1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: releng/10.3/sys/dev/bge/if_bge.c 278399 2015-02-08 20:44:44Z marius $");
36
37/*
38 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39 *
40 * The Broadcom BCM5700 is based on technology originally developed by
41 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45 * frames, highly configurable RX filtering, and 16 RX and TX queues
46 * (which, along with RX filter rules, can be used for QOS applications).
47 * Other features, such as TCP segmentation, may be available as part
48 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49 * firmware images can be stored in hardware and need not be compiled
50 * into the driver.
51 *
52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54 *
55 * The BCM5701 is a single-chip solution incorporating both the BCM5700
56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57 * does not support external SSRAM.
58 *
59 * Broadcom also produces a variation of the BCM5700 under the "Altima"
60 * brand name, which is functionally similar but lacks PCI-X support.
61 *
62 * Without external SSRAM, you can only have at most 4 TX rings,
63 * and the use of the mini RX ring is disabled. This seems to imply
64 * that these features are simply not available on the BCM5701. As a
65 * result, this driver does not implement any support for the mini RX
66 * ring.
67 */
68
69#ifdef HAVE_KERNEL_OPTION_HEADERS
70#include "opt_device_polling.h"
71#endif
72
73#include <sys/param.h>
74#include <sys/endian.h>
75#include <sys/systm.h>
76#include <sys/sockio.h>
77#include <sys/mbuf.h>
78#include <sys/malloc.h>
79#include <sys/kernel.h>
80#include <sys/module.h>
81#include <sys/socket.h>
82#include <sys/sysctl.h>
83#include <sys/taskqueue.h>
84
85#include <net/if.h>
86#include <net/if_arp.h>
87#include <net/ethernet.h>
88#include <net/if_dl.h>
89#include <net/if_media.h>
90
91#include <net/bpf.h>
92
93#include <net/if_types.h>
94#include <net/if_vlan_var.h>
95
96#include <netinet/in_systm.h>
97#include <netinet/in.h>
98#include <netinet/ip.h>
99#include <netinet/tcp.h>
100
101#include <machine/bus.h>
102#include <machine/resource.h>
103#include <sys/bus.h>
104#include <sys/rman.h>
105
106#include <dev/mii/mii.h>
107#include <dev/mii/miivar.h>
108#include "miidevs.h"
109#include <dev/mii/brgphyreg.h>
110
111#ifdef __sparc64__
112#include <dev/ofw/ofw_bus.h>
113#include <dev/ofw/openfirm.h>
114#include <machine/ofw_machdep.h>
115#include <machine/ver.h>
116#endif
117
118#include <dev/pci/pcireg.h>
119#include <dev/pci/pcivar.h>
120
121#include <dev/bge/if_bgereg.h>
122
123#define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124#define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126MODULE_DEPEND(bge, pci, 1, 1, 1);
127MODULE_DEPEND(bge, ether, 1, 1, 1);
128MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130/* "device miibus" required.  See GENERIC if you get errors here. */
131#include "miibus_if.h"
132
133/*
134 * Various supported device vendors/types and their names. Note: the
135 * spec seems to indicate that the hardware still has Alteon's vendor
136 * ID burned into it, though it will always be overriden by the vendor
137 * ID in the EEPROM. Just to be safe, we cover all possibilities.
138 */
139static const struct bge_type {
140	uint16_t	bge_vid;
141	uint16_t	bge_did;
142} bge_devs[] = {
143	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145
146	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149
150	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151
152	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
180	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
181	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
182	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
183	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
184	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
185	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
186	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
187	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
188	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
189	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
190	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
191	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
192	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
193	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
194	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
195	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
196	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
197	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
198	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
199	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
200	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
201	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
202	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
203	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
204	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
205	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
206	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
207	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
208	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
209	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
210	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
211	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
212	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
213	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
214	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
215	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
216	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
217	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
218	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
219	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
220	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
221	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
222	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
223	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
224	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
225	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
226	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
227	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
228	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
229	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
230	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
231	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
232	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
233	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
234	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
235	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
236	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
237
238	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
239
240	{ TC_VENDORID,		TC_DEVICEID_3C996 },
241
242	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
243	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
244	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
245
246	{ 0, 0 }
247};
248
249static const struct bge_vendor {
250	uint16_t	v_id;
251	const char	*v_name;
252} bge_vendors[] = {
253	{ ALTEON_VENDORID,	"Alteon" },
254	{ ALTIMA_VENDORID,	"Altima" },
255	{ APPLE_VENDORID,	"Apple" },
256	{ BCOM_VENDORID,	"Broadcom" },
257	{ SK_VENDORID,		"SysKonnect" },
258	{ TC_VENDORID,		"3Com" },
259	{ FJTSU_VENDORID,	"Fujitsu" },
260
261	{ 0, NULL }
262};
263
264static const struct bge_revision {
265	uint32_t	br_chipid;
266	const char	*br_name;
267} bge_revisions[] = {
268	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
269	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
270	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
271	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
272	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
273	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
274	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
275	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
276	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
277	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
278	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
279	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
280	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
281	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
282	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
283	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
284	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
285	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
286	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
287	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
288	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
289	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
290	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
291	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
292	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
293	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
294	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
295	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
296	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
297	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
298	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
299	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
300	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
301	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
302	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
303	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
304	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
305	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
306	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
307	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
308	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
309	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
310	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
311	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
312	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
313	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
314	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
315	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
316	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
317	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
318	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
319	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
320	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
321	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
322	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
323	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
324	/* 5754 and 5787 share the same ASIC ID */
325	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
326	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
327	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
328	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
329	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
330	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
331	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
332	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
333	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
334
335	{ 0, NULL }
336};
337
338/*
339 * Some defaults for major revisions, so that newer steppings
340 * that we don't know about have a shot at working.
341 */
342static const struct bge_revision bge_majorrevs[] = {
343	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
344	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
345	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
346	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
347	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
348	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
349	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
350	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
351	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
352	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
353	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
354	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
355	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
356	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
357	/* 5754 and 5787 share the same ASIC ID */
358	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
359	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
360	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
361	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
362	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
363	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
364	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
365	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
366	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
367
368	{ 0, NULL }
369};
370
371#define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
372#define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
373#define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
374#define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
375#define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
376#define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
377#define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
378#define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
379
380static uint32_t bge_chipid(device_t);
381static const struct bge_vendor * bge_lookup_vendor(uint16_t);
382static const struct bge_revision * bge_lookup_rev(uint32_t);
383
384typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
385
386static int bge_probe(device_t);
387static int bge_attach(device_t);
388static int bge_detach(device_t);
389static int bge_suspend(device_t);
390static int bge_resume(device_t);
391static void bge_release_resources(struct bge_softc *);
392static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
393static int bge_dma_alloc(struct bge_softc *);
394static void bge_dma_free(struct bge_softc *);
395static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
396    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
397
398static void bge_devinfo(struct bge_softc *);
399static int bge_mbox_reorder(struct bge_softc *);
400
401static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
402static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
403static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
404static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
405static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
406
407static void bge_txeof(struct bge_softc *, uint16_t);
408static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
409static int bge_rxeof(struct bge_softc *, uint16_t, int);
410
411static void bge_asf_driver_up (struct bge_softc *);
412static void bge_tick(void *);
413static void bge_stats_clear_regs(struct bge_softc *);
414static void bge_stats_update(struct bge_softc *);
415static void bge_stats_update_regs(struct bge_softc *);
416static struct mbuf *bge_check_short_dma(struct mbuf *);
417static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
418    uint16_t *, uint16_t *);
419static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
420
421static void bge_intr(void *);
422static int bge_msi_intr(void *);
423static void bge_intr_task(void *, int);
424static void bge_start_locked(struct ifnet *);
425static void bge_start(struct ifnet *);
426static int bge_ioctl(struct ifnet *, u_long, caddr_t);
427static void bge_init_locked(struct bge_softc *);
428static void bge_init(void *);
429static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
430static void bge_stop(struct bge_softc *);
431static void bge_watchdog(struct bge_softc *);
432static int bge_shutdown(device_t);
433static int bge_ifmedia_upd_locked(struct ifnet *);
434static int bge_ifmedia_upd(struct ifnet *);
435static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
436
437static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
438static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
439
440static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
441static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
442
443static void bge_setpromisc(struct bge_softc *);
444static void bge_setmulti(struct bge_softc *);
445static void bge_setvlan(struct bge_softc *);
446
447static __inline void bge_rxreuse_std(struct bge_softc *, int);
448static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
449static int bge_newbuf_std(struct bge_softc *, int);
450static int bge_newbuf_jumbo(struct bge_softc *, int);
451static int bge_init_rx_ring_std(struct bge_softc *);
452static void bge_free_rx_ring_std(struct bge_softc *);
453static int bge_init_rx_ring_jumbo(struct bge_softc *);
454static void bge_free_rx_ring_jumbo(struct bge_softc *);
455static void bge_free_tx_ring(struct bge_softc *);
456static int bge_init_tx_ring(struct bge_softc *);
457
458static int bge_chipinit(struct bge_softc *);
459static int bge_blockinit(struct bge_softc *);
460static uint32_t bge_dma_swap_options(struct bge_softc *);
461
462static int bge_has_eaddr(struct bge_softc *);
463static uint32_t bge_readmem_ind(struct bge_softc *, int);
464static void bge_writemem_ind(struct bge_softc *, int, int);
465static void bge_writembx(struct bge_softc *, int, int);
466#ifdef notdef
467static uint32_t bge_readreg_ind(struct bge_softc *, int);
468#endif
469static void bge_writemem_direct(struct bge_softc *, int, int);
470static void bge_writereg_ind(struct bge_softc *, int, int);
471
472static int bge_miibus_readreg(device_t, int, int);
473static int bge_miibus_writereg(device_t, int, int, int);
474static void bge_miibus_statchg(device_t);
475#ifdef DEVICE_POLLING
476static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
477#endif
478
479#define	BGE_RESET_SHUTDOWN	0
480#define	BGE_RESET_START		1
481#define	BGE_RESET_SUSPEND	2
482static void bge_sig_post_reset(struct bge_softc *, int);
483static void bge_sig_legacy(struct bge_softc *, int);
484static void bge_sig_pre_reset(struct bge_softc *, int);
485static void bge_stop_fw(struct bge_softc *);
486static int bge_reset(struct bge_softc *);
487static void bge_link_upd(struct bge_softc *);
488
489static void bge_ape_lock_init(struct bge_softc *);
490static void bge_ape_read_fw_ver(struct bge_softc *);
491static int bge_ape_lock(struct bge_softc *, int);
492static void bge_ape_unlock(struct bge_softc *, int);
493static void bge_ape_send_event(struct bge_softc *, uint32_t);
494static void bge_ape_driver_state_change(struct bge_softc *, int);
495
496/*
497 * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
498 * leak information to untrusted users.  It is also known to cause alignment
499 * traps on certain architectures.
500 */
501#ifdef BGE_REGISTER_DEBUG
502static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
503static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
504static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
505static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
506#endif
507static void bge_add_sysctls(struct bge_softc *);
508static void bge_add_sysctl_stats_regs(struct bge_softc *,
509    struct sysctl_ctx_list *, struct sysctl_oid_list *);
510static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
511    struct sysctl_oid_list *);
512static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
513
514static device_method_t bge_methods[] = {
515	/* Device interface */
516	DEVMETHOD(device_probe,		bge_probe),
517	DEVMETHOD(device_attach,	bge_attach),
518	DEVMETHOD(device_detach,	bge_detach),
519	DEVMETHOD(device_shutdown,	bge_shutdown),
520	DEVMETHOD(device_suspend,	bge_suspend),
521	DEVMETHOD(device_resume,	bge_resume),
522
523	/* MII interface */
524	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
525	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
526	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
527
528	DEVMETHOD_END
529};
530
531static driver_t bge_driver = {
532	"bge",
533	bge_methods,
534	sizeof(struct bge_softc)
535};
536
537static devclass_t bge_devclass;
538
539DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
540DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
541
542static int bge_allow_asf = 1;
543
544TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
545
546static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
548	"Allow ASF mode if available");
549
550#define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
551#define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
552#define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
553#define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
554#define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
555
556static int
557bge_has_eaddr(struct bge_softc *sc)
558{
559#ifdef __sparc64__
560	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561	device_t dev;
562	uint32_t subvendor;
563
564	dev = sc->bge_dev;
565
566	/*
567	 * The on-board BGEs found in sun4u machines aren't fitted with
568	 * an EEPROM which means that we have to obtain the MAC address
569	 * via OFW and that some tests will always fail.  We distinguish
570	 * such BGEs by the subvendor ID, which also has to be obtained
571	 * from OFW instead of the PCI configuration space as the latter
572	 * indicates Broadcom as the subvendor of the netboot interface.
573	 * For early Blade 1500 and 2500 we even have to check the OFW
574	 * device path as the subvendor ID always defaults to Broadcom
575	 * there.
576	 */
577	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580		return (0);
581	memset(buf, 0, sizeof(buf));
582	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585			return (0);
586		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588			return (0);
589	}
590#endif
591	return (1);
592}
593
594static uint32_t
595bge_readmem_ind(struct bge_softc *sc, int off)
596{
597	device_t dev;
598	uint32_t val;
599
600	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602		return (0);
603
604	dev = sc->bge_dev;
605
606	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609	return (val);
610}
611
612static void
613bge_writemem_ind(struct bge_softc *sc, int off, int val)
614{
615	device_t dev;
616
617	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619		return;
620
621	dev = sc->bge_dev;
622
623	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626}
627
628#ifdef notdef
629static uint32_t
630bge_readreg_ind(struct bge_softc *sc, int off)
631{
632	device_t dev;
633
634	dev = sc->bge_dev;
635
636	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638}
639#endif
640
641static void
642bge_writereg_ind(struct bge_softc *sc, int off, int val)
643{
644	device_t dev;
645
646	dev = sc->bge_dev;
647
648	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650}
651
652static void
653bge_writemem_direct(struct bge_softc *sc, int off, int val)
654{
655	CSR_WRITE_4(sc, off, val);
656}
657
658static void
659bge_writembx(struct bge_softc *sc, int off, int val)
660{
661	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663
664	CSR_WRITE_4(sc, off, val);
665	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666		CSR_READ_4(sc, off);
667}
668
669/*
670 * Clear all stale locks and select the lock for this driver instance.
671 */
672static void
673bge_ape_lock_init(struct bge_softc *sc)
674{
675	uint32_t bit, regbase;
676	int i;
677
678	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679		regbase = BGE_APE_LOCK_GRANT;
680	else
681		regbase = BGE_APE_PER_LOCK_GRANT;
682
683	/* Clear any stale locks. */
684	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685		switch (i) {
686		case BGE_APE_LOCK_PHY0:
687		case BGE_APE_LOCK_PHY1:
688		case BGE_APE_LOCK_PHY2:
689		case BGE_APE_LOCK_PHY3:
690			bit = BGE_APE_LOCK_GRANT_DRIVER0;
691			break;
692		default:
693			if (sc->bge_func_addr == 0)
694				bit = BGE_APE_LOCK_GRANT_DRIVER0;
695			else
696				bit = (1 << sc->bge_func_addr);
697		}
698		APE_WRITE_4(sc, regbase + 4 * i, bit);
699	}
700
701	/* Select the PHY lock based on the device's function number. */
702	switch (sc->bge_func_addr) {
703	case 0:
704		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705		break;
706	case 1:
707		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708		break;
709	case 2:
710		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711		break;
712	case 3:
713		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714		break;
715	default:
716		device_printf(sc->bge_dev,
717		    "PHY lock not supported on this function\n");
718	}
719}
720
721/*
722 * Check for APE firmware, set flags, and print version info.
723 */
724static void
725bge_ape_read_fw_ver(struct bge_softc *sc)
726{
727	const char *fwtype;
728	uint32_t apedata, features;
729
730	/* Check for a valid APE signature in shared memory. */
731	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734		return;
735	}
736
737	/* Check if APE firmware is running. */
738	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740		device_printf(sc->bge_dev, "APE signature found "
741		    "but FW status not ready! 0x%08x\n", apedata);
742		return;
743	}
744
745	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746
747	/* Fetch the APE firwmare type and version. */
748	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752		fwtype = "NCSI";
753	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755		fwtype = "DASH";
756	} else
757		fwtype = "UNKN";
758
759	/* Print the APE firmware version. */
760	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761	    fwtype,
762	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
766}
767
768static int
769bge_ape_lock(struct bge_softc *sc, int locknum)
770{
771	uint32_t bit, gnt, req, status;
772	int i, off;
773
774	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775		return (0);
776
777	/* Lock request/grant registers have different bases. */
778	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779		req = BGE_APE_LOCK_REQ;
780		gnt = BGE_APE_LOCK_GRANT;
781	} else {
782		req = BGE_APE_PER_LOCK_REQ;
783		gnt = BGE_APE_PER_LOCK_GRANT;
784	}
785
786	off = 4 * locknum;
787
788	switch (locknum) {
789	case BGE_APE_LOCK_GPIO:
790		/* Lock required when using GPIO. */
791		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792			return (0);
793		if (sc->bge_func_addr == 0)
794			bit = BGE_APE_LOCK_REQ_DRIVER0;
795		else
796			bit = (1 << sc->bge_func_addr);
797		break;
798	case BGE_APE_LOCK_GRC:
799		/* Lock required to reset the device. */
800		if (sc->bge_func_addr == 0)
801			bit = BGE_APE_LOCK_REQ_DRIVER0;
802		else
803			bit = (1 << sc->bge_func_addr);
804		break;
805	case BGE_APE_LOCK_MEM:
806		/* Lock required when accessing certain APE memory. */
807		if (sc->bge_func_addr == 0)
808			bit = BGE_APE_LOCK_REQ_DRIVER0;
809		else
810			bit = (1 << sc->bge_func_addr);
811		break;
812	case BGE_APE_LOCK_PHY0:
813	case BGE_APE_LOCK_PHY1:
814	case BGE_APE_LOCK_PHY2:
815	case BGE_APE_LOCK_PHY3:
816		/* Lock required when accessing PHYs. */
817		bit = BGE_APE_LOCK_REQ_DRIVER0;
818		break;
819	default:
820		return (EINVAL);
821	}
822
823	/* Request a lock. */
824	APE_WRITE_4(sc, req + off, bit);
825
826	/* Wait up to 1 second to acquire lock. */
827	for (i = 0; i < 20000; i++) {
828		status = APE_READ_4(sc, gnt + off);
829		if (status == bit)
830			break;
831		DELAY(50);
832	}
833
834	/* Handle any errors. */
835	if (status != bit) {
836		device_printf(sc->bge_dev, "APE lock %d request failed! "
837		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838		    locknum, req + off, bit & 0xFFFF, gnt + off,
839		    status & 0xFFFF);
840		/* Revoke the lock request. */
841		APE_WRITE_4(sc, gnt + off, bit);
842		return (EBUSY);
843	}
844
845	return (0);
846}
847
848static void
849bge_ape_unlock(struct bge_softc *sc, int locknum)
850{
851	uint32_t bit, gnt;
852	int off;
853
854	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855		return;
856
857	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858		gnt = BGE_APE_LOCK_GRANT;
859	else
860		gnt = BGE_APE_PER_LOCK_GRANT;
861
862	off = 4 * locknum;
863
864	switch (locknum) {
865	case BGE_APE_LOCK_GPIO:
866		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867			return;
868		if (sc->bge_func_addr == 0)
869			bit = BGE_APE_LOCK_GRANT_DRIVER0;
870		else
871			bit = (1 << sc->bge_func_addr);
872		break;
873	case BGE_APE_LOCK_GRC:
874		if (sc->bge_func_addr == 0)
875			bit = BGE_APE_LOCK_GRANT_DRIVER0;
876		else
877			bit = (1 << sc->bge_func_addr);
878		break;
879	case BGE_APE_LOCK_MEM:
880		if (sc->bge_func_addr == 0)
881			bit = BGE_APE_LOCK_GRANT_DRIVER0;
882		else
883			bit = (1 << sc->bge_func_addr);
884		break;
885	case BGE_APE_LOCK_PHY0:
886	case BGE_APE_LOCK_PHY1:
887	case BGE_APE_LOCK_PHY2:
888	case BGE_APE_LOCK_PHY3:
889		bit = BGE_APE_LOCK_GRANT_DRIVER0;
890		break;
891	default:
892		return;
893	}
894
895	APE_WRITE_4(sc, gnt + off, bit);
896}
897
898/*
899 * Send an event to the APE firmware.
900 */
901static void
902bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903{
904	uint32_t apedata;
905	int i;
906
907	/* NCSI does not support APE events. */
908	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909		return;
910
911	/* Wait up to 1ms for APE to service previous event. */
912	for (i = 10; i > 0; i--) {
913		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914			break;
915		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
919			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921			break;
922		}
923		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924		DELAY(100);
925	}
926	if (i == 0)
927		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928		    event);
929}
930
931static void
932bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933{
934	uint32_t apedata, event;
935
936	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937		return;
938
939	switch (kind) {
940	case BGE_RESET_START:
941		/* If this is the first load, clear the load counter. */
942		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945		else {
946			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948		}
949		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950		    BGE_APE_HOST_SEG_SIG_MAGIC);
951		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952		    BGE_APE_HOST_SEG_LEN_MAGIC);
953
954		/* Add some version info if bge(4) supports it. */
955		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962		    BGE_APE_HOST_DRVR_STATE_START);
963		event = BGE_APE_EVENT_STATUS_STATE_START;
964		break;
965	case BGE_RESET_SHUTDOWN:
966		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
968		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969		break;
970	case BGE_RESET_SUSPEND:
971		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972		break;
973	default:
974		return;
975	}
976
977	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
979}
980
981/*
982 * Map a single buffer address.
983 */
984
985static void
986bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987{
988	struct bge_dmamap_arg *ctx;
989
990	if (error)
991		return;
992
993	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994
995	ctx = arg;
996	ctx->bge_busaddr = segs->ds_addr;
997}
998
999static uint8_t
1000bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001{
1002	uint32_t access, byte = 0;
1003	int i;
1004
1005	/* Lock. */
1006	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007	for (i = 0; i < 8000; i++) {
1008		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009			break;
1010		DELAY(20);
1011	}
1012	if (i == 8000)
1013		return (1);
1014
1015	/* Enable access. */
1016	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018
1019	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022		DELAY(10);
1023		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024			DELAY(10);
1025			break;
1026		}
1027	}
1028
1029	if (i == BGE_TIMEOUT * 10) {
1030		if_printf(sc->bge_ifp, "nvram read timed out\n");
1031		return (1);
1032	}
1033
1034	/* Get result. */
1035	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036
1037	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038
1039	/* Disable access. */
1040	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041
1042	/* Unlock. */
1043	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045
1046	return (0);
1047}
1048
1049/*
1050 * Read a sequence of bytes from NVRAM.
1051 */
1052static int
1053bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054{
1055	int err = 0, i;
1056	uint8_t byte = 0;
1057
1058	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059		return (1);
1060
1061	for (i = 0; i < cnt; i++) {
1062		err = bge_nvram_getbyte(sc, off + i, &byte);
1063		if (err)
1064			break;
1065		*(dest + i) = byte;
1066	}
1067
1068	return (err ? 1 : 0);
1069}
1070
1071/*
1072 * Read a byte of data stored in the EEPROM at address 'addr.' The
1073 * BCM570x supports both the traditional bitbang interface and an
1074 * auto access interface for reading the EEPROM. We use the auto
1075 * access method.
1076 */
1077static uint8_t
1078bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079{
1080	int i;
1081	uint32_t byte = 0;
1082
1083	/*
1084	 * Enable use of auto EEPROM access so we can avoid
1085	 * having to use the bitbang method.
1086	 */
1087	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088
1089	/* Reset the EEPROM, load the clock period. */
1090	CSR_WRITE_4(sc, BGE_EE_ADDR,
1091	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092	DELAY(20);
1093
1094	/* Issue the read EEPROM command. */
1095	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096
1097	/* Wait for completion */
1098	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099		DELAY(10);
1100		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101			break;
1102	}
1103
1104	if (i == BGE_TIMEOUT * 10) {
1105		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106		return (1);
1107	}
1108
1109	/* Get result. */
1110	byte = CSR_READ_4(sc, BGE_EE_DATA);
1111
1112	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113
1114	return (0);
1115}
1116
1117/*
1118 * Read a sequence of bytes from the EEPROM.
1119 */
1120static int
1121bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122{
1123	int i, error = 0;
1124	uint8_t byte = 0;
1125
1126	for (i = 0; i < cnt; i++) {
1127		error = bge_eeprom_getbyte(sc, off + i, &byte);
1128		if (error)
1129			break;
1130		*(dest + i) = byte;
1131	}
1132
1133	return (error ? 1 : 0);
1134}
1135
1136static int
1137bge_miibus_readreg(device_t dev, int phy, int reg)
1138{
1139	struct bge_softc *sc;
1140	uint32_t val;
1141	int i;
1142
1143	sc = device_get_softc(dev);
1144
1145	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146		return (0);
1147
1148	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150		CSR_WRITE_4(sc, BGE_MI_MODE,
1151		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152		DELAY(80);
1153	}
1154
1155	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1157
1158	/* Poll for the PHY register access to complete. */
1159	for (i = 0; i < BGE_TIMEOUT; i++) {
1160		DELAY(10);
1161		val = CSR_READ_4(sc, BGE_MI_COMM);
1162		if ((val & BGE_MICOMM_BUSY) == 0) {
1163			DELAY(5);
1164			val = CSR_READ_4(sc, BGE_MI_COMM);
1165			break;
1166		}
1167	}
1168
1169	if (i == BGE_TIMEOUT) {
1170		device_printf(sc->bge_dev,
1171		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172		    phy, reg, val);
1173		val = 0;
1174	}
1175
1176	/* Restore the autopoll bit if necessary. */
1177	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179		DELAY(80);
1180	}
1181
1182	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183
1184	if (val & BGE_MICOMM_READFAIL)
1185		return (0);
1186
1187	return (val & 0xFFFF);
1188}
1189
1190static int
1191bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192{
1193	struct bge_softc *sc;
1194	int i;
1195
1196	sc = device_get_softc(dev);
1197
1198	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200		return (0);
1201
1202	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203		return (0);
1204
1205	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207		CSR_WRITE_4(sc, BGE_MI_MODE,
1208		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209		DELAY(80);
1210	}
1211
1212	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214
1215	for (i = 0; i < BGE_TIMEOUT; i++) {
1216		DELAY(10);
1217		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218			DELAY(5);
1219			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220			break;
1221		}
1222	}
1223
1224	/* Restore the autopoll bit if necessary. */
1225	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227		DELAY(80);
1228	}
1229
1230	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231
1232	if (i == BGE_TIMEOUT)
1233		device_printf(sc->bge_dev,
1234		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235		    phy, reg, val);
1236
1237	return (0);
1238}
1239
1240static void
1241bge_miibus_statchg(device_t dev)
1242{
1243	struct bge_softc *sc;
1244	struct mii_data *mii;
1245	uint32_t mac_mode, rx_mode, tx_mode;
1246
1247	sc = device_get_softc(dev);
1248	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1249		return;
1250	mii = device_get_softc(sc->bge_miibus);
1251
1252	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253	    (IFM_ACTIVE | IFM_AVALID)) {
1254		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255		case IFM_10_T:
1256		case IFM_100_TX:
1257			sc->bge_link = 1;
1258			break;
1259		case IFM_1000_T:
1260		case IFM_1000_SX:
1261		case IFM_2500_SX:
1262			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263				sc->bge_link = 1;
1264			else
1265				sc->bge_link = 0;
1266			break;
1267		default:
1268			sc->bge_link = 0;
1269			break;
1270		}
1271	} else
1272		sc->bge_link = 0;
1273	if (sc->bge_link == 0)
1274		return;
1275
1276	/*
1277	 * APE firmware touches these registers to keep the MAC
1278	 * connected to the outside world.  Try to keep the
1279	 * accesses atomic.
1280	 */
1281
1282	/* Set the port mode (MII/GMII) to match the link speed. */
1283	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287
1288	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290		mac_mode |= BGE_PORTMODE_GMII;
1291	else
1292		mac_mode |= BGE_PORTMODE_MII;
1293
1294	/* Set MAC flow control behavior to match link flow control settings. */
1295	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302	} else
1303		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304
1305	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306	DELAY(40);
1307	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309}
1310
1311/*
1312 * Intialize a standard receive ring descriptor.
1313 */
1314static int
1315bge_newbuf_std(struct bge_softc *sc, int i)
1316{
1317	struct mbuf *m;
1318	struct bge_rx_bd *r;
1319	bus_dma_segment_t segs[1];
1320	bus_dmamap_t map;
1321	int error, nsegs;
1322
1323	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327		if (m == NULL)
1328			return (ENOBUFS);
1329		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330	} else {
1331		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332		if (m == NULL)
1333			return (ENOBUFS);
1334		m->m_len = m->m_pkthdr.len = MCLBYTES;
1335	}
1336	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337		m_adj(m, ETHER_ALIGN);
1338
1339	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341	if (error != 0) {
1342		m_freem(m);
1343		return (error);
1344	}
1345	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1350	}
1351	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353	sc->bge_cdata.bge_rx_std_sparemap = map;
1354	sc->bge_cdata.bge_rx_std_chain[i] = m;
1355	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359	r->bge_flags = BGE_RXBDFLAG_END;
1360	r->bge_len = segs[0].ds_len;
1361	r->bge_idx = i;
1362
1363	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365
1366	return (0);
1367}
1368
1369/*
1370 * Initialize a jumbo receive ring descriptor. This allocates
1371 * a jumbo buffer from the pool managed internally by the driver.
1372 */
1373static int
1374bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375{
1376	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377	bus_dmamap_t map;
1378	struct bge_extrx_bd *r;
1379	struct mbuf *m;
1380	int error, nsegs;
1381
1382	MGETHDR(m, M_NOWAIT, MT_DATA);
1383	if (m == NULL)
1384		return (ENOBUFS);
1385
1386	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1387	if (!(m->m_flags & M_EXT)) {
1388		m_freem(m);
1389		return (ENOBUFS);
1390	}
1391	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1392	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1393		m_adj(m, ETHER_ALIGN);
1394
1395	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1396	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1397	if (error != 0) {
1398		m_freem(m);
1399		return (error);
1400	}
1401
1402	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1403		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1404		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1405		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1406		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1407	}
1408	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1409	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1410	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1411	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1412	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1413	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1414	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1415	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1416	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1417
1418	/*
1419	 * Fill in the extended RX buffer descriptor.
1420	 */
1421	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1422	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1423	r->bge_idx = i;
1424	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1425	switch (nsegs) {
1426	case 4:
1427		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1428		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1429		r->bge_len3 = segs[3].ds_len;
1430		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1431	case 3:
1432		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1433		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1434		r->bge_len2 = segs[2].ds_len;
1435		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1436	case 2:
1437		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1438		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1439		r->bge_len1 = segs[1].ds_len;
1440		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1441	case 1:
1442		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1443		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1444		r->bge_len0 = segs[0].ds_len;
1445		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1446		break;
1447	default:
1448		panic("%s: %d segments\n", __func__, nsegs);
1449	}
1450
1451	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1452	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1453
1454	return (0);
1455}
1456
1457static int
1458bge_init_rx_ring_std(struct bge_softc *sc)
1459{
1460	int error, i;
1461
1462	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1463	sc->bge_std = 0;
1464	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1465		if ((error = bge_newbuf_std(sc, i)) != 0)
1466			return (error);
1467		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1468	}
1469
1470	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1471	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1472
1473	sc->bge_std = 0;
1474	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1475
1476	return (0);
1477}
1478
1479static void
1480bge_free_rx_ring_std(struct bge_softc *sc)
1481{
1482	int i;
1483
1484	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1485		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1486			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1487			    sc->bge_cdata.bge_rx_std_dmamap[i],
1488			    BUS_DMASYNC_POSTREAD);
1489			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1490			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1491			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1492			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1493		}
1494		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1495		    sizeof(struct bge_rx_bd));
1496	}
1497}
1498
1499static int
1500bge_init_rx_ring_jumbo(struct bge_softc *sc)
1501{
1502	struct bge_rcb *rcb;
1503	int error, i;
1504
1505	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1506	sc->bge_jumbo = 0;
1507	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1508		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1509			return (error);
1510		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1511	}
1512
1513	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1514	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1515
1516	sc->bge_jumbo = 0;
1517
1518	/* Enable the jumbo receive producer ring. */
1519	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1520	rcb->bge_maxlen_flags =
1521	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1522	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1523
1524	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1525
1526	return (0);
1527}
1528
1529static void
1530bge_free_rx_ring_jumbo(struct bge_softc *sc)
1531{
1532	int i;
1533
1534	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1535		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1536			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1537			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1538			    BUS_DMASYNC_POSTREAD);
1539			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1540			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1541			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1542			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1543		}
1544		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1545		    sizeof(struct bge_extrx_bd));
1546	}
1547}
1548
1549static void
1550bge_free_tx_ring(struct bge_softc *sc)
1551{
1552	int i;
1553
1554	if (sc->bge_ldata.bge_tx_ring == NULL)
1555		return;
1556
1557	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1558		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1559			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1560			    sc->bge_cdata.bge_tx_dmamap[i],
1561			    BUS_DMASYNC_POSTWRITE);
1562			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1563			    sc->bge_cdata.bge_tx_dmamap[i]);
1564			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1565			sc->bge_cdata.bge_tx_chain[i] = NULL;
1566		}
1567		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1568		    sizeof(struct bge_tx_bd));
1569	}
1570}
1571
1572static int
1573bge_init_tx_ring(struct bge_softc *sc)
1574{
1575	sc->bge_txcnt = 0;
1576	sc->bge_tx_saved_considx = 0;
1577
1578	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1579	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1580	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1581
1582	/* Initialize transmit producer index for host-memory send ring. */
1583	sc->bge_tx_prodidx = 0;
1584	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1585
1586	/* 5700 b2 errata */
1587	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1588		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1589
1590	/* NIC-memory send ring not used; initialize to zero. */
1591	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1592	/* 5700 b2 errata */
1593	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1594		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1595
1596	return (0);
1597}
1598
1599static void
1600bge_setpromisc(struct bge_softc *sc)
1601{
1602	struct ifnet *ifp;
1603
1604	BGE_LOCK_ASSERT(sc);
1605
1606	ifp = sc->bge_ifp;
1607
1608	/* Enable or disable promiscuous mode as needed. */
1609	if (ifp->if_flags & IFF_PROMISC)
1610		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1611	else
1612		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1613}
1614
1615static void
1616bge_setmulti(struct bge_softc *sc)
1617{
1618	struct ifnet *ifp;
1619	struct ifmultiaddr *ifma;
1620	uint32_t hashes[4] = { 0, 0, 0, 0 };
1621	int h, i;
1622
1623	BGE_LOCK_ASSERT(sc);
1624
1625	ifp = sc->bge_ifp;
1626
1627	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1628		for (i = 0; i < 4; i++)
1629			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1630		return;
1631	}
1632
1633	/* First, zot all the existing filters. */
1634	for (i = 0; i < 4; i++)
1635		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1636
1637	/* Now program new ones. */
1638	if_maddr_rlock(ifp);
1639	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1640		if (ifma->ifma_addr->sa_family != AF_LINK)
1641			continue;
1642		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1643		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1644		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1645	}
1646	if_maddr_runlock(ifp);
1647
1648	for (i = 0; i < 4; i++)
1649		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1650}
1651
1652static void
1653bge_setvlan(struct bge_softc *sc)
1654{
1655	struct ifnet *ifp;
1656
1657	BGE_LOCK_ASSERT(sc);
1658
1659	ifp = sc->bge_ifp;
1660
1661	/* Enable or disable VLAN tag stripping as needed. */
1662	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1663		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1664	else
1665		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1666}
1667
1668static void
1669bge_sig_pre_reset(struct bge_softc *sc, int type)
1670{
1671
1672	/*
1673	 * Some chips don't like this so only do this if ASF is enabled
1674	 */
1675	if (sc->bge_asf_mode)
1676		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1677
1678	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1679		switch (type) {
1680		case BGE_RESET_START:
1681			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1682			    BGE_FW_DRV_STATE_START);
1683			break;
1684		case BGE_RESET_SHUTDOWN:
1685			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686			    BGE_FW_DRV_STATE_UNLOAD);
1687			break;
1688		case BGE_RESET_SUSPEND:
1689			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1690			    BGE_FW_DRV_STATE_SUSPEND);
1691			break;
1692		}
1693	}
1694
1695	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1696		bge_ape_driver_state_change(sc, type);
1697}
1698
1699static void
1700bge_sig_post_reset(struct bge_softc *sc, int type)
1701{
1702
1703	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1704		switch (type) {
1705		case BGE_RESET_START:
1706			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1707			    BGE_FW_DRV_STATE_START_DONE);
1708			/* START DONE */
1709			break;
1710		case BGE_RESET_SHUTDOWN:
1711			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1712			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1713			break;
1714		}
1715	}
1716	if (type == BGE_RESET_SHUTDOWN)
1717		bge_ape_driver_state_change(sc, type);
1718}
1719
1720static void
1721bge_sig_legacy(struct bge_softc *sc, int type)
1722{
1723
1724	if (sc->bge_asf_mode) {
1725		switch (type) {
1726		case BGE_RESET_START:
1727			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1728			    BGE_FW_DRV_STATE_START);
1729			break;
1730		case BGE_RESET_SHUTDOWN:
1731			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1732			    BGE_FW_DRV_STATE_UNLOAD);
1733			break;
1734		}
1735	}
1736}
1737
1738static void
1739bge_stop_fw(struct bge_softc *sc)
1740{
1741	int i;
1742
1743	if (sc->bge_asf_mode) {
1744		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1745		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1746		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1747
1748		for (i = 0; i < 100; i++ ) {
1749			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1750			    BGE_RX_CPU_DRV_EVENT))
1751				break;
1752			DELAY(10);
1753		}
1754	}
1755}
1756
1757static uint32_t
1758bge_dma_swap_options(struct bge_softc *sc)
1759{
1760	uint32_t dma_options;
1761
1762	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1763	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1764#if BYTE_ORDER == BIG_ENDIAN
1765	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1766#endif
1767	return (dma_options);
1768}
1769
1770/*
1771 * Do endian, PCI and DMA initialization.
1772 */
1773static int
1774bge_chipinit(struct bge_softc *sc)
1775{
1776	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1777	uint16_t val;
1778	int i;
1779
1780	/* Set endianness before we access any non-PCI registers. */
1781	misc_ctl = BGE_INIT;
1782	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1783		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1784	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1785
1786	/*
1787	 * Clear the MAC statistics block in the NIC's
1788	 * internal memory.
1789	 */
1790	for (i = BGE_STATS_BLOCK;
1791	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1792		BGE_MEMWIN_WRITE(sc, i, 0);
1793
1794	for (i = BGE_STATUS_BLOCK;
1795	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1796		BGE_MEMWIN_WRITE(sc, i, 0);
1797
1798	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1799		/*
1800		 *  Fix data corruption caused by non-qword write with WB.
1801		 *  Fix master abort in PCI mode.
1802		 *  Fix PCI latency timer.
1803		 */
1804		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1805		val |= (1 << 10) | (1 << 12) | (1 << 13);
1806		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1807	}
1808
1809	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1810	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1811		/*
1812		 * For the 57766 and non Ax versions of 57765, bootcode
1813		 * needs to setup the PCIE Fast Training Sequence (FTS)
1814		 * value to prevent transmit hangs.
1815		 */
1816		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1817			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1818			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1819			    BGE_CPMU_PADRNG_CTL_RDIV2);
1820		}
1821	}
1822
1823	/*
1824	 * Set up the PCI DMA control register.
1825	 */
1826	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1827	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1828	if (sc->bge_flags & BGE_FLAG_PCIE) {
1829		if (sc->bge_mps >= 256)
1830			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1831		else
1832			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1833	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1834		if (BGE_IS_5714_FAMILY(sc)) {
1835			/* 256 bytes for read and write. */
1836			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1837			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1838			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1839			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1840			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1841		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1842			/*
1843			 * In the BCM5703, the DMA read watermark should
1844			 * be set to less than or equal to the maximum
1845			 * memory read byte count of the PCI-X command
1846			 * register.
1847			 */
1848			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1849			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1850		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1851			/* 1536 bytes for read, 384 bytes for write. */
1852			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1853			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1854		} else {
1855			/* 384 bytes for read and write. */
1856			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1857			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1858			    0x0F;
1859		}
1860		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1861		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1862			uint32_t tmp;
1863
1864			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1865			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1866			if (tmp == 6 || tmp == 7)
1867				dma_rw_ctl |=
1868				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1869
1870			/* Set PCI-X DMA write workaround. */
1871			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1872		}
1873	} else {
1874		/* Conventional PCI bus: 256 bytes for read and write. */
1875		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1876		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1877
1878		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1879		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1880			dma_rw_ctl |= 0x0F;
1881	}
1882	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1883	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1884		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1885		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1886	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1887	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1888		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1889	if (BGE_IS_5717_PLUS(sc)) {
1890		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1891		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1892			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1893		/*
1894		 * Enable HW workaround for controllers that misinterpret
1895		 * a status tag update and leave interrupts permanently
1896		 * disabled.
1897		 */
1898		if (!BGE_IS_57765_PLUS(sc) &&
1899		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1900		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1901			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1902	}
1903	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1904
1905	/*
1906	 * Set up general mode register.
1907	 */
1908	mode_ctl = bge_dma_swap_options(sc);
1909	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1910	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1911		/* Retain Host-2-BMC settings written by APE firmware. */
1912		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1913		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1914		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1915		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1916	}
1917	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1918	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1919
1920	/*
1921	 * BCM5701 B5 have a bug causing data corruption when using
1922	 * 64-bit DMA reads, which can be terminated early and then
1923	 * completed later as 32-bit accesses, in combination with
1924	 * certain bridges.
1925	 */
1926	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1927	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1928		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1929
1930	/*
1931	 * Tell the firmware the driver is running
1932	 */
1933	if (sc->bge_asf_mode & ASF_STACKUP)
1934		mode_ctl |= BGE_MODECTL_STACKUP;
1935
1936	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1937
1938	/*
1939	 * Disable memory write invalidate.  Apparently it is not supported
1940	 * properly by these devices.
1941	 */
1942	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1943
1944	/* Set the timer prescaler (always 66 MHz). */
1945	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1946
1947	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1948	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1949		DELAY(40);	/* XXX */
1950
1951		/* Put PHY into ready state */
1952		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1953		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1954		DELAY(40);
1955	}
1956
1957	return (0);
1958}
1959
1960static int
1961bge_blockinit(struct bge_softc *sc)
1962{
1963	struct bge_rcb *rcb;
1964	bus_size_t vrcb;
1965	bge_hostaddr taddr;
1966	uint32_t dmactl, rdmareg, val;
1967	int i, limit;
1968
1969	/*
1970	 * Initialize the memory window pointer register so that
1971	 * we can access the first 32K of internal NIC RAM. This will
1972	 * allow us to set up the TX send ring RCBs and the RX return
1973	 * ring RCBs, plus other things which live in NIC memory.
1974	 */
1975	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1976
1977	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1978
1979	if (!(BGE_IS_5705_PLUS(sc))) {
1980		/* Configure mbuf memory pool */
1981		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1982		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1983			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1984		else
1985			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1986
1987		/* Configure DMA resource pool */
1988		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1989		    BGE_DMA_DESCRIPTORS);
1990		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1991	}
1992
1993	/* Configure mbuf pool watermarks */
1994	if (BGE_IS_5717_PLUS(sc)) {
1995		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1996		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1997			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1998			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1999		} else {
2000			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2001			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2002		}
2003	} else if (!BGE_IS_5705_PLUS(sc)) {
2004		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2005		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2006		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2007	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2008		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2009		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2010		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2011	} else {
2012		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2013		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2014		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2015	}
2016
2017	/* Configure DMA resource watermarks */
2018	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2019	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2020
2021	/* Enable buffer manager */
2022	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2023	/*
2024	 * Change the arbitration algorithm of TXMBUF read request to
2025	 * round-robin instead of priority based for BCM5719.  When
2026	 * TXFIFO is almost empty, RDMA will hold its request until
2027	 * TXFIFO is not almost empty.
2028	 */
2029	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2030		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2031	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2032
2033	/* Poll for buffer manager start indication */
2034	for (i = 0; i < BGE_TIMEOUT; i++) {
2035		DELAY(10);
2036		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2037			break;
2038	}
2039
2040	if (i == BGE_TIMEOUT) {
2041		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2042		return (ENXIO);
2043	}
2044
2045	/* Enable flow-through queues */
2046	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2047	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2048
2049	/* Wait until queue initialization is complete */
2050	for (i = 0; i < BGE_TIMEOUT; i++) {
2051		DELAY(10);
2052		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2053			break;
2054	}
2055
2056	if (i == BGE_TIMEOUT) {
2057		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2058		return (ENXIO);
2059	}
2060
2061	/*
2062	 * Summary of rings supported by the controller:
2063	 *
2064	 * Standard Receive Producer Ring
2065	 * - This ring is used to feed receive buffers for "standard"
2066	 *   sized frames (typically 1536 bytes) to the controller.
2067	 *
2068	 * Jumbo Receive Producer Ring
2069	 * - This ring is used to feed receive buffers for jumbo sized
2070	 *   frames (i.e. anything bigger than the "standard" frames)
2071	 *   to the controller.
2072	 *
2073	 * Mini Receive Producer Ring
2074	 * - This ring is used to feed receive buffers for "mini"
2075	 *   sized frames to the controller.
2076	 * - This feature required external memory for the controller
2077	 *   but was never used in a production system.  Should always
2078	 *   be disabled.
2079	 *
2080	 * Receive Return Ring
2081	 * - After the controller has placed an incoming frame into a
2082	 *   receive buffer that buffer is moved into a receive return
2083	 *   ring.  The driver is then responsible to passing the
2084	 *   buffer up to the stack.  Many versions of the controller
2085	 *   support multiple RR rings.
2086	 *
2087	 * Send Ring
2088	 * - This ring is used for outgoing frames.  Many versions of
2089	 *   the controller support multiple send rings.
2090	 */
2091
2092	/* Initialize the standard receive producer ring control block. */
2093	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2094	rcb->bge_hostaddr.bge_addr_lo =
2095	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2096	rcb->bge_hostaddr.bge_addr_hi =
2097	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2098	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2099	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2100	if (BGE_IS_5717_PLUS(sc)) {
2101		/*
2102		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2103		 * Bits 15-2 : Maximum RX frame size
2104		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2105		 * Bit 0     : Reserved
2106		 */
2107		rcb->bge_maxlen_flags =
2108		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2109	} else if (BGE_IS_5705_PLUS(sc)) {
2110		/*
2111		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2112		 * Bits 15-2 : Reserved (should be 0)
2113		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2114		 * Bit 0     : Reserved
2115		 */
2116		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2117	} else {
2118		/*
2119		 * Ring size is always XXX entries
2120		 * Bits 31-16: Maximum RX frame size
2121		 * Bits 15-2 : Reserved (should be 0)
2122		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2123		 * Bit 0     : Reserved
2124		 */
2125		rcb->bge_maxlen_flags =
2126		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2127	}
2128	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2129	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2130	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2131		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2132	else
2133		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2134	/* Write the standard receive producer ring control block. */
2135	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2136	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2137	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2138	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2139
2140	/* Reset the standard receive producer ring producer index. */
2141	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2142
2143	/*
2144	 * Initialize the jumbo RX producer ring control
2145	 * block.  We set the 'ring disabled' bit in the
2146	 * flags field until we're actually ready to start
2147	 * using this ring (i.e. once we set the MTU
2148	 * high enough to require it).
2149	 */
2150	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2151		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2152		/* Get the jumbo receive producer ring RCB parameters. */
2153		rcb->bge_hostaddr.bge_addr_lo =
2154		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2155		rcb->bge_hostaddr.bge_addr_hi =
2156		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2157		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2158		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2159		    BUS_DMASYNC_PREREAD);
2160		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2161		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2162		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2163		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2164		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2165			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2166		else
2167			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2168		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2169		    rcb->bge_hostaddr.bge_addr_hi);
2170		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2171		    rcb->bge_hostaddr.bge_addr_lo);
2172		/* Program the jumbo receive producer ring RCB parameters. */
2173		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2174		    rcb->bge_maxlen_flags);
2175		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2176		/* Reset the jumbo receive producer ring producer index. */
2177		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2178	}
2179
2180	/* Disable the mini receive producer ring RCB. */
2181	if (BGE_IS_5700_FAMILY(sc)) {
2182		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2183		rcb->bge_maxlen_flags =
2184		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2185		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2186		    rcb->bge_maxlen_flags);
2187		/* Reset the mini receive producer ring producer index. */
2188		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2189	}
2190
2191	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2192	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2193		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2194		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2195		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2196			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2197			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2198	}
2199	/*
2200	 * The BD ring replenish thresholds control how often the
2201	 * hardware fetches new BD's from the producer rings in host
2202	 * memory.  Setting the value too low on a busy system can
2203	 * starve the hardware and recue the throughpout.
2204	 *
2205	 * Set the BD ring replentish thresholds. The recommended
2206	 * values are 1/8th the number of descriptors allocated to
2207	 * each ring.
2208	 * XXX The 5754 requires a lower threshold, so it might be a
2209	 * requirement of all 575x family chips.  The Linux driver sets
2210	 * the lower threshold for all 5705 family chips as well, but there
2211	 * are reports that it might not need to be so strict.
2212	 *
2213	 * XXX Linux does some extra fiddling here for the 5906 parts as
2214	 * well.
2215	 */
2216	if (BGE_IS_5705_PLUS(sc))
2217		val = 8;
2218	else
2219		val = BGE_STD_RX_RING_CNT / 8;
2220	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2221	if (BGE_IS_JUMBO_CAPABLE(sc))
2222		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2223		    BGE_JUMBO_RX_RING_CNT/8);
2224	if (BGE_IS_5717_PLUS(sc)) {
2225		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2226		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2227	}
2228
2229	/*
2230	 * Disable all send rings by setting the 'ring disabled' bit
2231	 * in the flags field of all the TX send ring control blocks,
2232	 * located in NIC memory.
2233	 */
2234	if (!BGE_IS_5705_PLUS(sc))
2235		/* 5700 to 5704 had 16 send rings. */
2236		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2237	else if (BGE_IS_57765_PLUS(sc) ||
2238	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2239		limit = 2;
2240	else if (BGE_IS_5717_PLUS(sc))
2241		limit = 4;
2242	else
2243		limit = 1;
2244	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2245	for (i = 0; i < limit; i++) {
2246		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2247		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2248		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2249		vrcb += sizeof(struct bge_rcb);
2250	}
2251
2252	/* Configure send ring RCB 0 (we use only the first ring) */
2253	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2254	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2255	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2256	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2257	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2258	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2259	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2260		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2261	else
2262		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2263		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2264	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2265	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2266
2267	/*
2268	 * Disable all receive return rings by setting the
2269	 * 'ring diabled' bit in the flags field of all the receive
2270	 * return ring control blocks, located in NIC memory.
2271	 */
2272	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2273	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2274	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2275		/* Should be 17, use 16 until we get an SRAM map. */
2276		limit = 16;
2277	} else if (!BGE_IS_5705_PLUS(sc))
2278		limit = BGE_RX_RINGS_MAX;
2279	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2280	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2281	    BGE_IS_57765_PLUS(sc))
2282		limit = 4;
2283	else
2284		limit = 1;
2285	/* Disable all receive return rings. */
2286	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2287	for (i = 0; i < limit; i++) {
2288		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2289		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2290		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2291		    BGE_RCB_FLAG_RING_DISABLED);
2292		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2293		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2294		    (i * (sizeof(uint64_t))), 0);
2295		vrcb += sizeof(struct bge_rcb);
2296	}
2297
2298	/*
2299	 * Set up receive return ring 0.  Note that the NIC address
2300	 * for RX return rings is 0x0.  The return rings live entirely
2301	 * within the host, so the nicaddr field in the RCB isn't used.
2302	 */
2303	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2304	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2305	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2306	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2307	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2308	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2309	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2310
2311	/* Set random backoff seed for TX */
2312	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2313	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2314	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2315	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2316	    BGE_TX_BACKOFF_SEED_MASK);
2317
2318	/* Set inter-packet gap */
2319	val = 0x2620;
2320	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2321	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2322		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2323		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2324	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2325
2326	/*
2327	 * Specify which ring to use for packets that don't match
2328	 * any RX rules.
2329	 */
2330	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2331
2332	/*
2333	 * Configure number of RX lists. One interrupt distribution
2334	 * list, sixteen active lists, one bad frames class.
2335	 */
2336	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2337
2338	/* Inialize RX list placement stats mask. */
2339	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2340	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2341
2342	/* Disable host coalescing until we get it set up */
2343	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2344
2345	/* Poll to make sure it's shut down. */
2346	for (i = 0; i < BGE_TIMEOUT; i++) {
2347		DELAY(10);
2348		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2349			break;
2350	}
2351
2352	if (i == BGE_TIMEOUT) {
2353		device_printf(sc->bge_dev,
2354		    "host coalescing engine failed to idle\n");
2355		return (ENXIO);
2356	}
2357
2358	/* Set up host coalescing defaults */
2359	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2360	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2361	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2362	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2363	if (!(BGE_IS_5705_PLUS(sc))) {
2364		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2365		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2366	}
2367	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2368	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2369
2370	/* Set up address of statistics block */
2371	if (!(BGE_IS_5705_PLUS(sc))) {
2372		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2373		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2374		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2375		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2376		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2377		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2378		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2379	}
2380
2381	/* Set up address of status block */
2382	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2383	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2384	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2385	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2386
2387	/* Set up status block size. */
2388	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2389	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2390		val = BGE_STATBLKSZ_FULL;
2391		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2392	} else {
2393		val = BGE_STATBLKSZ_32BYTE;
2394		bzero(sc->bge_ldata.bge_status_block, 32);
2395	}
2396	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2397	    sc->bge_cdata.bge_status_map,
2398	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2399
2400	/* Turn on host coalescing state machine */
2401	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2402
2403	/* Turn on RX BD completion state machine and enable attentions */
2404	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2405	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2406
2407	/* Turn on RX list placement state machine */
2408	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2409
2410	/* Turn on RX list selector state machine. */
2411	if (!(BGE_IS_5705_PLUS(sc)))
2412		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2413
2414	/* Turn on DMA, clear stats. */
2415	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2416	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2417	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2418	    BGE_MACMODE_FRMHDR_DMA_ENB;
2419
2420	if (sc->bge_flags & BGE_FLAG_TBI)
2421		val |= BGE_PORTMODE_TBI;
2422	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2423		val |= BGE_PORTMODE_GMII;
2424	else
2425		val |= BGE_PORTMODE_MII;
2426
2427	/* Allow APE to send/receive frames. */
2428	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2429		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2430
2431	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2432	DELAY(40);
2433
2434	/* Set misc. local control, enable interrupts on attentions */
2435	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2436
2437#ifdef notdef
2438	/* Assert GPIO pins for PHY reset */
2439	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2440	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2441	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2442	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2443#endif
2444
2445	/* Turn on DMA completion state machine */
2446	if (!(BGE_IS_5705_PLUS(sc)))
2447		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2448
2449	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2450
2451	/* Enable host coalescing bug fix. */
2452	if (BGE_IS_5755_PLUS(sc))
2453		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2454
2455	/* Request larger DMA burst size to get better performance. */
2456	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2457		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2458
2459	/* Turn on write DMA state machine */
2460	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2461	DELAY(40);
2462
2463	/* Turn on read DMA state machine */
2464	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2465
2466	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2467		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2468
2469	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2470	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2471	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2472		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2473		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2474		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2475	if (sc->bge_flags & BGE_FLAG_PCIE)
2476		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2477	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2478		val |= BGE_RDMAMODE_TSO4_ENABLE;
2479		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2480		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2481		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2482			val |= BGE_RDMAMODE_TSO6_ENABLE;
2483	}
2484
2485	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2486	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2487		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2488			BGE_RDMAMODE_H2BNC_VLAN_DET;
2489		/*
2490		 * Allow multiple outstanding read requests from
2491		 * non-LSO read DMA engine.
2492		 */
2493		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2494	}
2495
2496	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2497	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2498	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2499	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2500	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2501		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2502			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2503		else
2504			rdmareg = BGE_RDMA_RSRVCTRL;
2505		dmactl = CSR_READ_4(sc, rdmareg);
2506		/*
2507		 * Adjust tx margin to prevent TX data corruption and
2508		 * fix internal FIFO overflow.
2509		 */
2510		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2511		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2512			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2513			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2514			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2515			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2516			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2517			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2518		}
2519		/*
2520		 * Enable fix for read DMA FIFO overruns.
2521		 * The fix is to limit the number of RX BDs
2522		 * the hardware would fetch at a fime.
2523		 */
2524		CSR_WRITE_4(sc, rdmareg, dmactl |
2525		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2526	}
2527
2528	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2529		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2530		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2531		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2532		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2533	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2534		/*
2535		 * Allow 4KB burst length reads for non-LSO frames.
2536		 * Enable 512B burst length reads for buffer descriptors.
2537		 */
2538		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2539		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2540		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2541		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2542	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2543		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2544		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2545		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2546		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2547	}
2548
2549	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2550	DELAY(40);
2551
2552	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2553		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2554			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2555			if ((val & 0xFFFF) > BGE_FRAMELEN)
2556				break;
2557			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2558				break;
2559		}
2560		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2561			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2562			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2563				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2564			else
2565				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2566			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2567		}
2568	}
2569
2570	/* Turn on RX data completion state machine */
2571	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2572
2573	/* Turn on RX BD initiator state machine */
2574	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2575
2576	/* Turn on RX data and RX BD initiator state machine */
2577	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2578
2579	/* Turn on Mbuf cluster free state machine */
2580	if (!(BGE_IS_5705_PLUS(sc)))
2581		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2582
2583	/* Turn on send BD completion state machine */
2584	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2585
2586	/* Turn on send data completion state machine */
2587	val = BGE_SDCMODE_ENABLE;
2588	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2589		val |= BGE_SDCMODE_CDELAY;
2590	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2591
2592	/* Turn on send data initiator state machine */
2593	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2594		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2595		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2596	else
2597		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2598
2599	/* Turn on send BD initiator state machine */
2600	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2601
2602	/* Turn on send BD selector state machine */
2603	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2604
2605	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2606	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2607	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2608
2609	/* ack/clear link change events */
2610	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2611	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2612	    BGE_MACSTAT_LINK_CHANGED);
2613	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2614
2615	/*
2616	 * Enable attention when the link has changed state for
2617	 * devices that use auto polling.
2618	 */
2619	if (sc->bge_flags & BGE_FLAG_TBI) {
2620		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2621	} else {
2622		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2623			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2624			DELAY(80);
2625		}
2626		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2627		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2628			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2629			    BGE_EVTENB_MI_INTERRUPT);
2630	}
2631
2632	/*
2633	 * Clear any pending link state attention.
2634	 * Otherwise some link state change events may be lost until attention
2635	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2636	 * It's not necessary on newer BCM chips - perhaps enabling link
2637	 * state change attentions implies clearing pending attention.
2638	 */
2639	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2640	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2641	    BGE_MACSTAT_LINK_CHANGED);
2642
2643	/* Enable link state change attentions. */
2644	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2645
2646	return (0);
2647}
2648
2649static const struct bge_revision *
2650bge_lookup_rev(uint32_t chipid)
2651{
2652	const struct bge_revision *br;
2653
2654	for (br = bge_revisions; br->br_name != NULL; br++) {
2655		if (br->br_chipid == chipid)
2656			return (br);
2657	}
2658
2659	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2660		if (br->br_chipid == BGE_ASICREV(chipid))
2661			return (br);
2662	}
2663
2664	return (NULL);
2665}
2666
2667static const struct bge_vendor *
2668bge_lookup_vendor(uint16_t vid)
2669{
2670	const struct bge_vendor *v;
2671
2672	for (v = bge_vendors; v->v_name != NULL; v++)
2673		if (v->v_id == vid)
2674			return (v);
2675
2676	return (NULL);
2677}
2678
2679static uint32_t
2680bge_chipid(device_t dev)
2681{
2682	uint32_t id;
2683
2684	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2685	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2686	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2687		/*
2688		 * Find the ASCI revision.  Different chips use different
2689		 * registers.
2690		 */
2691		switch (pci_get_device(dev)) {
2692		case BCOM_DEVICEID_BCM5717:
2693		case BCOM_DEVICEID_BCM5718:
2694		case BCOM_DEVICEID_BCM5719:
2695		case BCOM_DEVICEID_BCM5720:
2696		case BCOM_DEVICEID_BCM5725:
2697		case BCOM_DEVICEID_BCM5727:
2698		case BCOM_DEVICEID_BCM5762:
2699		case BCOM_DEVICEID_BCM57764:
2700		case BCOM_DEVICEID_BCM57767:
2701		case BCOM_DEVICEID_BCM57787:
2702			id = pci_read_config(dev,
2703			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2704			break;
2705		case BCOM_DEVICEID_BCM57761:
2706		case BCOM_DEVICEID_BCM57762:
2707		case BCOM_DEVICEID_BCM57765:
2708		case BCOM_DEVICEID_BCM57766:
2709		case BCOM_DEVICEID_BCM57781:
2710		case BCOM_DEVICEID_BCM57782:
2711		case BCOM_DEVICEID_BCM57785:
2712		case BCOM_DEVICEID_BCM57786:
2713		case BCOM_DEVICEID_BCM57791:
2714		case BCOM_DEVICEID_BCM57795:
2715			id = pci_read_config(dev,
2716			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2717			break;
2718		default:
2719			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2720		}
2721	}
2722	return (id);
2723}
2724
2725/*
2726 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2727 * against our list and return its name if we find a match.
2728 *
2729 * Note that since the Broadcom controller contains VPD support, we
2730 * try to get the device name string from the controller itself instead
2731 * of the compiled-in string. It guarantees we'll always announce the
2732 * right product name. We fall back to the compiled-in string when
2733 * VPD is unavailable or corrupt.
2734 */
2735static int
2736bge_probe(device_t dev)
2737{
2738	char buf[96];
2739	char model[64];
2740	const struct bge_revision *br;
2741	const char *pname;
2742	struct bge_softc *sc;
2743	const struct bge_type *t = bge_devs;
2744	const struct bge_vendor *v;
2745	uint32_t id;
2746	uint16_t did, vid;
2747
2748	sc = device_get_softc(dev);
2749	sc->bge_dev = dev;
2750	vid = pci_get_vendor(dev);
2751	did = pci_get_device(dev);
2752	while(t->bge_vid != 0) {
2753		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2754			id = bge_chipid(dev);
2755			br = bge_lookup_rev(id);
2756			if (bge_has_eaddr(sc) &&
2757			    pci_get_vpd_ident(dev, &pname) == 0)
2758				snprintf(model, sizeof(model), "%s", pname);
2759			else {
2760				v = bge_lookup_vendor(vid);
2761				snprintf(model, sizeof(model), "%s %s",
2762				    v != NULL ? v->v_name : "Unknown",
2763				    br != NULL ? br->br_name :
2764				    "NetXtreme/NetLink Ethernet Controller");
2765			}
2766			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2767			    model, br != NULL ? "" : "unknown ", id);
2768			device_set_desc_copy(dev, buf);
2769			return (BUS_PROBE_DEFAULT);
2770		}
2771		t++;
2772	}
2773
2774	return (ENXIO);
2775}
2776
2777static void
2778bge_dma_free(struct bge_softc *sc)
2779{
2780	int i;
2781
2782	/* Destroy DMA maps for RX buffers. */
2783	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2784		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2785			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2786			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2787	}
2788	if (sc->bge_cdata.bge_rx_std_sparemap)
2789		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2790		    sc->bge_cdata.bge_rx_std_sparemap);
2791
2792	/* Destroy DMA maps for jumbo RX buffers. */
2793	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2794		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2795			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2796			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2797	}
2798	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2799		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2800		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2801
2802	/* Destroy DMA maps for TX buffers. */
2803	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2804		if (sc->bge_cdata.bge_tx_dmamap[i])
2805			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2806			    sc->bge_cdata.bge_tx_dmamap[i]);
2807	}
2808
2809	if (sc->bge_cdata.bge_rx_mtag)
2810		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2811	if (sc->bge_cdata.bge_mtag_jumbo)
2812		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2813	if (sc->bge_cdata.bge_tx_mtag)
2814		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2815
2816	/* Destroy standard RX ring. */
2817	if (sc->bge_cdata.bge_rx_std_ring_map)
2818		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2819		    sc->bge_cdata.bge_rx_std_ring_map);
2820	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2821		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2822		    sc->bge_ldata.bge_rx_std_ring,
2823		    sc->bge_cdata.bge_rx_std_ring_map);
2824
2825	if (sc->bge_cdata.bge_rx_std_ring_tag)
2826		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2827
2828	/* Destroy jumbo RX ring. */
2829	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2830		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2831		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2832
2833	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2834	    sc->bge_ldata.bge_rx_jumbo_ring)
2835		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2836		    sc->bge_ldata.bge_rx_jumbo_ring,
2837		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2838
2839	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2840		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2841
2842	/* Destroy RX return ring. */
2843	if (sc->bge_cdata.bge_rx_return_ring_map)
2844		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2845		    sc->bge_cdata.bge_rx_return_ring_map);
2846
2847	if (sc->bge_cdata.bge_rx_return_ring_map &&
2848	    sc->bge_ldata.bge_rx_return_ring)
2849		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2850		    sc->bge_ldata.bge_rx_return_ring,
2851		    sc->bge_cdata.bge_rx_return_ring_map);
2852
2853	if (sc->bge_cdata.bge_rx_return_ring_tag)
2854		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2855
2856	/* Destroy TX ring. */
2857	if (sc->bge_cdata.bge_tx_ring_map)
2858		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2859		    sc->bge_cdata.bge_tx_ring_map);
2860
2861	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2862		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2863		    sc->bge_ldata.bge_tx_ring,
2864		    sc->bge_cdata.bge_tx_ring_map);
2865
2866	if (sc->bge_cdata.bge_tx_ring_tag)
2867		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2868
2869	/* Destroy status block. */
2870	if (sc->bge_cdata.bge_status_map)
2871		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2872		    sc->bge_cdata.bge_status_map);
2873
2874	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2875		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2876		    sc->bge_ldata.bge_status_block,
2877		    sc->bge_cdata.bge_status_map);
2878
2879	if (sc->bge_cdata.bge_status_tag)
2880		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2881
2882	/* Destroy statistics block. */
2883	if (sc->bge_cdata.bge_stats_map)
2884		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2885		    sc->bge_cdata.bge_stats_map);
2886
2887	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2888		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2889		    sc->bge_ldata.bge_stats,
2890		    sc->bge_cdata.bge_stats_map);
2891
2892	if (sc->bge_cdata.bge_stats_tag)
2893		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2894
2895	if (sc->bge_cdata.bge_buffer_tag)
2896		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2897
2898	/* Destroy the parent tag. */
2899	if (sc->bge_cdata.bge_parent_tag)
2900		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2901}
2902
2903static int
2904bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2905    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2906    bus_addr_t *paddr, const char *msg)
2907{
2908	struct bge_dmamap_arg ctx;
2909	int error;
2910
2911	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2912	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2913	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2914	if (error != 0) {
2915		device_printf(sc->bge_dev,
2916		    "could not create %s dma tag\n", msg);
2917		return (ENOMEM);
2918	}
2919	/* Allocate DMA'able memory for ring. */
2920	error = bus_dmamem_alloc(*tag, (void **)ring,
2921	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2922	if (error != 0) {
2923		device_printf(sc->bge_dev,
2924		    "could not allocate DMA'able memory for %s\n", msg);
2925		return (ENOMEM);
2926	}
2927	/* Load the address of the ring. */
2928	ctx.bge_busaddr = 0;
2929	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2930	    &ctx, BUS_DMA_NOWAIT);
2931	if (error != 0) {
2932		device_printf(sc->bge_dev,
2933		    "could not load DMA'able memory for %s\n", msg);
2934		return (ENOMEM);
2935	}
2936	*paddr = ctx.bge_busaddr;
2937	return (0);
2938}
2939
2940static int
2941bge_dma_alloc(struct bge_softc *sc)
2942{
2943	bus_addr_t lowaddr;
2944	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2945	int i, error;
2946
2947	lowaddr = BUS_SPACE_MAXADDR;
2948	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2949		lowaddr = BGE_DMA_MAXADDR;
2950	/*
2951	 * Allocate the parent bus DMA tag appropriate for PCI.
2952	 */
2953	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2954	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2955	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2956	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2957	if (error != 0) {
2958		device_printf(sc->bge_dev,
2959		    "could not allocate parent dma tag\n");
2960		return (ENOMEM);
2961	}
2962
2963	/* Create tag for standard RX ring. */
2964	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2965	    &sc->bge_cdata.bge_rx_std_ring_tag,
2966	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2967	    &sc->bge_cdata.bge_rx_std_ring_map,
2968	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2969	if (error)
2970		return (error);
2971
2972	/* Create tag for RX return ring. */
2973	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2974	    &sc->bge_cdata.bge_rx_return_ring_tag,
2975	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2976	    &sc->bge_cdata.bge_rx_return_ring_map,
2977	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2978	if (error)
2979		return (error);
2980
2981	/* Create tag for TX ring. */
2982	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2983	    &sc->bge_cdata.bge_tx_ring_tag,
2984	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2985	    &sc->bge_cdata.bge_tx_ring_map,
2986	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2987	if (error)
2988		return (error);
2989
2990	/*
2991	 * Create tag for status block.
2992	 * Because we only use single Tx/Rx/Rx return ring, use
2993	 * minimum status block size except BCM5700 AX/BX which
2994	 * seems to want to see full status block size regardless
2995	 * of configured number of ring.
2996	 */
2997	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2998	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2999		sbsz = BGE_STATUS_BLK_SZ;
3000	else
3001		sbsz = 32;
3002	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3003	    &sc->bge_cdata.bge_status_tag,
3004	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3005	    &sc->bge_cdata.bge_status_map,
3006	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3007	if (error)
3008		return (error);
3009
3010	/* Create tag for statistics block. */
3011	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3012	    &sc->bge_cdata.bge_stats_tag,
3013	    (uint8_t **)&sc->bge_ldata.bge_stats,
3014	    &sc->bge_cdata.bge_stats_map,
3015	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3016	if (error)
3017		return (error);
3018
3019	/* Create tag for jumbo RX ring. */
3020	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3021		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3022		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3023		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3024		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3025		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3026		if (error)
3027			return (error);
3028	}
3029
3030	/* Create parent tag for buffers. */
3031	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3032		/*
3033		 * XXX
3034		 * watchdog timeout issue was observed on BCM5704 which
3035		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3036		 * Both limiting DMA address space to 32bits and flushing
3037		 * mailbox write seem to address the issue.
3038		 */
3039		if (sc->bge_pcixcap != 0)
3040			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3041	}
3042	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3043	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3044	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3045	    &sc->bge_cdata.bge_buffer_tag);
3046	if (error != 0) {
3047		device_printf(sc->bge_dev,
3048		    "could not allocate buffer dma tag\n");
3049		return (ENOMEM);
3050	}
3051	/* Create tag for Tx mbufs. */
3052	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3053		txsegsz = BGE_TSOSEG_SZ;
3054		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3055	} else {
3056		txsegsz = MCLBYTES;
3057		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3058	}
3059	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3060	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3061	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3062	    &sc->bge_cdata.bge_tx_mtag);
3063
3064	if (error) {
3065		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3066		return (ENOMEM);
3067	}
3068
3069	/* Create tag for Rx mbufs. */
3070	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3071		rxmaxsegsz = MJUM9BYTES;
3072	else
3073		rxmaxsegsz = MCLBYTES;
3074	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3075	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3076	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3077
3078	if (error) {
3079		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3080		return (ENOMEM);
3081	}
3082
3083	/* Create DMA maps for RX buffers. */
3084	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3085	    &sc->bge_cdata.bge_rx_std_sparemap);
3086	if (error) {
3087		device_printf(sc->bge_dev,
3088		    "can't create spare DMA map for RX\n");
3089		return (ENOMEM);
3090	}
3091	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3092		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3093			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3094		if (error) {
3095			device_printf(sc->bge_dev,
3096			    "can't create DMA map for RX\n");
3097			return (ENOMEM);
3098		}
3099	}
3100
3101	/* Create DMA maps for TX buffers. */
3102	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3103		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3104			    &sc->bge_cdata.bge_tx_dmamap[i]);
3105		if (error) {
3106			device_printf(sc->bge_dev,
3107			    "can't create DMA map for TX\n");
3108			return (ENOMEM);
3109		}
3110	}
3111
3112	/* Create tags for jumbo RX buffers. */
3113	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3114		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3115		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3116		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3117		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3118		if (error) {
3119			device_printf(sc->bge_dev,
3120			    "could not allocate jumbo dma tag\n");
3121			return (ENOMEM);
3122		}
3123		/* Create DMA maps for jumbo RX buffers. */
3124		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3125		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3126		if (error) {
3127			device_printf(sc->bge_dev,
3128			    "can't create spare DMA map for jumbo RX\n");
3129			return (ENOMEM);
3130		}
3131		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3132			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3133				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3134			if (error) {
3135				device_printf(sc->bge_dev,
3136				    "can't create DMA map for jumbo RX\n");
3137				return (ENOMEM);
3138			}
3139		}
3140	}
3141
3142	return (0);
3143}
3144
3145/*
3146 * Return true if this device has more than one port.
3147 */
3148static int
3149bge_has_multiple_ports(struct bge_softc *sc)
3150{
3151	device_t dev = sc->bge_dev;
3152	u_int b, d, f, fscan, s;
3153
3154	d = pci_get_domain(dev);
3155	b = pci_get_bus(dev);
3156	s = pci_get_slot(dev);
3157	f = pci_get_function(dev);
3158	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3159		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3160			return (1);
3161	return (0);
3162}
3163
3164/*
3165 * Return true if MSI can be used with this device.
3166 */
3167static int
3168bge_can_use_msi(struct bge_softc *sc)
3169{
3170	int can_use_msi = 0;
3171
3172	if (sc->bge_msi == 0)
3173		return (0);
3174
3175	/* Disable MSI for polling(4). */
3176#ifdef DEVICE_POLLING
3177	return (0);
3178#endif
3179	switch (sc->bge_asicrev) {
3180	case BGE_ASICREV_BCM5714_A0:
3181	case BGE_ASICREV_BCM5714:
3182		/*
3183		 * Apparently, MSI doesn't work when these chips are
3184		 * configured in single-port mode.
3185		 */
3186		if (bge_has_multiple_ports(sc))
3187			can_use_msi = 1;
3188		break;
3189	case BGE_ASICREV_BCM5750:
3190		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3191		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3192			can_use_msi = 1;
3193		break;
3194	default:
3195		if (BGE_IS_575X_PLUS(sc))
3196			can_use_msi = 1;
3197	}
3198	return (can_use_msi);
3199}
3200
3201static int
3202bge_mbox_reorder(struct bge_softc *sc)
3203{
3204	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3205	static const struct mbox_reorder {
3206		const uint16_t vendor;
3207		const uint16_t device;
3208		const char *desc;
3209	} mbox_reorder_lists[] = {
3210		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3211	};
3212	devclass_t pci, pcib;
3213	device_t bus, dev;
3214	int i;
3215
3216	pci = devclass_find("pci");
3217	pcib = devclass_find("pcib");
3218	dev = sc->bge_dev;
3219	bus = device_get_parent(dev);
3220	for (;;) {
3221		dev = device_get_parent(bus);
3222		bus = device_get_parent(dev);
3223		if (device_get_devclass(dev) != pcib)
3224			break;
3225		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3226			if (pci_get_vendor(dev) ==
3227			    mbox_reorder_lists[i].vendor &&
3228			    pci_get_device(dev) ==
3229			    mbox_reorder_lists[i].device) {
3230				device_printf(sc->bge_dev,
3231				    "enabling MBOX workaround for %s\n",
3232				    mbox_reorder_lists[i].desc);
3233				return (1);
3234			}
3235		}
3236		if (device_get_devclass(bus) != pci)
3237			break;
3238	}
3239	return (0);
3240}
3241
3242static void
3243bge_devinfo(struct bge_softc *sc)
3244{
3245	uint32_t cfg, clk;
3246
3247	device_printf(sc->bge_dev,
3248	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3249	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3250	if (sc->bge_flags & BGE_FLAG_PCIE)
3251		printf("PCI-E\n");
3252	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3253		printf("PCI-X ");
3254		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3255		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3256			clk = 133;
3257		else {
3258			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3259			switch (clk) {
3260			case 0:
3261				clk = 33;
3262				break;
3263			case 2:
3264				clk = 50;
3265				break;
3266			case 4:
3267				clk = 66;
3268				break;
3269			case 6:
3270				clk = 100;
3271				break;
3272			case 7:
3273				clk = 133;
3274				break;
3275			}
3276		}
3277		printf("%u MHz\n", clk);
3278	} else {
3279		if (sc->bge_pcixcap != 0)
3280			printf("PCI on PCI-X ");
3281		else
3282			printf("PCI ");
3283		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3284		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3285			clk = 66;
3286		else
3287			clk = 33;
3288		if (cfg & BGE_PCISTATE_32BIT_BUS)
3289			printf("%u MHz; 32bit\n", clk);
3290		else
3291			printf("%u MHz; 64bit\n", clk);
3292	}
3293}
3294
3295static int
3296bge_attach(device_t dev)
3297{
3298	struct ifnet *ifp;
3299	struct bge_softc *sc;
3300	uint32_t hwcfg = 0, misccfg, pcistate;
3301	u_char eaddr[ETHER_ADDR_LEN];
3302	int capmask, error, reg, rid, trys;
3303
3304	sc = device_get_softc(dev);
3305	sc->bge_dev = dev;
3306
3307	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3308	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3309	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3310
3311	pci_enable_busmaster(dev);
3312
3313	/*
3314	 * Allocate control/status registers.
3315	 */
3316	rid = PCIR_BAR(0);
3317	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3318	    RF_ACTIVE);
3319
3320	if (sc->bge_res == NULL) {
3321		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3322		error = ENXIO;
3323		goto fail;
3324	}
3325
3326	/* Save various chip information. */
3327	sc->bge_func_addr = pci_get_function(dev);
3328	sc->bge_chipid = bge_chipid(dev);
3329	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3330	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3331
3332	/* Set default PHY address. */
3333	sc->bge_phy_addr = 1;
3334	 /*
3335	  * PHY address mapping for various devices.
3336	  *
3337	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3338	  * ---------+-------+-------+-------+-------+
3339	  * BCM57XX  |   1   |   X   |   X   |   X   |
3340	  * BCM5704  |   1   |   X   |   1   |   X   |
3341	  * BCM5717  |   1   |   8   |   2   |   9   |
3342	  * BCM5719  |   1   |   8   |   2   |   9   |
3343	  * BCM5720  |   1   |   8   |   2   |   9   |
3344	  *
3345	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3346	  * ---------+-------+-------+-------+-------+
3347	  * BCM57XX  |   X   |   X   |   X   |   X   |
3348	  * BCM5704  |   X   |   X   |   X   |   X   |
3349	  * BCM5717  |   X   |   X   |   X   |   X   |
3350	  * BCM5719  |   3   |   10  |   4   |   11  |
3351	  * BCM5720  |   X   |   X   |   X   |   X   |
3352	  *
3353	  * Other addresses may respond but they are not
3354	  * IEEE compliant PHYs and should be ignored.
3355	  */
3356	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3357	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3358	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3359		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3360			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3361			    BGE_SGDIGSTS_IS_SERDES)
3362				sc->bge_phy_addr = sc->bge_func_addr + 8;
3363			else
3364				sc->bge_phy_addr = sc->bge_func_addr + 1;
3365		} else {
3366			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3367			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3368				sc->bge_phy_addr = sc->bge_func_addr + 8;
3369			else
3370				sc->bge_phy_addr = sc->bge_func_addr + 1;
3371		}
3372	}
3373
3374	if (bge_has_eaddr(sc))
3375		sc->bge_flags |= BGE_FLAG_EADDR;
3376
3377	/* Save chipset family. */
3378	switch (sc->bge_asicrev) {
3379	case BGE_ASICREV_BCM5762:
3380	case BGE_ASICREV_BCM57765:
3381	case BGE_ASICREV_BCM57766:
3382		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3383		/* FALLTHROUGH */
3384	case BGE_ASICREV_BCM5717:
3385	case BGE_ASICREV_BCM5719:
3386	case BGE_ASICREV_BCM5720:
3387		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3388		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3389		    BGE_FLAG_JUMBO_FRAME;
3390		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3391		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3392			/*
3393			 * Enable work around for DMA engine miscalculation
3394			 * of TXMBUF available space.
3395			 */
3396			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3397			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3398			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3399				/* Jumbo frame on BCM5719 A0 does not work. */
3400				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3401			}
3402		}
3403		break;
3404	case BGE_ASICREV_BCM5755:
3405	case BGE_ASICREV_BCM5761:
3406	case BGE_ASICREV_BCM5784:
3407	case BGE_ASICREV_BCM5785:
3408	case BGE_ASICREV_BCM5787:
3409	case BGE_ASICREV_BCM57780:
3410		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3411		    BGE_FLAG_5705_PLUS;
3412		break;
3413	case BGE_ASICREV_BCM5700:
3414	case BGE_ASICREV_BCM5701:
3415	case BGE_ASICREV_BCM5703:
3416	case BGE_ASICREV_BCM5704:
3417		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3418		break;
3419	case BGE_ASICREV_BCM5714_A0:
3420	case BGE_ASICREV_BCM5780:
3421	case BGE_ASICREV_BCM5714:
3422		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3423		/* FALLTHROUGH */
3424	case BGE_ASICREV_BCM5750:
3425	case BGE_ASICREV_BCM5752:
3426	case BGE_ASICREV_BCM5906:
3427		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3428		/* FALLTHROUGH */
3429	case BGE_ASICREV_BCM5705:
3430		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3431		break;
3432	}
3433
3434	/* Identify chips with APE processor. */
3435	switch (sc->bge_asicrev) {
3436	case BGE_ASICREV_BCM5717:
3437	case BGE_ASICREV_BCM5719:
3438	case BGE_ASICREV_BCM5720:
3439	case BGE_ASICREV_BCM5761:
3440	case BGE_ASICREV_BCM5762:
3441		sc->bge_flags |= BGE_FLAG_APE;
3442		break;
3443	}
3444
3445	/* Chips with APE need BAR2 access for APE registers/memory. */
3446	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3447		rid = PCIR_BAR(2);
3448		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3449		    RF_ACTIVE);
3450		if (sc->bge_res2 == NULL) {
3451			device_printf (sc->bge_dev,
3452			    "couldn't map BAR2 memory\n");
3453			error = ENXIO;
3454			goto fail;
3455		}
3456
3457		/* Enable APE register/memory access by host driver. */
3458		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3459		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3460		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3461		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3462		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3463
3464		bge_ape_lock_init(sc);
3465		bge_ape_read_fw_ver(sc);
3466	}
3467
3468	/* Add SYSCTLs, requires the chipset family to be set. */
3469	bge_add_sysctls(sc);
3470
3471	/* Identify the chips that use an CPMU. */
3472	if (BGE_IS_5717_PLUS(sc) ||
3473	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3474	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3475	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3476	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3477		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3478	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3479		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3480	else
3481		sc->bge_mi_mode = BGE_MIMODE_BASE;
3482	/* Enable auto polling for BCM570[0-5]. */
3483	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3484		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3485
3486	/*
3487	 * All Broadcom controllers have 4GB boundary DMA bug.
3488	 * Whenever an address crosses a multiple of the 4GB boundary
3489	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3490	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3491	 * state machine will lockup and cause the device to hang.
3492	 */
3493	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3494
3495	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3496	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3497		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3498
3499	/*
3500	 * BCM5719 cannot handle DMA requests for DMA segments that
3501	 * have larger than 4KB in size.  However the maximum DMA
3502	 * segment size created in DMA tag is 4KB for TSO, so we
3503	 * wouldn't encounter the issue here.
3504	 */
3505	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3506		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3507
3508	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3509	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3510		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3511		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3512			sc->bge_flags |= BGE_FLAG_5788;
3513	}
3514
3515	capmask = BMSR_DEFCAPMASK;
3516	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3517	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3518	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3519	    pci_get_vendor(dev) == BCOM_VENDORID &&
3520	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3521	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3522	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3523	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3524	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3525	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3526	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3527	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3528	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3529	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3530	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3531		/* These chips are 10/100 only. */
3532		capmask &= ~BMSR_EXTSTAT;
3533		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3534	}
3535
3536	/*
3537	 * Some controllers seem to require a special firmware to use
3538	 * TSO. But the firmware is not available to FreeBSD and Linux
3539	 * claims that the TSO performed by the firmware is slower than
3540	 * hardware based TSO. Moreover the firmware based TSO has one
3541	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3542	 * header is greater than 80 bytes. A workaround for the TSO
3543	 * bug exist but it seems it's too expensive than not using
3544	 * TSO at all. Some hardwares also have the TSO bug so limit
3545	 * the TSO to the controllers that are not affected TSO issues
3546	 * (e.g. 5755 or higher).
3547	 */
3548	if (BGE_IS_5717_PLUS(sc)) {
3549		/* BCM5717 requires different TSO configuration. */
3550		sc->bge_flags |= BGE_FLAG_TSO3;
3551		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3552		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3553			/* TSO on BCM5719 A0 does not work. */
3554			sc->bge_flags &= ~BGE_FLAG_TSO3;
3555		}
3556	} else if (BGE_IS_5755_PLUS(sc)) {
3557		/*
3558		 * BCM5754 and BCM5787 shares the same ASIC id so
3559		 * explicit device id check is required.
3560		 * Due to unknown reason TSO does not work on BCM5755M.
3561		 */
3562		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3563		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3564		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3565			sc->bge_flags |= BGE_FLAG_TSO;
3566	}
3567
3568	/*
3569	 * Check if this is a PCI-X or PCI Express device.
3570	 */
3571	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3572		/*
3573		 * Found a PCI Express capabilities register, this
3574		 * must be a PCI Express device.
3575		 */
3576		sc->bge_flags |= BGE_FLAG_PCIE;
3577		sc->bge_expcap = reg;
3578		/* Extract supported maximum payload size. */
3579		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3580		    PCIER_DEVICE_CAP, 2);
3581		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3582		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3583		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3584			sc->bge_expmrq = 2048;
3585		else
3586			sc->bge_expmrq = 4096;
3587		pci_set_max_read_req(dev, sc->bge_expmrq);
3588	} else {
3589		/*
3590		 * Check if the device is in PCI-X Mode.
3591		 * (This bit is not valid on PCI Express controllers.)
3592		 */
3593		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3594			sc->bge_pcixcap = reg;
3595		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3596		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3597			sc->bge_flags |= BGE_FLAG_PCIX;
3598	}
3599
3600	/*
3601	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3602	 * not actually a MAC controller bug but an issue with the embedded
3603	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3604	 */
3605	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3606		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3607	/*
3608	 * Some PCI-X bridges are known to trigger write reordering to
3609	 * the mailbox registers. Typical phenomena is watchdog timeouts
3610	 * caused by out-of-order TX completions.  Enable workaround for
3611	 * PCI-X devices that live behind these bridges.
3612	 * Note, PCI-X controllers can run in PCI mode so we can't use
3613	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3614	 */
3615	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3616		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3617	/*
3618	 * Allocate the interrupt, using MSI if possible.  These devices
3619	 * support 8 MSI messages, but only the first one is used in
3620	 * normal operation.
3621	 */
3622	rid = 0;
3623	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3624		sc->bge_msicap = reg;
3625		reg = 1;
3626		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3627			rid = 1;
3628			sc->bge_flags |= BGE_FLAG_MSI;
3629		}
3630	}
3631
3632	/*
3633	 * All controllers except BCM5700 supports tagged status but
3634	 * we use tagged status only for MSI case on BCM5717. Otherwise
3635	 * MSI on BCM5717 does not work.
3636	 */
3637#ifndef DEVICE_POLLING
3638	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3639		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3640#endif
3641
3642	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3643	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3644
3645	if (sc->bge_irq == NULL) {
3646		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3647		error = ENXIO;
3648		goto fail;
3649	}
3650
3651	bge_devinfo(sc);
3652
3653	sc->bge_asf_mode = 0;
3654	/* No ASF if APE present. */
3655	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3656		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3657		    BGE_SRAM_DATA_SIG_MAGIC)) {
3658			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3659			    BGE_HWCFG_ASF) {
3660				sc->bge_asf_mode |= ASF_ENABLE;
3661				sc->bge_asf_mode |= ASF_STACKUP;
3662				if (BGE_IS_575X_PLUS(sc))
3663					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3664			}
3665		}
3666	}
3667
3668	bge_stop_fw(sc);
3669	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3670	if (bge_reset(sc)) {
3671		device_printf(sc->bge_dev, "chip reset failed\n");
3672		error = ENXIO;
3673		goto fail;
3674	}
3675
3676	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3677	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3678
3679	if (bge_chipinit(sc)) {
3680		device_printf(sc->bge_dev, "chip initialization failed\n");
3681		error = ENXIO;
3682		goto fail;
3683	}
3684
3685	error = bge_get_eaddr(sc, eaddr);
3686	if (error) {
3687		device_printf(sc->bge_dev,
3688		    "failed to read station address\n");
3689		error = ENXIO;
3690		goto fail;
3691	}
3692
3693	/* 5705 limits RX return ring to 512 entries. */
3694	if (BGE_IS_5717_PLUS(sc))
3695		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3696	else if (BGE_IS_5705_PLUS(sc))
3697		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3698	else
3699		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3700
3701	if (bge_dma_alloc(sc)) {
3702		device_printf(sc->bge_dev,
3703		    "failed to allocate DMA resources\n");
3704		error = ENXIO;
3705		goto fail;
3706	}
3707
3708	/* Set default tuneable values. */
3709	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3710	sc->bge_rx_coal_ticks = 150;
3711	sc->bge_tx_coal_ticks = 150;
3712	sc->bge_rx_max_coal_bds = 10;
3713	sc->bge_tx_max_coal_bds = 10;
3714
3715	/* Initialize checksum features to use. */
3716	sc->bge_csum_features = BGE_CSUM_FEATURES;
3717	if (sc->bge_forced_udpcsum != 0)
3718		sc->bge_csum_features |= CSUM_UDP;
3719
3720	/* Set up ifnet structure */
3721	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3722	if (ifp == NULL) {
3723		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3724		error = ENXIO;
3725		goto fail;
3726	}
3727	ifp->if_softc = sc;
3728	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3729	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3730	ifp->if_ioctl = bge_ioctl;
3731	ifp->if_start = bge_start;
3732	ifp->if_init = bge_init;
3733	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3734	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3735	IFQ_SET_READY(&ifp->if_snd);
3736	ifp->if_hwassist = sc->bge_csum_features;
3737	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3738	    IFCAP_VLAN_MTU;
3739	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3740		ifp->if_hwassist |= CSUM_TSO;
3741		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3742	}
3743#ifdef IFCAP_VLAN_HWCSUM
3744	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3745#endif
3746	ifp->if_capenable = ifp->if_capabilities;
3747#ifdef DEVICE_POLLING
3748	ifp->if_capabilities |= IFCAP_POLLING;
3749#endif
3750
3751	/*
3752	 * 5700 B0 chips do not support checksumming correctly due
3753	 * to hardware bugs.
3754	 */
3755	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3756		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3757		ifp->if_capenable &= ~IFCAP_HWCSUM;
3758		ifp->if_hwassist = 0;
3759	}
3760
3761	/*
3762	 * Figure out what sort of media we have by checking the
3763	 * hardware config word in the first 32k of NIC internal memory,
3764	 * or fall back to examining the EEPROM if necessary.
3765	 * Note: on some BCM5700 cards, this value appears to be unset.
3766	 * If that's the case, we have to rely on identifying the NIC
3767	 * by its PCI subsystem ID, as we do below for the SysKonnect
3768	 * SK-9D41.
3769	 */
3770	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3771		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3772	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3773	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3774		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3775		    sizeof(hwcfg))) {
3776			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3777			error = ENXIO;
3778			goto fail;
3779		}
3780		hwcfg = ntohl(hwcfg);
3781	}
3782
3783	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3784	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3785	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3786		if (BGE_IS_5705_PLUS(sc)) {
3787			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3788			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3789		} else
3790			sc->bge_flags |= BGE_FLAG_TBI;
3791	}
3792
3793	/* Set various PHY bug flags. */
3794	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3795	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3796		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3797	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3798	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3799		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3800	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3801		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3802	if (pci_get_subvendor(dev) == DELL_VENDORID)
3803		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3804	if ((BGE_IS_5705_PLUS(sc)) &&
3805	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3806	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3807	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3808	    !BGE_IS_5717_PLUS(sc)) {
3809		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3810		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3811		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3812		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3813			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3814			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3815				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3816			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3817				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3818		} else
3819			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3820	}
3821
3822	/*
3823	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3824	 * 5705 A0 and A1 chips.
3825	 */
3826	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3827	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3828	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3829	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3830		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3831
3832	if (sc->bge_flags & BGE_FLAG_TBI) {
3833		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3834		    bge_ifmedia_sts);
3835		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3836		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3837		    0, NULL);
3838		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3839		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3840		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3841	} else {
3842		/*
3843		 * Do transceiver setup and tell the firmware the
3844		 * driver is down so we can try to get access the
3845		 * probe if ASF is running.  Retry a couple of times
3846		 * if we get a conflict with the ASF firmware accessing
3847		 * the PHY.
3848		 */
3849		trys = 0;
3850		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3851again:
3852		bge_asf_driver_up(sc);
3853
3854		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3855		    bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3856		    MIIF_DOPAUSE);
3857		if (error != 0) {
3858			if (trys++ < 4) {
3859				device_printf(sc->bge_dev, "Try again\n");
3860				bge_miibus_writereg(sc->bge_dev,
3861				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3862				goto again;
3863			}
3864			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3865			goto fail;
3866		}
3867
3868		/*
3869		 * Now tell the firmware we are going up after probing the PHY
3870		 */
3871		if (sc->bge_asf_mode & ASF_STACKUP)
3872			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3873	}
3874
3875	/*
3876	 * When using the BCM5701 in PCI-X mode, data corruption has
3877	 * been observed in the first few bytes of some received packets.
3878	 * Aligning the packet buffer in memory eliminates the corruption.
3879	 * Unfortunately, this misaligns the packet payloads.  On platforms
3880	 * which do not support unaligned accesses, we will realign the
3881	 * payloads by copying the received packets.
3882	 */
3883	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3884	    sc->bge_flags & BGE_FLAG_PCIX)
3885                sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3886
3887	/*
3888	 * Call MI attach routine.
3889	 */
3890	ether_ifattach(ifp, eaddr);
3891
3892	/* Tell upper layer we support long frames. */
3893	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3894
3895	/*
3896	 * Hookup IRQ last.
3897	 */
3898	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3899		/* Take advantage of single-shot MSI. */
3900		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3901		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3902		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3903		    taskqueue_thread_enqueue, &sc->bge_tq);
3904		if (sc->bge_tq == NULL) {
3905			device_printf(dev, "could not create taskqueue.\n");
3906			ether_ifdetach(ifp);
3907			error = ENOMEM;
3908			goto fail;
3909		}
3910		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3911		    "%s taskq", device_get_nameunit(sc->bge_dev));
3912		if (error != 0) {
3913			device_printf(dev, "could not start threads.\n");
3914			ether_ifdetach(ifp);
3915			goto fail;
3916		}
3917		error = bus_setup_intr(dev, sc->bge_irq,
3918		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3919		    &sc->bge_intrhand);
3920	} else
3921		error = bus_setup_intr(dev, sc->bge_irq,
3922		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3923		    &sc->bge_intrhand);
3924
3925	if (error) {
3926		ether_ifdetach(ifp);
3927		device_printf(sc->bge_dev, "couldn't set up irq\n");
3928	}
3929
3930fail:
3931	if (error)
3932		bge_detach(dev);
3933	return (error);
3934}
3935
3936static int
3937bge_detach(device_t dev)
3938{
3939	struct bge_softc *sc;
3940	struct ifnet *ifp;
3941
3942	sc = device_get_softc(dev);
3943	ifp = sc->bge_ifp;
3944
3945#ifdef DEVICE_POLLING
3946	if (ifp->if_capenable & IFCAP_POLLING)
3947		ether_poll_deregister(ifp);
3948#endif
3949
3950	if (device_is_attached(dev)) {
3951		ether_ifdetach(ifp);
3952		BGE_LOCK(sc);
3953		bge_stop(sc);
3954		BGE_UNLOCK(sc);
3955		callout_drain(&sc->bge_stat_ch);
3956	}
3957
3958	if (sc->bge_tq)
3959		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3960
3961	if (sc->bge_flags & BGE_FLAG_TBI)
3962		ifmedia_removeall(&sc->bge_ifmedia);
3963	else if (sc->bge_miibus != NULL) {
3964		bus_generic_detach(dev);
3965		device_delete_child(dev, sc->bge_miibus);
3966	}
3967
3968	bge_release_resources(sc);
3969
3970	return (0);
3971}
3972
3973static void
3974bge_release_resources(struct bge_softc *sc)
3975{
3976	device_t dev;
3977
3978	dev = sc->bge_dev;
3979
3980	if (sc->bge_tq != NULL)
3981		taskqueue_free(sc->bge_tq);
3982
3983	if (sc->bge_intrhand != NULL)
3984		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3985
3986	if (sc->bge_irq != NULL) {
3987		bus_release_resource(dev, SYS_RES_IRQ,
3988		    rman_get_rid(sc->bge_irq), sc->bge_irq);
3989		pci_release_msi(dev);
3990	}
3991
3992	if (sc->bge_res != NULL)
3993		bus_release_resource(dev, SYS_RES_MEMORY,
3994		    rman_get_rid(sc->bge_res), sc->bge_res);
3995
3996	if (sc->bge_res2 != NULL)
3997		bus_release_resource(dev, SYS_RES_MEMORY,
3998		    rman_get_rid(sc->bge_res2), sc->bge_res2);
3999
4000	if (sc->bge_ifp != NULL)
4001		if_free(sc->bge_ifp);
4002
4003	bge_dma_free(sc);
4004
4005	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4006		BGE_LOCK_DESTROY(sc);
4007}
4008
4009static int
4010bge_reset(struct bge_softc *sc)
4011{
4012	device_t dev;
4013	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4014	void (*write_op)(struct bge_softc *, int, int);
4015	uint16_t devctl;
4016	int i;
4017
4018	dev = sc->bge_dev;
4019
4020	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4021	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4022		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4023	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4024
4025	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4026	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4027		if (sc->bge_flags & BGE_FLAG_PCIE)
4028			write_op = bge_writemem_direct;
4029		else
4030			write_op = bge_writemem_ind;
4031	} else
4032		write_op = bge_writereg_ind;
4033
4034	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4035	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4036		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4037		for (i = 0; i < 8000; i++) {
4038			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4039			    BGE_NVRAMSWARB_GNT1)
4040				break;
4041			DELAY(20);
4042		}
4043		if (i == 8000) {
4044			if (bootverbose)
4045				device_printf(dev, "NVRAM lock timedout!\n");
4046		}
4047	}
4048	/* Take APE lock when performing reset. */
4049	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4050
4051	/* Save some important PCI state. */
4052	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4053	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4054
4055	pci_write_config(dev, BGE_PCI_MISC_CTL,
4056	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4057	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4058
4059	/* Disable fastboot on controllers that support it. */
4060	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4061	    BGE_IS_5755_PLUS(sc)) {
4062		if (bootverbose)
4063			device_printf(dev, "Disabling fastboot\n");
4064		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4065	}
4066
4067	/*
4068	 * Write the magic number to SRAM at offset 0xB50.
4069	 * When firmware finishes its initialization it will
4070	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4071	 */
4072	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4073
4074	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4075
4076	/* XXX: Broadcom Linux driver. */
4077	if (sc->bge_flags & BGE_FLAG_PCIE) {
4078		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4079		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4080			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4081				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4082		}
4083		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4084			/* Prevent PCIE link training during global reset */
4085			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4086			reset |= 1 << 29;
4087		}
4088	}
4089
4090	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4091		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4092		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4093		    val | BGE_VCPU_STATUS_DRV_RESET);
4094		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4095		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4096		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4097	}
4098
4099	/*
4100	 * Set GPHY Power Down Override to leave GPHY
4101	 * powered up in D0 uninitialized.
4102	 */
4103	if (BGE_IS_5705_PLUS(sc) &&
4104	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4105		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4106
4107	/* Issue global reset */
4108	write_op(sc, BGE_MISC_CFG, reset);
4109
4110	if (sc->bge_flags & BGE_FLAG_PCIE)
4111		DELAY(100 * 1000);
4112	else
4113		DELAY(1000);
4114
4115	/* XXX: Broadcom Linux driver. */
4116	if (sc->bge_flags & BGE_FLAG_PCIE) {
4117		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4118			DELAY(500000); /* wait for link training to complete */
4119			val = pci_read_config(dev, 0xC4, 4);
4120			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4121		}
4122		devctl = pci_read_config(dev,
4123		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4124		/* Clear enable no snoop and disable relaxed ordering. */
4125		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4126		    PCIEM_CTL_NOSNOOP_ENABLE);
4127		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4128		    devctl, 2);
4129		pci_set_max_read_req(dev, sc->bge_expmrq);
4130		/* Clear error status. */
4131		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4132		    PCIEM_STA_CORRECTABLE_ERROR |
4133		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4134		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4135	}
4136
4137	/* Reset some of the PCI state that got zapped by reset. */
4138	pci_write_config(dev, BGE_PCI_MISC_CTL,
4139	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4140	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4141	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4142	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4143	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4144		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4145	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4146		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4147		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4148		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4149	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4150	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4151	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4152	/*
4153	 * Disable PCI-X relaxed ordering to ensure status block update
4154	 * comes first then packet buffer DMA. Otherwise driver may
4155	 * read stale status block.
4156	 */
4157	if (sc->bge_flags & BGE_FLAG_PCIX) {
4158		devctl = pci_read_config(dev,
4159		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4160		devctl &= ~PCIXM_COMMAND_ERO;
4161		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4162			devctl &= ~PCIXM_COMMAND_MAX_READ;
4163			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4164		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4165			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4166			    PCIXM_COMMAND_MAX_READ);
4167			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4168		}
4169		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4170		    devctl, 2);
4171	}
4172	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4173	if (BGE_IS_5714_FAMILY(sc)) {
4174		/* This chip disables MSI on reset. */
4175		if (sc->bge_flags & BGE_FLAG_MSI) {
4176			val = pci_read_config(dev,
4177			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4178			pci_write_config(dev,
4179			    sc->bge_msicap + PCIR_MSI_CTRL,
4180			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4181			val = CSR_READ_4(sc, BGE_MSI_MODE);
4182			CSR_WRITE_4(sc, BGE_MSI_MODE,
4183			    val | BGE_MSIMODE_ENABLE);
4184		}
4185		val = CSR_READ_4(sc, BGE_MARB_MODE);
4186		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4187	} else
4188		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4189
4190	/* Fix up byte swapping. */
4191	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4192
4193	val = CSR_READ_4(sc, BGE_MAC_MODE);
4194	val = (val & ~mac_mode_mask) | mac_mode;
4195	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4196	DELAY(40);
4197
4198	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4199
4200	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4201		for (i = 0; i < BGE_TIMEOUT; i++) {
4202			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4203			if (val & BGE_VCPU_STATUS_INIT_DONE)
4204				break;
4205			DELAY(100);
4206		}
4207		if (i == BGE_TIMEOUT) {
4208			device_printf(dev, "reset timed out\n");
4209			return (1);
4210		}
4211	} else {
4212		/*
4213		 * Poll until we see the 1's complement of the magic number.
4214		 * This indicates that the firmware initialization is complete.
4215		 * We expect this to fail if no chip containing the Ethernet
4216		 * address is fitted though.
4217		 */
4218		for (i = 0; i < BGE_TIMEOUT; i++) {
4219			DELAY(10);
4220			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4221			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4222				break;
4223		}
4224
4225		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4226			device_printf(dev,
4227			    "firmware handshake timed out, found 0x%08x\n",
4228			    val);
4229		/* BCM57765 A0 needs additional time before accessing. */
4230		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4231			DELAY(10 * 1000);	/* XXX */
4232	}
4233
4234	/*
4235	 * The 5704 in TBI mode apparently needs some special
4236	 * adjustment to insure the SERDES drive level is set
4237	 * to 1.2V.
4238	 */
4239	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4240	    sc->bge_flags & BGE_FLAG_TBI) {
4241		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4242		val = (val & ~0xFFF) | 0x880;
4243		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4244	}
4245
4246	/* XXX: Broadcom Linux driver. */
4247	if (sc->bge_flags & BGE_FLAG_PCIE &&
4248	    !BGE_IS_5717_PLUS(sc) &&
4249	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4250	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4251		/* Enable Data FIFO protection. */
4252		val = CSR_READ_4(sc, 0x7C00);
4253		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4254	}
4255
4256	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4257		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4258		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4259
4260	return (0);
4261}
4262
4263static __inline void
4264bge_rxreuse_std(struct bge_softc *sc, int i)
4265{
4266	struct bge_rx_bd *r;
4267
4268	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4269	r->bge_flags = BGE_RXBDFLAG_END;
4270	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4271	r->bge_idx = i;
4272	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4273}
4274
4275static __inline void
4276bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4277{
4278	struct bge_extrx_bd *r;
4279
4280	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4281	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4282	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4283	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4284	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4285	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4286	r->bge_idx = i;
4287	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4288}
4289
4290/*
4291 * Frame reception handling. This is called if there's a frame
4292 * on the receive return list.
4293 *
4294 * Note: we have to be able to handle two possibilities here:
4295 * 1) the frame is from the jumbo receive ring
4296 * 2) the frame is from the standard receive ring
4297 */
4298
4299static int
4300bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4301{
4302	struct ifnet *ifp;
4303	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4304	uint16_t rx_cons;
4305
4306	rx_cons = sc->bge_rx_saved_considx;
4307
4308	/* Nothing to do. */
4309	if (rx_cons == rx_prod)
4310		return (rx_npkts);
4311
4312	ifp = sc->bge_ifp;
4313
4314	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4315	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4316	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4317	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4318	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4319	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4320	    (MCLBYTES - ETHER_ALIGN))
4321		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4322		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4323
4324	while (rx_cons != rx_prod) {
4325		struct bge_rx_bd	*cur_rx;
4326		uint32_t		rxidx;
4327		struct mbuf		*m = NULL;
4328		uint16_t		vlan_tag = 0;
4329		int			have_tag = 0;
4330
4331#ifdef DEVICE_POLLING
4332		if (ifp->if_capenable & IFCAP_POLLING) {
4333			if (sc->rxcycles <= 0)
4334				break;
4335			sc->rxcycles--;
4336		}
4337#endif
4338
4339		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4340
4341		rxidx = cur_rx->bge_idx;
4342		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4343
4344		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4345		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4346			have_tag = 1;
4347			vlan_tag = cur_rx->bge_vlan_tag;
4348		}
4349
4350		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4351			jumbocnt++;
4352			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4353			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4354				bge_rxreuse_jumbo(sc, rxidx);
4355				continue;
4356			}
4357			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4358				bge_rxreuse_jumbo(sc, rxidx);
4359				ifp->if_iqdrops++;
4360				continue;
4361			}
4362			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4363		} else {
4364			stdcnt++;
4365			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4366			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4367				bge_rxreuse_std(sc, rxidx);
4368				continue;
4369			}
4370			if (bge_newbuf_std(sc, rxidx) != 0) {
4371				bge_rxreuse_std(sc, rxidx);
4372				ifp->if_iqdrops++;
4373				continue;
4374			}
4375			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4376		}
4377
4378		ifp->if_ipackets++;
4379#ifndef __NO_STRICT_ALIGNMENT
4380		/*
4381		 * For architectures with strict alignment we must make sure
4382		 * the payload is aligned.
4383		 */
4384		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4385			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4386			    cur_rx->bge_len);
4387			m->m_data += ETHER_ALIGN;
4388		}
4389#endif
4390		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4391		m->m_pkthdr.rcvif = ifp;
4392
4393		if (ifp->if_capenable & IFCAP_RXCSUM)
4394			bge_rxcsum(sc, cur_rx, m);
4395
4396		/*
4397		 * If we received a packet with a vlan tag,
4398		 * attach that information to the packet.
4399		 */
4400		if (have_tag) {
4401			m->m_pkthdr.ether_vtag = vlan_tag;
4402			m->m_flags |= M_VLANTAG;
4403		}
4404
4405		if (holdlck != 0) {
4406			BGE_UNLOCK(sc);
4407			(*ifp->if_input)(ifp, m);
4408			BGE_LOCK(sc);
4409		} else
4410			(*ifp->if_input)(ifp, m);
4411		rx_npkts++;
4412
4413		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4414			return (rx_npkts);
4415	}
4416
4417	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4418	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4419	if (stdcnt > 0)
4420		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4421		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4422
4423	if (jumbocnt > 0)
4424		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4425		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4426
4427	sc->bge_rx_saved_considx = rx_cons;
4428	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4429	if (stdcnt)
4430		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4431		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4432	if (jumbocnt)
4433		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4434		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4435#ifdef notyet
4436	/*
4437	 * This register wraps very quickly under heavy packet drops.
4438	 * If you need correct statistics, you can enable this check.
4439	 */
4440	if (BGE_IS_5705_PLUS(sc))
4441		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4442#endif
4443	return (rx_npkts);
4444}
4445
4446static void
4447bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4448{
4449
4450	if (BGE_IS_5717_PLUS(sc)) {
4451		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4452			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4453				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4454				if ((cur_rx->bge_error_flag &
4455				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4456					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4457			}
4458			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4459				m->m_pkthdr.csum_data =
4460				    cur_rx->bge_tcp_udp_csum;
4461				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4462				    CSUM_PSEUDO_HDR;
4463			}
4464		}
4465	} else {
4466		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4467			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4468			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4469				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4470		}
4471		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4472		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4473			m->m_pkthdr.csum_data =
4474			    cur_rx->bge_tcp_udp_csum;
4475			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4476			    CSUM_PSEUDO_HDR;
4477		}
4478	}
4479}
4480
4481static void
4482bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4483{
4484	struct bge_tx_bd *cur_tx;
4485	struct ifnet *ifp;
4486
4487	BGE_LOCK_ASSERT(sc);
4488
4489	/* Nothing to do. */
4490	if (sc->bge_tx_saved_considx == tx_cons)
4491		return;
4492
4493	ifp = sc->bge_ifp;
4494
4495	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4496	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4497	/*
4498	 * Go through our tx ring and free mbufs for those
4499	 * frames that have been sent.
4500	 */
4501	while (sc->bge_tx_saved_considx != tx_cons) {
4502		uint32_t		idx;
4503
4504		idx = sc->bge_tx_saved_considx;
4505		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4506		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4507			ifp->if_opackets++;
4508		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4509			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4510			    sc->bge_cdata.bge_tx_dmamap[idx],
4511			    BUS_DMASYNC_POSTWRITE);
4512			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4513			    sc->bge_cdata.bge_tx_dmamap[idx]);
4514			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4515			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4516		}
4517		sc->bge_txcnt--;
4518		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4519	}
4520
4521	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4522	if (sc->bge_txcnt == 0)
4523		sc->bge_timer = 0;
4524}
4525
4526#ifdef DEVICE_POLLING
4527static int
4528bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4529{
4530	struct bge_softc *sc = ifp->if_softc;
4531	uint16_t rx_prod, tx_cons;
4532	uint32_t statusword;
4533	int rx_npkts = 0;
4534
4535	BGE_LOCK(sc);
4536	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4537		BGE_UNLOCK(sc);
4538		return (rx_npkts);
4539	}
4540
4541	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4542	    sc->bge_cdata.bge_status_map,
4543	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4544	/* Fetch updates from the status block. */
4545	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4546	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4547
4548	statusword = sc->bge_ldata.bge_status_block->bge_status;
4549	/* Clear the status so the next pass only sees the changes. */
4550	sc->bge_ldata.bge_status_block->bge_status = 0;
4551
4552	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4553	    sc->bge_cdata.bge_status_map,
4554	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4555
4556	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4557	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4558		sc->bge_link_evt++;
4559
4560	if (cmd == POLL_AND_CHECK_STATUS)
4561		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4562		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4563		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4564			bge_link_upd(sc);
4565
4566	sc->rxcycles = count;
4567	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4568	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4569		BGE_UNLOCK(sc);
4570		return (rx_npkts);
4571	}
4572	bge_txeof(sc, tx_cons);
4573	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4574		bge_start_locked(ifp);
4575
4576	BGE_UNLOCK(sc);
4577	return (rx_npkts);
4578}
4579#endif /* DEVICE_POLLING */
4580
4581static int
4582bge_msi_intr(void *arg)
4583{
4584	struct bge_softc *sc;
4585
4586	sc = (struct bge_softc *)arg;
4587	/*
4588	 * This interrupt is not shared and controller already
4589	 * disabled further interrupt.
4590	 */
4591	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4592	return (FILTER_HANDLED);
4593}
4594
4595static void
4596bge_intr_task(void *arg, int pending)
4597{
4598	struct bge_softc *sc;
4599	struct ifnet *ifp;
4600	uint32_t status, status_tag;
4601	uint16_t rx_prod, tx_cons;
4602
4603	sc = (struct bge_softc *)arg;
4604	ifp = sc->bge_ifp;
4605
4606	BGE_LOCK(sc);
4607	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4608		BGE_UNLOCK(sc);
4609		return;
4610	}
4611
4612	/* Get updated status block. */
4613	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4614	    sc->bge_cdata.bge_status_map,
4615	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4616
4617	/* Save producer/consumer indices. */
4618	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4619	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4620	status = sc->bge_ldata.bge_status_block->bge_status;
4621	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4622	/* Dirty the status flag. */
4623	sc->bge_ldata.bge_status_block->bge_status = 0;
4624	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4625	    sc->bge_cdata.bge_status_map,
4626	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4627	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4628		status_tag = 0;
4629
4630	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4631		bge_link_upd(sc);
4632
4633	/* Let controller work. */
4634	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4635
4636	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4637	    sc->bge_rx_saved_considx != rx_prod) {
4638		/* Check RX return ring producer/consumer. */
4639		BGE_UNLOCK(sc);
4640		bge_rxeof(sc, rx_prod, 0);
4641		BGE_LOCK(sc);
4642	}
4643	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4644		/* Check TX ring producer/consumer. */
4645		bge_txeof(sc, tx_cons);
4646		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4647			bge_start_locked(ifp);
4648	}
4649	BGE_UNLOCK(sc);
4650}
4651
4652static void
4653bge_intr(void *xsc)
4654{
4655	struct bge_softc *sc;
4656	struct ifnet *ifp;
4657	uint32_t statusword;
4658	uint16_t rx_prod, tx_cons;
4659
4660	sc = xsc;
4661
4662	BGE_LOCK(sc);
4663
4664	ifp = sc->bge_ifp;
4665
4666#ifdef DEVICE_POLLING
4667	if (ifp->if_capenable & IFCAP_POLLING) {
4668		BGE_UNLOCK(sc);
4669		return;
4670	}
4671#endif
4672
4673	/*
4674	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4675	 * disable interrupts by writing nonzero like we used to, since with
4676	 * our current organization this just gives complications and
4677	 * pessimizations for re-enabling interrupts.  We used to have races
4678	 * instead of the necessary complications.  Disabling interrupts
4679	 * would just reduce the chance of a status update while we are
4680	 * running (by switching to the interrupt-mode coalescence
4681	 * parameters), but this chance is already very low so it is more
4682	 * efficient to get another interrupt than prevent it.
4683	 *
4684	 * We do the ack first to ensure another interrupt if there is a
4685	 * status update after the ack.  We don't check for the status
4686	 * changing later because it is more efficient to get another
4687	 * interrupt than prevent it, not quite as above (not checking is
4688	 * a smaller optimization than not toggling the interrupt enable,
4689	 * since checking doesn't involve PCI accesses and toggling require
4690	 * the status check).  So toggling would probably be a pessimization
4691	 * even with MSI.  It would only be needed for using a task queue.
4692	 */
4693	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4694
4695	/*
4696	 * Do the mandatory PCI flush as well as get the link status.
4697	 */
4698	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4699
4700	/* Make sure the descriptor ring indexes are coherent. */
4701	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4702	    sc->bge_cdata.bge_status_map,
4703	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4704	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4705	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4706	sc->bge_ldata.bge_status_block->bge_status = 0;
4707	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4708	    sc->bge_cdata.bge_status_map,
4709	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4710
4711	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4712	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4713	    statusword || sc->bge_link_evt)
4714		bge_link_upd(sc);
4715
4716	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4717		/* Check RX return ring producer/consumer. */
4718		bge_rxeof(sc, rx_prod, 1);
4719	}
4720
4721	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4722		/* Check TX ring producer/consumer. */
4723		bge_txeof(sc, tx_cons);
4724	}
4725
4726	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4727	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4728		bge_start_locked(ifp);
4729
4730	BGE_UNLOCK(sc);
4731}
4732
4733static void
4734bge_asf_driver_up(struct bge_softc *sc)
4735{
4736	if (sc->bge_asf_mode & ASF_STACKUP) {
4737		/* Send ASF heartbeat aprox. every 2s */
4738		if (sc->bge_asf_count)
4739			sc->bge_asf_count --;
4740		else {
4741			sc->bge_asf_count = 2;
4742			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4743			    BGE_FW_CMD_DRV_ALIVE);
4744			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4745			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4746			    BGE_FW_HB_TIMEOUT_SEC);
4747			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4748			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4749			    BGE_RX_CPU_DRV_EVENT);
4750		}
4751	}
4752}
4753
4754static void
4755bge_tick(void *xsc)
4756{
4757	struct bge_softc *sc = xsc;
4758	struct mii_data *mii = NULL;
4759
4760	BGE_LOCK_ASSERT(sc);
4761
4762	/* Synchronize with possible callout reset/stop. */
4763	if (callout_pending(&sc->bge_stat_ch) ||
4764	    !callout_active(&sc->bge_stat_ch))
4765		return;
4766
4767	if (BGE_IS_5705_PLUS(sc))
4768		bge_stats_update_regs(sc);
4769	else
4770		bge_stats_update(sc);
4771
4772	/* XXX Add APE heartbeat check here? */
4773
4774	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4775		mii = device_get_softc(sc->bge_miibus);
4776		/*
4777		 * Do not touch PHY if we have link up. This could break
4778		 * IPMI/ASF mode or produce extra input errors
4779		 * (extra errors was reported for bcm5701 & bcm5704).
4780		 */
4781		if (!sc->bge_link)
4782			mii_tick(mii);
4783	} else {
4784		/*
4785		 * Since in TBI mode auto-polling can't be used we should poll
4786		 * link status manually. Here we register pending link event
4787		 * and trigger interrupt.
4788		 */
4789#ifdef DEVICE_POLLING
4790		/* In polling mode we poll link state in bge_poll(). */
4791		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4792#endif
4793		{
4794		sc->bge_link_evt++;
4795		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4796		    sc->bge_flags & BGE_FLAG_5788)
4797			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4798		else
4799			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4800		}
4801	}
4802
4803	bge_asf_driver_up(sc);
4804	bge_watchdog(sc);
4805
4806	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4807}
4808
4809static void
4810bge_stats_update_regs(struct bge_softc *sc)
4811{
4812	struct ifnet *ifp;
4813	struct bge_mac_stats *stats;
4814	uint32_t val;
4815
4816	ifp = sc->bge_ifp;
4817	stats = &sc->bge_mac_stats;
4818
4819	stats->ifHCOutOctets +=
4820	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4821	stats->etherStatsCollisions +=
4822	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4823	stats->outXonSent +=
4824	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4825	stats->outXoffSent +=
4826	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4827	stats->dot3StatsInternalMacTransmitErrors +=
4828	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4829	stats->dot3StatsSingleCollisionFrames +=
4830	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4831	stats->dot3StatsMultipleCollisionFrames +=
4832	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4833	stats->dot3StatsDeferredTransmissions +=
4834	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4835	stats->dot3StatsExcessiveCollisions +=
4836	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4837	stats->dot3StatsLateCollisions +=
4838	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4839	stats->ifHCOutUcastPkts +=
4840	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4841	stats->ifHCOutMulticastPkts +=
4842	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4843	stats->ifHCOutBroadcastPkts +=
4844	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4845
4846	stats->ifHCInOctets +=
4847	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4848	stats->etherStatsFragments +=
4849	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4850	stats->ifHCInUcastPkts +=
4851	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4852	stats->ifHCInMulticastPkts +=
4853	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4854	stats->ifHCInBroadcastPkts +=
4855	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4856	stats->dot3StatsFCSErrors +=
4857	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4858	stats->dot3StatsAlignmentErrors +=
4859	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4860	stats->xonPauseFramesReceived +=
4861	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4862	stats->xoffPauseFramesReceived +=
4863	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4864	stats->macControlFramesReceived +=
4865	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4866	stats->xoffStateEntered +=
4867	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4868	stats->dot3StatsFramesTooLong +=
4869	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4870	stats->etherStatsJabbers +=
4871	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4872	stats->etherStatsUndersizePkts +=
4873	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4874
4875	stats->FramesDroppedDueToFilters +=
4876	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4877	stats->DmaWriteQueueFull +=
4878	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4879	stats->DmaWriteHighPriQueueFull +=
4880	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4881	stats->NoMoreRxBDs +=
4882	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4883	/*
4884	 * XXX
4885	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4886	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4887	 * includes number of unwanted multicast frames.  This comes
4888	 * from silicon bug and known workaround to get rough(not
4889	 * exact) counter is to enable interrupt on MBUF low water
4890	 * attention.  This can be accomplished by setting
4891	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4892	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4893	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4894	 * However that change would generate more interrupts and
4895	 * there are still possibilities of losing multiple frames
4896	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4897	 * Given that the workaround still would not get correct
4898	 * counter I don't think it's worth to implement it.  So
4899	 * ignore reading the counter on controllers that have the
4900	 * silicon bug.
4901	 */
4902	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4903	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4904	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4905		stats->InputDiscards +=
4906		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4907	stats->InputErrors +=
4908	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4909	stats->RecvThresholdHit +=
4910	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4911
4912	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4913	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4914	    stats->InputErrors);
4915
4916	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4917		/*
4918		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4919		 * frames, it's safe to disable workaround for DMA engine's
4920		 * miscalculation of TXMBUF space.
4921		 */
4922		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4923		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4924			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4925			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4926				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4927			else
4928				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4929			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4930			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4931		}
4932	}
4933}
4934
4935static void
4936bge_stats_clear_regs(struct bge_softc *sc)
4937{
4938
4939	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4940	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4941	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4942	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4943	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4944	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4945	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4946	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4947	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4948	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4949	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4950	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4951	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4952
4953	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4954	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4955	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4956	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4957	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4958	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4959	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4960	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4961	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4962	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4963	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4964	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4965	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4966	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4967
4968	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4969	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4970	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4971	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4972	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4973	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4974	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4975}
4976
4977static void
4978bge_stats_update(struct bge_softc *sc)
4979{
4980	struct ifnet *ifp;
4981	bus_size_t stats;
4982	uint32_t cnt;	/* current register value */
4983
4984	ifp = sc->bge_ifp;
4985
4986	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4987
4988#define	READ_STAT(sc, stats, stat) \
4989	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4990
4991	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4992	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4993	sc->bge_tx_collisions = cnt;
4994
4995	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4996	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4997	sc->bge_rx_nobds = cnt;
4998	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4999	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
5000	sc->bge_rx_inerrs = cnt;
5001	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5002	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5003	sc->bge_rx_discards = cnt;
5004
5005	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5006	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5007	sc->bge_tx_discards = cnt;
5008
5009#undef	READ_STAT
5010}
5011
5012/*
5013 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5014 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5015 * but when such padded frames employ the bge IP/TCP checksum offload,
5016 * the hardware checksum assist gives incorrect results (possibly
5017 * from incorporating its own padding into the UDP/TCP checksum; who knows).
5018 * If we pad such runts with zeros, the onboard checksum comes out correct.
5019 */
5020static __inline int
5021bge_cksum_pad(struct mbuf *m)
5022{
5023	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5024	struct mbuf *last;
5025
5026	/* If there's only the packet-header and we can pad there, use it. */
5027	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5028	    M_TRAILINGSPACE(m) >= padlen) {
5029		last = m;
5030	} else {
5031		/*
5032		 * Walk packet chain to find last mbuf. We will either
5033		 * pad there, or append a new mbuf and pad it.
5034		 */
5035		for (last = m; last->m_next != NULL; last = last->m_next);
5036		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5037			/* Allocate new empty mbuf, pad it. Compact later. */
5038			struct mbuf *n;
5039
5040			MGET(n, M_NOWAIT, MT_DATA);
5041			if (n == NULL)
5042				return (ENOBUFS);
5043			n->m_len = 0;
5044			last->m_next = n;
5045			last = n;
5046		}
5047	}
5048
5049	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5050	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5051	last->m_len += padlen;
5052	m->m_pkthdr.len += padlen;
5053
5054	return (0);
5055}
5056
5057static struct mbuf *
5058bge_check_short_dma(struct mbuf *m)
5059{
5060	struct mbuf *n;
5061	int found;
5062
5063	/*
5064	 * If device receive two back-to-back send BDs with less than
5065	 * or equal to 8 total bytes then the device may hang.  The two
5066	 * back-to-back send BDs must in the same frame for this failure
5067	 * to occur.  Scan mbuf chains and see whether two back-to-back
5068	 * send BDs are there. If this is the case, allocate new mbuf
5069	 * and copy the frame to workaround the silicon bug.
5070	 */
5071	for (n = m, found = 0; n != NULL; n = n->m_next) {
5072		if (n->m_len < 8) {
5073			found++;
5074			if (found > 1)
5075				break;
5076			continue;
5077		}
5078		found = 0;
5079	}
5080
5081	if (found > 1) {
5082		n = m_defrag(m, M_NOWAIT);
5083		if (n == NULL)
5084			m_freem(m);
5085	} else
5086		n = m;
5087	return (n);
5088}
5089
5090static struct mbuf *
5091bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5092    uint16_t *flags)
5093{
5094	struct ip *ip;
5095	struct tcphdr *tcp;
5096	struct mbuf *n;
5097	uint16_t hlen;
5098	uint32_t poff;
5099
5100	if (M_WRITABLE(m) == 0) {
5101		/* Get a writable copy. */
5102		n = m_dup(m, M_NOWAIT);
5103		m_freem(m);
5104		if (n == NULL)
5105			return (NULL);
5106		m = n;
5107	}
5108	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5109	if (m == NULL)
5110		return (NULL);
5111	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5112	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5113	m = m_pullup(m, poff + sizeof(struct tcphdr));
5114	if (m == NULL)
5115		return (NULL);
5116	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5117	m = m_pullup(m, poff + (tcp->th_off << 2));
5118	if (m == NULL)
5119		return (NULL);
5120	/*
5121	 * It seems controller doesn't modify IP length and TCP pseudo
5122	 * checksum. These checksum computed by upper stack should be 0.
5123	 */
5124	*mss = m->m_pkthdr.tso_segsz;
5125	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5126	ip->ip_sum = 0;
5127	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5128	/* Clear pseudo checksum computed by TCP stack. */
5129	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5130	tcp->th_sum = 0;
5131	/*
5132	 * Broadcom controllers uses different descriptor format for
5133	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5134	 * license issue and lower performance of firmware based TSO
5135	 * we only support hardware based TSO.
5136	 */
5137	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5138	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5139	if (sc->bge_flags & BGE_FLAG_TSO3) {
5140		/*
5141		 * For BCM5717 and newer controllers, hardware based TSO
5142		 * uses the 14 lower bits of the bge_mss field to store the
5143		 * MSS and the upper 2 bits to store the lowest 2 bits of
5144		 * the IP/TCP header length.  The upper 6 bits of the header
5145		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5146		 * frames are supported.
5147		 */
5148		*mss |= ((hlen & 0x3) << 14);
5149		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5150	} else {
5151		/*
5152		 * For BCM5755 and newer controllers, hardware based TSO uses
5153		 * the lower 11	bits to store the MSS and the upper 5 bits to
5154		 * store the IP/TCP header length. Jumbo frames are not
5155		 * supported.
5156		 */
5157		*mss |= (hlen << 11);
5158	}
5159	return (m);
5160}
5161
5162/*
5163 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5164 * pointers to descriptors.
5165 */
5166static int
5167bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5168{
5169	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5170	bus_dmamap_t		map;
5171	struct bge_tx_bd	*d;
5172	struct mbuf		*m = *m_head;
5173	uint32_t		idx = *txidx;
5174	uint16_t		csum_flags, mss, vlan_tag;
5175	int			nsegs, i, error;
5176
5177	csum_flags = 0;
5178	mss = 0;
5179	vlan_tag = 0;
5180	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5181	    m->m_next != NULL) {
5182		*m_head = bge_check_short_dma(m);
5183		if (*m_head == NULL)
5184			return (ENOBUFS);
5185		m = *m_head;
5186	}
5187	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5188		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5189		if (*m_head == NULL)
5190			return (ENOBUFS);
5191		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5192		    BGE_TXBDFLAG_CPU_POST_DMA;
5193	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5194		if (m->m_pkthdr.csum_flags & CSUM_IP)
5195			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5196		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5197			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5198			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5199			    (error = bge_cksum_pad(m)) != 0) {
5200				m_freem(m);
5201				*m_head = NULL;
5202				return (error);
5203			}
5204		}
5205	}
5206
5207	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5208		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5209		    m->m_pkthdr.len > ETHER_MAX_LEN)
5210			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5211		if (sc->bge_forced_collapse > 0 &&
5212		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5213			/*
5214			 * Forcedly collapse mbuf chains to overcome hardware
5215			 * limitation which only support a single outstanding
5216			 * DMA read operation.
5217			 */
5218			if (sc->bge_forced_collapse == 1)
5219				m = m_defrag(m, M_NOWAIT);
5220			else
5221				m = m_collapse(m, M_NOWAIT,
5222				    sc->bge_forced_collapse);
5223			if (m == NULL)
5224				m = *m_head;
5225			*m_head = m;
5226		}
5227	}
5228
5229	map = sc->bge_cdata.bge_tx_dmamap[idx];
5230	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5231	    &nsegs, BUS_DMA_NOWAIT);
5232	if (error == EFBIG) {
5233		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5234		if (m == NULL) {
5235			m_freem(*m_head);
5236			*m_head = NULL;
5237			return (ENOBUFS);
5238		}
5239		*m_head = m;
5240		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5241		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5242		if (error) {
5243			m_freem(m);
5244			*m_head = NULL;
5245			return (error);
5246		}
5247	} else if (error != 0)
5248		return (error);
5249
5250	/* Check if we have enough free send BDs. */
5251	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5252		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5253		return (ENOBUFS);
5254	}
5255
5256	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5257
5258	if (m->m_flags & M_VLANTAG) {
5259		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5260		vlan_tag = m->m_pkthdr.ether_vtag;
5261	}
5262
5263	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5264	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5265		/*
5266		 * 5725 family of devices corrupts TSO packets when TSO DMA
5267		 * buffers cross into regions which are within MSS bytes of
5268		 * a 4GB boundary.  If we encounter the condition, drop the
5269		 * packet.
5270		 */
5271		for (i = 0; ; i++) {
5272			d = &sc->bge_ldata.bge_tx_ring[idx];
5273			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5274			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5275			d->bge_len = segs[i].ds_len;
5276			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5277			    d->bge_addr.bge_addr_lo)
5278				break;
5279			d->bge_flags = csum_flags;
5280			d->bge_vlan_tag = vlan_tag;
5281			d->bge_mss = mss;
5282			if (i == nsegs - 1)
5283				break;
5284			BGE_INC(idx, BGE_TX_RING_CNT);
5285		}
5286		if (i != nsegs - 1) {
5287			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5288			    BUS_DMASYNC_POSTWRITE);
5289			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5290			m_freem(*m_head);
5291			*m_head = NULL;
5292			return (EIO);
5293		}
5294	} else {
5295		for (i = 0; ; i++) {
5296			d = &sc->bge_ldata.bge_tx_ring[idx];
5297			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5298			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5299			d->bge_len = segs[i].ds_len;
5300			d->bge_flags = csum_flags;
5301			d->bge_vlan_tag = vlan_tag;
5302			d->bge_mss = mss;
5303			if (i == nsegs - 1)
5304				break;
5305			BGE_INC(idx, BGE_TX_RING_CNT);
5306		}
5307	}
5308
5309	/* Mark the last segment as end of packet... */
5310	d->bge_flags |= BGE_TXBDFLAG_END;
5311
5312	/*
5313	 * Insure that the map for this transmission
5314	 * is placed at the array index of the last descriptor
5315	 * in this chain.
5316	 */
5317	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5318	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5319	sc->bge_cdata.bge_tx_chain[idx] = m;
5320	sc->bge_txcnt += nsegs;
5321
5322	BGE_INC(idx, BGE_TX_RING_CNT);
5323	*txidx = idx;
5324
5325	return (0);
5326}
5327
5328/*
5329 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5330 * to the mbuf data regions directly in the transmit descriptors.
5331 */
5332static void
5333bge_start_locked(struct ifnet *ifp)
5334{
5335	struct bge_softc *sc;
5336	struct mbuf *m_head;
5337	uint32_t prodidx;
5338	int count;
5339
5340	sc = ifp->if_softc;
5341	BGE_LOCK_ASSERT(sc);
5342
5343	if (!sc->bge_link ||
5344	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5345	    IFF_DRV_RUNNING)
5346		return;
5347
5348	prodidx = sc->bge_tx_prodidx;
5349
5350	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5351		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5352			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5353			break;
5354		}
5355		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5356		if (m_head == NULL)
5357			break;
5358
5359		/*
5360		 * Pack the data into the transmit ring. If we
5361		 * don't have room, set the OACTIVE flag and wait
5362		 * for the NIC to drain the ring.
5363		 */
5364		if (bge_encap(sc, &m_head, &prodidx)) {
5365			if (m_head == NULL)
5366				break;
5367			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5368			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5369			break;
5370		}
5371		++count;
5372
5373		/*
5374		 * If there's a BPF listener, bounce a copy of this frame
5375		 * to him.
5376		 */
5377#ifdef ETHER_BPF_MTAP
5378		ETHER_BPF_MTAP(ifp, m_head);
5379#else
5380		BPF_MTAP(ifp, m_head);
5381#endif
5382	}
5383
5384	if (count > 0) {
5385		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5386		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5387		/* Transmit. */
5388		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5389		/* 5700 b2 errata */
5390		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5391			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5392
5393		sc->bge_tx_prodidx = prodidx;
5394
5395		/*
5396		 * Set a timeout in case the chip goes out to lunch.
5397		 */
5398		sc->bge_timer = BGE_TX_TIMEOUT;
5399	}
5400}
5401
5402/*
5403 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5404 * to the mbuf data regions directly in the transmit descriptors.
5405 */
5406static void
5407bge_start(struct ifnet *ifp)
5408{
5409	struct bge_softc *sc;
5410
5411	sc = ifp->if_softc;
5412	BGE_LOCK(sc);
5413	bge_start_locked(ifp);
5414	BGE_UNLOCK(sc);
5415}
5416
5417static void
5418bge_init_locked(struct bge_softc *sc)
5419{
5420	struct ifnet *ifp;
5421	uint16_t *m;
5422	uint32_t mode;
5423
5424	BGE_LOCK_ASSERT(sc);
5425
5426	ifp = sc->bge_ifp;
5427
5428	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5429		return;
5430
5431	/* Cancel pending I/O and flush buffers. */
5432	bge_stop(sc);
5433
5434	bge_stop_fw(sc);
5435	bge_sig_pre_reset(sc, BGE_RESET_START);
5436	bge_reset(sc);
5437	bge_sig_legacy(sc, BGE_RESET_START);
5438	bge_sig_post_reset(sc, BGE_RESET_START);
5439
5440	bge_chipinit(sc);
5441
5442	/*
5443	 * Init the various state machines, ring
5444	 * control blocks and firmware.
5445	 */
5446	if (bge_blockinit(sc)) {
5447		device_printf(sc->bge_dev, "initialization failure\n");
5448		return;
5449	}
5450
5451	ifp = sc->bge_ifp;
5452
5453	/* Specify MTU. */
5454	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5455	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5456	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5457
5458	/* Load our MAC address. */
5459	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5460	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5461	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5462
5463	/* Program promiscuous mode. */
5464	bge_setpromisc(sc);
5465
5466	/* Program multicast filter. */
5467	bge_setmulti(sc);
5468
5469	/* Program VLAN tag stripping. */
5470	bge_setvlan(sc);
5471
5472	/* Override UDP checksum offloading. */
5473	if (sc->bge_forced_udpcsum == 0)
5474		sc->bge_csum_features &= ~CSUM_UDP;
5475	else
5476		sc->bge_csum_features |= CSUM_UDP;
5477	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5478	    ifp->if_capenable & IFCAP_TXCSUM) {
5479		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5480		ifp->if_hwassist |= sc->bge_csum_features;
5481	}
5482
5483	/* Init RX ring. */
5484	if (bge_init_rx_ring_std(sc) != 0) {
5485		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5486		bge_stop(sc);
5487		return;
5488	}
5489
5490	/*
5491	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5492	 * memory to insure that the chip has in fact read the first
5493	 * entry of the ring.
5494	 */
5495	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5496		uint32_t		v, i;
5497		for (i = 0; i < 10; i++) {
5498			DELAY(20);
5499			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5500			if (v == (MCLBYTES - ETHER_ALIGN))
5501				break;
5502		}
5503		if (i == 10)
5504			device_printf (sc->bge_dev,
5505			    "5705 A0 chip failed to load RX ring\n");
5506	}
5507
5508	/* Init jumbo RX ring. */
5509	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5510	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5511	    (MCLBYTES - ETHER_ALIGN)) {
5512		if (bge_init_rx_ring_jumbo(sc) != 0) {
5513			device_printf(sc->bge_dev,
5514			    "no memory for jumbo Rx buffers.\n");
5515			bge_stop(sc);
5516			return;
5517		}
5518	}
5519
5520	/* Init our RX return ring index. */
5521	sc->bge_rx_saved_considx = 0;
5522
5523	/* Init our RX/TX stat counters. */
5524	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5525
5526	/* Init TX ring. */
5527	bge_init_tx_ring(sc);
5528
5529	/* Enable TX MAC state machine lockup fix. */
5530	mode = CSR_READ_4(sc, BGE_TX_MODE);
5531	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5532		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5533	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5534	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5535		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5536		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5537		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538	}
5539	/* Turn on transmitter. */
5540	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5541	DELAY(100);
5542
5543	/* Turn on receiver. */
5544	mode = CSR_READ_4(sc, BGE_RX_MODE);
5545	if (BGE_IS_5755_PLUS(sc))
5546		mode |= BGE_RXMODE_IPV6_ENABLE;
5547	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5548		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5549	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5550	DELAY(10);
5551
5552	/*
5553	 * Set the number of good frames to receive after RX MBUF
5554	 * Low Watermark has been reached. After the RX MAC receives
5555	 * this number of frames, it will drop subsequent incoming
5556	 * frames until the MBUF High Watermark is reached.
5557	 */
5558	if (BGE_IS_57765_PLUS(sc))
5559		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5560	else
5561		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5562
5563	/* Clear MAC statistics. */
5564	if (BGE_IS_5705_PLUS(sc))
5565		bge_stats_clear_regs(sc);
5566
5567	/* Tell firmware we're alive. */
5568	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5569
5570#ifdef DEVICE_POLLING
5571	/* Disable interrupts if we are polling. */
5572	if (ifp->if_capenable & IFCAP_POLLING) {
5573		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5574		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5575		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5576	} else
5577#endif
5578
5579	/* Enable host interrupts. */
5580	{
5581	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5582	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5583	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5584	}
5585
5586	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5587	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5588
5589	bge_ifmedia_upd_locked(ifp);
5590
5591	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5592}
5593
5594static void
5595bge_init(void *xsc)
5596{
5597	struct bge_softc *sc = xsc;
5598
5599	BGE_LOCK(sc);
5600	bge_init_locked(sc);
5601	BGE_UNLOCK(sc);
5602}
5603
5604/*
5605 * Set media options.
5606 */
5607static int
5608bge_ifmedia_upd(struct ifnet *ifp)
5609{
5610	struct bge_softc *sc = ifp->if_softc;
5611	int res;
5612
5613	BGE_LOCK(sc);
5614	res = bge_ifmedia_upd_locked(ifp);
5615	BGE_UNLOCK(sc);
5616
5617	return (res);
5618}
5619
5620static int
5621bge_ifmedia_upd_locked(struct ifnet *ifp)
5622{
5623	struct bge_softc *sc = ifp->if_softc;
5624	struct mii_data *mii;
5625	struct mii_softc *miisc;
5626	struct ifmedia *ifm;
5627
5628	BGE_LOCK_ASSERT(sc);
5629
5630	ifm = &sc->bge_ifmedia;
5631
5632	/* If this is a 1000baseX NIC, enable the TBI port. */
5633	if (sc->bge_flags & BGE_FLAG_TBI) {
5634		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635			return (EINVAL);
5636		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5637		case IFM_AUTO:
5638			/*
5639			 * The BCM5704 ASIC appears to have a special
5640			 * mechanism for programming the autoneg
5641			 * advertisement registers in TBI mode.
5642			 */
5643			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5644				uint32_t sgdig;
5645				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646				if (sgdig & BGE_SGDIGSTS_DONE) {
5647					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649					sgdig |= BGE_SGDIGCFG_AUTO |
5650					    BGE_SGDIGCFG_PAUSE_CAP |
5651					    BGE_SGDIGCFG_ASYM_PAUSE;
5652					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5653					    sgdig | BGE_SGDIGCFG_SEND);
5654					DELAY(5);
5655					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5656				}
5657			}
5658			break;
5659		case IFM_1000_SX:
5660			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5661				BGE_CLRBIT(sc, BGE_MAC_MODE,
5662				    BGE_MACMODE_HALF_DUPLEX);
5663			} else {
5664				BGE_SETBIT(sc, BGE_MAC_MODE,
5665				    BGE_MACMODE_HALF_DUPLEX);
5666			}
5667			DELAY(40);
5668			break;
5669		default:
5670			return (EINVAL);
5671		}
5672		return (0);
5673	}
5674
5675	sc->bge_link_evt++;
5676	mii = device_get_softc(sc->bge_miibus);
5677	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5678		PHY_RESET(miisc);
5679	mii_mediachg(mii);
5680
5681	/*
5682	 * Force an interrupt so that we will call bge_link_upd
5683	 * if needed and clear any pending link state attention.
5684	 * Without this we are not getting any further interrupts
5685	 * for link state changes and thus will not UP the link and
5686	 * not be able to send in bge_start_locked. The only
5687	 * way to get things working was to receive a packet and
5688	 * get an RX intr.
5689	 * bge_tick should help for fiber cards and we might not
5690	 * need to do this here if BGE_FLAG_TBI is set but as
5691	 * we poll for fiber anyway it should not harm.
5692	 */
5693	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5694	    sc->bge_flags & BGE_FLAG_5788)
5695		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5696	else
5697		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5698
5699	return (0);
5700}
5701
5702/*
5703 * Report current media status.
5704 */
5705static void
5706bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5707{
5708	struct bge_softc *sc = ifp->if_softc;
5709	struct mii_data *mii;
5710
5711	BGE_LOCK(sc);
5712
5713	if ((ifp->if_flags & IFF_UP) == 0) {
5714		BGE_UNLOCK(sc);
5715		return;
5716	}
5717	if (sc->bge_flags & BGE_FLAG_TBI) {
5718		ifmr->ifm_status = IFM_AVALID;
5719		ifmr->ifm_active = IFM_ETHER;
5720		if (CSR_READ_4(sc, BGE_MAC_STS) &
5721		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5722			ifmr->ifm_status |= IFM_ACTIVE;
5723		else {
5724			ifmr->ifm_active |= IFM_NONE;
5725			BGE_UNLOCK(sc);
5726			return;
5727		}
5728		ifmr->ifm_active |= IFM_1000_SX;
5729		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5730			ifmr->ifm_active |= IFM_HDX;
5731		else
5732			ifmr->ifm_active |= IFM_FDX;
5733		BGE_UNLOCK(sc);
5734		return;
5735	}
5736
5737	mii = device_get_softc(sc->bge_miibus);
5738	mii_pollstat(mii);
5739	ifmr->ifm_active = mii->mii_media_active;
5740	ifmr->ifm_status = mii->mii_media_status;
5741
5742	BGE_UNLOCK(sc);
5743}
5744
5745static int
5746bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5747{
5748	struct bge_softc *sc = ifp->if_softc;
5749	struct ifreq *ifr = (struct ifreq *) data;
5750	struct mii_data *mii;
5751	int flags, mask, error = 0;
5752
5753	switch (command) {
5754	case SIOCSIFMTU:
5755		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5756		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5757			if (ifr->ifr_mtu < ETHERMIN ||
5758			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5759				error = EINVAL;
5760				break;
5761			}
5762		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5763			error = EINVAL;
5764			break;
5765		}
5766		BGE_LOCK(sc);
5767		if (ifp->if_mtu != ifr->ifr_mtu) {
5768			ifp->if_mtu = ifr->ifr_mtu;
5769			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5770				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5771				bge_init_locked(sc);
5772			}
5773		}
5774		BGE_UNLOCK(sc);
5775		break;
5776	case SIOCSIFFLAGS:
5777		BGE_LOCK(sc);
5778		if (ifp->if_flags & IFF_UP) {
5779			/*
5780			 * If only the state of the PROMISC flag changed,
5781			 * then just use the 'set promisc mode' command
5782			 * instead of reinitializing the entire NIC. Doing
5783			 * a full re-init means reloading the firmware and
5784			 * waiting for it to start up, which may take a
5785			 * second or two.  Similarly for ALLMULTI.
5786			 */
5787			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5788				flags = ifp->if_flags ^ sc->bge_if_flags;
5789				if (flags & IFF_PROMISC)
5790					bge_setpromisc(sc);
5791				if (flags & IFF_ALLMULTI)
5792					bge_setmulti(sc);
5793			} else
5794				bge_init_locked(sc);
5795		} else {
5796			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5797				bge_stop(sc);
5798			}
5799		}
5800		sc->bge_if_flags = ifp->if_flags;
5801		BGE_UNLOCK(sc);
5802		error = 0;
5803		break;
5804	case SIOCADDMULTI:
5805	case SIOCDELMULTI:
5806		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5807			BGE_LOCK(sc);
5808			bge_setmulti(sc);
5809			BGE_UNLOCK(sc);
5810			error = 0;
5811		}
5812		break;
5813	case SIOCSIFMEDIA:
5814	case SIOCGIFMEDIA:
5815		if (sc->bge_flags & BGE_FLAG_TBI) {
5816			error = ifmedia_ioctl(ifp, ifr,
5817			    &sc->bge_ifmedia, command);
5818		} else {
5819			mii = device_get_softc(sc->bge_miibus);
5820			error = ifmedia_ioctl(ifp, ifr,
5821			    &mii->mii_media, command);
5822		}
5823		break;
5824	case SIOCSIFCAP:
5825		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5826#ifdef DEVICE_POLLING
5827		if (mask & IFCAP_POLLING) {
5828			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5829				error = ether_poll_register(bge_poll, ifp);
5830				if (error)
5831					return (error);
5832				BGE_LOCK(sc);
5833				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5834				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5835				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5836				ifp->if_capenable |= IFCAP_POLLING;
5837				BGE_UNLOCK(sc);
5838			} else {
5839				error = ether_poll_deregister(ifp);
5840				/* Enable interrupt even in error case */
5841				BGE_LOCK(sc);
5842				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5843				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5844				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5845				ifp->if_capenable &= ~IFCAP_POLLING;
5846				BGE_UNLOCK(sc);
5847			}
5848		}
5849#endif
5850		if ((mask & IFCAP_TXCSUM) != 0 &&
5851		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5852			ifp->if_capenable ^= IFCAP_TXCSUM;
5853			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5854				ifp->if_hwassist |= sc->bge_csum_features;
5855			else
5856				ifp->if_hwassist &= ~sc->bge_csum_features;
5857		}
5858
5859		if ((mask & IFCAP_RXCSUM) != 0 &&
5860		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5861			ifp->if_capenable ^= IFCAP_RXCSUM;
5862
5863		if ((mask & IFCAP_TSO4) != 0 &&
5864		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5865			ifp->if_capenable ^= IFCAP_TSO4;
5866			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5867				ifp->if_hwassist |= CSUM_TSO;
5868			else
5869				ifp->if_hwassist &= ~CSUM_TSO;
5870		}
5871
5872		if (mask & IFCAP_VLAN_MTU) {
5873			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5874			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5875			bge_init(sc);
5876		}
5877
5878		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5879		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5880			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5881		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5882		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5883			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5884			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5885				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5886			BGE_LOCK(sc);
5887			bge_setvlan(sc);
5888			BGE_UNLOCK(sc);
5889		}
5890#ifdef VLAN_CAPABILITIES
5891		VLAN_CAPABILITIES(ifp);
5892#endif
5893		break;
5894	default:
5895		error = ether_ioctl(ifp, command, data);
5896		break;
5897	}
5898
5899	return (error);
5900}
5901
5902static void
5903bge_watchdog(struct bge_softc *sc)
5904{
5905	struct ifnet *ifp;
5906	uint32_t status;
5907
5908	BGE_LOCK_ASSERT(sc);
5909
5910	if (sc->bge_timer == 0 || --sc->bge_timer)
5911		return;
5912
5913	/* If pause frames are active then don't reset the hardware. */
5914	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5915		status = CSR_READ_4(sc, BGE_RX_STS);
5916		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5917			/*
5918			 * If link partner has us in XOFF state then wait for
5919			 * the condition to clear.
5920			 */
5921			CSR_WRITE_4(sc, BGE_RX_STS, status);
5922			sc->bge_timer = BGE_TX_TIMEOUT;
5923			return;
5924		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5925		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5926			/*
5927			 * If link partner has us in XOFF state then wait for
5928			 * the condition to clear.
5929			 */
5930			CSR_WRITE_4(sc, BGE_RX_STS, status);
5931			sc->bge_timer = BGE_TX_TIMEOUT;
5932			return;
5933		}
5934		/*
5935		 * Any other condition is unexpected and the controller
5936		 * should be reset.
5937		 */
5938	}
5939
5940	ifp = sc->bge_ifp;
5941
5942	if_printf(ifp, "watchdog timeout -- resetting\n");
5943
5944	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5945	bge_init_locked(sc);
5946
5947	ifp->if_oerrors++;
5948}
5949
5950static void
5951bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5952{
5953	int i;
5954
5955	BGE_CLRBIT(sc, reg, bit);
5956
5957	for (i = 0; i < BGE_TIMEOUT; i++) {
5958		if ((CSR_READ_4(sc, reg) & bit) == 0)
5959			return;
5960		DELAY(100);
5961        }
5962}
5963
5964/*
5965 * Stop the adapter and free any mbufs allocated to the
5966 * RX and TX lists.
5967 */
5968static void
5969bge_stop(struct bge_softc *sc)
5970{
5971	struct ifnet *ifp;
5972
5973	BGE_LOCK_ASSERT(sc);
5974
5975	ifp = sc->bge_ifp;
5976
5977	callout_stop(&sc->bge_stat_ch);
5978
5979	/* Disable host interrupts. */
5980	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5981	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5982
5983	/*
5984	 * Tell firmware we're shutting down.
5985	 */
5986	bge_stop_fw(sc);
5987	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5988
5989	/*
5990	 * Disable all of the receiver blocks.
5991	 */
5992	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5993	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5994	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5995	if (BGE_IS_5700_FAMILY(sc))
5996		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5997	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5998	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5999	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6000
6001	/*
6002	 * Disable all of the transmit blocks.
6003	 */
6004	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6005	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6006	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6007	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6008	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6009	if (BGE_IS_5700_FAMILY(sc))
6010		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6011	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6012
6013	/*
6014	 * Shut down all of the memory managers and related
6015	 * state machines.
6016	 */
6017	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6018	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6019	if (BGE_IS_5700_FAMILY(sc))
6020		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6021
6022	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6023	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6024	if (!(BGE_IS_5705_PLUS(sc))) {
6025		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6026		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6027	}
6028	/* Update MAC statistics. */
6029	if (BGE_IS_5705_PLUS(sc))
6030		bge_stats_update_regs(sc);
6031
6032	bge_reset(sc);
6033	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6034	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6035
6036	/*
6037	 * Keep the ASF firmware running if up.
6038	 */
6039	if (sc->bge_asf_mode & ASF_STACKUP)
6040		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6041	else
6042		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6043
6044	/* Free the RX lists. */
6045	bge_free_rx_ring_std(sc);
6046
6047	/* Free jumbo RX list. */
6048	if (BGE_IS_JUMBO_CAPABLE(sc))
6049		bge_free_rx_ring_jumbo(sc);
6050
6051	/* Free TX buffers. */
6052	bge_free_tx_ring(sc);
6053
6054	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6055
6056	/* Clear MAC's link state (PHY may still have link UP). */
6057	if (bootverbose && sc->bge_link)
6058		if_printf(sc->bge_ifp, "link DOWN\n");
6059	sc->bge_link = 0;
6060
6061	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6062}
6063
6064/*
6065 * Stop all chip I/O so that the kernel's probe routines don't
6066 * get confused by errant DMAs when rebooting.
6067 */
6068static int
6069bge_shutdown(device_t dev)
6070{
6071	struct bge_softc *sc;
6072
6073	sc = device_get_softc(dev);
6074	BGE_LOCK(sc);
6075	bge_stop(sc);
6076	BGE_UNLOCK(sc);
6077
6078	return (0);
6079}
6080
6081static int
6082bge_suspend(device_t dev)
6083{
6084	struct bge_softc *sc;
6085
6086	sc = device_get_softc(dev);
6087	BGE_LOCK(sc);
6088	bge_stop(sc);
6089	BGE_UNLOCK(sc);
6090
6091	return (0);
6092}
6093
6094static int
6095bge_resume(device_t dev)
6096{
6097	struct bge_softc *sc;
6098	struct ifnet *ifp;
6099
6100	sc = device_get_softc(dev);
6101	BGE_LOCK(sc);
6102	ifp = sc->bge_ifp;
6103	if (ifp->if_flags & IFF_UP) {
6104		bge_init_locked(sc);
6105		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6106			bge_start_locked(ifp);
6107	}
6108	BGE_UNLOCK(sc);
6109
6110	return (0);
6111}
6112
6113static void
6114bge_link_upd(struct bge_softc *sc)
6115{
6116	struct mii_data *mii;
6117	uint32_t link, status;
6118
6119	BGE_LOCK_ASSERT(sc);
6120
6121	/* Clear 'pending link event' flag. */
6122	sc->bge_link_evt = 0;
6123
6124	/*
6125	 * Process link state changes.
6126	 * Grrr. The link status word in the status block does
6127	 * not work correctly on the BCM5700 rev AX and BX chips,
6128	 * according to all available information. Hence, we have
6129	 * to enable MII interrupts in order to properly obtain
6130	 * async link changes. Unfortunately, this also means that
6131	 * we have to read the MAC status register to detect link
6132	 * changes, thereby adding an additional register access to
6133	 * the interrupt handler.
6134	 *
6135	 * XXX: perhaps link state detection procedure used for
6136	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6137	 */
6138
6139	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6140	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6141		status = CSR_READ_4(sc, BGE_MAC_STS);
6142		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6143			mii = device_get_softc(sc->bge_miibus);
6144			mii_pollstat(mii);
6145			if (!sc->bge_link &&
6146			    mii->mii_media_status & IFM_ACTIVE &&
6147			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6148				sc->bge_link++;
6149				if (bootverbose)
6150					if_printf(sc->bge_ifp, "link UP\n");
6151			} else if (sc->bge_link &&
6152			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6153			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6154				sc->bge_link = 0;
6155				if (bootverbose)
6156					if_printf(sc->bge_ifp, "link DOWN\n");
6157			}
6158
6159			/* Clear the interrupt. */
6160			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6161			    BGE_EVTENB_MI_INTERRUPT);
6162			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6163			    BRGPHY_MII_ISR);
6164			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6165			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6166		}
6167		return;
6168	}
6169
6170	if (sc->bge_flags & BGE_FLAG_TBI) {
6171		status = CSR_READ_4(sc, BGE_MAC_STS);
6172		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6173			if (!sc->bge_link) {
6174				sc->bge_link++;
6175				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6176					BGE_CLRBIT(sc, BGE_MAC_MODE,
6177					    BGE_MACMODE_TBI_SEND_CFGS);
6178					DELAY(40);
6179				}
6180				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6181				if (bootverbose)
6182					if_printf(sc->bge_ifp, "link UP\n");
6183				if_link_state_change(sc->bge_ifp,
6184				    LINK_STATE_UP);
6185			}
6186		} else if (sc->bge_link) {
6187			sc->bge_link = 0;
6188			if (bootverbose)
6189				if_printf(sc->bge_ifp, "link DOWN\n");
6190			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6191		}
6192	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6193		/*
6194		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6195		 * in status word always set. Workaround this bug by reading
6196		 * PHY link status directly.
6197		 */
6198		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6199
6200		if (link != sc->bge_link ||
6201		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6202			mii = device_get_softc(sc->bge_miibus);
6203			mii_pollstat(mii);
6204			if (!sc->bge_link &&
6205			    mii->mii_media_status & IFM_ACTIVE &&
6206			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6207				sc->bge_link++;
6208				if (bootverbose)
6209					if_printf(sc->bge_ifp, "link UP\n");
6210			} else if (sc->bge_link &&
6211			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6212			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6213				sc->bge_link = 0;
6214				if (bootverbose)
6215					if_printf(sc->bge_ifp, "link DOWN\n");
6216			}
6217		}
6218	} else {
6219		/*
6220		 * For controllers that call mii_tick, we have to poll
6221		 * link status.
6222		 */
6223		mii = device_get_softc(sc->bge_miibus);
6224		mii_pollstat(mii);
6225		bge_miibus_statchg(sc->bge_dev);
6226	}
6227
6228	/* Disable MAC attention when link is up. */
6229	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6230	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6231	    BGE_MACSTAT_LINK_CHANGED);
6232}
6233
6234static void
6235bge_add_sysctls(struct bge_softc *sc)
6236{
6237	struct sysctl_ctx_list *ctx;
6238	struct sysctl_oid_list *children;
6239	char tn[32];
6240	int unit;
6241
6242	ctx = device_get_sysctl_ctx(sc->bge_dev);
6243	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6244
6245#ifdef BGE_REGISTER_DEBUG
6246	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6247	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6248	    "Debug Information");
6249
6250	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6251	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6252	    "MAC Register Read");
6253
6254	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6255	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6256	    "APE Register Read");
6257
6258	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6259	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6260	    "Memory Read");
6261
6262#endif
6263
6264	unit = device_get_unit(sc->bge_dev);
6265	/*
6266	 * A common design characteristic for many Broadcom client controllers
6267	 * is that they only support a single outstanding DMA read operation
6268	 * on the PCIe bus. This means that it will take twice as long to fetch
6269	 * a TX frame that is split into header and payload buffers as it does
6270	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6271	 * these controllers, coalescing buffers to reduce the number of memory
6272	 * reads is effective way to get maximum performance(about 940Mbps).
6273	 * Without collapsing TX buffers the maximum TCP bulk transfer
6274	 * performance is about 850Mbps. However forcing coalescing mbufs
6275	 * consumes a lot of CPU cycles, so leave it off by default.
6276	 */
6277	sc->bge_forced_collapse = 0;
6278	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6279	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6280	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6281	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6282	    "Number of fragmented TX buffers of a frame allowed before "
6283	    "forced collapsing");
6284
6285	sc->bge_msi = 1;
6286	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6287	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6288	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6289	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6290
6291	/*
6292	 * It seems all Broadcom controllers have a bug that can generate UDP
6293	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6294	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6295	 * Even though the probability of generating such UDP datagrams is
6296	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6297	 * into network so disable UDP checksum offloading by default.  Users
6298	 * still override this behavior by setting a sysctl variable,
6299	 * dev.bge.0.forced_udpcsum.
6300	 */
6301	sc->bge_forced_udpcsum = 0;
6302	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6303	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6304	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6305	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6306	    "Enable UDP checksum offloading even if controller can "
6307	    "generate UDP checksum value 0");
6308
6309	if (BGE_IS_5705_PLUS(sc))
6310		bge_add_sysctl_stats_regs(sc, ctx, children);
6311	else
6312		bge_add_sysctl_stats(sc, ctx, children);
6313}
6314
6315#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6316	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6317	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6318	    desc)
6319
6320static void
6321bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6322    struct sysctl_oid_list *parent)
6323{
6324	struct sysctl_oid *tree;
6325	struct sysctl_oid_list *children, *schildren;
6326
6327	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6328	    NULL, "BGE Statistics");
6329	schildren = children = SYSCTL_CHILDREN(tree);
6330	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6331	    children, COSFramesDroppedDueToFilters,
6332	    "FramesDroppedDueToFilters");
6333	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6334	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6335	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6336	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6337	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6338	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6339	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6340	    children, ifInDiscards, "InputDiscards");
6341	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6342	    children, ifInErrors, "InputErrors");
6343	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6344	    children, nicRecvThresholdHit, "RecvThresholdHit");
6345	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6346	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6347	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6348	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6349	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6350	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6351	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6352	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6353	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6354	    children, nicRingStatusUpdate, "RingStatusUpdate");
6355	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6356	    children, nicInterrupts, "Interrupts");
6357	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6358	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6359	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6360	    children, nicSendThresholdHit, "SendThresholdHit");
6361
6362	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6363	    NULL, "BGE RX Statistics");
6364	children = SYSCTL_CHILDREN(tree);
6365	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6366	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6367	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6368	    children, rxstats.etherStatsFragments, "Fragments");
6369	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6370	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6371	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6372	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6373	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6374	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6375	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6376	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6377	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6378	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6379	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6380	    children, rxstats.xoffPauseFramesReceived,
6381	    "xoffPauseFramesReceived");
6382	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6383	    children, rxstats.macControlFramesReceived,
6384	    "ControlFramesReceived");
6385	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6386	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6387	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6388	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6389	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6390	    children, rxstats.etherStatsJabbers, "Jabbers");
6391	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6392	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6393	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6394	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6395	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6396	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6397
6398	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6399	    NULL, "BGE TX Statistics");
6400	children = SYSCTL_CHILDREN(tree);
6401	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6402	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6403	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6404	    children, txstats.etherStatsCollisions, "Collisions");
6405	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6406	    children, txstats.outXonSent, "XonSent");
6407	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6408	    children, txstats.outXoffSent, "XoffSent");
6409	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6410	    children, txstats.flowControlDone, "flowControlDone");
6411	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6412	    children, txstats.dot3StatsInternalMacTransmitErrors,
6413	    "InternalMacTransmitErrors");
6414	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6415	    children, txstats.dot3StatsSingleCollisionFrames,
6416	    "SingleCollisionFrames");
6417	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6418	    children, txstats.dot3StatsMultipleCollisionFrames,
6419	    "MultipleCollisionFrames");
6420	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6421	    children, txstats.dot3StatsDeferredTransmissions,
6422	    "DeferredTransmissions");
6423	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6424	    children, txstats.dot3StatsExcessiveCollisions,
6425	    "ExcessiveCollisions");
6426	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6427	    children, txstats.dot3StatsLateCollisions,
6428	    "LateCollisions");
6429	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6430	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6431	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6432	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6433	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6434	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6435	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6436	    children, txstats.dot3StatsCarrierSenseErrors,
6437	    "CarrierSenseErrors");
6438	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6439	    children, txstats.ifOutDiscards, "Discards");
6440	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6441	    children, txstats.ifOutErrors, "Errors");
6442}
6443
6444#undef BGE_SYSCTL_STAT
6445
6446#define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6447	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6448
6449static void
6450bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6451    struct sysctl_oid_list *parent)
6452{
6453	struct sysctl_oid *tree;
6454	struct sysctl_oid_list *child, *schild;
6455	struct bge_mac_stats *stats;
6456
6457	stats = &sc->bge_mac_stats;
6458	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6459	    NULL, "BGE Statistics");
6460	schild = child = SYSCTL_CHILDREN(tree);
6461	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6462	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6463	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6464	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6465	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6466	    &stats->DmaWriteHighPriQueueFull,
6467	    "NIC DMA Write High Priority Queue Full");
6468	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6469	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6470	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6471	    &stats->InputDiscards, "Discarded Input Frames");
6472	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6473	    &stats->InputErrors, "Input Errors");
6474	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6475	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6476
6477	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6478	    NULL, "BGE RX Statistics");
6479	child = SYSCTL_CHILDREN(tree);
6480	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6481	    &stats->ifHCInOctets, "Inbound Octets");
6482	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6483	    &stats->etherStatsFragments, "Fragments");
6484	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6485	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6486	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6487	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6488	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6489	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6490	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6491	    &stats->dot3StatsFCSErrors, "FCS Errors");
6492	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6493	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6494	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6495	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6496	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6497	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6498	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6499	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6500	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6501	    &stats->xoffStateEntered, "XOFF State Entered");
6502	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6503	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6504	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6505	    &stats->etherStatsJabbers, "Jabbers");
6506	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6507	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6508
6509	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6510	    NULL, "BGE TX Statistics");
6511	child = SYSCTL_CHILDREN(tree);
6512	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6513	    &stats->ifHCOutOctets, "Outbound Octets");
6514	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6515	    &stats->etherStatsCollisions, "TX Collisions");
6516	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6517	    &stats->outXonSent, "XON Sent");
6518	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6519	    &stats->outXoffSent, "XOFF Sent");
6520	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6521	    &stats->dot3StatsInternalMacTransmitErrors,
6522	    "Internal MAC TX Errors");
6523	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6524	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6525	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6526	    &stats->dot3StatsMultipleCollisionFrames,
6527	    "Multiple Collision Frames");
6528	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6529	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6530	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6531	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6532	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6533	    &stats->dot3StatsLateCollisions, "Late Collisions");
6534	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6535	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6536	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6537	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6538	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6539	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6540}
6541
6542#undef	BGE_SYSCTL_STAT_ADD64
6543
6544static int
6545bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6546{
6547	struct bge_softc *sc;
6548	uint32_t result;
6549	int offset;
6550
6551	sc = (struct bge_softc *)arg1;
6552	offset = arg2;
6553	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6554	    offsetof(bge_hostaddr, bge_addr_lo));
6555	return (sysctl_handle_int(oidp, &result, 0, req));
6556}
6557
6558#ifdef BGE_REGISTER_DEBUG
6559static int
6560bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6561{
6562	struct bge_softc *sc;
6563	uint16_t *sbdata;
6564	int error, result, sbsz;
6565	int i, j;
6566
6567	result = -1;
6568	error = sysctl_handle_int(oidp, &result, 0, req);
6569	if (error || (req->newptr == NULL))
6570		return (error);
6571
6572	if (result == 1) {
6573		sc = (struct bge_softc *)arg1;
6574
6575		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6576		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6577			sbsz = BGE_STATUS_BLK_SZ;
6578		else
6579			sbsz = 32;
6580		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6581		printf("Status Block:\n");
6582		BGE_LOCK(sc);
6583		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6584		    sc->bge_cdata.bge_status_map,
6585		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6586		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6587			printf("%06x:", i);
6588			for (j = 0; j < 8; j++)
6589				printf(" %04x", sbdata[i++]);
6590			printf("\n");
6591		}
6592
6593		printf("Registers:\n");
6594		for (i = 0x800; i < 0xA00; ) {
6595			printf("%06x:", i);
6596			for (j = 0; j < 8; j++) {
6597				printf(" %08x", CSR_READ_4(sc, i));
6598				i += 4;
6599			}
6600			printf("\n");
6601		}
6602		BGE_UNLOCK(sc);
6603
6604		printf("Hardware Flags:\n");
6605		if (BGE_IS_5717_PLUS(sc))
6606			printf(" - 5717 Plus\n");
6607		if (BGE_IS_5755_PLUS(sc))
6608			printf(" - 5755 Plus\n");
6609		if (BGE_IS_575X_PLUS(sc))
6610			printf(" - 575X Plus\n");
6611		if (BGE_IS_5705_PLUS(sc))
6612			printf(" - 5705 Plus\n");
6613		if (BGE_IS_5714_FAMILY(sc))
6614			printf(" - 5714 Family\n");
6615		if (BGE_IS_5700_FAMILY(sc))
6616			printf(" - 5700 Family\n");
6617		if (sc->bge_flags & BGE_FLAG_JUMBO)
6618			printf(" - Supports Jumbo Frames\n");
6619		if (sc->bge_flags & BGE_FLAG_PCIX)
6620			printf(" - PCI-X Bus\n");
6621		if (sc->bge_flags & BGE_FLAG_PCIE)
6622			printf(" - PCI Express Bus\n");
6623		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6624			printf(" - No 3 LEDs\n");
6625		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6626			printf(" - RX Alignment Bug\n");
6627	}
6628
6629	return (error);
6630}
6631
6632static int
6633bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6634{
6635	struct bge_softc *sc;
6636	int error;
6637	uint16_t result;
6638	uint32_t val;
6639
6640	result = -1;
6641	error = sysctl_handle_int(oidp, &result, 0, req);
6642	if (error || (req->newptr == NULL))
6643		return (error);
6644
6645	if (result < 0x8000) {
6646		sc = (struct bge_softc *)arg1;
6647		val = CSR_READ_4(sc, result);
6648		printf("reg 0x%06X = 0x%08X\n", result, val);
6649	}
6650
6651	return (error);
6652}
6653
6654static int
6655bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6656{
6657	struct bge_softc *sc;
6658	int error;
6659	uint16_t result;
6660	uint32_t val;
6661
6662	result = -1;
6663	error = sysctl_handle_int(oidp, &result, 0, req);
6664	if (error || (req->newptr == NULL))
6665		return (error);
6666
6667	if (result < 0x8000) {
6668		sc = (struct bge_softc *)arg1;
6669		val = APE_READ_4(sc, result);
6670		printf("reg 0x%06X = 0x%08X\n", result, val);
6671	}
6672
6673	return (error);
6674}
6675
6676static int
6677bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6678{
6679	struct bge_softc *sc;
6680	int error;
6681	uint16_t result;
6682	uint32_t val;
6683
6684	result = -1;
6685	error = sysctl_handle_int(oidp, &result, 0, req);
6686	if (error || (req->newptr == NULL))
6687		return (error);
6688
6689	if (result < 0x8000) {
6690		sc = (struct bge_softc *)arg1;
6691		val = bge_readmem_ind(sc, result);
6692		printf("mem 0x%06X = 0x%08X\n", result, val);
6693	}
6694
6695	return (error);
6696}
6697#endif
6698
6699static int
6700bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6701{
6702
6703	if (sc->bge_flags & BGE_FLAG_EADDR)
6704		return (1);
6705
6706#ifdef __sparc64__
6707	OF_getetheraddr(sc->bge_dev, ether_addr);
6708	return (0);
6709#endif
6710	return (1);
6711}
6712
6713static int
6714bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6715{
6716	uint32_t mac_addr;
6717
6718	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6719	if ((mac_addr >> 16) == 0x484b) {
6720		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6721		ether_addr[1] = (uint8_t)mac_addr;
6722		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6723		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6724		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6725		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6726		ether_addr[5] = (uint8_t)mac_addr;
6727		return (0);
6728	}
6729	return (1);
6730}
6731
6732static int
6733bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6734{
6735	int mac_offset = BGE_EE_MAC_OFFSET;
6736
6737	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6738		mac_offset = BGE_EE_MAC_OFFSET_5906;
6739
6740	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6741	    ETHER_ADDR_LEN));
6742}
6743
6744static int
6745bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6746{
6747
6748	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6749		return (1);
6750
6751	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6752	   ETHER_ADDR_LEN));
6753}
6754
6755static int
6756bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6757{
6758	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6759		/* NOTE: Order is critical */
6760		bge_get_eaddr_fw,
6761		bge_get_eaddr_mem,
6762		bge_get_eaddr_nvram,
6763		bge_get_eaddr_eeprom,
6764		NULL
6765	};
6766	const bge_eaddr_fcn_t *func;
6767
6768	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6769		if ((*func)(sc, eaddr) == 0)
6770			break;
6771	}
6772	return (*func == NULL ? ENXIO : 0);
6773}
6774