	case BGE_ASICREV_BCM5704:
2855		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2856		break;
2857	case BGE_ASICREV_BCM5714_A0:
2858	case BGE_ASICREV_BCM5780:
2859	case BGE_ASICREV_BCM5714:
2860		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
2861		/* FALLTHROUGH */
2862	case BGE_ASICREV_BCM5750:
2863	case BGE_ASICREV_BCM5752:
2864	case BGE_ASICREV_BCM5906:
2865		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2866		if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2867			sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2868		/* FALLTHROUGH */
2869	case BGE_ASICREV_BCM5705:
2870		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2871		break;
2872	}
2873
2874	/* Set various PHY bug flags. */
2875	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2876	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2877		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2878	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2879	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2880		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2881	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2882		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2883	if (pci_get_subvendor(dev) == DELL_VENDORID)
2884		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2885	if ((BGE_IS_5705_PLUS(sc)) &&
2886	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2887	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
2888	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
2889	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2890	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
2891	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2892		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2893		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2894		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2895		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2896			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2897			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2898				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2899			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2900				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2901		} else
2902			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2903	}
2904
2905	/* Identify the chips that use an CPMU. */
2906	if (BGE_IS_5717_PLUS(sc) ||
2907	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2908	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2909	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2910	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2911		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
2912	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
2913		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2914	else
2915		sc->bge_mi_mode = BGE_MIMODE_BASE;
2916	/* Enable auto polling for BCM570[0-5]. */
2917	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
2918		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2919
2920	/*
2921	 * All controllers that are not 5755 or higher have 4GB
2922	 * boundary DMA bug.
2923	 * Whenever an address crosses a multiple of the 4GB boundary
2924	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2925	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2926	 * state machine will lockup and cause the device to hang.
2927	 */
2928	if (BGE_IS_5755_PLUS(sc) == 0)
2929		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2930
2931	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2932	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2933		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2934		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2935			sc->bge_flags |= BGE_FLAG_5788;
2936	}
2937
2938	capmask = BMSR_DEFCAPMASK;
2939	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2940	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
2941	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2942	    pci_get_vendor(dev) == BCOM_VENDORID &&
2943	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
2944	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
2945	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
2946	    (pci_get_vendor(dev) == BCOM_VENDORID &&
2947	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
2948	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
2949	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
2950	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
2951	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2952		/* These chips are 10/100 only. */
2953		capmask &= ~BMSR_EXTSTAT;
2954	}
2955
2956	/*
2957	 * Some controllers seem to require a special firmware to use
2958	 * TSO. But the firmware is not available to FreeBSD and Linux
2959	 * claims that the TSO performed by the firmware is slower than
2960	 * hardware based TSO. Moreover the firmware based TSO has one
2961	 * known bug which can't handle TSO if ethernet header + IP/TCP
2962	 * header is greater than 80 bytes. The workaround for the TSO
2963	 * bug exist but it seems it's too expensive than not using
2964	 * TSO at all. Some hardwares also have the TSO bug so limit
2965	 * the TSO to the controllers that are not affected TSO issues
2966	 * (e.g. 5755 or higher).
2967	 */
2968	if (BGE_IS_5717_PLUS(sc)) {
2969		/* BCM5717 requires different TSO configuration. */
2970		sc->bge_flags |= BGE_FLAG_TSO3;
2971		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2972		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2973			/* TSO on BCM5719 A0 does not work. */
2974			sc->bge_flags &= ~BGE_FLAG_TSO3;
2975		}
2976	} else if (BGE_IS_5755_PLUS(sc)) {
2977		/*
2978		 * BCM5754 and BCM5787 shares the same ASIC id so
2979		 * explicit device id check is required.
2980		 * Due to unknown reason TSO does not work on BCM5755M.
2981		 */
2982		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2983		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2984		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2985			sc->bge_flags |= BGE_FLAG_TSO;
2986	}
2987
2988  	/*
2989	 * Check if this is a PCI-X or PCI Express device.
2990  	 */
2991	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
2992		/*
2993		 * Found a PCI Express capabilities register, this
2994		 * must be a PCI Express device.
2995		 */
2996		sc->bge_flags |= BGE_FLAG_PCIE;
2997		sc->bge_expcap = reg;
2998		if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2999			pci_set_max_read_req(dev, 2048);
3000		else if (pci_get_max_read_req(dev) != 4096)
3001			pci_set_max_read_req(dev, 4096);
3002	} else {
3003		/*
3004		 * Check if the device is in PCI-X Mode.
3005		 * (This bit is not valid on PCI Express controllers.)
3006		 */
3007		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3008			sc->bge_pcixcap = reg;
3009		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3010		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3011			sc->bge_flags |= BGE_FLAG_PCIX;
3012	}
3013
3014	/*
3015	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3016	 * not actually a MAC controller bug but an issue with the embedded
3017	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3018	 */
3019	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3020		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3021	/*
3022	 * Allocate the interrupt, using MSI if possible.  These devices
3023	 * support 8 MSI messages, but only the first one is used in
3024	 * normal operation.
3025	 */
3026	rid = 0;
3027	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3028		sc->bge_msicap = reg;
3029		if (bge_can_use_msi(sc)) {
3030			msicount = pci_msi_count(dev);
3031			if (msicount > 1)
3032				msicount = 1;
3033		} else
3034			msicount = 0;
3035		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3036			rid = 1;
3037			sc->bge_flags |= BGE_FLAG_MSI;
3038		}
3039	}
3040
3041	/*
3042	 * All controllers except BCM5700 supports tagged status but
3043	 * we use tagged status only for MSI case on BCM5717. Otherwise
3044	 * MSI on BCM5717 does not work.
3045	 */
3046#ifndef DEVICE_POLLING
3047	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3048		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3049#endif
3050
3051	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3052	    RF_SHAREABLE | RF_ACTIVE);
3053
3054	if (sc->bge_irq == NULL) {
3055		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3056		error = ENXIO;
3057		goto fail;
3058	}
3059
3060	device_printf(dev,
3061	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
3062	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
3063	    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
3064	    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
3065
3066	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3067
3068	/* Try to reset the chip. */
3069	if (bge_reset(sc)) {
3070		device_printf(sc->bge_dev, "chip reset failed\n");
3071		error = ENXIO;
3072		goto fail;
3073	}
3074
3075	sc->bge_asf_mode = 0;
3076	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
3077	    == BGE_MAGIC_NUMBER)) {
3078		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
3079		    & BGE_HWCFG_ASF) {
3080			sc->bge_asf_mode |= ASF_ENABLE;
3081			sc->bge_asf_mode |= ASF_STACKUP;
3082			if (BGE_IS_575X_PLUS(sc))
3083				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3084		}
3085	}
3086
3087	/* Try to reset the chip again the nice way. */
3088	bge_stop_fw(sc);
3089	bge_sig_pre_reset(sc, BGE_RESET_STOP);
3090	if (bge_reset(sc)) {
3091		device_printf(sc->bge_dev, "chip reset failed\n");
3092		error = ENXIO;
3093		goto fail;
3094	}
3095
3096	bge_sig_legacy(sc, BGE_RESET_STOP);
3097	bge_sig_post_reset(sc, BGE_RESET_STOP);
3098
3099	if (bge_chipinit(sc)) {
3100		device_printf(sc->bge_dev, "chip initialization failed\n");
3101		error = ENXIO;
3102		goto fail;
3103	}
3104
3105	error = bge_get_eaddr(sc, eaddr);
3106	if (error) {
3107		device_printf(sc->bge_dev,
3108		    "failed to read station address\n");
3109		error = ENXIO;
3110		goto fail;
3111	}
3112
3113	/* 5705 limits RX return ring to 512 entries. */
3114	if (BGE_IS_5717_PLUS(sc))
3115		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3116	else if (BGE_IS_5705_PLUS(sc))
3117		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3118	else
3119		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3120
3121	if (bge_dma_alloc(sc)) {
3122		device_printf(sc->bge_dev,
3123		    "failed to allocate DMA resources\n");
3124		error = ENXIO;
3125		goto fail;
3126	}
3127
3128	bge_add_sysctls(sc);
3129
3130	/* Set default tuneable values. */
3131	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3132	sc->bge_rx_coal_ticks = 150;
3133	sc->bge_tx_coal_ticks = 150;
3134	sc->bge_rx_max_coal_bds = 10;
3135	sc->bge_tx_max_coal_bds = 10;
3136
3137	/* Initialize checksum features to use. */
3138	sc->bge_csum_features = BGE_CSUM_FEATURES;
3139	if (sc->bge_forced_udpcsum != 0)
3140		sc->bge_csum_features |= CSUM_UDP;
3141
3142	/* Set up ifnet structure */
3143	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3144	if (ifp == NULL) {
3145		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3146		error = ENXIO;
3147		goto fail;
3148	}
3149	ifp->if_softc = sc;
3150	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3151	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3152	ifp->if_ioctl = bge_ioctl;
3153	ifp->if_start = bge_start;
3154	ifp->if_init = bge_init;
3155	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3156	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3157	IFQ_SET_READY(&ifp->if_snd);
3158	ifp->if_hwassist = sc->bge_csum_features;
3159	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3160	    IFCAP_VLAN_MTU;
3161	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3162		ifp->if_hwassist |= CSUM_TSO;
3163		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3164	}
3165#ifdef IFCAP_VLAN_HWCSUM
3166	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3167#endif
3168	ifp->if_capenable = ifp->if_capabilities;
3169#ifdef DEVICE_POLLING
3170	ifp->if_capabilities |= IFCAP_POLLING;
3171#endif
3172
3173	/*
3174	 * 5700 B0 chips do not support checksumming correctly due
3175	 * to hardware bugs.
3176	 */
3177	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3178		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3179		ifp->if_capenable &= ~IFCAP_HWCSUM;
3180		ifp->if_hwassist = 0;
3181	}
3182
3183	/*
3184	 * Figure out what sort of media we have by checking the
3185	 * hardware config word in the first 32k of NIC internal memory,
3186	 * or fall back to examining the EEPROM if necessary.
3187	 * Note: on some BCM5700 cards, this value appears to be unset.
3188	 * If that's the case, we have to rely on identifying the NIC
3189	 * by its PCI subsystem ID, as we do below for the SysKonnect
3190	 * SK-9D41.
3191	 */
3192	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
3193		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3194	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3195	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3196		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3197		    sizeof(hwcfg))) {
3198			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3199			error = ENXIO;
3200			goto fail;
3201		}
3202		hwcfg = ntohl(hwcfg);
3203	}
3204
3205	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3206	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3207	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3208		if (BGE_IS_5714_FAMILY(sc))
3209			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3210		else
3211			sc->bge_flags |= BGE_FLAG_TBI;
3212	}
3213
3214	if (sc->bge_flags & BGE_FLAG_TBI) {
3215		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3216		    bge_ifmedia_sts);
3217		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3218		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3219		    0, NULL);
3220		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3221		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3222		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3223	} else {
3224		/*
3225		 * Do transceiver setup and tell the firmware the
3226		 * driver is down so we can try to get access the
3227		 * probe if ASF is running.  Retry a couple of times
3228		 * if we get a conflict with the ASF firmware accessing
3229		 * the PHY.
3230		 */
3231		trys = 0;
3232		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3233again:
3234		bge_asf_driver_up(sc);
3235
3236		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3237		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3238		    MIIF_DOPAUSE);
3239		if (error != 0) {
3240			if (trys++ < 4) {
3241				device_printf(sc->bge_dev, "Try again\n");
3242				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3243				    BMCR_RESET);
3244				goto again;
3245			}
3246			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3247			goto fail;
3248		}
3249
3250		/*
3251		 * Now tell the firmware we are going up after probing the PHY
3252		 */
3253		if (sc->bge_asf_mode & ASF_STACKUP)
3254			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3255	}
3256
3257	/*
3258	 * When using the BCM5701 in PCI-X mode, data corruption has
3259	 * been observed in the first few bytes of some received packets.
3260	 * Aligning the packet buffer in memory eliminates the corruption.
3261	 * Unfortunately, this misaligns the packet payloads.  On platforms
3262	 * which do not support unaligned accesses, we will realign the
3263	 * payloads by copying the received packets.
3264	 */
3265	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3266	    sc->bge_flags & BGE_FLAG_PCIX)
3267                sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3268
3269	/*
3270	 * Call MI attach routine.
3271	 */
3272	ether_ifattach(ifp, eaddr);
3273	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3274
3275	/* Tell upper layer we support long frames. */
3276	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3277
3278	/*
3279	 * Hookup IRQ last.
3280	 */
3281	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3282		/* Take advantage of single-shot MSI. */
3283		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3284		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3285		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3286		    taskqueue_thread_enqueue, &sc->bge_tq);
3287		if (sc->bge_tq == NULL) {
3288			device_printf(dev, "could not create taskqueue.\n");
3289			ether_ifdetach(ifp);
3290			error = ENXIO;
3291			goto fail;
3292		}
3293		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3294		    device_get_nameunit(sc->bge_dev));
3295		error = bus_setup_intr(dev, sc->bge_irq,
3296		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3297		    &sc->bge_intrhand);
3298		if (error)
3299			ether_ifdetach(ifp);
3300	} else
3301		error = bus_setup_intr(dev, sc->bge_irq,
3302		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3303		    &sc->bge_intrhand);
3304
3305	if (error) {
3306		bge_detach(dev);
3307		device_printf(sc->bge_dev, "couldn't set up irq\n");
3308	}
3309
3310	return (0);
3311
3312fail:
3313	bge_release_resources(sc);
3314
3315	return (error);
3316}
3317
3318static int
3319bge_detach(device_t dev)
3320{
3321	struct bge_softc *sc;
3322	struct ifnet *ifp;
3323
3324	sc = device_get_softc(dev);
3325	ifp = sc->bge_ifp;
3326
3327#ifdef DEVICE_POLLING
3328	if (ifp->if_capenable & IFCAP_POLLING)
3329		ether_poll_deregister(ifp);
3330#endif
3331
3332	BGE_LOCK(sc);
3333	bge_stop(sc);
3334	bge_reset(sc);
3335	BGE_UNLOCK(sc);
3336
3337	callout_drain(&sc->bge_stat_ch);
3338
3339	if (sc->bge_tq)
3340		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3341	ether_ifdetach(ifp);
3342
3343	if (sc->bge_flags & BGE_FLAG_TBI) {
3344		ifmedia_removeall(&sc->bge_ifmedia);
3345	} else {
3346		bus_generic_detach(dev);
3347		device_delete_child(dev, sc->bge_miibus);
3348	}
3349
3350	bge_release_resources(sc);
3351
3352	return (0);
3353}
3354
3355static void
3356bge_release_resources(struct bge_softc *sc)
3357{
3358	device_t dev;
3359
3360	dev = sc->bge_dev;
3361
3362	if (sc->bge_tq != NULL)
3363		taskqueue_free(sc->bge_tq);
3364
3365	if (sc->bge_intrhand != NULL)
3366		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3367
3368	if (sc->bge_irq != NULL)
3369		bus_release_resource(dev, SYS_RES_IRQ,
3370		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3371
3372	if (sc->bge_flags & BGE_FLAG_MSI)
3373		pci_release_msi(dev);
3374
3375	if (sc->bge_res != NULL)
3376		bus_release_resource(dev, SYS_RES_MEMORY,
3377		    PCIR_BAR(0), sc->bge_res);
3378
3379	if (sc->bge_ifp != NULL)
3380		if_free(sc->bge_ifp);
3381
3382	bge_dma_free(sc);
3383
3384	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3385		BGE_LOCK_DESTROY(sc);
3386}
3387
3388static int
3389bge_reset(struct bge_softc *sc)
3390{
3391	device_t dev;
3392	uint32_t cachesize, command, pcistate, reset, val;
3393	void (*write_op)(struct bge_softc *, int, int);
3394	uint16_t devctl;
3395	int i;
3396
3397	dev = sc->bge_dev;
3398
3399	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3400	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3401		if (sc->bge_flags & BGE_FLAG_PCIE)
3402			write_op = bge_writemem_direct;
3403		else
3404			write_op = bge_writemem_ind;
3405	} else
3406		write_op = bge_writereg_ind;
3407
3408	/* Save some important PCI state. */
3409	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3410	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3411	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3412
3413	pci_write_config(dev, BGE_PCI_MISC_CTL,
3414	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3415	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3416
3417	/* Disable fastboot on controllers that support it. */
3418	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3419	    BGE_IS_5755_PLUS(sc)) {
3420		if (bootverbose)
3421			device_printf(dev, "Disabling fastboot\n");
3422		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3423	}
3424
3425	/*
3426	 * Write the magic number to SRAM at offset 0xB50.
3427	 * When firmware finishes its initialization it will
3428	 * write ~BGE_MAGIC_NUMBER to the same location.
3429	 */
3430	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3431
3432	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3433
3434	/* XXX: Broadcom Linux driver. */
3435	if (sc->bge_flags & BGE_FLAG_PCIE) {
3436		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3437			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3438		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3439			/* Prevent PCIE link training during global reset */
3440			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3441			reset |= 1 << 29;
3442		}
3443	}
3444
3445	/*
3446	 * Set GPHY Power Down Override to leave GPHY
3447	 * powered up in D0 uninitialized.
3448	 */
3449	if (BGE_IS_5705_PLUS(sc))
3450		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3451
3452	/* Issue global reset */
3453	write_op(sc, BGE_MISC_CFG, reset);
3454
3455	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3456		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3457		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3458		    val | BGE_VCPU_STATUS_DRV_RESET);
3459		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3460		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3461		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3462	}
3463
3464	DELAY(1000);
3465
3466	/* XXX: Broadcom Linux driver. */
3467	if (sc->bge_flags & BGE_FLAG_PCIE) {
3468		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3469			DELAY(500000); /* wait for link training to complete */
3470			val = pci_read_config(dev, 0xC4, 4);
3471			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3472		}
3473		devctl = pci_read_config(dev,
3474		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3475		/* Clear enable no snoop and disable relaxed ordering. */
3476		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3477		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3478		/* Set PCIE max payload size to 128. */
3479		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3480		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3481		    devctl, 2);
3482		/* Clear error status. */
3483		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3484		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3485		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3486		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3487	}
3488
3489	/* Reset some of the PCI state that got zapped by reset. */
3490	pci_write_config(dev, BGE_PCI_MISC_CTL,
3491	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3492	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3493	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3494	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3495	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3496	/*
3497	 * Disable PCI-X relaxed ordering to ensure status block update
3498	 * comes first then packet buffer DMA. Otherwise driver may
3499	 * read stale status block.
3500	 */
3501	if (sc->bge_flags & BGE_FLAG_PCIX) {
3502		devctl = pci_read_config(dev,
3503		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3504		devctl &= ~PCIXM_COMMAND_ERO;
3505		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3506			devctl &= ~PCIXM_COMMAND_MAX_READ;
3507			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3508		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3509			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3510			    PCIXM_COMMAND_MAX_READ);
3511			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3512		}
3513		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3514		    devctl, 2);
3515	}
3516	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
3517	if (BGE_IS_5714_FAMILY(sc)) {
3518		/* This chip disables MSI on reset. */
3519		if (sc->bge_flags & BGE_FLAG_MSI) {
3520			val = pci_read_config(dev,
3521			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3522			pci_write_config(dev,
3523			    sc->bge_msicap + PCIR_MSI_CTRL,
3524			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3525			val = CSR_READ_4(sc, BGE_MSI_MODE);
3526			CSR_WRITE_4(sc, BGE_MSI_MODE,
3527			    val | BGE_MSIMODE_ENABLE);
3528		}
3529		val = CSR_READ_4(sc, BGE_MARB_MODE);
3530		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3531	} else
3532		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3533
3534	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3535		for (i = 0; i < BGE_TIMEOUT; i++) {
3536			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3537			if (val & BGE_VCPU_STATUS_INIT_DONE)
3538				break;
3539			DELAY(100);
3540		}
3541		if (i == BGE_TIMEOUT) {
3542			device_printf(dev, "reset timed out\n");
3543			return (1);
3544		}
3545	} else {
3546		/*
3547		 * Poll until we see the 1's complement of the magic number.
3548		 * This indicates that the firmware initialization is complete.
3549		 * We expect this to fail if no chip containing the Ethernet
3550		 * address is fitted though.
3551		 */
3552		for (i = 0; i < BGE_TIMEOUT; i++) {
3553			DELAY(10);
3554			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3555			if (val == ~BGE_MAGIC_NUMBER)
3556				break;
3557		}
3558
3559		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3560			device_printf(dev,
3561			    "firmware handshake timed out, found 0x%08x\n",
3562			    val);
3563		/* BCM57765 A0 needs additional time before accessing. */
3564		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3565			DELAY(10 * 1000);	/* XXX */
3566	}
3567
3568	/*
3569	 * XXX Wait for the value of the PCISTATE register to
3570	 * return to its original pre-reset state. This is a
3571	 * fairly good indicator of reset completion. If we don't
3572	 * wait for the reset to fully complete, trying to read
3573	 * from the device's non-PCI registers may yield garbage
3574	 * results.
3575	 */
3576	for (i = 0; i < BGE_TIMEOUT; i++) {
3577		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3578			break;
3579		DELAY(10);
3580	}
3581
3582	/* Fix up byte swapping. */
3583	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3584	    BGE_MODECTL_BYTESWAP_DATA);
3585
3586	/* Tell the ASF firmware we are up */
3587	if (sc->bge_asf_mode & ASF_STACKUP)
3588		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3589
3590	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3591
3592	/*
3593	 * The 5704 in TBI mode apparently needs some special
3594	 * adjustment to insure the SERDES drive level is set
3595	 * to 1.2V.
3596	 */
3597	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3598	    sc->bge_flags & BGE_FLAG_TBI) {
3599		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3600		val = (val & ~0xFFF) | 0x880;
3601		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3602	}
3603
3604	/* XXX: Broadcom Linux driver. */
3605	if (sc->bge_flags & BGE_FLAG_PCIE &&
3606	    !BGE_IS_5717_PLUS(sc) &&
3607	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3608	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3609		/* Enable Data FIFO protection. */
3610		val = CSR_READ_4(sc, 0x7C00);
3611		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3612	}
3613	DELAY(10000);
3614
3615	return (0);
3616}
3617
3618static __inline void
3619bge_rxreuse_std(struct bge_softc *sc, int i)
3620{
3621	struct bge_rx_bd *r;
3622
3623	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3624	r->bge_flags = BGE_RXBDFLAG_END;
3625	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3626	r->bge_idx = i;
3627	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3628}
3629
3630static __inline void
3631bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3632{
3633	struct bge_extrx_bd *r;
3634
3635	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3636	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3637	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3638	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3639	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3640	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3641	r->bge_idx = i;
3642	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3643}
3644
3645/*
3646 * Frame reception handling. This is called if there's a frame
3647 * on the receive return list.
3648 *
3649 * Note: we have to be able to handle two possibilities here:
3650 * 1) the frame is from the jumbo receive ring
3651 * 2) the frame is from the standard receive ring
3652 */
3653
3654static int
3655bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3656{
3657	struct ifnet *ifp;
3658	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3659	uint16_t rx_cons;
3660
3661	rx_cons = sc->bge_rx_saved_considx;
3662
3663	/* Nothing to do. */
3664	if (rx_cons == rx_prod)
3665		return (rx_npkts);
3666
3667	ifp = sc->bge_ifp;
3668
3669	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3670	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3671	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3672	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3673	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3674	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3675	    (MCLBYTES - ETHER_ALIGN))
3676		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3677		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3678
3679	while (rx_cons != rx_prod) {
3680		struct bge_rx_bd	*cur_rx;
3681		uint32_t		rxidx;
3682		struct mbuf		*m = NULL;
3683		uint16_t		vlan_tag = 0;
3684		int			have_tag = 0;
3685
3686#ifdef DEVICE_POLLING
3687		if (ifp->if_capenable & IFCAP_POLLING) {
3688			if (sc->rxcycles <= 0)
3689				break;
3690			sc->rxcycles--;
3691		}
3692#endif
3693
3694		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3695
3696		rxidx = cur_rx->bge_idx;
3697		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3698
3699		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3700		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3701			have_tag = 1;
3702			vlan_tag = cur_rx->bge_vlan_tag;
3703		}
3704
3705		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3706			jumbocnt++;
3707			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3708			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3709				bge_rxreuse_jumbo(sc, rxidx);
3710				continue;
3711			}
3712			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3713				bge_rxreuse_jumbo(sc, rxidx);
3714				ifp->if_iqdrops++;
3715				continue;
3716			}
3717			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3718		} else {
3719			stdcnt++;
3720			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3721			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3722				bge_rxreuse_std(sc, rxidx);
3723				continue;
3724			}
3725			if (bge_newbuf_std(sc, rxidx) != 0) {
3726				bge_rxreuse_std(sc, rxidx);
3727				ifp->if_iqdrops++;
3728				continue;
3729			}
3730			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3731		}
3732
3733		ifp->if_ipackets++;
3734#ifndef __NO_STRICT_ALIGNMENT
3735		/*
3736		 * For architectures with strict alignment we must make sure
3737		 * the payload is aligned.
3738		 */
3739		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3740			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3741			    cur_rx->bge_len);
3742			m->m_data += ETHER_ALIGN;
3743		}
3744#endif
3745		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3746		m->m_pkthdr.rcvif = ifp;
3747
3748		if (ifp->if_capenable & IFCAP_RXCSUM)
3749			bge_rxcsum(sc, cur_rx, m);
3750
3751		/*
3752		 * If we received a packet with a vlan tag,
3753		 * attach that information to the packet.
3754		 */
3755		if (have_tag) {
3756			m->m_pkthdr.ether_vtag = vlan_tag;
3757			m->m_flags |= M_VLANTAG;
3758		}
3759
3760		if (holdlck != 0) {
3761			BGE_UNLOCK(sc);
3762			(*ifp->if_input)(ifp, m);
3763			BGE_LOCK(sc);
3764		} else
3765			(*ifp->if_input)(ifp, m);
3766		rx_npkts++;
3767
3768		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3769			return (rx_npkts);
3770	}
3771
3772	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3773	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3774	if (stdcnt > 0)
3775		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3776		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3777
3778	if (jumbocnt > 0)
3779		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3780		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3781
3782	sc->bge_rx_saved_considx = rx_cons;
3783	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3784	if (stdcnt)
3785		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3786		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3787	if (jumbocnt)
3788		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3789		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3790#ifdef notyet
3791	/*
3792	 * This register wraps very quickly under heavy packet drops.
3793	 * If you need correct statistics, you can enable this check.
3794	 */
3795	if (BGE_IS_5705_PLUS(sc))
3796		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3797#endif
3798	return (rx_npkts);
3799}
3800
3801static void
3802bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3803{
3804
3805	if (BGE_IS_5717_PLUS(sc)) {
3806		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3807			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3808				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3809				if ((cur_rx->bge_error_flag &
3810				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3811					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3812			}
3813			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3814				m->m_pkthdr.csum_data =
3815				    cur_rx->bge_tcp_udp_csum;
3816				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3817				    CSUM_PSEUDO_HDR;
3818			}
3819		}
3820	} else {
3821		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3822			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3823			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3824				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3825		}
3826		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3827		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3828			m->m_pkthdr.csum_data =
3829			    cur_rx->bge_tcp_udp_csum;
3830			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3831			    CSUM_PSEUDO_HDR;
3832		}
3833	}
3834}
3835
3836static void
3837bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3838{
3839	struct bge_tx_bd *cur_tx;
3840	struct ifnet *ifp;
3841
3842	BGE_LOCK_ASSERT(sc);
3843
3844	/* Nothing to do. */
3845	if (sc->bge_tx_saved_considx == tx_cons)
3846		return;
3847
3848	ifp = sc->bge_ifp;
3849
3850	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3851	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3852	/*
3853	 * Go through our tx ring and free mbufs for those
3854	 * frames that have been sent.
3855	 */
3856	while (sc->bge_tx_saved_considx != tx_cons) {
3857		uint32_t		idx;
3858
3859		idx = sc->bge_tx_saved_considx;
3860		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3861		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3862			ifp->if_opackets++;
3863		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3864			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3865			    sc->bge_cdata.bge_tx_dmamap[idx],
3866			    BUS_DMASYNC_POSTWRITE);
3867			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3868			    sc->bge_cdata.bge_tx_dmamap[idx]);
3869			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3870			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3871		}
3872		sc->bge_txcnt--;
3873		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3874	}
3875
3876	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3877	if (sc->bge_txcnt == 0)
3878		sc->bge_timer = 0;
3879}
3880
3881#ifdef DEVICE_POLLING
3882static int
3883bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3884{
3885	struct bge_softc *sc = ifp->if_softc;
3886	uint16_t rx_prod, tx_cons;
3887	uint32_t statusword;
3888	int rx_npkts = 0;
3889
3890	BGE_LOCK(sc);
3891	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3892		BGE_UNLOCK(sc);
3893		return (rx_npkts);
3894	}
3895
3896	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3897	    sc->bge_cdata.bge_status_map,
3898	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3899	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3900	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3901
3902	statusword = sc->bge_ldata.bge_status_block->bge_status;
3903	sc->bge_ldata.bge_status_block->bge_status = 0;
3904
3905	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3906	    sc->bge_cdata.bge_status_map,
3907	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3908
3909	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3910	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3911		sc->bge_link_evt++;
3912
3913	if (cmd == POLL_AND_CHECK_STATUS)
3914		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3915		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3916		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3917			bge_link_upd(sc);
3918
3919	sc->rxcycles = count;
3920	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3921	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3922		BGE_UNLOCK(sc);
3923		return (rx_npkts);
3924	}
3925	bge_txeof(sc, tx_cons);
3926	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3927		bge_start_locked(ifp);
3928
3929	BGE_UNLOCK(sc);
3930	return (rx_npkts);
3931}
3932#endif /* DEVICE_POLLING */
3933
3934static int
3935bge_msi_intr(void *arg)
3936{
3937	struct bge_softc *sc;
3938
3939	sc = (struct bge_softc *)arg;
3940	/*
3941	 * This interrupt is not shared and controller already
3942	 * disabled further interrupt.
3943	 */
3944	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3945	return (FILTER_HANDLED);
3946}
3947
3948static void
3949bge_intr_task(void *arg, int pending)
3950{
3951	struct bge_softc *sc;
3952	struct ifnet *ifp;
3953	uint32_t status, status_tag;
3954	uint16_t rx_prod, tx_cons;
3955
3956	sc = (struct bge_softc *)arg;
3957	ifp = sc->bge_ifp;
3958
3959	BGE_LOCK(sc);
3960	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3961		BGE_UNLOCK(sc);
3962		return;
3963	}
3964
3965	/* Get updated status block. */
3966	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3967	    sc->bge_cdata.bge_status_map,
3968	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3969
3970	/* Save producer/consumer indexess. */
3971	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3972	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3973	status = sc->bge_ldata.bge_status_block->bge_status;
3974	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
3975	sc->bge_ldata.bge_status_block->bge_status = 0;
3976	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3977	    sc->bge_cdata.bge_status_map,
3978	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3979	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
3980		status_tag = 0;
3981
3982	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
3983		bge_link_upd(sc);
3984
3985	/* Let controller work. */
3986	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
3987
3988	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3989	    sc->bge_rx_saved_considx != rx_prod) {
3990		/* Check RX return ring producer/consumer. */
3991		BGE_UNLOCK(sc);
3992		bge_rxeof(sc, rx_prod, 0);
3993		BGE_LOCK(sc);
3994	}
3995	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3996		/* Check TX ring producer/consumer. */
3997		bge_txeof(sc, tx_cons);
3998	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3999			bge_start_locked(ifp);
4000	}
4001	BGE_UNLOCK(sc);
4002}
4003
4004static void
4005bge_intr(void *xsc)
4006{
4007	struct bge_softc *sc;
4008	struct ifnet *ifp;
4009	uint32_t statusword;
4010	uint16_t rx_prod, tx_cons;
4011
4012	sc = xsc;
4013
4014	BGE_LOCK(sc);
4015
4016	ifp = sc->bge_ifp;
4017
4018#ifdef DEVICE_POLLING
4019	if (ifp->if_capenable & IFCAP_POLLING) {
4020		BGE_UNLOCK(sc);
4021		return;
4022	}
4023#endif
4024
4025	/*
4026	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4027	 * disable interrupts by writing nonzero like we used to, since with
4028	 * our current organization this just gives complications and
4029	 * pessimizations for re-enabling interrupts.  We used to have races
4030	 * instead of the necessary complications.  Disabling interrupts
4031	 * would just reduce the chance of a status update while we are
4032	 * running (by switching to the interrupt-mode coalescence
4033	 * parameters), but this chance is already very low so it is more
4034	 * efficient to get another interrupt than prevent it.
4035	 *
4036	 * We do the ack first to ensure another interrupt if there is a
4037	 * status update after the ack.  We don't check for the status
4038	 * changing later because it is more efficient to get another
4039	 * interrupt than prevent it, not quite as above (not checking is
4040	 * a smaller optimization than not toggling the interrupt enable,
4041	 * since checking doesn't involve PCI accesses and toggling require
4042	 * the status check).  So toggling would probably be a pessimization
4043	 * even with MSI.  It would only be needed for using a task queue.
4044	 */
4045	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4046
4047	/*
4048	 * Do the mandatory PCI flush as well as get the link status.
4049	 */
4050	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4051
4052	/* Make sure the descriptor ring indexes are coherent. */
4053	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4054	    sc->bge_cdata.bge_status_map,
4055	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4056	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4057	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4058	sc->bge_ldata.bge_status_block->bge_status = 0;
4059	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4060	    sc->bge_cdata.bge_status_map,
4061	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4062
4063	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4064	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4065	    statusword || sc->bge_link_evt)
4066		bge_link_upd(sc);
4067
4068	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4069		/* Check RX return ring producer/consumer. */
4070		bge_rxeof(sc, rx_prod, 1);
4071	}
4072
4073	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4074		/* Check TX ring producer/consumer. */
4075		bge_txeof(sc, tx_cons);
4076	}
4077
4078	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4079	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4080		bge_start_locked(ifp);
4081
4082	BGE_UNLOCK(sc);
4083}
4084
4085static void
4086bge_asf_driver_up(struct bge_softc *sc)
4087{
4088	if (sc->bge_asf_mode & ASF_STACKUP) {
4089		/* Send ASF heartbeat aprox. every 2s */
4090		if (sc->bge_asf_count)
4091			sc->bge_asf_count --;
4092		else {
4093			sc->bge_asf_count = 2;
4094			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
4095			    BGE_FW_DRV_ALIVE);
4096			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
4097			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
4098			CSR_WRITE_4(sc, BGE_CPU_EVENT,
4099			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
4100		}
4101	}
4102}
4103
4104static void
4105bge_tick(void *xsc)
4106{
4107	struct bge_softc *sc = xsc;
4108	struct mii_data *mii = NULL;
4109
4110	BGE_LOCK_ASSERT(sc);
4111
4112	/* Synchronize with possible callout reset/stop. */
4113	if (callout_pending(&sc->bge_stat_ch) ||
4114	    !callout_active(&sc->bge_stat_ch))
4115	    	return;
4116
4117	if (BGE_IS_5705_PLUS(sc))
4118		bge_stats_update_regs(sc);
4119	else
4120		bge_stats_update(sc);
4121
4122	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4123		mii = device_get_softc(sc->bge_miibus);
4124		/*
4125		 * Do not touch PHY if we have link up. This could break
4126		 * IPMI/ASF mode or produce extra input errors
4127		 * (extra errors was reported for bcm5701 & bcm5704).
4128		 */
4129		if (!sc->bge_link)
4130			mii_tick(mii);
4131	} else {
4132		/*
4133		 * Since in TBI mode auto-polling can't be used we should poll
4134		 * link status manually. Here we register pending link event
4135		 * and trigger interrupt.
4136		 */
4137#ifdef DEVICE_POLLING
4138		/* In polling mode we poll link state in bge_poll(). */
4139		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4140#endif
4141		{
4142		sc->bge_link_evt++;
4143		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4144		    sc->bge_flags & BGE_FLAG_5788)
4145			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4146		else
4147			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4148		}
4149	}
4150
4151	bge_asf_driver_up(sc);
4152	bge_watchdog(sc);
4153
4154	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4155}
4156
4157static void
4158bge_stats_update_regs(struct bge_softc *sc)
4159{
4160	struct ifnet *ifp;
4161	struct bge_mac_stats *stats;
4162
4163	ifp = sc->bge_ifp;
4164	stats = &sc->bge_mac_stats;
4165
4166	stats->ifHCOutOctets +=
4167	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4168	stats->etherStatsCollisions +=
4169	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4170	stats->outXonSent +=
4171	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4172	stats->outXoffSent +=
4173	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4174	stats->dot3StatsInternalMacTransmitErrors +=
4175	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4176	stats->dot3StatsSingleCollisionFrames +=
4177	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4178	stats->dot3StatsMultipleCollisionFrames +=
4179	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4180	stats->dot3StatsDeferredTransmissions +=
4181	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4182	stats->dot3StatsExcessiveCollisions +=
4183	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4184	stats->dot3StatsLateCollisions +=
4185	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4186	stats->ifHCOutUcastPkts +=
4187	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4188	stats->ifHCOutMulticastPkts +=
4189	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4190	stats->ifHCOutBroadcastPkts +=
4191	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4192
4193	stats->ifHCInOctets +=
4194	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4195	stats->etherStatsFragments +=
4196	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4197	stats->ifHCInUcastPkts +=
4198	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4199	stats->ifHCInMulticastPkts +=
4200	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4201	stats->ifHCInBroadcastPkts +=
4202	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4203	stats->dot3StatsFCSErrors +=
4204	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4205	stats->dot3StatsAlignmentErrors +=
4206	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4207	stats->xonPauseFramesReceived +=
4208	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4209	stats->xoffPauseFramesReceived +=
4210	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4211	stats->macControlFramesReceived +=
4212	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4213	stats->xoffStateEntered +=
4214	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4215	stats->dot3StatsFramesTooLong +=
4216	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4217	stats->etherStatsJabbers +=
4218	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4219	stats->etherStatsUndersizePkts +=
4220	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4221
4222	stats->FramesDroppedDueToFilters +=
4223	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4224	stats->DmaWriteQueueFull +=
4225	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4226	stats->DmaWriteHighPriQueueFull +=
4227	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4228	stats->NoMoreRxBDs +=
4229	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4230	stats->InputDiscards +=
4231	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4232	stats->InputErrors +=
4233	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4234	stats->RecvThresholdHit +=
4235	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4236
4237	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4238	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4239	    stats->InputErrors);
4240}
4241
4242static void
4243bge_stats_clear_regs(struct bge_softc *sc)
4244{
4245
4246	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4247	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4248	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4249	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4250	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4251	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4252	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4253	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4254	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4255	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4256	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4257	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4258	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4259
4260	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4261	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4262	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4263	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4264	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4265	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4266	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4267	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4268	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4269	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4270	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4271	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4272	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4273	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4274
4275	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4276	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4277	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4278	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4279	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4280	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4281	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4282}
4283
4284static void
4285bge_stats_update(struct bge_softc *sc)
4286{
4287	struct ifnet *ifp;
4288	bus_size_t stats;
4289	uint32_t cnt;	/* current register value */
4290
4291	ifp = sc->bge_ifp;
4292
4293	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4294
4295#define	READ_STAT(sc, stats, stat) \
4296	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4297
4298	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4299	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4300	sc->bge_tx_collisions = cnt;
4301
4302	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4303	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4304	sc->bge_rx_discards = cnt;
4305
4306	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4307	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4308	sc->bge_tx_discards = cnt;
4309
4310#undef	READ_STAT
4311}
4312
4313/*
4314 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4315 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4316 * but when such padded frames employ the bge IP/TCP checksum offload,
4317 * the hardware checksum assist gives incorrect results (possibly
4318 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4319 * If we pad such runts with zeros, the onboard checksum comes out correct.
4320 */
4321static __inline int
4322bge_cksum_pad(struct mbuf *m)
4323{
4324	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4325	struct mbuf *last;
4326
4327	/* If there's only the packet-header and we can pad there, use it. */
4328	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4329	    M_TRAILINGSPACE(m) >= padlen) {
4330		last = m;
4331	} else {
4332		/*
4333		 * Walk packet chain to find last mbuf. We will either
4334		 * pad there, or append a new mbuf and pad it.
4335		 */
4336		for (last = m; last->m_next != NULL; last = last->m_next);
4337		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4338			/* Allocate new empty mbuf, pad it. Compact later. */
4339			struct mbuf *n;
4340
4341			MGET(n, M_DONTWAIT, MT_DATA);
4342			if (n == NULL)
4343				return (ENOBUFS);
4344			n->m_len = 0;
4345			last->m_next = n;
4346			last = n;
4347		}
4348	}
4349
4350	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4351	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4352	last->m_len += padlen;
4353	m->m_pkthdr.len += padlen;
4354
4355	return (0);
4356}
4357
4358static struct mbuf *
4359bge_check_short_dma(struct mbuf *m)
4360{
4361	struct mbuf *n;
4362	int found;
4363
4364	/*
4365	 * If device receive two back-to-back send BDs with less than
4366	 * or equal to 8 total bytes then the device may hang.  The two
4367	 * back-to-back send BDs must in the same frame for this failure
4368	 * to occur.  Scan mbuf chains and see whether two back-to-back
4369	 * send BDs are there. If this is the case, allocate new mbuf
4370	 * and copy the frame to workaround the silicon bug.
4371	 */
4372	for (n = m, found = 0; n != NULL; n = n->m_next) {
4373		if (n->m_len < 8) {
4374			found++;
4375			if (found > 1)
4376				break;
4377			continue;
4378		}
4379		found = 0;
4380	}
4381
4382	if (found > 1) {
4383		n = m_defrag(m, M_DONTWAIT);
4384		if (n == NULL)
4385			m_freem(m);
4386	} else
4387		n = m;
4388	return (n);
4389}
4390
4391static struct mbuf *
4392bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4393    uint16_t *flags)
4394{
4395	struct ip *ip;
4396	struct tcphdr *tcp;
4397	struct mbuf *n;
4398	uint16_t hlen;
4399	uint32_t poff;
4400
4401	if (M_WRITABLE(m) == 0) {
4402		/* Get a writable copy. */
4403		n = m_dup(m, M_DONTWAIT);
4404		m_freem(m);
4405		if (n == NULL)
4406			return (NULL);
4407		m = n;
4408	}
4409	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4410	if (m == NULL)
4411		return (NULL);
4412	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4413	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4414	m = m_pullup(m, poff + sizeof(struct tcphdr));
4415	if (m == NULL)
4416		return (NULL);
4417	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4418	m = m_pullup(m, poff + (tcp->th_off << 2));
4419	if (m == NULL)
4420		return (NULL);
4421	/*
4422	 * It seems controller doesn't modify IP length and TCP pseudo
4423	 * checksum. These checksum computed by upper stack should be 0.
4424	 */
4425	*mss = m->m_pkthdr.tso_segsz;
4426	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4427	ip->ip_sum = 0;
4428	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4429	/* Clear pseudo checksum computed by TCP stack. */
4430	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4431	tcp->th_sum = 0;
4432	/*
4433	 * Broadcom controllers uses different descriptor format for
4434	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4435	 * license issue and lower performance of firmware based TSO
4436	 * we only support hardware based TSO.
4437	 */
4438	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4439	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4440	if (sc->bge_flags & BGE_FLAG_TSO3) {
4441		/*
4442		 * For BCM5717 and newer controllers, hardware based TSO
4443		 * uses the 14 lower bits of the bge_mss field to store the
4444		 * MSS and the upper 2 bits to store the lowest 2 bits of
4445		 * the IP/TCP header length.  The upper 6 bits of the header
4446		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4447		 * frames are supported.
4448		 */
4449		*mss |= ((hlen & 0x3) << 14);
4450		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4451	} else {
4452		/*
4453		 * For BCM5755 and newer controllers, hardware based TSO uses
4454		 * the lower 11	bits to store the MSS and the upper 5 bits to
4455		 * store the IP/TCP header length. Jumbo frames are not
4456		 * supported.
4457		 */
4458		*mss |= (hlen << 11);
4459	}
4460	return (m);
4461}
4462
4463/*
4464 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4465 * pointers to descriptors.
4466 */
4467static int
4468bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4469{
4470	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4471	bus_dmamap_t		map;
4472	struct bge_tx_bd	*d;
4473	struct mbuf		*m = *m_head;
4474	uint32_t		idx = *txidx;
4475	uint16_t		csum_flags, mss, vlan_tag;
4476	int			nsegs, i, error;
4477
4478	csum_flags = 0;
4479	mss = 0;
4480	vlan_tag = 0;
4481	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4482	    m->m_next != NULL) {
4483		*m_head = bge_check_short_dma(m);
4484		if (*m_head == NULL)
4485			return (ENOBUFS);
4486		m = *m_head;
4487	}
4488	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4489		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4490		if (*m_head == NULL)
4491			return (ENOBUFS);
4492		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4493		    BGE_TXBDFLAG_CPU_POST_DMA;
4494	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4495		if (m->m_pkthdr.csum_flags & CSUM_IP)
4496			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4497		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4498			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4499			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4500			    (error = bge_cksum_pad(m)) != 0) {
4501				m_freem(m);
4502				*m_head = NULL;
4503				return (error);
4504			}
4505		}
4506		if (m->m_flags & M_LASTFRAG)
4507			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4508		else if (m->m_flags & M_FRAG)
4509			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4510	}
4511
4512	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4513		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4514		    m->m_pkthdr.len > ETHER_MAX_LEN)
4515			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4516		if (sc->bge_forced_collapse > 0 &&
4517		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4518			/*
4519			 * Forcedly collapse mbuf chains to overcome hardware
4520			 * limitation which only support a single outstanding
4521			 * DMA read operation.
4522			 */
4523			if (sc->bge_forced_collapse == 1)
4524				m = m_defrag(m, M_DONTWAIT);
4525			else
4526				m = m_collapse(m, M_DONTWAIT,
4527				    sc->bge_forced_collapse);
4528			if (m == NULL)
4529				m = *m_head;
4530			*m_head = m;
4531		}
4532	}
4533
4534	map = sc->bge_cdata.bge_tx_dmamap[idx];
4535	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4536	    &nsegs, BUS_DMA_NOWAIT);
4537	if (error == EFBIG) {
4538		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4539		if (m == NULL) {
4540			m_freem(*m_head);
4541			*m_head = NULL;
4542			return (ENOBUFS);
4543		}
4544		*m_head = m;
4545		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4546		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4547		if (error) {
4548			m_freem(m);
4549			*m_head = NULL;
4550			return (error);
4551		}
4552	} else if (error != 0)
4553		return (error);
4554
4555	/* Check if we have enough free send BDs. */
4556	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4557		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4558		return (ENOBUFS);
4559	}
4560
4561	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4562
4563	if (m->m_flags & M_VLANTAG) {
4564		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4565		vlan_tag = m->m_pkthdr.ether_vtag;
4566	}
4567	for (i = 0; ; i++) {
4568		d = &sc->bge_ldata.bge_tx_ring[idx];
4569		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4570		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4571		d->bge_len = segs[i].ds_len;
4572		d->bge_flags = csum_flags;
4573		d->bge_vlan_tag = vlan_tag;
4574		d->bge_mss = mss;
4575		if (i == nsegs - 1)
4576			break;
4577		BGE_INC(idx, BGE_TX_RING_CNT);
4578	}
4579
4580	/* Mark the last segment as end of packet... */
4581	d->bge_flags |= BGE_TXBDFLAG_END;
4582
4583	/*
4584	 * Insure that the map for this transmission
4585	 * is placed at the array index of the last descriptor
4586	 * in this chain.
4587	 */
4588	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4589	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4590	sc->bge_cdata.bge_tx_chain[idx] = m;
4591	sc->bge_txcnt += nsegs;
4592
4593	BGE_INC(idx, BGE_TX_RING_CNT);
4594	*txidx = idx;
4595
4596	return (0);
4597}
4598
4599/*
4600 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4601 * to the mbuf data regions directly in the transmit descriptors.
4602 */
4603static void
4604bge_start_locked(struct ifnet *ifp)
4605{
4606	struct bge_softc *sc;
4607	struct mbuf *m_head;
4608	uint32_t prodidx;
4609	int count;
4610
4611	sc = ifp->if_softc;
4612	BGE_LOCK_ASSERT(sc);
4613
4614	if (!sc->bge_link ||
4615	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4616	    IFF_DRV_RUNNING)
4617		return;
4618
4619	prodidx = sc->bge_tx_prodidx;
4620
4621	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4622		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4623			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4624			break;
4625		}
4626		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4627		if (m_head == NULL)
4628			break;
4629
4630		/*
4631		 * XXX
4632		 * The code inside the if() block is never reached since we
4633		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4634		 * requests to checksum TCP/UDP in a fragmented packet.
4635		 *
4636		 * XXX
4637		 * safety overkill.  If this is a fragmented packet chain
4638		 * with delayed TCP/UDP checksums, then only encapsulate
4639		 * it if we have enough descriptors to handle the entire
4640		 * chain at once.
4641		 * (paranoia -- may not actually be needed)
4642		 */
4643		if (m_head->m_flags & M_FIRSTFRAG &&
4644		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4645			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4646			    m_head->m_pkthdr.csum_data + 16) {
4647				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4648				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4649				break;
4650			}
4651		}
4652
4653		/*
4654		 * Pack the data into the transmit ring. If we
4655		 * don't have room, set the OACTIVE flag and wait
4656		 * for the NIC to drain the ring.
4657		 */
4658		if (bge_encap(sc, &m_head, &prodidx)) {
4659			if (m_head == NULL)
4660				break;
4661			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4662			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4663			break;
4664		}
4665		++count;
4666
4667		/*
4668		 * If there's a BPF listener, bounce a copy of this frame
4669		 * to him.
4670		 */
4671#ifdef ETHER_BPF_MTAP
4672		ETHER_BPF_MTAP(ifp, m_head);
4673#else
4674		BPF_MTAP(ifp, m_head);
4675#endif
4676	}
4677
4678	if (count > 0) {
4679		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4680		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4681		/* Transmit. */
4682		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4683		/* 5700 b2 errata */
4684		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4685			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4686
4687		sc->bge_tx_prodidx = prodidx;
4688
4689		/*
4690		 * Set a timeout in case the chip goes out to lunch.
4691		 */
4692		sc->bge_timer = 5;
4693	}
4694}
4695
4696/*
4697 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4698 * to the mbuf data regions directly in the transmit descriptors.
4699 */
4700static void
4701bge_start(struct ifnet *ifp)
4702{
4703	struct bge_softc *sc;
4704
4705	sc = ifp->if_softc;
4706	BGE_LOCK(sc);
4707	bge_start_locked(ifp);
4708	BGE_UNLOCK(sc);
4709}
4710
4711static void
4712bge_init_locked(struct bge_softc *sc)
4713{
4714	struct ifnet *ifp;
4715	uint16_t *m;
4716	uint32_t mode;
4717
4718	BGE_LOCK_ASSERT(sc);
4719
4720	ifp = sc->bge_ifp;
4721
4722	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4723		return;
4724
4725	/* Cancel pending I/O and flush buffers. */
4726	bge_stop(sc);
4727
4728	bge_stop_fw(sc);
4729	bge_sig_pre_reset(sc, BGE_RESET_START);
4730	bge_reset(sc);
4731	bge_sig_legacy(sc, BGE_RESET_START);
4732	bge_sig_post_reset(sc, BGE_RESET_START);
4733
4734	bge_chipinit(sc);
4735
4736	/*
4737	 * Init the various state machines, ring
4738	 * control blocks and firmware.
4739	 */
4740	if (bge_blockinit(sc)) {
4741		device_printf(sc->bge_dev, "initialization failure\n");
4742		return;
4743	}
4744
4745	ifp = sc->bge_ifp;
4746
4747	/* Specify MTU. */
4748	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4749	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4750	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4751
4752	/* Load our MAC address. */
4753	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4754	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4755	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4756
4757	/* Program promiscuous mode. */
4758	bge_setpromisc(sc);
4759
4760	/* Program multicast filter. */
4761	bge_setmulti(sc);
4762
4763	/* Program VLAN tag stripping. */
4764	bge_setvlan(sc);
4765
4766	/* Override UDP checksum offloading. */
4767	if (sc->bge_forced_udpcsum == 0)
4768		sc->bge_csum_features &= ~CSUM_UDP;
4769	else
4770		sc->bge_csum_features |= CSUM_UDP;
4771	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4772	    ifp->if_capenable & IFCAP_TXCSUM) {
4773		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4774		ifp->if_hwassist |= sc->bge_csum_features;
4775	}
4776
4777	/* Init RX ring. */
4778	if (bge_init_rx_ring_std(sc) != 0) {
4779		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4780		bge_stop(sc);
4781		return;
4782	}
4783
4784	/*
4785	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4786	 * memory to insure that the chip has in fact read the first
4787	 * entry of the ring.
4788	 */
4789	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4790		uint32_t		v, i;
4791		for (i = 0; i < 10; i++) {
4792			DELAY(20);
4793			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4794			if (v == (MCLBYTES - ETHER_ALIGN))
4795				break;
4796		}
4797		if (i == 10)
4798			device_printf (sc->bge_dev,
4799			    "5705 A0 chip failed to load RX ring\n");
4800	}
4801
4802	/* Init jumbo RX ring. */
4803	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4804	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4805	    (MCLBYTES - ETHER_ALIGN)) {
4806		if (bge_init_rx_ring_jumbo(sc) != 0) {
4807			device_printf(sc->bge_dev,
4808			    "no memory for jumbo Rx buffers.\n");
4809			bge_stop(sc);
4810			return;
4811		}
4812	}
4813
4814	/* Init our RX return ring index. */
4815	sc->bge_rx_saved_considx = 0;
4816
4817	/* Init our RX/TX stat counters. */
4818	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4819
4820	/* Init TX ring. */
4821	bge_init_tx_ring(sc);
4822
4823	/* Enable TX MAC state machine lockup fix. */
4824	mode = CSR_READ_4(sc, BGE_TX_MODE);
4825	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
4826		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4827	/* Turn on transmitter. */
4828	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4829
4830	/* Turn on receiver. */
4831	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4832
4833	/*
4834	 * Set the number of good frames to receive after RX MBUF
4835	 * Low Watermark has been reached. After the RX MAC receives
4836	 * this number of frames, it will drop subsequent incoming
4837	 * frames until the MBUF High Watermark is reached.
4838	 */
4839	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
4840		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
4841	else
4842		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4843
4844	/* Clear MAC statistics. */
4845	if (BGE_IS_5705_PLUS(sc))
4846		bge_stats_clear_regs(sc);
4847
4848	/* Tell firmware we're alive. */
4849	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4850
4851#ifdef DEVICE_POLLING
4852	/* Disable interrupts if we are polling. */
4853	if (ifp->if_capenable & IFCAP_POLLING) {
4854		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4855		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4856		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4857	} else
4858#endif
4859
4860	/* Enable host interrupts. */
4861	{
4862	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4863	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4864	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4865	}
4866
4867	bge_ifmedia_upd_locked(ifp);
4868
4869	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4870	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4871
4872	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4873}
4874
4875static void
4876bge_init(void *xsc)
4877{
4878	struct bge_softc *sc = xsc;
4879
4880	BGE_LOCK(sc);
4881	bge_init_locked(sc);
4882	BGE_UNLOCK(sc);
4883}
4884
4885/*
4886 * Set media options.
4887 */
4888static int
4889bge_ifmedia_upd(struct ifnet *ifp)
4890{
4891	struct bge_softc *sc = ifp->if_softc;
4892	int res;
4893
4894	BGE_LOCK(sc);
4895	res = bge_ifmedia_upd_locked(ifp);
4896	BGE_UNLOCK(sc);
4897
4898	return (res);
4899}
4900
4901static int
4902bge_ifmedia_upd_locked(struct ifnet *ifp)
4903{
4904	struct bge_softc *sc = ifp->if_softc;
4905	struct mii_data *mii;
4906	struct mii_softc *miisc;
4907	struct ifmedia *ifm;
4908
4909	BGE_LOCK_ASSERT(sc);
4910
4911	ifm = &sc->bge_ifmedia;
4912
4913	/* If this is a 1000baseX NIC, enable the TBI port. */
4914	if (sc->bge_flags & BGE_FLAG_TBI) {
4915		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4916			return (EINVAL);
4917		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4918		case IFM_AUTO:
4919			/*
4920			 * The BCM5704 ASIC appears to have a special
4921			 * mechanism for programming the autoneg
4922			 * advertisement registers in TBI mode.
4923			 */
4924			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4925				uint32_t sgdig;
4926				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4927				if (sgdig & BGE_SGDIGSTS_DONE) {
4928					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4929					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4930					sgdig |= BGE_SGDIGCFG_AUTO |
4931					    BGE_SGDIGCFG_PAUSE_CAP |
4932					    BGE_SGDIGCFG_ASYM_PAUSE;
4933					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4934					    sgdig | BGE_SGDIGCFG_SEND);
4935					DELAY(5);
4936					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4937				}
4938			}
4939			break;
4940		case IFM_1000_SX:
4941			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4942				BGE_CLRBIT(sc, BGE_MAC_MODE,
4943				    BGE_MACMODE_HALF_DUPLEX);
4944			} else {
4945				BGE_SETBIT(sc, BGE_MAC_MODE,
4946				    BGE_MACMODE_HALF_DUPLEX);
4947			}
4948			break;
4949		default:
4950			return (EINVAL);
4951		}
4952		return (0);
4953	}
4954
4955	sc->bge_link_evt++;
4956	mii = device_get_softc(sc->bge_miibus);
4957	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4958		PHY_RESET(miisc);
4959	mii_mediachg(mii);
4960
4961	/*
4962	 * Force an interrupt so that we will call bge_link_upd
4963	 * if needed and clear any pending link state attention.
4964	 * Without this we are not getting any further interrupts
4965	 * for link state changes and thus will not UP the link and
4966	 * not be able to send in bge_start_locked. The only
4967	 * way to get things working was to receive a packet and
4968	 * get an RX intr.
4969	 * bge_tick should help for fiber cards and we might not
4970	 * need to do this here if BGE_FLAG_TBI is set but as
4971	 * we poll for fiber anyway it should not harm.
4972	 */
4973	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4974	    sc->bge_flags & BGE_FLAG_5788)
4975		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4976	else
4977		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4978
4979	return (0);
4980}
4981
4982/*
4983 * Report current media status.
4984 */
4985static void
4986bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4987{
4988	struct bge_softc *sc = ifp->if_softc;
4989	struct mii_data *mii;
4990
4991	BGE_LOCK(sc);
4992
4993	if (sc->bge_flags & BGE_FLAG_TBI) {
4994		ifmr->ifm_status = IFM_AVALID;
4995		ifmr->ifm_active = IFM_ETHER;
4996		if (CSR_READ_4(sc, BGE_MAC_STS) &
4997		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4998			ifmr->ifm_status |= IFM_ACTIVE;
4999		else {
5000			ifmr->ifm_active |= IFM_NONE;
5001			BGE_UNLOCK(sc);
5002			return;
5003		}
5004		ifmr->ifm_active |= IFM_1000_SX;
5005		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5006			ifmr->ifm_active |= IFM_HDX;
5007		else
5008			ifmr->ifm_active |= IFM_FDX;
5009		BGE_UNLOCK(sc);
5010		return;
5011	}
5012
5013	mii = device_get_softc(sc->bge_miibus);
5014	mii_pollstat(mii);
5015	ifmr->ifm_active = mii->mii_media_active;
5016	ifmr->ifm_status = mii->mii_media_status;
5017
5018	BGE_UNLOCK(sc);
5019}
5020
5021static int
5022bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5023{
5024	struct bge_softc *sc = ifp->if_softc;
5025	struct ifreq *ifr = (struct ifreq *) data;
5026	struct mii_data *mii;
5027	int flags, mask, error = 0;
5028
5029	switch (command) {
5030	case SIOCSIFMTU:
5031		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5032		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5033			if (ifr->ifr_mtu < ETHERMIN ||
5034			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5035				error = EINVAL;
5036				break;
5037			}
5038		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5039			error = EINVAL;
5040			break;
5041		}
5042		BGE_LOCK(sc);
5043		if (ifp->if_mtu != ifr->ifr_mtu) {
5044			ifp->if_mtu = ifr->ifr_mtu;
5045			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5046				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5047				bge_init_locked(sc);
5048			}
5049		}
5050		BGE_UNLOCK(sc);
5051		break;
5052	case SIOCSIFFLAGS:
5053		BGE_LOCK(sc);
5054		if (ifp->if_flags & IFF_UP) {
5055			/*
5056			 * If only the state of the PROMISC flag changed,
5057			 * then just use the 'set promisc mode' command
5058			 * instead of reinitializing the entire NIC. Doing
5059			 * a full re-init means reloading the firmware and
5060			 * waiting for it to start up, which may take a
5061			 * second or two.  Similarly for ALLMULTI.
5062			 */
5063			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5064				flags = ifp->if_flags ^ sc->bge_if_flags;
5065				if (flags & IFF_PROMISC)
5066					bge_setpromisc(sc);
5067				if (flags & IFF_ALLMULTI)
5068					bge_setmulti(sc);
5069			} else
5070				bge_init_locked(sc);
5071		} else {
5072			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5073				bge_stop(sc);
5074			}
5075		}
5076		sc->bge_if_flags = ifp->if_flags;
5077		BGE_UNLOCK(sc);
5078		error = 0;
5079		break;
5080	case SIOCADDMULTI:
5081	case SIOCDELMULTI:
5082		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5083			BGE_LOCK(sc);
5084			bge_setmulti(sc);
5085			BGE_UNLOCK(sc);
5086			error = 0;
5087		}
5088		break;
5089	case SIOCSIFMEDIA:
5090	case SIOCGIFMEDIA:
5091		if (sc->bge_flags & BGE_FLAG_TBI) {
5092			error = ifmedia_ioctl(ifp, ifr,
5093			    &sc->bge_ifmedia, command);
5094		} else {
5095			mii = device_get_softc(sc->bge_miibus);
5096			error = ifmedia_ioctl(ifp, ifr,
5097			    &mii->mii_media, command);
5098		}
5099		break;
5100	case SIOCSIFCAP:
5101		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5102#ifdef DEVICE_POLLING
5103		if (mask & IFCAP_POLLING) {
5104			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5105				error = ether_poll_register(bge_poll, ifp);
5106				if (error)
5107					return (error);
5108				BGE_LOCK(sc);
5109				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5110				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5111				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5112				ifp->if_capenable |= IFCAP_POLLING;
5113				BGE_UNLOCK(sc);
5114			} else {
5115				error = ether_poll_deregister(ifp);
5116				/* Enable interrupt even in error case */
5117				BGE_LOCK(sc);
5118				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5119				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5120				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5121				ifp->if_capenable &= ~IFCAP_POLLING;
5122				BGE_UNLOCK(sc);
5123			}
5124		}
5125#endif
5126		if ((mask & IFCAP_TXCSUM) != 0 &&
5127		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5128			ifp->if_capenable ^= IFCAP_TXCSUM;
5129			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5130				ifp->if_hwassist |= sc->bge_csum_features;
5131			else
5132				ifp->if_hwassist &= ~sc->bge_csum_features;
5133		}
5134
5135		if ((mask & IFCAP_RXCSUM) != 0 &&
5136		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5137			ifp->if_capenable ^= IFCAP_RXCSUM;
5138
5139		if ((mask & IFCAP_TSO4) != 0 &&
5140		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5141			ifp->if_capenable ^= IFCAP_TSO4;
5142			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5143				ifp->if_hwassist |= CSUM_TSO;
5144			else
5145				ifp->if_hwassist &= ~CSUM_TSO;
5146		}
5147
5148		if (mask & IFCAP_VLAN_MTU) {
5149			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5150			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5151			bge_init(sc);
5152		}
5153
5154		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5155		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5156			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5157		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5158		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5159			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5160			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5161				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5162			BGE_LOCK(sc);
5163			bge_setvlan(sc);
5164			BGE_UNLOCK(sc);
5165		}
5166#ifdef VLAN_CAPABILITIES
5167		VLAN_CAPABILITIES(ifp);
5168#endif
5169		break;
5170	default:
5171		error = ether_ioctl(ifp, command, data);
5172		break;
5173	}
5174
5175	return (error);
5176}
5177
5178static void
5179bge_watchdog(struct bge_softc *sc)
5180{
5181	struct ifnet *ifp;
5182
5183	BGE_LOCK_ASSERT(sc);
5184
5185	if (sc->bge_timer == 0 || --sc->bge_timer)
5186		return;
5187
5188	ifp = sc->bge_ifp;
5189
5190	if_printf(ifp, "watchdog timeout -- resetting\n");
5191
5192	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5193	bge_init_locked(sc);
5194
5195	ifp->if_oerrors++;
5196}
5197
5198static void
5199bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5200{
5201	int i;
5202
5203	BGE_CLRBIT(sc, reg, bit);
5204
5205	for (i = 0; i < BGE_TIMEOUT; i++) {
5206		if ((CSR_READ_4(sc, reg) & bit) == 0)
5207			return;
5208		DELAY(100);
5209        }
5210}
5211
5212/*
5213 * Stop the adapter and free any mbufs allocated to the
5214 * RX and TX lists.
5215 */
5216static void
5217bge_stop(struct bge_softc *sc)
5218{
5219	struct ifnet *ifp;
5220
5221	BGE_LOCK_ASSERT(sc);
5222
5223	ifp = sc->bge_ifp;
5224
5225	callout_stop(&sc->bge_stat_ch);
5226
5227	/* Disable host interrupts. */
5228	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5229	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5230
5231	/*
5232	 * Tell firmware we're shutting down.
5233	 */
5234	bge_stop_fw(sc);
5235	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5236
5237	/*
5238	 * Disable all of the receiver blocks.
5239	 */
5240	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5241	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5242	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5243	if (BGE_IS_5700_FAMILY(sc))
5244		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5245	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5246	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5247	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5248
5249	/*
5250	 * Disable all of the transmit blocks.
5251	 */
5252	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5253	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5254	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5255	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5256	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5257	if (BGE_IS_5700_FAMILY(sc))
5258		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5259	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5260
5261	/*
5262	 * Shut down all of the memory managers and related
5263	 * state machines.
5264	 */
5265	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5266	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5267	if (BGE_IS_5700_FAMILY(sc))
5268		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5269
5270	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5271	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5272	if (!(BGE_IS_5705_PLUS(sc))) {
5273		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5274		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5275	}
5276	/* Update MAC statistics. */
5277	if (BGE_IS_5705_PLUS(sc))
5278		bge_stats_update_regs(sc);
5279
5280	bge_reset(sc);
5281	bge_sig_legacy(sc, BGE_RESET_STOP);
5282	bge_sig_post_reset(sc, BGE_RESET_STOP);
5283
5284	/*
5285	 * Keep the ASF firmware running if up.
5286	 */
5287	if (sc->bge_asf_mode & ASF_STACKUP)
5288		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5289	else
5290		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5291
5292	/* Free the RX lists. */
5293	bge_free_rx_ring_std(sc);
5294
5295	/* Free jumbo RX list. */
5296	if (BGE_IS_JUMBO_CAPABLE(sc))
5297		bge_free_rx_ring_jumbo(sc);
5298
5299	/* Free TX buffers. */
5300	bge_free_tx_ring(sc);
5301
5302	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5303
5304	/* Clear MAC's link state (PHY may still have link UP). */
5305	if (bootverbose && sc->bge_link)
5306		if_printf(sc->bge_ifp, "link DOWN\n");
5307	sc->bge_link = 0;
5308
5309	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5310}
5311
5312/*
5313 * Stop all chip I/O so that the kernel's probe routines don't
5314 * get confused by errant DMAs when rebooting.
5315 */
5316static int
5317bge_shutdown(device_t dev)
5318{
5319	struct bge_softc *sc;
5320
5321	sc = device_get_softc(dev);
5322	BGE_LOCK(sc);
5323	bge_stop(sc);
5324	bge_reset(sc);
5325	BGE_UNLOCK(sc);
5326
5327	return (0);
5328}
5329
5330static int
5331bge_suspend(device_t dev)
5332{
5333	struct bge_softc *sc;
5334
5335	sc = device_get_softc(dev);
5336	BGE_LOCK(sc);
5337	bge_stop(sc);
5338	BGE_UNLOCK(sc);
5339
5340	return (0);
5341}
5342
5343static int
5344bge_resume(device_t dev)
5345{
5346	struct bge_softc *sc;
5347	struct ifnet *ifp;
5348
5349	sc = device_get_softc(dev);
5350	BGE_LOCK(sc);
5351	ifp = sc->bge_ifp;
5352	if (ifp->if_flags & IFF_UP) {
5353		bge_init_locked(sc);
5354		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5355			bge_start_locked(ifp);
5356	}
5357	BGE_UNLOCK(sc);
5358
5359	return (0);
5360}
5361
5362static void
5363bge_link_upd(struct bge_softc *sc)
5364{
5365	struct mii_data *mii;
5366	uint32_t link, status;
5367
5368	BGE_LOCK_ASSERT(sc);
5369
5370	/* Clear 'pending link event' flag. */
5371	sc->bge_link_evt = 0;
5372
5373	/*
5374	 * Process link state changes.
5375	 * Grrr. The link status word in the status block does
5376	 * not work correctly on the BCM5700 rev AX and BX chips,
5377	 * according to all available information. Hence, we have
5378	 * to enable MII interrupts in order to properly obtain
5379	 * async link changes. Unfortunately, this also means that
5380	 * we have to read the MAC status register to detect link
5381	 * changes, thereby adding an additional register access to
5382	 * the interrupt handler.
5383	 *
5384	 * XXX: perhaps link state detection procedure used for
5385	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5386	 */
5387
5388	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5389	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5390		status = CSR_READ_4(sc, BGE_MAC_STS);
5391		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5392			mii = device_get_softc(sc->bge_miibus);
5393			mii_pollstat(mii);
5394			if (!sc->bge_link &&
5395			    mii->mii_media_status & IFM_ACTIVE &&
5396			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5397				sc->bge_link++;
5398				if (bootverbose)
5399					if_printf(sc->bge_ifp, "link UP\n");
5400			} else if (sc->bge_link &&
5401			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5402			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5403				sc->bge_link = 0;
5404				if (bootverbose)
5405					if_printf(sc->bge_ifp, "link DOWN\n");
5406			}
5407
5408			/* Clear the interrupt. */
5409			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5410			    BGE_EVTENB_MI_INTERRUPT);
5411			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5412			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5413			    BRGPHY_INTRS);
5414		}
5415		return;
5416	}
5417
5418	if (sc->bge_flags & BGE_FLAG_TBI) {
5419		status = CSR_READ_4(sc, BGE_MAC_STS);
5420		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5421			if (!sc->bge_link) {
5422				sc->bge_link++;
5423				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5424					BGE_CLRBIT(sc, BGE_MAC_MODE,
5425					    BGE_MACMODE_TBI_SEND_CFGS);
5426				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5427				if (bootverbose)
5428					if_printf(sc->bge_ifp, "link UP\n");
5429				if_link_state_change(sc->bge_ifp,
5430				    LINK_STATE_UP);
5431			}
5432		} else if (sc->bge_link) {
5433			sc->bge_link = 0;
5434			if (bootverbose)
5435				if_printf(sc->bge_ifp, "link DOWN\n");
5436			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5437		}
5438	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5439		/*
5440		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5441		 * in status word always set. Workaround this bug by reading
5442		 * PHY link status directly.
5443		 */
5444		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5445
5446		if (link != sc->bge_link ||
5447		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5448			mii = device_get_softc(sc->bge_miibus);
5449			mii_pollstat(mii);
5450			if (!sc->bge_link &&
5451			    mii->mii_media_status & IFM_ACTIVE &&
5452			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5453				sc->bge_link++;
5454				if (bootverbose)
5455					if_printf(sc->bge_ifp, "link UP\n");
5456			} else if (sc->bge_link &&
5457			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5458			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5459				sc->bge_link = 0;
5460				if (bootverbose)
5461					if_printf(sc->bge_ifp, "link DOWN\n");
5462			}
5463		}
5464	} else {
5465		/*
5466		 * For controllers that call mii_tick, we have to poll
5467		 * link status.
5468		 */
5469		mii = device_get_softc(sc->bge_miibus);
5470		mii_pollstat(mii);
5471		bge_miibus_statchg(sc->bge_dev);
5472	}
5473
5474	/* Clear the attention. */
5475	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5476	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5477	    BGE_MACSTAT_LINK_CHANGED);
5478}
5479
5480static void
5481bge_add_sysctls(struct bge_softc *sc)
5482{
5483	struct sysctl_ctx_list *ctx;
5484	struct sysctl_oid_list *children;
5485	char tn[32];
5486	int unit;
5487
5488	ctx = device_get_sysctl_ctx(sc->bge_dev);
5489	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5490
5491#ifdef BGE_REGISTER_DEBUG
5492	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5493	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5494	    "Debug Information");
5495
5496	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5497	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5498	    "Register Read");
5499
5500	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5501	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5502	    "Memory Read");
5503
5504#endif
5505
5506	unit = device_get_unit(sc->bge_dev);
5507	/*
5508	 * A common design characteristic for many Broadcom client controllers
5509	 * is that they only support a single outstanding DMA read operation
5510	 * on the PCIe bus. This means that it will take twice as long to fetch
5511	 * a TX frame that is split into header and payload buffers as it does
5512	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5513	 * these controllers, coalescing buffers to reduce the number of memory
5514	 * reads is effective way to get maximum performance(about 940Mbps).
5515	 * Without collapsing TX buffers the maximum TCP bulk transfer
5516	 * performance is about 850Mbps. However forcing coalescing mbufs
5517	 * consumes a lot of CPU cycles, so leave it off by default.
5518	 */
5519	sc->bge_forced_collapse = 0;
5520	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5521	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5522	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5523	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5524	    "Number of fragmented TX buffers of a frame allowed before "
5525	    "forced collapsing");
5526
5527	/*
5528	 * It seems all Broadcom controllers have a bug that can generate UDP
5529	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5530	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5531	 * Even though the probability of generating such UDP datagrams is
5532	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5533	 * into network so disable UDP checksum offloading by default.  Users
5534	 * still override this behavior by setting a sysctl variable,
5535	 * dev.bge.0.forced_udpcsum.
5536	 */
5537	sc->bge_forced_udpcsum = 0;
5538	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5539	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5540	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5541	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5542	    "Enable UDP checksum offloading even if controller can "
5543	    "generate UDP checksum value 0");
5544
5545	if (BGE_IS_5705_PLUS(sc))
5546		bge_add_sysctl_stats_regs(sc, ctx, children);
5547	else
5548		bge_add_sysctl_stats(sc, ctx, children);
5549}
5550
5551#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5552	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5553	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5554	    desc)
5555
5556static void
5557bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5558    struct sysctl_oid_list *parent)
5559{
5560	struct sysctl_oid *tree;
5561	struct sysctl_oid_list *children, *schildren;
5562
5563	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5564	    NULL, "BGE Statistics");
5565	schildren = children = SYSCTL_CHILDREN(tree);
5566	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5567	    children, COSFramesDroppedDueToFilters,
5568	    "FramesDroppedDueToFilters");
5569	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5570	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5571	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5572	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5573	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5574	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5575	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5576	    children, ifInDiscards, "InputDiscards");
5577	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5578	    children, ifInErrors, "InputErrors");
5579	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5580	    children, nicRecvThresholdHit, "RecvThresholdHit");
5581	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5582	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5583	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5584	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5585	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5586	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5587	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5588	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5589	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5590	    children, nicRingStatusUpdate, "RingStatusUpdate");
5591	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5592	    children, nicInterrupts, "Interrupts");
5593	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5594	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5595	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5596	    children, nicSendThresholdHit, "SendThresholdHit");
5597
5598	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5599	    NULL, "BGE RX Statistics");
5600	children = SYSCTL_CHILDREN(tree);
5601	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5602	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5603	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5604	    children, rxstats.etherStatsFragments, "Fragments");
5605	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5606	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5607	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5608	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5609	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5610	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5611	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5612	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5613	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5614	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5615	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5616	    children, rxstats.xoffPauseFramesReceived,
5617	    "xoffPauseFramesReceived");
5618	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5619	    children, rxstats.macControlFramesReceived,
5620	    "ControlFramesReceived");
5621	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5622	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5623	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5624	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5625	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5626	    children, rxstats.etherStatsJabbers, "Jabbers");
5627	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5628	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5629	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5630	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5631	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5632	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5633
5634	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5635	    NULL, "BGE TX Statistics");
5636	children = SYSCTL_CHILDREN(tree);
5637	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5638	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5639	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5640	    children, txstats.etherStatsCollisions, "Collisions");
5641	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5642	    children, txstats.outXonSent, "XonSent");
5643	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5644	    children, txstats.outXoffSent, "XoffSent");
5645	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5646	    children, txstats.flowControlDone, "flowControlDone");
5647	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5648	    children, txstats.dot3StatsInternalMacTransmitErrors,
5649	    "InternalMacTransmitErrors");
5650	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5651	    children, txstats.dot3StatsSingleCollisionFrames,
5652	    "SingleCollisionFrames");
5653	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5654	    children, txstats.dot3StatsMultipleCollisionFrames,
5655	    "MultipleCollisionFrames");
5656	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5657	    children, txstats.dot3StatsDeferredTransmissions,
5658	    "DeferredTransmissions");
5659	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5660	    children, txstats.dot3StatsExcessiveCollisions,
5661	    "ExcessiveCollisions");
5662	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5663	    children, txstats.dot3StatsLateCollisions,
5664	    "LateCollisions");
5665	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5666	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5667	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5668	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5669	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5670	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5671	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5672	    children, txstats.dot3StatsCarrierSenseErrors,
5673	    "CarrierSenseErrors");
5674	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5675	    children, txstats.ifOutDiscards, "Discards");
5676	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5677	    children, txstats.ifOutErrors, "Errors");
5678}
5679
5680#undef BGE_SYSCTL_STAT
5681
5682#define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5683	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5684
5685static void
5686bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5687    struct sysctl_oid_list *parent)
5688{
5689	struct sysctl_oid *tree;
5690	struct sysctl_oid_list *child, *schild;
5691	struct bge_mac_stats *stats;
5692
5693	stats = &sc->bge_mac_stats;
5694	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5695	    NULL, "BGE Statistics");
5696	schild = child = SYSCTL_CHILDREN(tree);
5697	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5698	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5699	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5700	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5701	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5702	    &stats->DmaWriteHighPriQueueFull,
5703	    "NIC DMA Write High Priority Queue Full");
5704	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5705	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5706	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5707	    &stats->InputDiscards, "Discarded Input Frames");
5708	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5709	    &stats->InputErrors, "Input Errors");
5710	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5711	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5712
5713	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5714	    NULL, "BGE RX Statistics");
5715	child = SYSCTL_CHILDREN(tree);
5716	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5717	    &stats->ifHCInOctets, "Inbound Octets");
5718	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5719	    &stats->etherStatsFragments, "Fragments");
5720	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5721	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5722	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5723	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5724	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5725	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5726	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5727	    &stats->dot3StatsFCSErrors, "FCS Errors");
5728	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5729	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5730	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5731	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5732	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5733	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5734	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5735	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5736	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5737	    &stats->xoffStateEntered, "XOFF State Entered");
5738	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5739	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5740	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5741	    &stats->etherStatsJabbers, "Jabbers");
5742	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5743	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5744
5745	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5746	    NULL, "BGE TX Statistics");
5747	child = SYSCTL_CHILDREN(tree);
5748	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5749	    &stats->ifHCOutOctets, "Outbound Octets");
5750	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5751	    &stats->etherStatsCollisions, "TX Collisions");
5752	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5753	    &stats->outXonSent, "XON Sent");
5754	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5755	    &stats->outXoffSent, "XOFF Sent");
5756	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5757	    &stats->dot3StatsInternalMacTransmitErrors,
5758	    "Internal MAC TX Errors");
5759	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5760	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5761	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5762	    &stats->dot3StatsMultipleCollisionFrames,
5763	    "Multiple Collision Frames");
5764	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5765	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5766	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5767	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5768	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5769	    &stats->dot3StatsLateCollisions, "Late Collisions");
5770	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5771	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5772	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5773	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5774	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5775	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5776}
5777
5778#undef	BGE_SYSCTL_STAT_ADD64
5779
5780static int
5781bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5782{
5783	struct bge_softc *sc;
5784	uint32_t result;
5785	int offset;
5786
5787	sc = (struct bge_softc *)arg1;
5788	offset = arg2;
5789	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5790	    offsetof(bge_hostaddr, bge_addr_lo));
5791	return (sysctl_handle_int(oidp, &result, 0, req));
5792}
5793
5794#ifdef BGE_REGISTER_DEBUG
5795static int
5796bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5797{
5798	struct bge_softc *sc;
5799	uint16_t *sbdata;
5800	int error;
5801	int result;
5802	int i, j;
5803
5804	result = -1;
5805	error = sysctl_handle_int(oidp, &result, 0, req);
5806	if (error || (req->newptr == NULL))
5807		return (error);
5808
5809	if (result == 1) {
5810		sc = (struct bge_softc *)arg1;
5811
5812		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5813		printf("Status Block:\n");
5814		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5815			printf("%06x:", i);
5816			for (j = 0; j < 8; j++) {
5817				printf(" %04x", sbdata[i]);
5818				i += 4;
5819			}
5820			printf("\n");
5821		}
5822
5823		printf("Registers:\n");
5824		for (i = 0x800; i < 0xA00; ) {
5825			printf("%06x:", i);
5826			for (j = 0; j < 8; j++) {
5827				printf(" %08x", CSR_READ_4(sc, i));
5828				i += 4;
5829			}
5830			printf("\n");
5831		}
5832
5833		printf("Hardware Flags:\n");
5834		if (BGE_IS_5755_PLUS(sc))
5835			printf(" - 5755 Plus\n");
5836		if (BGE_IS_575X_PLUS(sc))
5837			printf(" - 575X Plus\n");
5838		if (BGE_IS_5705_PLUS(sc))
5839			printf(" - 5705 Plus\n");
5840		if (BGE_IS_5714_FAMILY(sc))
5841			printf(" - 5714 Family\n");
5842		if (BGE_IS_5700_FAMILY(sc))
5843			printf(" - 5700 Family\n");
5844		if (sc->bge_flags & BGE_FLAG_JUMBO)
5845			printf(" - Supports Jumbo Frames\n");
5846		if (sc->bge_flags & BGE_FLAG_PCIX)
5847			printf(" - PCI-X Bus\n");
5848		if (sc->bge_flags & BGE_FLAG_PCIE)
5849			printf(" - PCI Express Bus\n");
5850		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
5851			printf(" - No 3 LEDs\n");
5852		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5853			printf(" - RX Alignment Bug\n");
5854	}
5855
5856	return (error);
5857}
5858
5859static int
5860bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5861{
5862	struct bge_softc *sc;
5863	int error;
5864	uint16_t result;
5865	uint32_t val;
5866
5867	result = -1;
5868	error = sysctl_handle_int(oidp, &result, 0, req);
5869	if (error || (req->newptr == NULL))
5870		return (error);
5871
5872	if (result < 0x8000) {
5873		sc = (struct bge_softc *)arg1;
5874		val = CSR_READ_4(sc, result);
5875		printf("reg 0x%06X = 0x%08X\n", result, val);
5876	}
5877
5878	return (error);
5879}
5880
5881static int
5882bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5883{
5884	struct bge_softc *sc;
5885	int error;
5886	uint16_t result;
5887	uint32_t val;
5888
5889	result = -1;
5890	error = sysctl_handle_int(oidp, &result, 0, req);
5891	if (error || (req->newptr == NULL))
5892		return (error);
5893
5894	if (result < 0x8000) {
5895		sc = (struct bge_softc *)arg1;
5896		val = bge_readmem_ind(sc, result);
5897		printf("mem 0x%06X = 0x%08X\n", result, val);
5898	}
5899
5900	return (error);
5901}
5902#endif
5903
5904static int
5905bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5906{
5907
5908	if (sc->bge_flags & BGE_FLAG_EADDR)
5909		return (1);
5910
5911#ifdef __sparc64__
5912	OF_getetheraddr(sc->bge_dev, ether_addr);
5913	return (0);
5914#endif
5915	return (1);
5916}
5917
5918static int
5919bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5920{
5921	uint32_t mac_addr;
5922
5923	mac_addr = bge_readmem_ind(sc, 0x0c14);
5924	if ((mac_addr >> 16) == 0x484b) {
5925		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5926		ether_addr[1] = (uint8_t)mac_addr;
5927		mac_addr = bge_readmem_ind(sc, 0x0c18);
5928		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5929		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5930		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5931		ether_addr[5] = (uint8_t)mac_addr;
5932		return (0);
5933	}
5934	return (1);
5935}
5936
5937static int
5938bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5939{
5940	int mac_offset = BGE_EE_MAC_OFFSET;
5941
5942	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5943		mac_offset = BGE_EE_MAC_OFFSET_5906;
5944
5945	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5946	    ETHER_ADDR_LEN));
5947}
5948
5949static int
5950bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5951{
5952
5953	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5954		return (1);
5955
5956	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5957	   ETHER_ADDR_LEN));
5958}
5959
5960static int
5961bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5962{
5963	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5964		/* NOTE: Order is critical */
5965		bge_get_eaddr_fw,
5966		bge_get_eaddr_mem,
5967		bge_get_eaddr_nvram,
5968		bge_get_eaddr_eeprom,
5969		NULL
5970	};
5971	const bge_eaddr_fcn_t *func;
5972
5973	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5974		if ((*func)(sc, eaddr) == 0)
5975			break;
5976	}
5977	return (*func == NULL ? ENXIO : 0);
5978}
5979