if_bge.c revision 199761
1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/bge/if_bge.c 199761 2009-11-24 17:46:58Z yongari $");
36
37/*
38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39 *
40 * The Broadcom BCM5700 is based on technology originally developed by
41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45 * frames, highly configurable RX filtering, and 16 RX and TX queues
46 * (which, along with RX filter rules, can be used for QOS applications).
47 * Other features, such as TCP segmentation, may be available as part
48 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49 * firmware images can be stored in hardware and need not be compiled
50 * into the driver.
51 *
52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54 *
55 * The BCM5701 is a single-chip solution incorporating both the BCM5700
56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57 * does not support external SSRAM.
58 *
59 * Broadcom also produces a variation of the BCM5700 under the "Altima"
60 * brand name, which is functionally similar but lacks PCI-X support.
61 *
62 * Without external SSRAM, you can only have at most 4 TX rings,
63 * and the use of the mini RX ring is disabled. This seems to imply
64 * that these features are simply not available on the BCM5701. As a
65 * result, this driver does not implement any support for the mini RX
66 * ring.
67 */
68
69#ifdef HAVE_KERNEL_OPTION_HEADERS
70#include "opt_device_polling.h"
71#endif
72
73#include <sys/param.h>
74#include <sys/endian.h>
75#include <sys/systm.h>
76#include <sys/sockio.h>
77#include <sys/mbuf.h>
78#include <sys/malloc.h>
79#include <sys/kernel.h>
80#include <sys/module.h>
81#include <sys/socket.h>
82#include <sys/sysctl.h>
83#include <sys/taskqueue.h>
84
85#include <net/if.h>
86#include <net/if_arp.h>
87#include <net/ethernet.h>
88#include <net/if_dl.h>
89#include <net/if_media.h>
90
91#include <net/bpf.h>
92
93#include <net/if_types.h>
94#include <net/if_vlan_var.h>
95
96#include <netinet/in_systm.h>
97#include <netinet/in.h>
98#include <netinet/ip.h>
99#include <netinet/tcp.h>
100
101#include <machine/bus.h>
102#include <machine/resource.h>
103#include <sys/bus.h>
104#include <sys/rman.h>
105
106#include <dev/mii/mii.h>
107#include <dev/mii/miivar.h>
108#include "miidevs.h"
109#include <dev/mii/brgphyreg.h>
110
111#ifdef __sparc64__
112#include <dev/ofw/ofw_bus.h>
113#include <dev/ofw/openfirm.h>
114#include <machine/ofw_machdep.h>
115#include <machine/ver.h>
116#endif
117
118#include <dev/pci/pcireg.h>
119#include <dev/pci/pcivar.h>
120
121#include <dev/bge/if_bgereg.h>
122
123#define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124#define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126MODULE_DEPEND(bge, pci, 1, 1, 1);
127MODULE_DEPEND(bge, ether, 1, 1, 1);
128MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130/* "device miibus" required.  See GENERIC if you get errors here. */
131#include "miibus_if.h"
132
133/*
134 * Various supported device vendors/types and their names. Note: the
135 * spec seems to indicate that the hardware still has Alteon's vendor
136 * ID burned into it, though it will always be overriden by the vendor
137 * ID in the EEPROM. Just to be safe, we cover all possibilities.
138 */
139static const struct bge_type {
140	uint16_t	bge_vid;
141	uint16_t	bge_did;
142} bge_devs[] = {
143	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145
146	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149
150	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151
152	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
191	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
192	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
193	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
194	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
195	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
196	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
197	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
198	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
199	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
200	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
201	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
202	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
203	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
204	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
205	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
206	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
207	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
208	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
209	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
210	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
211	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
212	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
213	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
214	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
215	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
216	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
217
218	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
219
220	{ TC_VENDORID,		TC_DEVICEID_3C996 },
221
222	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
223	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
224	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
225
226	{ 0, 0 }
227};
228
229static const struct bge_vendor {
230	uint16_t	v_id;
231	const char	*v_name;
232} bge_vendors[] = {
233	{ ALTEON_VENDORID,	"Alteon" },
234	{ ALTIMA_VENDORID,	"Altima" },
235	{ APPLE_VENDORID,	"Apple" },
236	{ BCOM_VENDORID,	"Broadcom" },
237	{ SK_VENDORID,		"SysKonnect" },
238	{ TC_VENDORID,		"3Com" },
239	{ FJTSU_VENDORID,	"Fujitsu" },
240
241	{ 0, NULL }
242};
243
244static const struct bge_revision {
245	uint32_t	br_chipid;
246	const char	*br_name;
247} bge_revisions[] = {
248	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
249	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
250	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
251	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
252	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
253	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
254	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
255	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
256	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
257	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
258	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
259	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
260	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
261	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
262	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
263	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
264	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
265	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
266	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
267	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
268	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
269	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
270	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
271	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
272	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
273	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
274	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
275	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
276	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
277	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
278	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
279	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
280	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
281	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
282	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
283	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
284	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
285	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
286	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
287	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
288	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
289	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
290	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
291	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
292	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
293	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
294	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
295	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
296	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
297	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
298	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
299	/* 5754 and 5787 share the same ASIC ID */
300	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
301	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
302	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
303	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
304	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
305	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
306	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
307
308	{ 0, NULL }
309};
310
311/*
312 * Some defaults for major revisions, so that newer steppings
313 * that we don't know about have a shot at working.
314 */
315static const struct bge_revision bge_majorrevs[] = {
316	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
317	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
318	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
319	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
320	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
321	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
322	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
323	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
324	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
325	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
326	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
327	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
328	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
329	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
330	/* 5754 and 5787 share the same ASIC ID */
331	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
332	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
333	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
334
335	{ 0, NULL }
336};
337
338#define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
339#define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
340#define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
341#define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
342#define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
343#define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
344
345const struct bge_revision * bge_lookup_rev(uint32_t);
346const struct bge_vendor * bge_lookup_vendor(uint16_t);
347
348typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
349
350static int bge_probe(device_t);
351static int bge_attach(device_t);
352static int bge_detach(device_t);
353static int bge_suspend(device_t);
354static int bge_resume(device_t);
355static void bge_release_resources(struct bge_softc *);
356static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
357static int bge_dma_alloc(device_t);
358static void bge_dma_free(struct bge_softc *);
359
360static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
361static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
362static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
363static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
364static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
365
366static void bge_txeof(struct bge_softc *, uint16_t);
367static int bge_rxeof(struct bge_softc *, uint16_t, int);
368
369static void bge_asf_driver_up (struct bge_softc *);
370static void bge_tick(void *);
371static void bge_stats_update(struct bge_softc *);
372static void bge_stats_update_regs(struct bge_softc *);
373static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
374    uint16_t *);
375static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
376
377static void bge_intr(void *);
378static int bge_msi_intr(void *);
379static void bge_intr_task(void *, int);
380static void bge_start_locked(struct ifnet *);
381static void bge_start(struct ifnet *);
382static int bge_ioctl(struct ifnet *, u_long, caddr_t);
383static void bge_init_locked(struct bge_softc *);
384static void bge_init(void *);
385static void bge_stop(struct bge_softc *);
386static void bge_watchdog(struct bge_softc *);
387static int bge_shutdown(device_t);
388static int bge_ifmedia_upd_locked(struct ifnet *);
389static int bge_ifmedia_upd(struct ifnet *);
390static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
391
392static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
393static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
394
395static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
396static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
397
398static void bge_setpromisc(struct bge_softc *);
399static void bge_setmulti(struct bge_softc *);
400static void bge_setvlan(struct bge_softc *);
401
402static int bge_newbuf_std(struct bge_softc *, int);
403static int bge_newbuf_jumbo(struct bge_softc *, int);
404static int bge_init_rx_ring_std(struct bge_softc *);
405static void bge_free_rx_ring_std(struct bge_softc *);
406static int bge_init_rx_ring_jumbo(struct bge_softc *);
407static void bge_free_rx_ring_jumbo(struct bge_softc *);
408static void bge_free_tx_ring(struct bge_softc *);
409static int bge_init_tx_ring(struct bge_softc *);
410
411static int bge_chipinit(struct bge_softc *);
412static int bge_blockinit(struct bge_softc *);
413
414static int bge_has_eaddr(struct bge_softc *);
415static uint32_t bge_readmem_ind(struct bge_softc *, int);
416static void bge_writemem_ind(struct bge_softc *, int, int);
417static void bge_writembx(struct bge_softc *, int, int);
418#ifdef notdef
419static uint32_t bge_readreg_ind(struct bge_softc *, int);
420#endif
421static void bge_writemem_direct(struct bge_softc *, int, int);
422static void bge_writereg_ind(struct bge_softc *, int, int);
423static void bge_set_max_readrq(struct bge_softc *);
424
425static int bge_miibus_readreg(device_t, int, int);
426static int bge_miibus_writereg(device_t, int, int, int);
427static void bge_miibus_statchg(device_t);
428#ifdef DEVICE_POLLING
429static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
430#endif
431
432#define	BGE_RESET_START 1
433#define	BGE_RESET_STOP  2
434static void bge_sig_post_reset(struct bge_softc *, int);
435static void bge_sig_legacy(struct bge_softc *, int);
436static void bge_sig_pre_reset(struct bge_softc *, int);
437static int bge_reset(struct bge_softc *);
438static void bge_link_upd(struct bge_softc *);
439
440/*
441 * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
442 * leak information to untrusted users.  It is also known to cause alignment
443 * traps on certain architectures.
444 */
445#ifdef BGE_REGISTER_DEBUG
446static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
447static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
448static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
449#endif
450static void bge_add_sysctls(struct bge_softc *);
451static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
452
453static device_method_t bge_methods[] = {
454	/* Device interface */
455	DEVMETHOD(device_probe,		bge_probe),
456	DEVMETHOD(device_attach,	bge_attach),
457	DEVMETHOD(device_detach,	bge_detach),
458	DEVMETHOD(device_shutdown,	bge_shutdown),
459	DEVMETHOD(device_suspend,	bge_suspend),
460	DEVMETHOD(device_resume,	bge_resume),
461
462	/* bus interface */
463	DEVMETHOD(bus_print_child,	bus_generic_print_child),
464	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
465
466	/* MII interface */
467	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
468	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
469	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
470
471	{ 0, 0 }
472};
473
474static driver_t bge_driver = {
475	"bge",
476	bge_methods,
477	sizeof(struct bge_softc)
478};
479
480static devclass_t bge_devclass;
481
482DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
483DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
484
485static int bge_allow_asf = 1;
486
487TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
488
489SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
490SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
491	"Allow ASF mode if available");
492
493#define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
494#define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
495#define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
496#define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
497#define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
498
499static int
500bge_has_eaddr(struct bge_softc *sc)
501{
502#ifdef __sparc64__
503	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
504	device_t dev;
505	uint32_t subvendor;
506
507	dev = sc->bge_dev;
508
509	/*
510	 * The on-board BGEs found in sun4u machines aren't fitted with
511	 * an EEPROM which means that we have to obtain the MAC address
512	 * via OFW and that some tests will always fail.  We distinguish
513	 * such BGEs by the subvendor ID, which also has to be obtained
514	 * from OFW instead of the PCI configuration space as the latter
515	 * indicates Broadcom as the subvendor of the netboot interface.
516	 * For early Blade 1500 and 2500 we even have to check the OFW
517	 * device path as the subvendor ID always defaults to Broadcom
518	 * there.
519	 */
520	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
521	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
522	    subvendor == SUN_VENDORID)
523		return (0);
524	memset(buf, 0, sizeof(buf));
525	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
526		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
527		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
528			return (0);
529		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
530		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
531			return (0);
532	}
533#endif
534	return (1);
535}
536
537static uint32_t
538bge_readmem_ind(struct bge_softc *sc, int off)
539{
540	device_t dev;
541	uint32_t val;
542
543	dev = sc->bge_dev;
544
545	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
546	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
547	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
548	return (val);
549}
550
551static void
552bge_writemem_ind(struct bge_softc *sc, int off, int val)
553{
554	device_t dev;
555
556	dev = sc->bge_dev;
557
558	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
559	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
560	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
561}
562
563/*
564 * PCI Express only
565 */
566static void
567bge_set_max_readrq(struct bge_softc *sc)
568{
569	device_t dev;
570	uint16_t val;
571
572	dev = sc->bge_dev;
573
574	val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
575	if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) !=
576	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
577		if (bootverbose)
578			device_printf(dev, "adjust device control 0x%04x ",
579			    val);
580		val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
581		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
582		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
583		    val, 2);
584		if (bootverbose)
585			printf("-> 0x%04x\n", val);
586	}
587}
588
589#ifdef notdef
590static uint32_t
591bge_readreg_ind(struct bge_softc *sc, int off)
592{
593	device_t dev;
594
595	dev = sc->bge_dev;
596
597	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
598	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
599}
600#endif
601
602static void
603bge_writereg_ind(struct bge_softc *sc, int off, int val)
604{
605	device_t dev;
606
607	dev = sc->bge_dev;
608
609	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
610	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
611}
612
613static void
614bge_writemem_direct(struct bge_softc *sc, int off, int val)
615{
616	CSR_WRITE_4(sc, off, val);
617}
618
619static void
620bge_writembx(struct bge_softc *sc, int off, int val)
621{
622	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
623		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624
625	CSR_WRITE_4(sc, off, val);
626}
627
628/*
629 * Map a single buffer address.
630 */
631
632static void
633bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
634{
635	struct bge_dmamap_arg *ctx;
636
637	if (error)
638		return;
639
640	ctx = arg;
641
642	if (nseg > ctx->bge_maxsegs) {
643		ctx->bge_maxsegs = 0;
644		return;
645	}
646
647	ctx->bge_busaddr = segs->ds_addr;
648}
649
650static uint8_t
651bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
652{
653	uint32_t access, byte = 0;
654	int i;
655
656	/* Lock. */
657	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
658	for (i = 0; i < 8000; i++) {
659		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
660			break;
661		DELAY(20);
662	}
663	if (i == 8000)
664		return (1);
665
666	/* Enable access. */
667	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
668	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
669
670	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
671	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
672	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
673		DELAY(10);
674		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
675			DELAY(10);
676			break;
677		}
678	}
679
680	if (i == BGE_TIMEOUT * 10) {
681		if_printf(sc->bge_ifp, "nvram read timed out\n");
682		return (1);
683	}
684
685	/* Get result. */
686	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
687
688	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
689
690	/* Disable access. */
691	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
692
693	/* Unlock. */
694	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
695	CSR_READ_4(sc, BGE_NVRAM_SWARB);
696
697	return (0);
698}
699
700/*
701 * Read a sequence of bytes from NVRAM.
702 */
703static int
704bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
705{
706	int err = 0, i;
707	uint8_t byte = 0;
708
709	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
710		return (1);
711
712	for (i = 0; i < cnt; i++) {
713		err = bge_nvram_getbyte(sc, off + i, &byte);
714		if (err)
715			break;
716		*(dest + i) = byte;
717	}
718
719	return (err ? 1 : 0);
720}
721
722/*
723 * Read a byte of data stored in the EEPROM at address 'addr.' The
724 * BCM570x supports both the traditional bitbang interface and an
725 * auto access interface for reading the EEPROM. We use the auto
726 * access method.
727 */
728static uint8_t
729bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
730{
731	int i;
732	uint32_t byte = 0;
733
734	/*
735	 * Enable use of auto EEPROM access so we can avoid
736	 * having to use the bitbang method.
737	 */
738	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
739
740	/* Reset the EEPROM, load the clock period. */
741	CSR_WRITE_4(sc, BGE_EE_ADDR,
742	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
743	DELAY(20);
744
745	/* Issue the read EEPROM command. */
746	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
747
748	/* Wait for completion */
749	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
750		DELAY(10);
751		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
752			break;
753	}
754
755	if (i == BGE_TIMEOUT * 10) {
756		device_printf(sc->bge_dev, "EEPROM read timed out\n");
757		return (1);
758	}
759
760	/* Get result. */
761	byte = CSR_READ_4(sc, BGE_EE_DATA);
762
763	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
764
765	return (0);
766}
767
768/*
769 * Read a sequence of bytes from the EEPROM.
770 */
771static int
772bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
773{
774	int i, error = 0;
775	uint8_t byte = 0;
776
777	for (i = 0; i < cnt; i++) {
778		error = bge_eeprom_getbyte(sc, off + i, &byte);
779		if (error)
780			break;
781		*(dest + i) = byte;
782	}
783
784	return (error ? 1 : 0);
785}
786
787static int
788bge_miibus_readreg(device_t dev, int phy, int reg)
789{
790	struct bge_softc *sc;
791	uint32_t val, autopoll;
792	int i;
793
794	sc = device_get_softc(dev);
795
796	/*
797	 * Broadcom's own driver always assumes the internal
798	 * PHY is at GMII address 1. On some chips, the PHY responds
799	 * to accesses at all addresses, which could cause us to
800	 * bogusly attach the PHY 32 times at probe type. Always
801	 * restricting the lookup to address 1 is simpler than
802	 * trying to figure out which chips revisions should be
803	 * special-cased.
804	 */
805	if (phy != 1)
806		return (0);
807
808	/* Reading with autopolling on may trigger PCI errors */
809	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
810	if (autopoll & BGE_MIMODE_AUTOPOLL) {
811		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
812		DELAY(40);
813	}
814
815	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
816	    BGE_MIPHY(phy) | BGE_MIREG(reg));
817
818	for (i = 0; i < BGE_TIMEOUT; i++) {
819		DELAY(10);
820		val = CSR_READ_4(sc, BGE_MI_COMM);
821		if (!(val & BGE_MICOMM_BUSY))
822			break;
823	}
824
825	if (i == BGE_TIMEOUT) {
826		device_printf(sc->bge_dev,
827		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
828		    phy, reg, val);
829		val = 0;
830		goto done;
831	}
832
833	DELAY(5);
834	val = CSR_READ_4(sc, BGE_MI_COMM);
835
836done:
837	if (autopoll & BGE_MIMODE_AUTOPOLL) {
838		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
839		DELAY(40);
840	}
841
842	if (val & BGE_MICOMM_READFAIL)
843		return (0);
844
845	return (val & 0xFFFF);
846}
847
848static int
849bge_miibus_writereg(device_t dev, int phy, int reg, int val)
850{
851	struct bge_softc *sc;
852	uint32_t autopoll;
853	int i;
854
855	sc = device_get_softc(dev);
856
857	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859		return(0);
860
861	/* Reading with autopolling on may trigger PCI errors */
862	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
863	if (autopoll & BGE_MIMODE_AUTOPOLL) {
864		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
865		DELAY(40);
866	}
867
868	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870
871	for (i = 0; i < BGE_TIMEOUT; i++) {
872		DELAY(10);
873		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874			DELAY(5);
875			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876			break;
877		}
878	}
879
880	if (i == BGE_TIMEOUT) {
881		device_printf(sc->bge_dev,
882		    "PHY write timed out (phy %d, reg %d, val %d)\n",
883		    phy, reg, val);
884		return (0);
885	}
886
887	if (autopoll & BGE_MIMODE_AUTOPOLL) {
888		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
889		DELAY(40);
890	}
891
892	return (0);
893}
894
895static void
896bge_miibus_statchg(device_t dev)
897{
898	struct bge_softc *sc;
899	struct mii_data *mii;
900	sc = device_get_softc(dev);
901	mii = device_get_softc(sc->bge_miibus);
902
903	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
904	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
905		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
906	else
907		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
908
909	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
910		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
911	else
912		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
913}
914
915/*
916 * Intialize a standard receive ring descriptor.
917 */
918static int
919bge_newbuf_std(struct bge_softc *sc, int i)
920{
921	struct mbuf *m;
922	struct bge_rx_bd *r;
923	bus_dma_segment_t segs[1];
924	bus_dmamap_t map;
925	int error, nsegs;
926
927	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
928	if (m == NULL)
929		return (ENOBUFS);
930	m->m_len = m->m_pkthdr.len = MCLBYTES;
931	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
932		m_adj(m, ETHER_ALIGN);
933
934	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
935	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
936	if (error != 0) {
937		m_freem(m);
938		return (error);
939	}
940	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
941		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
942		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
943		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
944		    sc->bge_cdata.bge_rx_std_dmamap[i]);
945	}
946	map = sc->bge_cdata.bge_rx_std_dmamap[i];
947	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
948	sc->bge_cdata.bge_rx_std_sparemap = map;
949	sc->bge_cdata.bge_rx_std_chain[i] = m;
950	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
951	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
952	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
953	r->bge_flags = BGE_RXBDFLAG_END;
954	r->bge_len = segs[0].ds_len;
955	r->bge_idx = i;
956
957	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
958	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
959
960	return (0);
961}
962
963/*
964 * Initialize a jumbo receive ring descriptor. This allocates
965 * a jumbo buffer from the pool managed internally by the driver.
966 */
967static int
968bge_newbuf_jumbo(struct bge_softc *sc, int i)
969{
970	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
971	bus_dmamap_t map;
972	struct bge_extrx_bd *r;
973	struct mbuf *m;
974	int error, nsegs;
975
976	MGETHDR(m, M_DONTWAIT, MT_DATA);
977	if (m == NULL)
978		return (ENOBUFS);
979
980	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
981	if (!(m->m_flags & M_EXT)) {
982		m_freem(m);
983		return (ENOBUFS);
984	}
985	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
986	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
987		m_adj(m, ETHER_ALIGN);
988
989	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
990	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
991	if (error != 0) {
992		m_freem(m);
993		return (error);
994	}
995
996	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
997		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
998		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
999		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1000		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1001	}
1002	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1003	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1004	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1005	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1006	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1007	/*
1008	 * Fill in the extended RX buffer descriptor.
1009	 */
1010	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1011	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1012	r->bge_idx = i;
1013	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1014	switch (nsegs) {
1015	case 4:
1016		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1017		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1018		r->bge_len3 = segs[3].ds_len;
1019	case 3:
1020		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1021		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1022		r->bge_len2 = segs[2].ds_len;
1023	case 2:
1024		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1025		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1026		r->bge_len1 = segs[1].ds_len;
1027	case 1:
1028		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1029		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1030		r->bge_len0 = segs[0].ds_len;
1031		break;
1032	default:
1033		panic("%s: %d segments\n", __func__, nsegs);
1034	}
1035
1036	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1037	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1038
1039	return (0);
1040}
1041
1042/*
1043 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1044 * that's 1MB or memory, which is a lot. For now, we fill only the first
1045 * 256 ring entries and hope that our CPU is fast enough to keep up with
1046 * the NIC.
1047 */
1048static int
1049bge_init_rx_ring_std(struct bge_softc *sc)
1050{
1051	int error, i;
1052
1053	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1054	sc->bge_std = 0;
1055	for (i = 0; i < BGE_SSLOTS; i++) {
1056		if ((error = bge_newbuf_std(sc, i)) != 0)
1057			return (error);
1058		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1059	};
1060
1061	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1062	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1063
1064	sc->bge_std = i - 1;
1065	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1066
1067	return (0);
1068}
1069
1070static void
1071bge_free_rx_ring_std(struct bge_softc *sc)
1072{
1073	int i;
1074
1075	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1076		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1077			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1078			    sc->bge_cdata.bge_rx_std_dmamap[i],
1079			    BUS_DMASYNC_POSTREAD);
1080			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1081			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1082			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1083			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1084		}
1085		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1086		    sizeof(struct bge_rx_bd));
1087	}
1088}
1089
1090static int
1091bge_init_rx_ring_jumbo(struct bge_softc *sc)
1092{
1093	struct bge_rcb *rcb;
1094	int error, i;
1095
1096	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1097	sc->bge_jumbo = 0;
1098	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1099		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1100			return (error);
1101		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1102	};
1103
1104	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1105	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1106
1107	sc->bge_jumbo = i - 1;
1108
1109	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1110	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1111				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1112	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1113
1114	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1115
1116	return (0);
1117}
1118
1119static void
1120bge_free_rx_ring_jumbo(struct bge_softc *sc)
1121{
1122	int i;
1123
1124	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1125		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1126			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1127			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1128			    BUS_DMASYNC_POSTREAD);
1129			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1130			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1131			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1132			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1133		}
1134		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1135		    sizeof(struct bge_extrx_bd));
1136	}
1137}
1138
1139static void
1140bge_free_tx_ring(struct bge_softc *sc)
1141{
1142	int i;
1143
1144	if (sc->bge_ldata.bge_tx_ring == NULL)
1145		return;
1146
1147	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1148		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1149			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1150			    sc->bge_cdata.bge_tx_dmamap[i],
1151			    BUS_DMASYNC_POSTWRITE);
1152			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1153			    sc->bge_cdata.bge_tx_dmamap[i]);
1154			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1155			sc->bge_cdata.bge_tx_chain[i] = NULL;
1156		}
1157		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1158		    sizeof(struct bge_tx_bd));
1159	}
1160}
1161
1162static int
1163bge_init_tx_ring(struct bge_softc *sc)
1164{
1165	sc->bge_txcnt = 0;
1166	sc->bge_tx_saved_considx = 0;
1167
1168	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1169	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1170	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1171
1172	/* Initialize transmit producer index for host-memory send ring. */
1173	sc->bge_tx_prodidx = 0;
1174	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1175
1176	/* 5700 b2 errata */
1177	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1178		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1179
1180	/* NIC-memory send ring not used; initialize to zero. */
1181	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1182	/* 5700 b2 errata */
1183	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1184		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1185
1186	return (0);
1187}
1188
1189static void
1190bge_setpromisc(struct bge_softc *sc)
1191{
1192	struct ifnet *ifp;
1193
1194	BGE_LOCK_ASSERT(sc);
1195
1196	ifp = sc->bge_ifp;
1197
1198	/* Enable or disable promiscuous mode as needed. */
1199	if (ifp->if_flags & IFF_PROMISC)
1200		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1201	else
1202		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1203}
1204
1205static void
1206bge_setmulti(struct bge_softc *sc)
1207{
1208	struct ifnet *ifp;
1209	struct ifmultiaddr *ifma;
1210	uint32_t hashes[4] = { 0, 0, 0, 0 };
1211	int h, i;
1212
1213	BGE_LOCK_ASSERT(sc);
1214
1215	ifp = sc->bge_ifp;
1216
1217	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1218		for (i = 0; i < 4; i++)
1219			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1220		return;
1221	}
1222
1223	/* First, zot all the existing filters. */
1224	for (i = 0; i < 4; i++)
1225		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1226
1227	/* Now program new ones. */
1228	if_maddr_rlock(ifp);
1229	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1230		if (ifma->ifma_addr->sa_family != AF_LINK)
1231			continue;
1232		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1233		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1234		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1235	}
1236	if_maddr_runlock(ifp);
1237
1238	for (i = 0; i < 4; i++)
1239		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1240}
1241
1242static void
1243bge_setvlan(struct bge_softc *sc)
1244{
1245	struct ifnet *ifp;
1246
1247	BGE_LOCK_ASSERT(sc);
1248
1249	ifp = sc->bge_ifp;
1250
1251	/* Enable or disable VLAN tag stripping as needed. */
1252	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1253		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1254	else
1255		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1256}
1257
1258static void
1259bge_sig_pre_reset(sc, type)
1260	struct bge_softc *sc;
1261	int type;
1262{
1263	/*
1264	 * Some chips don't like this so only do this if ASF is enabled
1265	 */
1266	if (sc->bge_asf_mode)
1267		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1268
1269	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1270		switch (type) {
1271		case BGE_RESET_START:
1272			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1273			break;
1274		case BGE_RESET_STOP:
1275			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1276			break;
1277		}
1278	}
1279}
1280
1281static void
1282bge_sig_post_reset(sc, type)
1283	struct bge_softc *sc;
1284	int type;
1285{
1286	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1287		switch (type) {
1288		case BGE_RESET_START:
1289			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1290			/* START DONE */
1291			break;
1292		case BGE_RESET_STOP:
1293			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1294			break;
1295		}
1296	}
1297}
1298
1299static void
1300bge_sig_legacy(sc, type)
1301	struct bge_softc *sc;
1302	int type;
1303{
1304	if (sc->bge_asf_mode) {
1305		switch (type) {
1306		case BGE_RESET_START:
1307			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1308			break;
1309		case BGE_RESET_STOP:
1310			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1311			break;
1312		}
1313	}
1314}
1315
1316void bge_stop_fw(struct bge_softc *);
1317void
1318bge_stop_fw(sc)
1319	struct bge_softc *sc;
1320{
1321	int i;
1322
1323	if (sc->bge_asf_mode) {
1324		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1325		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1326		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1327
1328		for (i = 0; i < 100; i++ ) {
1329			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1330				break;
1331			DELAY(10);
1332		}
1333	}
1334}
1335
1336/*
1337 * Do endian, PCI and DMA initialization.
1338 */
1339static int
1340bge_chipinit(struct bge_softc *sc)
1341{
1342	uint32_t dma_rw_ctl;
1343	int i;
1344
1345	/* Set endianness before we access any non-PCI registers. */
1346	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1347
1348	/* Clear the MAC control register */
1349	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1350
1351	/*
1352	 * Clear the MAC statistics block in the NIC's
1353	 * internal memory.
1354	 */
1355	for (i = BGE_STATS_BLOCK;
1356	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1357		BGE_MEMWIN_WRITE(sc, i, 0);
1358
1359	for (i = BGE_STATUS_BLOCK;
1360	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1361		BGE_MEMWIN_WRITE(sc, i, 0);
1362
1363	/*
1364	 * Set up the PCI DMA control register.
1365	 */
1366	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1367	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1368	if (sc->bge_flags & BGE_FLAG_PCIE) {
1369		/* Read watermark not used, 128 bytes for write. */
1370		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1371	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1372		if (BGE_IS_5714_FAMILY(sc)) {
1373			/* 256 bytes for read and write. */
1374			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1375			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1376			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1377			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1378			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1379		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1380			/* 1536 bytes for read, 384 bytes for write. */
1381			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1382			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1383		} else {
1384			/* 384 bytes for read and write. */
1385			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1386			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1387			    0x0F;
1388		}
1389		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1390		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1391			uint32_t tmp;
1392
1393			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1394			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1395			if (tmp == 6 || tmp == 7)
1396				dma_rw_ctl |=
1397				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1398
1399			/* Set PCI-X DMA write workaround. */
1400			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1401		}
1402	} else {
1403		/* Conventional PCI bus: 256 bytes for read and write. */
1404		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1405		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1406
1407		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1408		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1409			dma_rw_ctl |= 0x0F;
1410	}
1411	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1412	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1413		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1414		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1415	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1416	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1417		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1418	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1419
1420	/*
1421	 * Set up general mode register.
1422	 */
1423	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1424	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1425	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1426
1427	/*
1428	 * BCM5701 B5 have a bug causing data corruption when using
1429	 * 64-bit DMA reads, which can be terminated early and then
1430	 * completed later as 32-bit accesses, in combination with
1431	 * certain bridges.
1432	 */
1433	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1434	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1435		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1436
1437	/*
1438	 * Tell the firmware the driver is running
1439	 */
1440	if (sc->bge_asf_mode & ASF_STACKUP)
1441		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1442
1443	/*
1444	 * Disable memory write invalidate.  Apparently it is not supported
1445	 * properly by these devices.  Also ensure that INTx isn't disabled,
1446	 * as these chips need it even when using MSI.
1447	 */
1448	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1449	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1450
1451	/* Set the timer prescaler (always 66Mhz) */
1452	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1453
1454	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1455	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1456		DELAY(40);	/* XXX */
1457
1458		/* Put PHY into ready state */
1459		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1460		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1461		DELAY(40);
1462	}
1463
1464	return (0);
1465}
1466
1467static int
1468bge_blockinit(struct bge_softc *sc)
1469{
1470	struct bge_rcb *rcb;
1471	bus_size_t vrcb;
1472	bge_hostaddr taddr;
1473	uint32_t val;
1474	int i;
1475
1476	/*
1477	 * Initialize the memory window pointer register so that
1478	 * we can access the first 32K of internal NIC RAM. This will
1479	 * allow us to set up the TX send ring RCBs and the RX return
1480	 * ring RCBs, plus other things which live in NIC memory.
1481	 */
1482	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1483
1484	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1485
1486	if (!(BGE_IS_5705_PLUS(sc))) {
1487		/* Configure mbuf memory pool */
1488		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1489		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1490			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1491		else
1492			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1493
1494		/* Configure DMA resource pool */
1495		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1496		    BGE_DMA_DESCRIPTORS);
1497		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1498	}
1499
1500	/* Configure mbuf pool watermarks */
1501	if (!BGE_IS_5705_PLUS(sc)) {
1502		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1503		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1504		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1505	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1506		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1507		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1508		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1509	} else {
1510		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1511		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1512		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1513	}
1514
1515	/* Configure DMA resource watermarks */
1516	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1517	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1518
1519	/* Enable buffer manager */
1520	if (!(BGE_IS_5705_PLUS(sc))) {
1521		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1522		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1523
1524		/* Poll for buffer manager start indication */
1525		for (i = 0; i < BGE_TIMEOUT; i++) {
1526			DELAY(10);
1527			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1528				break;
1529		}
1530
1531		if (i == BGE_TIMEOUT) {
1532			device_printf(sc->bge_dev,
1533			    "buffer manager failed to start\n");
1534			return (ENXIO);
1535		}
1536	}
1537
1538	/* Enable flow-through queues */
1539	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1540	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1541
1542	/* Wait until queue initialization is complete */
1543	for (i = 0; i < BGE_TIMEOUT; i++) {
1544		DELAY(10);
1545		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1546			break;
1547	}
1548
1549	if (i == BGE_TIMEOUT) {
1550		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1551		return (ENXIO);
1552	}
1553
1554	/* Initialize the standard RX ring control block */
1555	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1556	rcb->bge_hostaddr.bge_addr_lo =
1557	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1558	rcb->bge_hostaddr.bge_addr_hi =
1559	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1560	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1561	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1562	if (BGE_IS_5705_PLUS(sc))
1563		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1564	else
1565		rcb->bge_maxlen_flags =
1566		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1567	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1568	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1569	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1570
1571	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1572	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1573
1574	/*
1575	 * Initialize the jumbo RX ring control block
1576	 * We set the 'ring disabled' bit in the flags
1577	 * field until we're actually ready to start
1578	 * using this ring (i.e. once we set the MTU
1579	 * high enough to require it).
1580	 */
1581	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1582		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1583
1584		rcb->bge_hostaddr.bge_addr_lo =
1585		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1586		rcb->bge_hostaddr.bge_addr_hi =
1587		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1589		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1590		    BUS_DMASYNC_PREREAD);
1591		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1592		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1593		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1594		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1595		    rcb->bge_hostaddr.bge_addr_hi);
1596		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1597		    rcb->bge_hostaddr.bge_addr_lo);
1598
1599		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1600		    rcb->bge_maxlen_flags);
1601		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1602
1603		/* Set up dummy disabled mini ring RCB */
1604		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1605		rcb->bge_maxlen_flags =
1606		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1607		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1608		    rcb->bge_maxlen_flags);
1609	}
1610
1611	/*
1612	 * Set the BD ring replentish thresholds. The recommended
1613	 * values are 1/8th the number of descriptors allocated to
1614	 * each ring.
1615	 * XXX The 5754 requires a lower threshold, so it might be a
1616	 * requirement of all 575x family chips.  The Linux driver sets
1617	 * the lower threshold for all 5705 family chips as well, but there
1618	 * are reports that it might not need to be so strict.
1619	 *
1620	 * XXX Linux does some extra fiddling here for the 5906 parts as
1621	 * well.
1622	 */
1623	if (BGE_IS_5705_PLUS(sc))
1624		val = 8;
1625	else
1626		val = BGE_STD_RX_RING_CNT / 8;
1627	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1628	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1629
1630	/*
1631	 * Disable all unused send rings by setting the 'ring disabled'
1632	 * bit in the flags field of all the TX send ring control blocks.
1633	 * These are located in NIC memory.
1634	 */
1635	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1636	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1637		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1638		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1639		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1640		vrcb += sizeof(struct bge_rcb);
1641	}
1642
1643	/* Configure TX RCB 0 (we use only the first ring) */
1644	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1645	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1646	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1647	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1648	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1649	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1650	if (!(BGE_IS_5705_PLUS(sc)))
1651		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1652		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1653
1654	/* Disable all unused RX return rings */
1655	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1656	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1657		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1658		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1659		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1660		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1661		    BGE_RCB_FLAG_RING_DISABLED));
1662		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1663		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1664		    (i * (sizeof(uint64_t))), 0);
1665		vrcb += sizeof(struct bge_rcb);
1666	}
1667
1668	/* Initialize RX ring indexes */
1669	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1670	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1671	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1672
1673	/*
1674	 * Set up RX return ring 0
1675	 * Note that the NIC address for RX return rings is 0x00000000.
1676	 * The return rings live entirely within the host, so the
1677	 * nicaddr field in the RCB isn't used.
1678	 */
1679	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1680	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1681	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1682	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1683	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1684	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1685	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1686
1687	/* Set random backoff seed for TX */
1688	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1689	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1690	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1691	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1692	    BGE_TX_BACKOFF_SEED_MASK);
1693
1694	/* Set inter-packet gap */
1695	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1696
1697	/*
1698	 * Specify which ring to use for packets that don't match
1699	 * any RX rules.
1700	 */
1701	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1702
1703	/*
1704	 * Configure number of RX lists. One interrupt distribution
1705	 * list, sixteen active lists, one bad frames class.
1706	 */
1707	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1708
1709	/* Inialize RX list placement stats mask. */
1710	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1711	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1712
1713	/* Disable host coalescing until we get it set up */
1714	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1715
1716	/* Poll to make sure it's shut down. */
1717	for (i = 0; i < BGE_TIMEOUT; i++) {
1718		DELAY(10);
1719		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1720			break;
1721	}
1722
1723	if (i == BGE_TIMEOUT) {
1724		device_printf(sc->bge_dev,
1725		    "host coalescing engine failed to idle\n");
1726		return (ENXIO);
1727	}
1728
1729	/* Set up host coalescing defaults */
1730	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1731	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1732	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1733	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1734	if (!(BGE_IS_5705_PLUS(sc))) {
1735		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1736		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1737	}
1738	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1739	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1740
1741	/* Set up address of statistics block */
1742	if (!(BGE_IS_5705_PLUS(sc))) {
1743		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1744		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1745		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1746		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1747		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1748		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1749		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1750	}
1751
1752	/* Set up address of status block */
1753	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1754	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1755	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1756	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1757	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1758	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1759
1760	/* Set up status block size. */
1761	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1762	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1763		val = BGE_STATBLKSZ_FULL;
1764	else
1765		val = BGE_STATBLKSZ_32BYTE;
1766
1767	/* Turn on host coalescing state machine */
1768	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1769
1770	/* Turn on RX BD completion state machine and enable attentions */
1771	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1772	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1773
1774	/* Turn on RX list placement state machine */
1775	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1776
1777	/* Turn on RX list selector state machine. */
1778	if (!(BGE_IS_5705_PLUS(sc)))
1779		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1780
1781	/* Turn on DMA, clear stats */
1782	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
1783	    BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
1784	    BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
1785	    BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
1786	    ((sc->bge_flags & BGE_FLAG_TBI) ?
1787	    BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1788
1789	/* Set misc. local control, enable interrupts on attentions */
1790	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1791
1792#ifdef notdef
1793	/* Assert GPIO pins for PHY reset */
1794	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1795	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1796	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1797	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1798#endif
1799
1800	/* Turn on DMA completion state machine */
1801	if (!(BGE_IS_5705_PLUS(sc)))
1802		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1803
1804	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1805
1806	/* Enable host coalescing bug fix. */
1807	if (BGE_IS_5755_PLUS(sc))
1808		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1809
1810	/* Turn on write DMA state machine */
1811	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1812	DELAY(40);
1813
1814	/* Turn on read DMA state machine */
1815	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1816	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1817	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1818	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1819		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1820		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1821		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1822	if (sc->bge_flags & BGE_FLAG_PCIE)
1823		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1824	if (sc->bge_flags & BGE_FLAG_TSO)
1825		val |= BGE_RDMAMODE_TSO4_ENABLE;
1826	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1827	DELAY(40);
1828
1829	/* Turn on RX data completion state machine */
1830	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1831
1832	/* Turn on RX BD initiator state machine */
1833	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1834
1835	/* Turn on RX data and RX BD initiator state machine */
1836	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1837
1838	/* Turn on Mbuf cluster free state machine */
1839	if (!(BGE_IS_5705_PLUS(sc)))
1840		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1841
1842	/* Turn on send BD completion state machine */
1843	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1844
1845	/* Turn on send data completion state machine */
1846	val = BGE_SDCMODE_ENABLE;
1847	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1848		val |= BGE_SDCMODE_CDELAY;
1849	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1850
1851	/* Turn on send data initiator state machine */
1852	if (sc->bge_flags & BGE_FLAG_TSO)
1853		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1854	else
1855		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1856
1857	/* Turn on send BD initiator state machine */
1858	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1859
1860	/* Turn on send BD selector state machine */
1861	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1862
1863	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1864	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1865	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1866
1867	/* ack/clear link change events */
1868	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1869	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1870	    BGE_MACSTAT_LINK_CHANGED);
1871	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1872
1873	/* Enable PHY auto polling (for MII/GMII only) */
1874	if (sc->bge_flags & BGE_FLAG_TBI) {
1875		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1876	} else {
1877		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1878		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1879		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1880			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1881			    BGE_EVTENB_MI_INTERRUPT);
1882	}
1883
1884	/*
1885	 * Clear any pending link state attention.
1886	 * Otherwise some link state change events may be lost until attention
1887	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1888	 * It's not necessary on newer BCM chips - perhaps enabling link
1889	 * state change attentions implies clearing pending attention.
1890	 */
1891	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1892	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1893	    BGE_MACSTAT_LINK_CHANGED);
1894
1895	/* Enable link state change attentions. */
1896	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1897
1898	return (0);
1899}
1900
1901const struct bge_revision *
1902bge_lookup_rev(uint32_t chipid)
1903{
1904	const struct bge_revision *br;
1905
1906	for (br = bge_revisions; br->br_name != NULL; br++) {
1907		if (br->br_chipid == chipid)
1908			return (br);
1909	}
1910
1911	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1912		if (br->br_chipid == BGE_ASICREV(chipid))
1913			return (br);
1914	}
1915
1916	return (NULL);
1917}
1918
1919const struct bge_vendor *
1920bge_lookup_vendor(uint16_t vid)
1921{
1922	const struct bge_vendor *v;
1923
1924	for (v = bge_vendors; v->v_name != NULL; v++)
1925		if (v->v_id == vid)
1926			return (v);
1927
1928	panic("%s: unknown vendor %d", __func__, vid);
1929	return (NULL);
1930}
1931
1932/*
1933 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1934 * against our list and return its name if we find a match.
1935 *
1936 * Note that since the Broadcom controller contains VPD support, we
1937 * try to get the device name string from the controller itself instead
1938 * of the compiled-in string. It guarantees we'll always announce the
1939 * right product name. We fall back to the compiled-in string when
1940 * VPD is unavailable or corrupt.
1941 */
1942static int
1943bge_probe(device_t dev)
1944{
1945	const struct bge_type *t = bge_devs;
1946	struct bge_softc *sc = device_get_softc(dev);
1947	uint16_t vid, did;
1948
1949	sc->bge_dev = dev;
1950	vid = pci_get_vendor(dev);
1951	did = pci_get_device(dev);
1952	while(t->bge_vid != 0) {
1953		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1954			char model[64], buf[96];
1955			const struct bge_revision *br;
1956			const struct bge_vendor *v;
1957			uint32_t id;
1958
1959			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1960			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1961			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1962				id = pci_read_config(dev,
1963				    BGE_PCI_PRODID_ASICREV, 4);
1964			br = bge_lookup_rev(id);
1965			v = bge_lookup_vendor(vid);
1966			{
1967#if __FreeBSD_version > 700024
1968				const char *pname;
1969
1970				if (bge_has_eaddr(sc) &&
1971				    pci_get_vpd_ident(dev, &pname) == 0)
1972					snprintf(model, 64, "%s", pname);
1973				else
1974#endif
1975					snprintf(model, 64, "%s %s",
1976					    v->v_name,
1977					    br != NULL ? br->br_name :
1978					    "NetXtreme Ethernet Controller");
1979			}
1980			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1981			    br != NULL ? "" : "unknown ", id);
1982			device_set_desc_copy(dev, buf);
1983			if (pci_get_subvendor(dev) == DELL_VENDORID)
1984				sc->bge_flags |= BGE_FLAG_NO_3LED;
1985			if (did == BCOM_DEVICEID_BCM5755M)
1986				sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1987			return (0);
1988		}
1989		t++;
1990	}
1991
1992	return (ENXIO);
1993}
1994
1995static void
1996bge_dma_free(struct bge_softc *sc)
1997{
1998	int i;
1999
2000	/* Destroy DMA maps for RX buffers. */
2001	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2002		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2003			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2004			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2005	}
2006	if (sc->bge_cdata.bge_rx_std_sparemap)
2007		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2008		    sc->bge_cdata.bge_rx_std_sparemap);
2009
2010	/* Destroy DMA maps for jumbo RX buffers. */
2011	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2012		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2013			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2014			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2015	}
2016	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2017		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2018		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2019
2020	/* Destroy DMA maps for TX buffers. */
2021	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2022		if (sc->bge_cdata.bge_tx_dmamap[i])
2023			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2024			    sc->bge_cdata.bge_tx_dmamap[i]);
2025	}
2026
2027	if (sc->bge_cdata.bge_rx_mtag)
2028		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2029	if (sc->bge_cdata.bge_tx_mtag)
2030		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2031
2032
2033	/* Destroy standard RX ring. */
2034	if (sc->bge_cdata.bge_rx_std_ring_map)
2035		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2036		    sc->bge_cdata.bge_rx_std_ring_map);
2037	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2038		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2039		    sc->bge_ldata.bge_rx_std_ring,
2040		    sc->bge_cdata.bge_rx_std_ring_map);
2041
2042	if (sc->bge_cdata.bge_rx_std_ring_tag)
2043		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2044
2045	/* Destroy jumbo RX ring. */
2046	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2047		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2048		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2049
2050	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2051	    sc->bge_ldata.bge_rx_jumbo_ring)
2052		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2053		    sc->bge_ldata.bge_rx_jumbo_ring,
2054		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2055
2056	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2057		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2058
2059	/* Destroy RX return ring. */
2060	if (sc->bge_cdata.bge_rx_return_ring_map)
2061		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2062		    sc->bge_cdata.bge_rx_return_ring_map);
2063
2064	if (sc->bge_cdata.bge_rx_return_ring_map &&
2065	    sc->bge_ldata.bge_rx_return_ring)
2066		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2067		    sc->bge_ldata.bge_rx_return_ring,
2068		    sc->bge_cdata.bge_rx_return_ring_map);
2069
2070	if (sc->bge_cdata.bge_rx_return_ring_tag)
2071		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2072
2073	/* Destroy TX ring. */
2074	if (sc->bge_cdata.bge_tx_ring_map)
2075		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2076		    sc->bge_cdata.bge_tx_ring_map);
2077
2078	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2079		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2080		    sc->bge_ldata.bge_tx_ring,
2081		    sc->bge_cdata.bge_tx_ring_map);
2082
2083	if (sc->bge_cdata.bge_tx_ring_tag)
2084		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2085
2086	/* Destroy status block. */
2087	if (sc->bge_cdata.bge_status_map)
2088		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2089		    sc->bge_cdata.bge_status_map);
2090
2091	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2092		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2093		    sc->bge_ldata.bge_status_block,
2094		    sc->bge_cdata.bge_status_map);
2095
2096	if (sc->bge_cdata.bge_status_tag)
2097		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2098
2099	/* Destroy statistics block. */
2100	if (sc->bge_cdata.bge_stats_map)
2101		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2102		    sc->bge_cdata.bge_stats_map);
2103
2104	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2105		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2106		    sc->bge_ldata.bge_stats,
2107		    sc->bge_cdata.bge_stats_map);
2108
2109	if (sc->bge_cdata.bge_stats_tag)
2110		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2111
2112	/* Destroy the parent tag. */
2113	if (sc->bge_cdata.bge_parent_tag)
2114		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2115}
2116
2117static int
2118bge_dma_alloc(device_t dev)
2119{
2120	struct bge_dmamap_arg ctx;
2121	struct bge_softc *sc;
2122	bus_addr_t lowaddr;
2123	bus_size_t sbsz, txsegsz, txmaxsegsz;
2124	int i, error;
2125
2126	sc = device_get_softc(dev);
2127
2128	lowaddr = BUS_SPACE_MAXADDR;
2129	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2130		lowaddr = BGE_DMA_MAXADDR;
2131	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2132		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2133	/*
2134	 * Allocate the parent bus DMA tag appropriate for PCI.
2135	 */
2136	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2137	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2138	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2139	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2140
2141	if (error != 0) {
2142		device_printf(sc->bge_dev,
2143		    "could not allocate parent dma tag\n");
2144		return (ENOMEM);
2145	}
2146
2147	/*
2148	 * Create tag for Tx mbufs.
2149	 */
2150	if (sc->bge_flags & BGE_FLAG_TSO) {
2151		txsegsz = BGE_TSOSEG_SZ;
2152		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2153	} else {
2154		txsegsz = MCLBYTES;
2155		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2156	}
2157	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2158	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2159	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2160	    &sc->bge_cdata.bge_tx_mtag);
2161
2162	if (error) {
2163		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2164		return (ENOMEM);
2165	}
2166
2167	/*
2168	 * Create tag for Rx mbufs.
2169	 */
2170	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2171	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2172	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2173
2174	if (error) {
2175		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2176		return (ENOMEM);
2177	}
2178
2179	/* Create DMA maps for RX buffers. */
2180	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2181	    &sc->bge_cdata.bge_rx_std_sparemap);
2182	if (error) {
2183		device_printf(sc->bge_dev,
2184		    "can't create spare DMA map for RX\n");
2185		return (ENOMEM);
2186	}
2187	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2188		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2189			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2190		if (error) {
2191			device_printf(sc->bge_dev,
2192			    "can't create DMA map for RX\n");
2193			return (ENOMEM);
2194		}
2195	}
2196
2197	/* Create DMA maps for TX buffers. */
2198	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2199		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2200			    &sc->bge_cdata.bge_tx_dmamap[i]);
2201		if (error) {
2202			device_printf(sc->bge_dev,
2203			    "can't create DMA map for TX\n");
2204			return (ENOMEM);
2205		}
2206	}
2207
2208	/* Create tag for standard RX ring. */
2209	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2210	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2211	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2212	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2213
2214	if (error) {
2215		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2216		return (ENOMEM);
2217	}
2218
2219	/* Allocate DMA'able memory for standard RX ring. */
2220	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2221	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2222	    &sc->bge_cdata.bge_rx_std_ring_map);
2223	if (error)
2224		return (ENOMEM);
2225
2226	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2227
2228	/* Load the address of the standard RX ring. */
2229	ctx.bge_maxsegs = 1;
2230	ctx.sc = sc;
2231
2232	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2233	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2234	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2235
2236	if (error)
2237		return (ENOMEM);
2238
2239	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2240
2241	/* Create tags for jumbo mbufs. */
2242	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2243		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2244		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2245		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2246		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2247		if (error) {
2248			device_printf(sc->bge_dev,
2249			    "could not allocate jumbo dma tag\n");
2250			return (ENOMEM);
2251		}
2252
2253		/* Create tag for jumbo RX ring. */
2254		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2255		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2256		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2257		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2258
2259		if (error) {
2260			device_printf(sc->bge_dev,
2261			    "could not allocate jumbo ring dma tag\n");
2262			return (ENOMEM);
2263		}
2264
2265		/* Allocate DMA'able memory for jumbo RX ring. */
2266		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2267		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2268		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2269		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2270		if (error)
2271			return (ENOMEM);
2272
2273		/* Load the address of the jumbo RX ring. */
2274		ctx.bge_maxsegs = 1;
2275		ctx.sc = sc;
2276
2277		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2278		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2279		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2280		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2281
2282		if (error)
2283			return (ENOMEM);
2284
2285		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2286
2287		/* Create DMA maps for jumbo RX buffers. */
2288		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2289		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2290		if (error) {
2291			device_printf(sc->bge_dev,
2292			    "can't create spare DMA map for jumbo RX\n");
2293			return (ENOMEM);
2294		}
2295		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2296			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2297				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2298			if (error) {
2299				device_printf(sc->bge_dev,
2300				    "can't create DMA map for jumbo RX\n");
2301				return (ENOMEM);
2302			}
2303		}
2304
2305	}
2306
2307	/* Create tag for RX return ring. */
2308	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2309	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2310	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2311	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2312
2313	if (error) {
2314		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2315		return (ENOMEM);
2316	}
2317
2318	/* Allocate DMA'able memory for RX return ring. */
2319	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2320	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2321	    &sc->bge_cdata.bge_rx_return_ring_map);
2322	if (error)
2323		return (ENOMEM);
2324
2325	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2326	    BGE_RX_RTN_RING_SZ(sc));
2327
2328	/* Load the address of the RX return ring. */
2329	ctx.bge_maxsegs = 1;
2330	ctx.sc = sc;
2331
2332	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2333	    sc->bge_cdata.bge_rx_return_ring_map,
2334	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2335	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2336
2337	if (error)
2338		return (ENOMEM);
2339
2340	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2341
2342	/* Create tag for TX ring. */
2343	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2344	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2345	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2346	    &sc->bge_cdata.bge_tx_ring_tag);
2347
2348	if (error) {
2349		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2350		return (ENOMEM);
2351	}
2352
2353	/* Allocate DMA'able memory for TX ring. */
2354	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2355	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2356	    &sc->bge_cdata.bge_tx_ring_map);
2357	if (error)
2358		return (ENOMEM);
2359
2360	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2361
2362	/* Load the address of the TX ring. */
2363	ctx.bge_maxsegs = 1;
2364	ctx.sc = sc;
2365
2366	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2367	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2368	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2369
2370	if (error)
2371		return (ENOMEM);
2372
2373	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2374
2375	/*
2376	 * Create tag for status block.
2377	 * Because we only use single Tx/Rx/Rx return ring, use
2378	 * minimum status block size except BCM5700 AX/BX which
2379	 * seems to want to see full status block size regardless
2380	 * of configured number of ring.
2381	 */
2382	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2383	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2384		sbsz = BGE_STATUS_BLK_SZ;
2385	else
2386		sbsz = 32;
2387	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2388	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2389	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2390
2391	if (error) {
2392		device_printf(sc->bge_dev,
2393		    "could not allocate status dma tag\n");
2394		return (ENOMEM);
2395	}
2396
2397	/* Allocate DMA'able memory for status block. */
2398	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2399	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2400	    &sc->bge_cdata.bge_status_map);
2401	if (error)
2402		return (ENOMEM);
2403
2404	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2405
2406	/* Load the address of the status block. */
2407	ctx.sc = sc;
2408	ctx.bge_maxsegs = 1;
2409
2410	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2411	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2412	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2413
2414	if (error)
2415		return (ENOMEM);
2416
2417	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2418
2419	/* Create tag for statistics block. */
2420	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2421	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2422	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2423	    &sc->bge_cdata.bge_stats_tag);
2424
2425	if (error) {
2426		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2427		return (ENOMEM);
2428	}
2429
2430	/* Allocate DMA'able memory for statistics block. */
2431	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2432	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2433	    &sc->bge_cdata.bge_stats_map);
2434	if (error)
2435		return (ENOMEM);
2436
2437	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2438
2439	/* Load the address of the statstics block. */
2440	ctx.sc = sc;
2441	ctx.bge_maxsegs = 1;
2442
2443	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2444	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2445	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2446
2447	if (error)
2448		return (ENOMEM);
2449
2450	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2451
2452	return (0);
2453}
2454
2455/*
2456 * Return true if this device has more than one port.
2457 */
2458static int
2459bge_has_multiple_ports(struct bge_softc *sc)
2460{
2461	device_t dev = sc->bge_dev;
2462	u_int b, d, f, fscan, s;
2463
2464	d = pci_get_domain(dev);
2465	b = pci_get_bus(dev);
2466	s = pci_get_slot(dev);
2467	f = pci_get_function(dev);
2468	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2469		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2470			return (1);
2471	return (0);
2472}
2473
2474/*
2475 * Return true if MSI can be used with this device.
2476 */
2477static int
2478bge_can_use_msi(struct bge_softc *sc)
2479{
2480	int can_use_msi = 0;
2481
2482	switch (sc->bge_asicrev) {
2483	case BGE_ASICREV_BCM5714_A0:
2484	case BGE_ASICREV_BCM5714:
2485		/*
2486		 * Apparently, MSI doesn't work when these chips are
2487		 * configured in single-port mode.
2488		 */
2489		if (bge_has_multiple_ports(sc))
2490			can_use_msi = 1;
2491		break;
2492	case BGE_ASICREV_BCM5750:
2493		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2494		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2495			can_use_msi = 1;
2496		break;
2497	default:
2498		if (BGE_IS_575X_PLUS(sc))
2499			can_use_msi = 1;
2500	}
2501	return (can_use_msi);
2502}
2503
2504static int
2505bge_attach(device_t dev)
2506{
2507	struct ifnet *ifp;
2508	struct bge_softc *sc;
2509	uint32_t hwcfg = 0, misccfg;
2510	u_char eaddr[ETHER_ADDR_LEN];
2511	int error, msicount, reg, rid, trys;
2512
2513	sc = device_get_softc(dev);
2514	sc->bge_dev = dev;
2515
2516	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2517
2518	/*
2519	 * Map control/status registers.
2520	 */
2521	pci_enable_busmaster(dev);
2522
2523	rid = BGE_PCI_BAR0;
2524	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2525	    RF_ACTIVE);
2526
2527	if (sc->bge_res == NULL) {
2528		device_printf (sc->bge_dev, "couldn't map memory\n");
2529		error = ENXIO;
2530		goto fail;
2531	}
2532
2533	/* Save various chip information. */
2534	sc->bge_chipid =
2535	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2536	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2537	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2538		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2539		    4);
2540	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2541	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2542
2543	/*
2544	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2545	 * 5705 A0 and A1 chips.
2546	 */
2547	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2548	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2549	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2550	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2551		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2552
2553	if (bge_has_eaddr(sc))
2554		sc->bge_flags |= BGE_FLAG_EADDR;
2555
2556	/* Save chipset family. */
2557	switch (sc->bge_asicrev) {
2558	case BGE_ASICREV_BCM5755:
2559	case BGE_ASICREV_BCM5761:
2560	case BGE_ASICREV_BCM5784:
2561	case BGE_ASICREV_BCM5785:
2562	case BGE_ASICREV_BCM5787:
2563	case BGE_ASICREV_BCM57780:
2564		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2565		    BGE_FLAG_5705_PLUS;
2566		break;
2567	case BGE_ASICREV_BCM5700:
2568	case BGE_ASICREV_BCM5701:
2569	case BGE_ASICREV_BCM5703:
2570	case BGE_ASICREV_BCM5704:
2571		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2572		break;
2573	case BGE_ASICREV_BCM5714_A0:
2574	case BGE_ASICREV_BCM5780:
2575	case BGE_ASICREV_BCM5714:
2576		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2577		/* FALLTHROUGH */
2578	case BGE_ASICREV_BCM5750:
2579	case BGE_ASICREV_BCM5752:
2580	case BGE_ASICREV_BCM5906:
2581		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2582		/* FALLTHROUGH */
2583	case BGE_ASICREV_BCM5705:
2584		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2585		break;
2586	}
2587
2588	/* Set various bug flags. */
2589	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2590	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2591		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2592	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2593	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2594		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2595	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2596		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2597	if (BGE_IS_5705_PLUS(sc) &&
2598	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2599		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2600		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2601		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2602		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2603			if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
2604				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2605		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2606			sc->bge_flags |= BGE_FLAG_BER_BUG;
2607	}
2608
2609	/*
2610	 * All controllers that are not 5755 or higher have 4GB
2611	 * boundary DMA bug.
2612	 * Whenever an address crosses a multiple of the 4GB boundary
2613	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2614	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2615	 * state machine will lockup and cause the device to hang.
2616	 */
2617	if (BGE_IS_5755_PLUS(sc) == 0)
2618		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2619
2620	/*
2621	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2622	 * but I do not know the DEVICEID for the 5788M.
2623	 */
2624	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2625	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2626	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2627		sc->bge_flags |= BGE_FLAG_5788;
2628
2629	/*
2630	 * Some controllers seem to require a special firmware to use
2631	 * TSO. But the firmware is not available to FreeBSD and Linux
2632	 * claims that the TSO performed by the firmware is slower than
2633	 * hardware based TSO. Moreover the firmware based TSO has one
2634	 * known bug which can't handle TSO if ethernet header + IP/TCP
2635	 * header is greater than 80 bytes. The workaround for the TSO
2636	 * bug exist but it seems it's too expensive than not using
2637	 * TSO at all. Some hardwares also have the TSO bug so limit
2638	 * the TSO to the controllers that are not affected TSO issues
2639	 * (e.g. 5755 or higher).
2640	 */
2641	if (BGE_IS_5755_PLUS(sc))
2642		sc->bge_flags |= BGE_FLAG_TSO;
2643
2644  	/*
2645	 * Check if this is a PCI-X or PCI Express device.
2646  	 */
2647	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2648		/*
2649		 * Found a PCI Express capabilities register, this
2650		 * must be a PCI Express device.
2651		 */
2652		sc->bge_flags |= BGE_FLAG_PCIE;
2653		sc->bge_expcap = reg;
2654		bge_set_max_readrq(sc);
2655	} else {
2656		/*
2657		 * Check if the device is in PCI-X Mode.
2658		 * (This bit is not valid on PCI Express controllers.)
2659		 */
2660		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2661			sc->bge_pcixcap = reg;
2662		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2663		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2664			sc->bge_flags |= BGE_FLAG_PCIX;
2665	}
2666
2667	/*
2668	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2669	 * not actually a MAC controller bug but an issue with the embedded
2670	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2671	 */
2672	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2673		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2674	/*
2675	 * Allocate the interrupt, using MSI if possible.  These devices
2676	 * support 8 MSI messages, but only the first one is used in
2677	 * normal operation.
2678	 */
2679	rid = 0;
2680	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) != 0) {
2681		sc->bge_msicap = reg;
2682		if (bge_can_use_msi(sc)) {
2683			msicount = pci_msi_count(dev);
2684			if (msicount > 1)
2685				msicount = 1;
2686		} else
2687			msicount = 0;
2688		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2689			rid = 1;
2690			sc->bge_flags |= BGE_FLAG_MSI;
2691		}
2692	}
2693
2694	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2695	    RF_SHAREABLE | RF_ACTIVE);
2696
2697	if (sc->bge_irq == NULL) {
2698		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2699		error = ENXIO;
2700		goto fail;
2701	}
2702
2703	if (bootverbose)
2704		device_printf(dev,
2705		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2706		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2707		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2708		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2709
2710	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2711
2712	/* Try to reset the chip. */
2713	if (bge_reset(sc)) {
2714		device_printf(sc->bge_dev, "chip reset failed\n");
2715		error = ENXIO;
2716		goto fail;
2717	}
2718
2719	sc->bge_asf_mode = 0;
2720	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2721	    == BGE_MAGIC_NUMBER)) {
2722		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2723		    & BGE_HWCFG_ASF) {
2724			sc->bge_asf_mode |= ASF_ENABLE;
2725			sc->bge_asf_mode |= ASF_STACKUP;
2726			if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2727				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2728			}
2729		}
2730	}
2731
2732	/* Try to reset the chip again the nice way. */
2733	bge_stop_fw(sc);
2734	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2735	if (bge_reset(sc)) {
2736		device_printf(sc->bge_dev, "chip reset failed\n");
2737		error = ENXIO;
2738		goto fail;
2739	}
2740
2741	bge_sig_legacy(sc, BGE_RESET_STOP);
2742	bge_sig_post_reset(sc, BGE_RESET_STOP);
2743
2744	if (bge_chipinit(sc)) {
2745		device_printf(sc->bge_dev, "chip initialization failed\n");
2746		error = ENXIO;
2747		goto fail;
2748	}
2749
2750	error = bge_get_eaddr(sc, eaddr);
2751	if (error) {
2752		device_printf(sc->bge_dev,
2753		    "failed to read station address\n");
2754		error = ENXIO;
2755		goto fail;
2756	}
2757
2758	/* 5705 limits RX return ring to 512 entries. */
2759	if (BGE_IS_5705_PLUS(sc))
2760		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2761	else
2762		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2763
2764	if (bge_dma_alloc(dev)) {
2765		device_printf(sc->bge_dev,
2766		    "failed to allocate DMA resources\n");
2767		error = ENXIO;
2768		goto fail;
2769	}
2770
2771	/* Set default tuneable values. */
2772	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2773	sc->bge_rx_coal_ticks = 150;
2774	sc->bge_tx_coal_ticks = 150;
2775	sc->bge_rx_max_coal_bds = 10;
2776	sc->bge_tx_max_coal_bds = 10;
2777
2778	/* Set up ifnet structure */
2779	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2780	if (ifp == NULL) {
2781		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2782		error = ENXIO;
2783		goto fail;
2784	}
2785	ifp->if_softc = sc;
2786	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2787	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2788	ifp->if_ioctl = bge_ioctl;
2789	ifp->if_start = bge_start;
2790	ifp->if_init = bge_init;
2791	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2792	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2793	IFQ_SET_READY(&ifp->if_snd);
2794	ifp->if_hwassist = BGE_CSUM_FEATURES;
2795	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2796	    IFCAP_VLAN_MTU;
2797	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2798		ifp->if_hwassist |= CSUM_TSO;
2799		ifp->if_capabilities |= IFCAP_TSO4;
2800	}
2801#ifdef IFCAP_VLAN_HWCSUM
2802	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2803#endif
2804	ifp->if_capenable = ifp->if_capabilities;
2805#ifdef DEVICE_POLLING
2806	ifp->if_capabilities |= IFCAP_POLLING;
2807#endif
2808
2809	/*
2810	 * 5700 B0 chips do not support checksumming correctly due
2811	 * to hardware bugs.
2812	 */
2813	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2814		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2815		ifp->if_capenable &= ~IFCAP_HWCSUM;
2816		ifp->if_hwassist = 0;
2817	}
2818
2819	/*
2820	 * Figure out what sort of media we have by checking the
2821	 * hardware config word in the first 32k of NIC internal memory,
2822	 * or fall back to examining the EEPROM if necessary.
2823	 * Note: on some BCM5700 cards, this value appears to be unset.
2824	 * If that's the case, we have to rely on identifying the NIC
2825	 * by its PCI subsystem ID, as we do below for the SysKonnect
2826	 * SK-9D41.
2827	 */
2828	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2829		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2830	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2831	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2832		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2833		    sizeof(hwcfg))) {
2834			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2835			error = ENXIO;
2836			goto fail;
2837		}
2838		hwcfg = ntohl(hwcfg);
2839	}
2840
2841	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2842		sc->bge_flags |= BGE_FLAG_TBI;
2843
2844	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2845	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
2846		sc->bge_flags |= BGE_FLAG_TBI;
2847
2848	if (sc->bge_flags & BGE_FLAG_TBI) {
2849		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2850		    bge_ifmedia_sts);
2851		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2852		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2853		    0, NULL);
2854		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2855		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2856		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2857	} else {
2858		/*
2859		 * Do transceiver setup and tell the firmware the
2860		 * driver is down so we can try to get access the
2861		 * probe if ASF is running.  Retry a couple of times
2862		 * if we get a conflict with the ASF firmware accessing
2863		 * the PHY.
2864		 */
2865		trys = 0;
2866		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2867again:
2868		bge_asf_driver_up(sc);
2869
2870		if (mii_phy_probe(dev, &sc->bge_miibus,
2871		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2872			if (trys++ < 4) {
2873				device_printf(sc->bge_dev, "Try again\n");
2874				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2875				    BMCR_RESET);
2876				goto again;
2877			}
2878
2879			device_printf(sc->bge_dev, "MII without any PHY!\n");
2880			error = ENXIO;
2881			goto fail;
2882		}
2883
2884		/*
2885		 * Now tell the firmware we are going up after probing the PHY
2886		 */
2887		if (sc->bge_asf_mode & ASF_STACKUP)
2888			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2889	}
2890
2891	/*
2892	 * When using the BCM5701 in PCI-X mode, data corruption has
2893	 * been observed in the first few bytes of some received packets.
2894	 * Aligning the packet buffer in memory eliminates the corruption.
2895	 * Unfortunately, this misaligns the packet payloads.  On platforms
2896	 * which do not support unaligned accesses, we will realign the
2897	 * payloads by copying the received packets.
2898	 */
2899	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2900	    sc->bge_flags & BGE_FLAG_PCIX)
2901                sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2902
2903	/*
2904	 * Call MI attach routine.
2905	 */
2906	ether_ifattach(ifp, eaddr);
2907	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2908
2909	/* Tell upper layer we support long frames. */
2910	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2911
2912	/*
2913	 * Hookup IRQ last.
2914	 */
2915#if __FreeBSD_version > 700030
2916	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2917		/* Take advantage of single-shot MSI. */
2918		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2919		    taskqueue_thread_enqueue, &sc->bge_tq);
2920		if (sc->bge_tq == NULL) {
2921			device_printf(dev, "could not create taskqueue.\n");
2922			ether_ifdetach(ifp);
2923			error = ENXIO;
2924			goto fail;
2925		}
2926		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2927		    device_get_nameunit(sc->bge_dev));
2928		error = bus_setup_intr(dev, sc->bge_irq,
2929		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2930		    &sc->bge_intrhand);
2931		if (error)
2932			ether_ifdetach(ifp);
2933	} else
2934		error = bus_setup_intr(dev, sc->bge_irq,
2935		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2936		    &sc->bge_intrhand);
2937#else
2938	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2939	   bge_intr, sc, &sc->bge_intrhand);
2940#endif
2941
2942	if (error) {
2943		bge_detach(dev);
2944		device_printf(sc->bge_dev, "couldn't set up irq\n");
2945	}
2946
2947	bge_add_sysctls(sc);
2948
2949	return (0);
2950
2951fail:
2952	bge_release_resources(sc);
2953
2954	return (error);
2955}
2956
2957static int
2958bge_detach(device_t dev)
2959{
2960	struct bge_softc *sc;
2961	struct ifnet *ifp;
2962
2963	sc = device_get_softc(dev);
2964	ifp = sc->bge_ifp;
2965
2966#ifdef DEVICE_POLLING
2967	if (ifp->if_capenable & IFCAP_POLLING)
2968		ether_poll_deregister(ifp);
2969#endif
2970
2971	BGE_LOCK(sc);
2972	bge_stop(sc);
2973	bge_reset(sc);
2974	BGE_UNLOCK(sc);
2975
2976	callout_drain(&sc->bge_stat_ch);
2977
2978	if (sc->bge_tq)
2979		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
2980	ether_ifdetach(ifp);
2981
2982	if (sc->bge_flags & BGE_FLAG_TBI) {
2983		ifmedia_removeall(&sc->bge_ifmedia);
2984	} else {
2985		bus_generic_detach(dev);
2986		device_delete_child(dev, sc->bge_miibus);
2987	}
2988
2989	bge_release_resources(sc);
2990
2991	return (0);
2992}
2993
2994static void
2995bge_release_resources(struct bge_softc *sc)
2996{
2997	device_t dev;
2998
2999	dev = sc->bge_dev;
3000
3001	if (sc->bge_tq != NULL)
3002		taskqueue_free(sc->bge_tq);
3003
3004	if (sc->bge_intrhand != NULL)
3005		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3006
3007	if (sc->bge_irq != NULL)
3008		bus_release_resource(dev, SYS_RES_IRQ,
3009		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3010
3011	if (sc->bge_flags & BGE_FLAG_MSI)
3012		pci_release_msi(dev);
3013
3014	if (sc->bge_res != NULL)
3015		bus_release_resource(dev, SYS_RES_MEMORY,
3016		    BGE_PCI_BAR0, sc->bge_res);
3017
3018	if (sc->bge_ifp != NULL)
3019		if_free(sc->bge_ifp);
3020
3021	bge_dma_free(sc);
3022
3023	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3024		BGE_LOCK_DESTROY(sc);
3025}
3026
3027static int
3028bge_reset(struct bge_softc *sc)
3029{
3030	device_t dev;
3031	uint32_t cachesize, command, pcistate, reset, val;
3032	void (*write_op)(struct bge_softc *, int, int);
3033	uint16_t devctl;
3034	int i;
3035
3036	dev = sc->bge_dev;
3037
3038	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3039	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3040		if (sc->bge_flags & BGE_FLAG_PCIE)
3041			write_op = bge_writemem_direct;
3042		else
3043			write_op = bge_writemem_ind;
3044	} else
3045		write_op = bge_writereg_ind;
3046
3047	/* Save some important PCI state. */
3048	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3049	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3050	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3051
3052	pci_write_config(dev, BGE_PCI_MISC_CTL,
3053	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3054	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3055
3056	/* Disable fastboot on controllers that support it. */
3057	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3058	    BGE_IS_5755_PLUS(sc)) {
3059		if (bootverbose)
3060			device_printf(sc->bge_dev, "Disabling fastboot\n");
3061		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3062	}
3063
3064	/*
3065	 * Write the magic number to SRAM at offset 0xB50.
3066	 * When firmware finishes its initialization it will
3067	 * write ~BGE_MAGIC_NUMBER to the same location.
3068	 */
3069	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3070
3071	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3072
3073	/* XXX: Broadcom Linux driver. */
3074	if (sc->bge_flags & BGE_FLAG_PCIE) {
3075		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3076			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3077		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3078			/* Prevent PCIE link training during global reset */
3079			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3080			reset |= 1 << 29;
3081		}
3082	}
3083
3084	/*
3085	 * Set GPHY Power Down Override to leave GPHY
3086	 * powered up in D0 uninitialized.
3087	 */
3088	if (BGE_IS_5705_PLUS(sc))
3089		reset |= 0x04000000;
3090
3091	/* Issue global reset */
3092	write_op(sc, BGE_MISC_CFG, reset);
3093
3094	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3095		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3096		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3097		    val | BGE_VCPU_STATUS_DRV_RESET);
3098		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3099		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3100		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3101	}
3102
3103	DELAY(1000);
3104
3105	/* XXX: Broadcom Linux driver. */
3106	if (sc->bge_flags & BGE_FLAG_PCIE) {
3107		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3108			DELAY(500000); /* wait for link training to complete */
3109			val = pci_read_config(dev, 0xC4, 4);
3110			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3111		}
3112		devctl = pci_read_config(dev,
3113		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3114		/* Clear enable no snoop and disable relaxed ordering. */
3115		devctl &= ~(0x0010 | 0x0800);
3116		/* Set PCIE max payload size to 128. */
3117		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3118		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3119		    devctl, 2);
3120		/* Clear error status. */
3121		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3122		    0, 2);
3123	}
3124
3125	/* Reset some of the PCI state that got zapped by reset. */
3126	pci_write_config(dev, BGE_PCI_MISC_CTL,
3127	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3128	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3129	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3130	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3131	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3132
3133	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3134	if (BGE_IS_5714_FAMILY(sc)) {
3135		/* This chip disables MSI on reset. */
3136		if (sc->bge_flags & BGE_FLAG_MSI) {
3137			val = pci_read_config(dev,
3138			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3139			pci_write_config(dev,
3140			    sc->bge_msicap + PCIR_MSI_CTRL,
3141			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3142			val = CSR_READ_4(sc, BGE_MSI_MODE);
3143			CSR_WRITE_4(sc, BGE_MSI_MODE,
3144			    val | BGE_MSIMODE_ENABLE);
3145		}
3146		val = CSR_READ_4(sc, BGE_MARB_MODE);
3147		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3148	} else
3149		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3150
3151	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3152		for (i = 0; i < BGE_TIMEOUT; i++) {
3153			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3154			if (val & BGE_VCPU_STATUS_INIT_DONE)
3155				break;
3156			DELAY(100);
3157		}
3158		if (i == BGE_TIMEOUT) {
3159			device_printf(sc->bge_dev, "reset timed out\n");
3160			return (1);
3161		}
3162	} else {
3163		/*
3164		 * Poll until we see the 1's complement of the magic number.
3165		 * This indicates that the firmware initialization is complete.
3166		 * We expect this to fail if no chip containing the Ethernet
3167		 * address is fitted though.
3168		 */
3169		for (i = 0; i < BGE_TIMEOUT; i++) {
3170			DELAY(10);
3171			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3172			if (val == ~BGE_MAGIC_NUMBER)
3173				break;
3174		}
3175
3176		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3177			device_printf(sc->bge_dev, "firmware handshake timed out, "
3178			    "found 0x%08x\n", val);
3179	}
3180
3181	/*
3182	 * XXX Wait for the value of the PCISTATE register to
3183	 * return to its original pre-reset state. This is a
3184	 * fairly good indicator of reset completion. If we don't
3185	 * wait for the reset to fully complete, trying to read
3186	 * from the device's non-PCI registers may yield garbage
3187	 * results.
3188	 */
3189	for (i = 0; i < BGE_TIMEOUT; i++) {
3190		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3191			break;
3192		DELAY(10);
3193	}
3194
3195	if (sc->bge_flags & BGE_FLAG_PCIE) {
3196		reset = bge_readmem_ind(sc, 0x7C00);
3197		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3198	}
3199
3200	/* Fix up byte swapping. */
3201	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3202	    BGE_MODECTL_BYTESWAP_DATA);
3203
3204	/* Tell the ASF firmware we are up */
3205	if (sc->bge_asf_mode & ASF_STACKUP)
3206		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3207
3208	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3209
3210	/*
3211	 * The 5704 in TBI mode apparently needs some special
3212	 * adjustment to insure the SERDES drive level is set
3213	 * to 1.2V.
3214	 */
3215	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3216	    sc->bge_flags & BGE_FLAG_TBI) {
3217		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3218		val = (val & ~0xFFF) | 0x880;
3219		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3220	}
3221
3222	/* XXX: Broadcom Linux driver. */
3223	if (sc->bge_flags & BGE_FLAG_PCIE &&
3224	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3225		val = CSR_READ_4(sc, 0x7C00);
3226		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3227	}
3228	DELAY(10000);
3229
3230	return(0);
3231}
3232
3233/*
3234 * Frame reception handling. This is called if there's a frame
3235 * on the receive return list.
3236 *
3237 * Note: we have to be able to handle two possibilities here:
3238 * 1) the frame is from the jumbo receive ring
3239 * 2) the frame is from the standard receive ring
3240 */
3241
3242static int
3243bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3244{
3245	struct ifnet *ifp;
3246	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3247	uint16_t rx_cons;
3248
3249	rx_cons = sc->bge_rx_saved_considx;
3250
3251	/* Nothing to do. */
3252	if (rx_cons == rx_prod)
3253		return (rx_npkts);
3254
3255	ifp = sc->bge_ifp;
3256
3257	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3258	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3259	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3260	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3261	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3262	    (MCLBYTES - ETHER_ALIGN))
3263		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3264		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3265
3266	while (rx_cons != rx_prod) {
3267		struct bge_rx_bd	*cur_rx;
3268		uint32_t		rxidx;
3269		struct mbuf		*m = NULL;
3270		uint16_t		vlan_tag = 0;
3271		int			have_tag = 0;
3272
3273#ifdef DEVICE_POLLING
3274		if (ifp->if_capenable & IFCAP_POLLING) {
3275			if (sc->rxcycles <= 0)
3276				break;
3277			sc->rxcycles--;
3278		}
3279#endif
3280
3281		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3282
3283		rxidx = cur_rx->bge_idx;
3284		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3285
3286		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3287		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3288			have_tag = 1;
3289			vlan_tag = cur_rx->bge_vlan_tag;
3290		}
3291
3292		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3293			jumbocnt++;
3294			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3295			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3296				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3297				continue;
3298			}
3299			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3300				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3301				ifp->if_iqdrops++;
3302				continue;
3303			}
3304			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3305		} else {
3306			stdcnt++;
3307			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3308				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3309				continue;
3310			}
3311			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3312			if (bge_newbuf_std(sc, rxidx) != 0) {
3313				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3314				ifp->if_iqdrops++;
3315				continue;
3316			}
3317			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3318		}
3319
3320		ifp->if_ipackets++;
3321#ifndef __NO_STRICT_ALIGNMENT
3322		/*
3323		 * For architectures with strict alignment we must make sure
3324		 * the payload is aligned.
3325		 */
3326		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3327			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3328			    cur_rx->bge_len);
3329			m->m_data += ETHER_ALIGN;
3330		}
3331#endif
3332		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3333		m->m_pkthdr.rcvif = ifp;
3334
3335		if (ifp->if_capenable & IFCAP_RXCSUM) {
3336			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3337				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3338				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3339					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3340			}
3341			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3342			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3343				m->m_pkthdr.csum_data =
3344				    cur_rx->bge_tcp_udp_csum;
3345				m->m_pkthdr.csum_flags |=
3346				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3347			}
3348		}
3349
3350		/*
3351		 * If we received a packet with a vlan tag,
3352		 * attach that information to the packet.
3353		 */
3354		if (have_tag) {
3355#if __FreeBSD_version > 700022
3356			m->m_pkthdr.ether_vtag = vlan_tag;
3357			m->m_flags |= M_VLANTAG;
3358#else
3359			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3360			if (m == NULL)
3361				continue;
3362#endif
3363		}
3364
3365		if (holdlck != 0) {
3366			BGE_UNLOCK(sc);
3367			(*ifp->if_input)(ifp, m);
3368			BGE_LOCK(sc);
3369		} else
3370			(*ifp->if_input)(ifp, m);
3371		rx_npkts++;
3372
3373		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3374			return (rx_npkts);
3375	}
3376
3377	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3378	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3379	if (stdcnt > 0)
3380		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3381		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3382
3383	if (jumbocnt > 0)
3384		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3385		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3386
3387	sc->bge_rx_saved_considx = rx_cons;
3388	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3389	if (stdcnt)
3390		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3391	if (jumbocnt)
3392		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3393#ifdef notyet
3394	/*
3395	 * This register wraps very quickly under heavy packet drops.
3396	 * If you need correct statistics, you can enable this check.
3397	 */
3398	if (BGE_IS_5705_PLUS(sc))
3399		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3400#endif
3401	return (rx_npkts);
3402}
3403
3404static void
3405bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3406{
3407	struct bge_tx_bd *cur_tx = NULL;
3408	struct ifnet *ifp;
3409
3410	BGE_LOCK_ASSERT(sc);
3411
3412	/* Nothing to do. */
3413	if (sc->bge_tx_saved_considx == tx_cons)
3414		return;
3415
3416	ifp = sc->bge_ifp;
3417
3418	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3419	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3420	/*
3421	 * Go through our tx ring and free mbufs for those
3422	 * frames that have been sent.
3423	 */
3424	while (sc->bge_tx_saved_considx != tx_cons) {
3425		uint32_t		idx = 0;
3426
3427		idx = sc->bge_tx_saved_considx;
3428		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3429		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3430			ifp->if_opackets++;
3431		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3432			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3433			    sc->bge_cdata.bge_tx_dmamap[idx],
3434			    BUS_DMASYNC_POSTWRITE);
3435			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3436			    sc->bge_cdata.bge_tx_dmamap[idx]);
3437			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3438			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3439		}
3440		sc->bge_txcnt--;
3441		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3442	}
3443
3444	if (cur_tx != NULL)
3445		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3446	if (sc->bge_txcnt == 0)
3447		sc->bge_timer = 0;
3448}
3449
3450#ifdef DEVICE_POLLING
3451static int
3452bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3453{
3454	struct bge_softc *sc = ifp->if_softc;
3455	uint16_t rx_prod, tx_cons;
3456	uint32_t statusword;
3457	int rx_npkts = 0;
3458
3459	BGE_LOCK(sc);
3460	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3461		BGE_UNLOCK(sc);
3462		return (rx_npkts);
3463	}
3464
3465	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3466	    sc->bge_cdata.bge_status_map,
3467	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3468	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3469	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3470
3471	statusword = atomic_readandclear_32(
3472	    &sc->bge_ldata.bge_status_block->bge_status);
3473
3474	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3475	    sc->bge_cdata.bge_status_map,
3476	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3477
3478	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3479	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3480		sc->bge_link_evt++;
3481
3482	if (cmd == POLL_AND_CHECK_STATUS)
3483		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3484		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3485		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3486			bge_link_upd(sc);
3487
3488	sc->rxcycles = count;
3489	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3490	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3491		BGE_UNLOCK(sc);
3492		return (rx_npkts);
3493	}
3494	bge_txeof(sc, tx_cons);
3495	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3496		bge_start_locked(ifp);
3497
3498	BGE_UNLOCK(sc);
3499	return (rx_npkts);
3500}
3501#endif /* DEVICE_POLLING */
3502
3503static int
3504bge_msi_intr(void *arg)
3505{
3506	struct bge_softc *sc;
3507
3508	sc = (struct bge_softc *)arg;
3509	/*
3510	 * This interrupt is not shared and controller already
3511	 * disabled further interrupt.
3512	 */
3513	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3514	return (FILTER_HANDLED);
3515}
3516
3517static void
3518bge_intr_task(void *arg, int pending)
3519{
3520	struct bge_softc *sc;
3521	struct ifnet *ifp;
3522	uint32_t status;
3523	uint16_t rx_prod, tx_cons;
3524
3525	sc = (struct bge_softc *)arg;
3526	ifp = sc->bge_ifp;
3527
3528	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3529		return;
3530
3531	/* Get updated status block. */
3532	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3533	    sc->bge_cdata.bge_status_map,
3534	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3535
3536	/* Save producer/consumer indexess. */
3537	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3538	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3539	status = sc->bge_ldata.bge_status_block->bge_status;
3540	sc->bge_ldata.bge_status_block->bge_status = 0;
3541	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3542	    sc->bge_cdata.bge_status_map,
3543	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3544	/* Let controller work. */
3545	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3546
3547	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3548		BGE_LOCK(sc);
3549		bge_link_upd(sc);
3550		BGE_UNLOCK(sc);
3551	}
3552	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3553		/* Check RX return ring producer/consumer. */
3554		bge_rxeof(sc, rx_prod, 0);
3555	}
3556	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3557		BGE_LOCK(sc);
3558		/* Check TX ring producer/consumer. */
3559		bge_txeof(sc, tx_cons);
3560	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3561			bge_start_locked(ifp);
3562		BGE_UNLOCK(sc);
3563	}
3564}
3565
3566static void
3567bge_intr(void *xsc)
3568{
3569	struct bge_softc *sc;
3570	struct ifnet *ifp;
3571	uint32_t statusword;
3572	uint16_t rx_prod, tx_cons;
3573
3574	sc = xsc;
3575
3576	BGE_LOCK(sc);
3577
3578	ifp = sc->bge_ifp;
3579
3580#ifdef DEVICE_POLLING
3581	if (ifp->if_capenable & IFCAP_POLLING) {
3582		BGE_UNLOCK(sc);
3583		return;
3584	}
3585#endif
3586
3587	/*
3588	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3589	 * disable interrupts by writing nonzero like we used to, since with
3590	 * our current organization this just gives complications and
3591	 * pessimizations for re-enabling interrupts.  We used to have races
3592	 * instead of the necessary complications.  Disabling interrupts
3593	 * would just reduce the chance of a status update while we are
3594	 * running (by switching to the interrupt-mode coalescence
3595	 * parameters), but this chance is already very low so it is more
3596	 * efficient to get another interrupt than prevent it.
3597	 *
3598	 * We do the ack first to ensure another interrupt if there is a
3599	 * status update after the ack.  We don't check for the status
3600	 * changing later because it is more efficient to get another
3601	 * interrupt than prevent it, not quite as above (not checking is
3602	 * a smaller optimization than not toggling the interrupt enable,
3603	 * since checking doesn't involve PCI accesses and toggling require
3604	 * the status check).  So toggling would probably be a pessimization
3605	 * even with MSI.  It would only be needed for using a task queue.
3606	 */
3607	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3608
3609	/*
3610	 * Do the mandatory PCI flush as well as get the link status.
3611	 */
3612	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3613
3614	/* Make sure the descriptor ring indexes are coherent. */
3615	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3616	    sc->bge_cdata.bge_status_map,
3617	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3618	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3619	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3620	sc->bge_ldata.bge_status_block->bge_status = 0;
3621	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3622	    sc->bge_cdata.bge_status_map,
3623	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3624
3625	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3626	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3627	    statusword || sc->bge_link_evt)
3628		bge_link_upd(sc);
3629
3630	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3631		/* Check RX return ring producer/consumer. */
3632		bge_rxeof(sc, rx_prod, 1);
3633	}
3634
3635	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3636		/* Check TX ring producer/consumer. */
3637		bge_txeof(sc, tx_cons);
3638	}
3639
3640	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3641	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3642		bge_start_locked(ifp);
3643
3644	BGE_UNLOCK(sc);
3645}
3646
3647static void
3648bge_asf_driver_up(struct bge_softc *sc)
3649{
3650	if (sc->bge_asf_mode & ASF_STACKUP) {
3651		/* Send ASF heartbeat aprox. every 2s */
3652		if (sc->bge_asf_count)
3653			sc->bge_asf_count --;
3654		else {
3655			sc->bge_asf_count = 5;
3656			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3657			    BGE_FW_DRV_ALIVE);
3658			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3659			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3660			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3661			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3662		}
3663	}
3664}
3665
3666static void
3667bge_tick(void *xsc)
3668{
3669	struct bge_softc *sc = xsc;
3670	struct mii_data *mii = NULL;
3671
3672	BGE_LOCK_ASSERT(sc);
3673
3674	/* Synchronize with possible callout reset/stop. */
3675	if (callout_pending(&sc->bge_stat_ch) ||
3676	    !callout_active(&sc->bge_stat_ch))
3677	    	return;
3678
3679	if (BGE_IS_5705_PLUS(sc))
3680		bge_stats_update_regs(sc);
3681	else
3682		bge_stats_update(sc);
3683
3684	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3685		mii = device_get_softc(sc->bge_miibus);
3686		/*
3687		 * Do not touch PHY if we have link up. This could break
3688		 * IPMI/ASF mode or produce extra input errors
3689		 * (extra errors was reported for bcm5701 & bcm5704).
3690		 */
3691		if (!sc->bge_link)
3692			mii_tick(mii);
3693	} else {
3694		/*
3695		 * Since in TBI mode auto-polling can't be used we should poll
3696		 * link status manually. Here we register pending link event
3697		 * and trigger interrupt.
3698		 */
3699#ifdef DEVICE_POLLING
3700		/* In polling mode we poll link state in bge_poll(). */
3701		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3702#endif
3703		{
3704		sc->bge_link_evt++;
3705		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3706		    sc->bge_flags & BGE_FLAG_5788)
3707			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3708		else
3709			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3710		}
3711	}
3712
3713	bge_asf_driver_up(sc);
3714	bge_watchdog(sc);
3715
3716	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3717}
3718
3719static void
3720bge_stats_update_regs(struct bge_softc *sc)
3721{
3722	struct ifnet *ifp;
3723
3724	ifp = sc->bge_ifp;
3725
3726	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3727	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3728
3729	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3730	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3731	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3732}
3733
3734static void
3735bge_stats_update(struct bge_softc *sc)
3736{
3737	struct ifnet *ifp;
3738	bus_size_t stats;
3739	uint32_t cnt;	/* current register value */
3740
3741	ifp = sc->bge_ifp;
3742
3743	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3744
3745#define	READ_STAT(sc, stats, stat) \
3746	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3747
3748	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3749	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3750	sc->bge_tx_collisions = cnt;
3751
3752	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3753	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3754	sc->bge_rx_discards = cnt;
3755
3756	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3757	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3758	sc->bge_tx_discards = cnt;
3759
3760#undef	READ_STAT
3761}
3762
3763/*
3764 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3765 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3766 * but when such padded frames employ the bge IP/TCP checksum offload,
3767 * the hardware checksum assist gives incorrect results (possibly
3768 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3769 * If we pad such runts with zeros, the onboard checksum comes out correct.
3770 */
3771static __inline int
3772bge_cksum_pad(struct mbuf *m)
3773{
3774	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3775	struct mbuf *last;
3776
3777	/* If there's only the packet-header and we can pad there, use it. */
3778	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3779	    M_TRAILINGSPACE(m) >= padlen) {
3780		last = m;
3781	} else {
3782		/*
3783		 * Walk packet chain to find last mbuf. We will either
3784		 * pad there, or append a new mbuf and pad it.
3785		 */
3786		for (last = m; last->m_next != NULL; last = last->m_next);
3787		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3788			/* Allocate new empty mbuf, pad it. Compact later. */
3789			struct mbuf *n;
3790
3791			MGET(n, M_DONTWAIT, MT_DATA);
3792			if (n == NULL)
3793				return (ENOBUFS);
3794			n->m_len = 0;
3795			last->m_next = n;
3796			last = n;
3797		}
3798	}
3799
3800	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3801	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3802	last->m_len += padlen;
3803	m->m_pkthdr.len += padlen;
3804
3805	return (0);
3806}
3807
3808static struct mbuf *
3809bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3810{
3811	struct ether_header *eh;
3812	struct ip *ip;
3813	struct tcphdr *tcp;
3814	struct mbuf *n;
3815	uint16_t hlen;
3816	uint32_t ip_off, poff;
3817
3818	if (M_WRITABLE(m) == 0) {
3819		/* Get a writable copy. */
3820		n = m_dup(m, M_DONTWAIT);
3821		m_freem(m);
3822		if (n == NULL)
3823			return (NULL);
3824		m = n;
3825	}
3826	ip_off = sizeof(struct ether_header);
3827	m = m_pullup(m, ip_off);
3828	if (m == NULL)
3829		return (NULL);
3830	eh = mtod(m, struct ether_header *);
3831	/* Check the existence of VLAN tag. */
3832	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
3833		ip_off = sizeof(struct ether_vlan_header);
3834		m = m_pullup(m, ip_off);
3835		if (m == NULL)
3836			return (NULL);
3837	}
3838	m = m_pullup(m, ip_off + sizeof(struct ip));
3839	if (m == NULL)
3840		return (NULL);
3841	ip = (struct ip *)(mtod(m, char *) + ip_off);
3842	poff = ip_off + (ip->ip_hl << 2);
3843	m = m_pullup(m, poff + sizeof(struct tcphdr));
3844	if (m == NULL)
3845		return (NULL);
3846	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3847	m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
3848	if (m == NULL)
3849		return (NULL);
3850	/*
3851	 * It seems controller doesn't modify IP length and TCP pseudo
3852	 * checksum. These checksum computed by upper stack should be 0.
3853	 */
3854	*mss = m->m_pkthdr.tso_segsz;
3855	ip->ip_sum = 0;
3856	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3857	/* Clear pseudo checksum computed by TCP stack. */
3858	tcp->th_sum = 0;
3859	/*
3860	 * Broadcom controllers uses different descriptor format for
3861	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3862	 * license issue and lower performance of firmware based TSO
3863	 * we only support hardware based TSO which is applicable for
3864	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3865	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3866	 * header length(including IP/TCP options). The header length
3867	 * is expressed as 32 bits unit.
3868	 */
3869	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3870	*mss |= (hlen << 11);
3871	return (m);
3872}
3873
3874/*
3875 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3876 * pointers to descriptors.
3877 */
3878static int
3879bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3880{
3881	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3882	bus_dmamap_t		map;
3883	struct bge_tx_bd	*d;
3884	struct mbuf		*m = *m_head;
3885	uint32_t		idx = *txidx;
3886	uint16_t		csum_flags, mss, vlan_tag;
3887	int			nsegs, i, error;
3888
3889	csum_flags = 0;
3890	mss = 0;
3891	vlan_tag = 0;
3892	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3893		*m_head = m = bge_setup_tso(sc, m, &mss);
3894		if (*m_head == NULL)
3895			return (ENOBUFS);
3896		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3897		    BGE_TXBDFLAG_CPU_POST_DMA;
3898	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3899		if (m->m_pkthdr.csum_flags & CSUM_IP)
3900			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3901		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3902			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3903			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3904			    (error = bge_cksum_pad(m)) != 0) {
3905				m_freem(m);
3906				*m_head = NULL;
3907				return (error);
3908			}
3909		}
3910		if (m->m_flags & M_LASTFRAG)
3911			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3912		else if (m->m_flags & M_FRAG)
3913			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3914	}
3915
3916	map = sc->bge_cdata.bge_tx_dmamap[idx];
3917	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3918	    &nsegs, BUS_DMA_NOWAIT);
3919	if (error == EFBIG) {
3920		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3921		if (m == NULL) {
3922			m_freem(*m_head);
3923			*m_head = NULL;
3924			return (ENOBUFS);
3925		}
3926		*m_head = m;
3927		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3928		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3929		if (error) {
3930			m_freem(m);
3931			*m_head = NULL;
3932			return (error);
3933		}
3934	} else if (error != 0)
3935		return (error);
3936
3937	/* Check if we have enough free send BDs. */
3938	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3939		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3940		return (ENOBUFS);
3941	}
3942
3943	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3944
3945#if __FreeBSD_version > 700022
3946	if (m->m_flags & M_VLANTAG) {
3947		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3948		vlan_tag = m->m_pkthdr.ether_vtag;
3949	}
3950#else
3951	{
3952		struct m_tag		*mtag;
3953
3954		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3955			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3956			vlan_tag = VLAN_TAG_VALUE(mtag);
3957		}
3958	}
3959#endif
3960	for (i = 0; ; i++) {
3961		d = &sc->bge_ldata.bge_tx_ring[idx];
3962		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3963		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3964		d->bge_len = segs[i].ds_len;
3965		d->bge_flags = csum_flags;
3966		d->bge_vlan_tag = vlan_tag;
3967		d->bge_mss = mss;
3968		if (i == nsegs - 1)
3969			break;
3970		BGE_INC(idx, BGE_TX_RING_CNT);
3971	}
3972
3973	/* Mark the last segment as end of packet... */
3974	d->bge_flags |= BGE_TXBDFLAG_END;
3975
3976	/*
3977	 * Insure that the map for this transmission
3978	 * is placed at the array index of the last descriptor
3979	 * in this chain.
3980	 */
3981	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3982	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3983	sc->bge_cdata.bge_tx_chain[idx] = m;
3984	sc->bge_txcnt += nsegs;
3985
3986	BGE_INC(idx, BGE_TX_RING_CNT);
3987	*txidx = idx;
3988
3989	return (0);
3990}
3991
3992/*
3993 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3994 * to the mbuf data regions directly in the transmit descriptors.
3995 */
3996static void
3997bge_start_locked(struct ifnet *ifp)
3998{
3999	struct bge_softc *sc;
4000	struct mbuf *m_head;
4001	uint32_t prodidx;
4002	int count;
4003
4004	sc = ifp->if_softc;
4005	BGE_LOCK_ASSERT(sc);
4006
4007	if (!sc->bge_link ||
4008	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4009	    IFF_DRV_RUNNING)
4010		return;
4011
4012	prodidx = sc->bge_tx_prodidx;
4013
4014	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4015		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4016			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4017			break;
4018		}
4019		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4020		if (m_head == NULL)
4021			break;
4022
4023		/*
4024		 * XXX
4025		 * The code inside the if() block is never reached since we
4026		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4027		 * requests to checksum TCP/UDP in a fragmented packet.
4028		 *
4029		 * XXX
4030		 * safety overkill.  If this is a fragmented packet chain
4031		 * with delayed TCP/UDP checksums, then only encapsulate
4032		 * it if we have enough descriptors to handle the entire
4033		 * chain at once.
4034		 * (paranoia -- may not actually be needed)
4035		 */
4036		if (m_head->m_flags & M_FIRSTFRAG &&
4037		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4038			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4039			    m_head->m_pkthdr.csum_data + 16) {
4040				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4041				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4042				break;
4043			}
4044		}
4045
4046		/*
4047		 * Pack the data into the transmit ring. If we
4048		 * don't have room, set the OACTIVE flag and wait
4049		 * for the NIC to drain the ring.
4050		 */
4051		if (bge_encap(sc, &m_head, &prodidx)) {
4052			if (m_head == NULL)
4053				break;
4054			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4055			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4056			break;
4057		}
4058		++count;
4059
4060		/*
4061		 * If there's a BPF listener, bounce a copy of this frame
4062		 * to him.
4063		 */
4064#ifdef ETHER_BPF_MTAP
4065		ETHER_BPF_MTAP(ifp, m_head);
4066#else
4067		BPF_MTAP(ifp, m_head);
4068#endif
4069	}
4070
4071	if (count > 0) {
4072		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4073		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4074		/* Transmit. */
4075		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4076		/* 5700 b2 errata */
4077		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4078			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4079
4080		sc->bge_tx_prodidx = prodidx;
4081
4082		/*
4083		 * Set a timeout in case the chip goes out to lunch.
4084		 */
4085		sc->bge_timer = 5;
4086	}
4087}
4088
4089/*
4090 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4091 * to the mbuf data regions directly in the transmit descriptors.
4092 */
4093static void
4094bge_start(struct ifnet *ifp)
4095{
4096	struct bge_softc *sc;
4097
4098	sc = ifp->if_softc;
4099	BGE_LOCK(sc);
4100	bge_start_locked(ifp);
4101	BGE_UNLOCK(sc);
4102}
4103
4104static void
4105bge_init_locked(struct bge_softc *sc)
4106{
4107	struct ifnet *ifp;
4108	uint16_t *m;
4109
4110	BGE_LOCK_ASSERT(sc);
4111
4112	ifp = sc->bge_ifp;
4113
4114	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4115		return;
4116
4117	/* Cancel pending I/O and flush buffers. */
4118	bge_stop(sc);
4119
4120	bge_stop_fw(sc);
4121	bge_sig_pre_reset(sc, BGE_RESET_START);
4122	bge_reset(sc);
4123	bge_sig_legacy(sc, BGE_RESET_START);
4124	bge_sig_post_reset(sc, BGE_RESET_START);
4125
4126	bge_chipinit(sc);
4127
4128	/*
4129	 * Init the various state machines, ring
4130	 * control blocks and firmware.
4131	 */
4132	if (bge_blockinit(sc)) {
4133		device_printf(sc->bge_dev, "initialization failure\n");
4134		return;
4135	}
4136
4137	ifp = sc->bge_ifp;
4138
4139	/* Specify MTU. */
4140	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4141	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4142	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4143
4144	/* Load our MAC address. */
4145	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4146	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4147	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4148
4149	/* Program promiscuous mode. */
4150	bge_setpromisc(sc);
4151
4152	/* Program multicast filter. */
4153	bge_setmulti(sc);
4154
4155	/* Program VLAN tag stripping. */
4156	bge_setvlan(sc);
4157
4158	/* Init RX ring. */
4159	if (bge_init_rx_ring_std(sc) != 0) {
4160		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4161		bge_stop(sc);
4162		return;
4163	}
4164
4165	/*
4166	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4167	 * memory to insure that the chip has in fact read the first
4168	 * entry of the ring.
4169	 */
4170	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4171		uint32_t		v, i;
4172		for (i = 0; i < 10; i++) {
4173			DELAY(20);
4174			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4175			if (v == (MCLBYTES - ETHER_ALIGN))
4176				break;
4177		}
4178		if (i == 10)
4179			device_printf (sc->bge_dev,
4180			    "5705 A0 chip failed to load RX ring\n");
4181	}
4182
4183	/* Init jumbo RX ring. */
4184	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4185	    (MCLBYTES - ETHER_ALIGN)) {
4186		if (bge_init_rx_ring_jumbo(sc) != 0) {
4187			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4188			bge_stop(sc);
4189			return;
4190		}
4191	}
4192
4193	/* Init our RX return ring index. */
4194	sc->bge_rx_saved_considx = 0;
4195
4196	/* Init our RX/TX stat counters. */
4197	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4198
4199	/* Init TX ring. */
4200	bge_init_tx_ring(sc);
4201
4202	/* Turn on transmitter. */
4203	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4204
4205	/* Turn on receiver. */
4206	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4207
4208	/* Tell firmware we're alive. */
4209	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4210
4211#ifdef DEVICE_POLLING
4212	/* Disable interrupts if we are polling. */
4213	if (ifp->if_capenable & IFCAP_POLLING) {
4214		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4215		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4216		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4217	} else
4218#endif
4219
4220	/* Enable host interrupts. */
4221	{
4222	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4223	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4224	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4225	}
4226
4227	bge_ifmedia_upd_locked(ifp);
4228
4229	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4230	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4231
4232	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4233}
4234
4235static void
4236bge_init(void *xsc)
4237{
4238	struct bge_softc *sc = xsc;
4239
4240	BGE_LOCK(sc);
4241	bge_init_locked(sc);
4242	BGE_UNLOCK(sc);
4243}
4244
4245/*
4246 * Set media options.
4247 */
4248static int
4249bge_ifmedia_upd(struct ifnet *ifp)
4250{
4251	struct bge_softc *sc = ifp->if_softc;
4252	int res;
4253
4254	BGE_LOCK(sc);
4255	res = bge_ifmedia_upd_locked(ifp);
4256	BGE_UNLOCK(sc);
4257
4258	return (res);
4259}
4260
4261static int
4262bge_ifmedia_upd_locked(struct ifnet *ifp)
4263{
4264	struct bge_softc *sc = ifp->if_softc;
4265	struct mii_data *mii;
4266	struct mii_softc *miisc;
4267	struct ifmedia *ifm;
4268
4269	BGE_LOCK_ASSERT(sc);
4270
4271	ifm = &sc->bge_ifmedia;
4272
4273	/* If this is a 1000baseX NIC, enable the TBI port. */
4274	if (sc->bge_flags & BGE_FLAG_TBI) {
4275		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4276			return (EINVAL);
4277		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4278		case IFM_AUTO:
4279			/*
4280			 * The BCM5704 ASIC appears to have a special
4281			 * mechanism for programming the autoneg
4282			 * advertisement registers in TBI mode.
4283			 */
4284			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4285				uint32_t sgdig;
4286				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4287				if (sgdig & BGE_SGDIGSTS_DONE) {
4288					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4289					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4290					sgdig |= BGE_SGDIGCFG_AUTO |
4291					    BGE_SGDIGCFG_PAUSE_CAP |
4292					    BGE_SGDIGCFG_ASYM_PAUSE;
4293					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4294					    sgdig | BGE_SGDIGCFG_SEND);
4295					DELAY(5);
4296					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4297				}
4298			}
4299			break;
4300		case IFM_1000_SX:
4301			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4302				BGE_CLRBIT(sc, BGE_MAC_MODE,
4303				    BGE_MACMODE_HALF_DUPLEX);
4304			} else {
4305				BGE_SETBIT(sc, BGE_MAC_MODE,
4306				    BGE_MACMODE_HALF_DUPLEX);
4307			}
4308			break;
4309		default:
4310			return (EINVAL);
4311		}
4312		return (0);
4313	}
4314
4315	sc->bge_link_evt++;
4316	mii = device_get_softc(sc->bge_miibus);
4317	if (mii->mii_instance)
4318		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4319			mii_phy_reset(miisc);
4320	mii_mediachg(mii);
4321
4322	/*
4323	 * Force an interrupt so that we will call bge_link_upd
4324	 * if needed and clear any pending link state attention.
4325	 * Without this we are not getting any further interrupts
4326	 * for link state changes and thus will not UP the link and
4327	 * not be able to send in bge_start_locked. The only
4328	 * way to get things working was to receive a packet and
4329	 * get an RX intr.
4330	 * bge_tick should help for fiber cards and we might not
4331	 * need to do this here if BGE_FLAG_TBI is set but as
4332	 * we poll for fiber anyway it should not harm.
4333	 */
4334	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4335	    sc->bge_flags & BGE_FLAG_5788)
4336		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4337	else
4338		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4339
4340	return (0);
4341}
4342
4343/*
4344 * Report current media status.
4345 */
4346static void
4347bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4348{
4349	struct bge_softc *sc = ifp->if_softc;
4350	struct mii_data *mii;
4351
4352	BGE_LOCK(sc);
4353
4354	if (sc->bge_flags & BGE_FLAG_TBI) {
4355		ifmr->ifm_status = IFM_AVALID;
4356		ifmr->ifm_active = IFM_ETHER;
4357		if (CSR_READ_4(sc, BGE_MAC_STS) &
4358		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4359			ifmr->ifm_status |= IFM_ACTIVE;
4360		else {
4361			ifmr->ifm_active |= IFM_NONE;
4362			BGE_UNLOCK(sc);
4363			return;
4364		}
4365		ifmr->ifm_active |= IFM_1000_SX;
4366		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4367			ifmr->ifm_active |= IFM_HDX;
4368		else
4369			ifmr->ifm_active |= IFM_FDX;
4370		BGE_UNLOCK(sc);
4371		return;
4372	}
4373
4374	mii = device_get_softc(sc->bge_miibus);
4375	mii_pollstat(mii);
4376	ifmr->ifm_active = mii->mii_media_active;
4377	ifmr->ifm_status = mii->mii_media_status;
4378
4379	BGE_UNLOCK(sc);
4380}
4381
4382static int
4383bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4384{
4385	struct bge_softc *sc = ifp->if_softc;
4386	struct ifreq *ifr = (struct ifreq *) data;
4387	struct mii_data *mii;
4388	int flags, mask, error = 0;
4389
4390	switch (command) {
4391	case SIOCSIFMTU:
4392		if (ifr->ifr_mtu < ETHERMIN ||
4393		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4394		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4395		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4396		    ifr->ifr_mtu > ETHERMTU))
4397			error = EINVAL;
4398		else if (ifp->if_mtu != ifr->ifr_mtu) {
4399			ifp->if_mtu = ifr->ifr_mtu;
4400			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4401			bge_init(sc);
4402		}
4403		break;
4404	case SIOCSIFFLAGS:
4405		BGE_LOCK(sc);
4406		if (ifp->if_flags & IFF_UP) {
4407			/*
4408			 * If only the state of the PROMISC flag changed,
4409			 * then just use the 'set promisc mode' command
4410			 * instead of reinitializing the entire NIC. Doing
4411			 * a full re-init means reloading the firmware and
4412			 * waiting for it to start up, which may take a
4413			 * second or two.  Similarly for ALLMULTI.
4414			 */
4415			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4416				flags = ifp->if_flags ^ sc->bge_if_flags;
4417				if (flags & IFF_PROMISC)
4418					bge_setpromisc(sc);
4419				if (flags & IFF_ALLMULTI)
4420					bge_setmulti(sc);
4421			} else
4422				bge_init_locked(sc);
4423		} else {
4424			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4425				bge_stop(sc);
4426			}
4427		}
4428		sc->bge_if_flags = ifp->if_flags;
4429		BGE_UNLOCK(sc);
4430		error = 0;
4431		break;
4432	case SIOCADDMULTI:
4433	case SIOCDELMULTI:
4434		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4435			BGE_LOCK(sc);
4436			bge_setmulti(sc);
4437			BGE_UNLOCK(sc);
4438			error = 0;
4439		}
4440		break;
4441	case SIOCSIFMEDIA:
4442	case SIOCGIFMEDIA:
4443		if (sc->bge_flags & BGE_FLAG_TBI) {
4444			error = ifmedia_ioctl(ifp, ifr,
4445			    &sc->bge_ifmedia, command);
4446		} else {
4447			mii = device_get_softc(sc->bge_miibus);
4448			error = ifmedia_ioctl(ifp, ifr,
4449			    &mii->mii_media, command);
4450		}
4451		break;
4452	case SIOCSIFCAP:
4453		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4454#ifdef DEVICE_POLLING
4455		if (mask & IFCAP_POLLING) {
4456			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4457				error = ether_poll_register(bge_poll, ifp);
4458				if (error)
4459					return (error);
4460				BGE_LOCK(sc);
4461				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4462				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4463				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4464				ifp->if_capenable |= IFCAP_POLLING;
4465				BGE_UNLOCK(sc);
4466			} else {
4467				error = ether_poll_deregister(ifp);
4468				/* Enable interrupt even in error case */
4469				BGE_LOCK(sc);
4470				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4471				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4472				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4473				ifp->if_capenable &= ~IFCAP_POLLING;
4474				BGE_UNLOCK(sc);
4475			}
4476		}
4477#endif
4478		if (mask & IFCAP_HWCSUM) {
4479			ifp->if_capenable ^= IFCAP_HWCSUM;
4480			if (IFCAP_HWCSUM & ifp->if_capenable &&
4481			    IFCAP_HWCSUM & ifp->if_capabilities)
4482				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4483			else
4484				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4485#ifdef VLAN_CAPABILITIES
4486			VLAN_CAPABILITIES(ifp);
4487#endif
4488		}
4489
4490		if ((mask & IFCAP_TSO4) != 0 &&
4491		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4492			ifp->if_capenable ^= IFCAP_TSO4;
4493			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4494				ifp->if_hwassist |= CSUM_TSO;
4495			else
4496				ifp->if_hwassist &= ~CSUM_TSO;
4497		}
4498
4499		if (mask & IFCAP_VLAN_MTU) {
4500			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4501			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4502			bge_init(sc);
4503		}
4504
4505		if (mask & IFCAP_VLAN_HWTAGGING) {
4506			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4507			BGE_LOCK(sc);
4508			bge_setvlan(sc);
4509			BGE_UNLOCK(sc);
4510#ifdef VLAN_CAPABILITIES
4511			VLAN_CAPABILITIES(ifp);
4512#endif
4513		}
4514
4515		break;
4516	default:
4517		error = ether_ioctl(ifp, command, data);
4518		break;
4519	}
4520
4521	return (error);
4522}
4523
4524static void
4525bge_watchdog(struct bge_softc *sc)
4526{
4527	struct ifnet *ifp;
4528
4529	BGE_LOCK_ASSERT(sc);
4530
4531	if (sc->bge_timer == 0 || --sc->bge_timer)
4532		return;
4533
4534	ifp = sc->bge_ifp;
4535
4536	if_printf(ifp, "watchdog timeout -- resetting\n");
4537
4538	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4539	bge_init_locked(sc);
4540
4541	ifp->if_oerrors++;
4542}
4543
4544/*
4545 * Stop the adapter and free any mbufs allocated to the
4546 * RX and TX lists.
4547 */
4548static void
4549bge_stop(struct bge_softc *sc)
4550{
4551	struct ifnet *ifp;
4552	struct ifmedia_entry *ifm;
4553	struct mii_data *mii = NULL;
4554	int mtmp, itmp;
4555
4556	BGE_LOCK_ASSERT(sc);
4557
4558	ifp = sc->bge_ifp;
4559
4560	if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
4561		mii = device_get_softc(sc->bge_miibus);
4562
4563	callout_stop(&sc->bge_stat_ch);
4564
4565	/* Disable host interrupts. */
4566	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4567	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4568
4569	/*
4570	 * Tell firmware we're shutting down.
4571	 */
4572	bge_stop_fw(sc);
4573	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4574
4575	/*
4576	 * Disable all of the receiver blocks.
4577	 */
4578	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4579	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4580	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4581	if (!(BGE_IS_5705_PLUS(sc)))
4582		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4583	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4584	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4585	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4586
4587	/*
4588	 * Disable all of the transmit blocks.
4589	 */
4590	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4591	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4592	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4593	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4594	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4595	if (!(BGE_IS_5705_PLUS(sc)))
4596		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4597	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4598
4599	/*
4600	 * Shut down all of the memory managers and related
4601	 * state machines.
4602	 */
4603	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4604	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4605	if (!(BGE_IS_5705_PLUS(sc)))
4606		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4607	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4608	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4609	if (!(BGE_IS_5705_PLUS(sc))) {
4610		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4611		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4612	}
4613
4614	bge_reset(sc);
4615	bge_sig_legacy(sc, BGE_RESET_STOP);
4616	bge_sig_post_reset(sc, BGE_RESET_STOP);
4617
4618	/*
4619	 * Keep the ASF firmware running if up.
4620	 */
4621	if (sc->bge_asf_mode & ASF_STACKUP)
4622		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4623	else
4624		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4625
4626	/* Free the RX lists. */
4627	bge_free_rx_ring_std(sc);
4628
4629	/* Free jumbo RX list. */
4630	if (BGE_IS_JUMBO_CAPABLE(sc))
4631		bge_free_rx_ring_jumbo(sc);
4632
4633	/* Free TX buffers. */
4634	bge_free_tx_ring(sc);
4635
4636	/*
4637	 * Isolate/power down the PHY, but leave the media selection
4638	 * unchanged so that things will be put back to normal when
4639	 * we bring the interface back up.
4640	 */
4641	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4642		itmp = ifp->if_flags;
4643		ifp->if_flags |= IFF_UP;
4644		/*
4645		 * If we are called from bge_detach(), mii is already NULL.
4646		 */
4647		if (mii != NULL) {
4648			ifm = mii->mii_media.ifm_cur;
4649			mtmp = ifm->ifm_media;
4650			ifm->ifm_media = IFM_ETHER | IFM_NONE;
4651			mii_mediachg(mii);
4652			ifm->ifm_media = mtmp;
4653		}
4654		ifp->if_flags = itmp;
4655	}
4656
4657	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4658
4659	/* Clear MAC's link state (PHY may still have link UP). */
4660	if (bootverbose && sc->bge_link)
4661		if_printf(sc->bge_ifp, "link DOWN\n");
4662	sc->bge_link = 0;
4663
4664	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4665}
4666
4667/*
4668 * Stop all chip I/O so that the kernel's probe routines don't
4669 * get confused by errant DMAs when rebooting.
4670 */
4671static int
4672bge_shutdown(device_t dev)
4673{
4674	struct bge_softc *sc;
4675
4676	sc = device_get_softc(dev);
4677	BGE_LOCK(sc);
4678	bge_stop(sc);
4679	bge_reset(sc);
4680	BGE_UNLOCK(sc);
4681
4682	return (0);
4683}
4684
4685static int
4686bge_suspend(device_t dev)
4687{
4688	struct bge_softc *sc;
4689
4690	sc = device_get_softc(dev);
4691	BGE_LOCK(sc);
4692	bge_stop(sc);
4693	BGE_UNLOCK(sc);
4694
4695	return (0);
4696}
4697
4698static int
4699bge_resume(device_t dev)
4700{
4701	struct bge_softc *sc;
4702	struct ifnet *ifp;
4703
4704	sc = device_get_softc(dev);
4705	BGE_LOCK(sc);
4706	ifp = sc->bge_ifp;
4707	if (ifp->if_flags & IFF_UP) {
4708		bge_init_locked(sc);
4709		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4710			bge_start_locked(ifp);
4711	}
4712	BGE_UNLOCK(sc);
4713
4714	return (0);
4715}
4716
4717static void
4718bge_link_upd(struct bge_softc *sc)
4719{
4720	struct mii_data *mii;
4721	uint32_t link, status;
4722
4723	BGE_LOCK_ASSERT(sc);
4724
4725	/* Clear 'pending link event' flag. */
4726	sc->bge_link_evt = 0;
4727
4728	/*
4729	 * Process link state changes.
4730	 * Grrr. The link status word in the status block does
4731	 * not work correctly on the BCM5700 rev AX and BX chips,
4732	 * according to all available information. Hence, we have
4733	 * to enable MII interrupts in order to properly obtain
4734	 * async link changes. Unfortunately, this also means that
4735	 * we have to read the MAC status register to detect link
4736	 * changes, thereby adding an additional register access to
4737	 * the interrupt handler.
4738	 *
4739	 * XXX: perhaps link state detection procedure used for
4740	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4741	 */
4742
4743	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4744	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4745		status = CSR_READ_4(sc, BGE_MAC_STS);
4746		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4747			mii = device_get_softc(sc->bge_miibus);
4748			mii_pollstat(mii);
4749			if (!sc->bge_link &&
4750			    mii->mii_media_status & IFM_ACTIVE &&
4751			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4752				sc->bge_link++;
4753				if (bootverbose)
4754					if_printf(sc->bge_ifp, "link UP\n");
4755			} else if (sc->bge_link &&
4756			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4757			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4758				sc->bge_link = 0;
4759				if (bootverbose)
4760					if_printf(sc->bge_ifp, "link DOWN\n");
4761			}
4762
4763			/* Clear the interrupt. */
4764			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4765			    BGE_EVTENB_MI_INTERRUPT);
4766			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4767			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4768			    BRGPHY_INTRS);
4769		}
4770		return;
4771	}
4772
4773	if (sc->bge_flags & BGE_FLAG_TBI) {
4774		status = CSR_READ_4(sc, BGE_MAC_STS);
4775		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4776			if (!sc->bge_link) {
4777				sc->bge_link++;
4778				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4779					BGE_CLRBIT(sc, BGE_MAC_MODE,
4780					    BGE_MACMODE_TBI_SEND_CFGS);
4781				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4782				if (bootverbose)
4783					if_printf(sc->bge_ifp, "link UP\n");
4784				if_link_state_change(sc->bge_ifp,
4785				    LINK_STATE_UP);
4786			}
4787		} else if (sc->bge_link) {
4788			sc->bge_link = 0;
4789			if (bootverbose)
4790				if_printf(sc->bge_ifp, "link DOWN\n");
4791			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4792		}
4793	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4794		/*
4795		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4796		 * in status word always set. Workaround this bug by reading
4797		 * PHY link status directly.
4798		 */
4799		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4800
4801		if (link != sc->bge_link ||
4802		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4803			mii = device_get_softc(sc->bge_miibus);
4804			mii_pollstat(mii);
4805			if (!sc->bge_link &&
4806			    mii->mii_media_status & IFM_ACTIVE &&
4807			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4808				sc->bge_link++;
4809				if (bootverbose)
4810					if_printf(sc->bge_ifp, "link UP\n");
4811			} else if (sc->bge_link &&
4812			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4813			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4814				sc->bge_link = 0;
4815				if (bootverbose)
4816					if_printf(sc->bge_ifp, "link DOWN\n");
4817			}
4818		}
4819	} else {
4820		/*
4821		 * Discard link events for MII/GMII controllers
4822		 * if MI auto-polling is disabled.
4823		 */
4824	}
4825
4826	/* Clear the attention. */
4827	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4828	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4829	    BGE_MACSTAT_LINK_CHANGED);
4830}
4831
4832#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4833	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4834	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4835	    desc)
4836
4837static void
4838bge_add_sysctls(struct bge_softc *sc)
4839{
4840	struct sysctl_ctx_list *ctx;
4841	struct sysctl_oid_list *children, *schildren;
4842	struct sysctl_oid *tree;
4843
4844	ctx = device_get_sysctl_ctx(sc->bge_dev);
4845	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4846
4847#ifdef BGE_REGISTER_DEBUG
4848	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4849	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4850	    "Debug Information");
4851
4852	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4853	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4854	    "Register Read");
4855
4856	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4857	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4858	    "Memory Read");
4859
4860#endif
4861
4862	if (BGE_IS_5705_PLUS(sc))
4863		return;
4864
4865	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4866	    NULL, "BGE Statistics");
4867	schildren = children = SYSCTL_CHILDREN(tree);
4868	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4869	    children, COSFramesDroppedDueToFilters,
4870	    "FramesDroppedDueToFilters");
4871	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4872	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4873	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4874	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4875	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4876	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4877	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4878	    children, ifInDiscards, "InputDiscards");
4879	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4880	    children, ifInErrors, "InputErrors");
4881	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4882	    children, nicRecvThresholdHit, "RecvThresholdHit");
4883	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4884	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4885	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4886	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4887	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4888	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4889	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4890	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4891	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4892	    children, nicRingStatusUpdate, "RingStatusUpdate");
4893	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4894	    children, nicInterrupts, "Interrupts");
4895	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4896	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4897	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4898	    children, nicSendThresholdHit, "SendThresholdHit");
4899
4900	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4901	    NULL, "BGE RX Statistics");
4902	children = SYSCTL_CHILDREN(tree);
4903	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4904	    children, rxstats.ifHCInOctets, "Octets");
4905	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4906	    children, rxstats.etherStatsFragments, "Fragments");
4907	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4908	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4909	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4910	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4911	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4912	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4913	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4914	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4915	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4916	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4917	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4918	    children, rxstats.xoffPauseFramesReceived,
4919	    "xoffPauseFramesReceived");
4920	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4921	    children, rxstats.macControlFramesReceived,
4922	    "ControlFramesReceived");
4923	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4924	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4925	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4926	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4927	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4928	    children, rxstats.etherStatsJabbers, "Jabbers");
4929	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4930	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4931	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4932	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4933	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4934	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4935
4936	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4937	    NULL, "BGE TX Statistics");
4938	children = SYSCTL_CHILDREN(tree);
4939	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4940	    children, txstats.ifHCOutOctets, "Octets");
4941	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4942	    children, txstats.etherStatsCollisions, "Collisions");
4943	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4944	    children, txstats.outXonSent, "XonSent");
4945	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4946	    children, txstats.outXoffSent, "XoffSent");
4947	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4948	    children, txstats.flowControlDone, "flowControlDone");
4949	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4950	    children, txstats.dot3StatsInternalMacTransmitErrors,
4951	    "InternalMacTransmitErrors");
4952	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4953	    children, txstats.dot3StatsSingleCollisionFrames,
4954	    "SingleCollisionFrames");
4955	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4956	    children, txstats.dot3StatsMultipleCollisionFrames,
4957	    "MultipleCollisionFrames");
4958	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4959	    children, txstats.dot3StatsDeferredTransmissions,
4960	    "DeferredTransmissions");
4961	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4962	    children, txstats.dot3StatsExcessiveCollisions,
4963	    "ExcessiveCollisions");
4964	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
4965	    children, txstats.dot3StatsLateCollisions,
4966	    "LateCollisions");
4967	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
4968	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
4969	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
4970	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
4971	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
4972	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
4973	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
4974	    children, txstats.dot3StatsCarrierSenseErrors,
4975	    "CarrierSenseErrors");
4976	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
4977	    children, txstats.ifOutDiscards, "Discards");
4978	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
4979	    children, txstats.ifOutErrors, "Errors");
4980}
4981
4982static int
4983bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
4984{
4985	struct bge_softc *sc;
4986	uint32_t result;
4987	int offset;
4988
4989	sc = (struct bge_softc *)arg1;
4990	offset = arg2;
4991	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
4992	    offsetof(bge_hostaddr, bge_addr_lo));
4993	return (sysctl_handle_int(oidp, &result, 0, req));
4994}
4995
4996#ifdef BGE_REGISTER_DEBUG
4997static int
4998bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4999{
5000	struct bge_softc *sc;
5001	uint16_t *sbdata;
5002	int error;
5003	int result;
5004	int i, j;
5005
5006	result = -1;
5007	error = sysctl_handle_int(oidp, &result, 0, req);
5008	if (error || (req->newptr == NULL))
5009		return (error);
5010
5011	if (result == 1) {
5012		sc = (struct bge_softc *)arg1;
5013
5014		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5015		printf("Status Block:\n");
5016		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5017			printf("%06x:", i);
5018			for (j = 0; j < 8; j++) {
5019				printf(" %04x", sbdata[i]);
5020				i += 4;
5021			}
5022			printf("\n");
5023		}
5024
5025		printf("Registers:\n");
5026		for (i = 0x800; i < 0xA00; ) {
5027			printf("%06x:", i);
5028			for (j = 0; j < 8; j++) {
5029				printf(" %08x", CSR_READ_4(sc, i));
5030				i += 4;
5031			}
5032			printf("\n");
5033		}
5034
5035		printf("Hardware Flags:\n");
5036		if (BGE_IS_5755_PLUS(sc))
5037			printf(" - 5755 Plus\n");
5038		if (BGE_IS_575X_PLUS(sc))
5039			printf(" - 575X Plus\n");
5040		if (BGE_IS_5705_PLUS(sc))
5041			printf(" - 5705 Plus\n");
5042		if (BGE_IS_5714_FAMILY(sc))
5043			printf(" - 5714 Family\n");
5044		if (BGE_IS_5700_FAMILY(sc))
5045			printf(" - 5700 Family\n");
5046		if (sc->bge_flags & BGE_FLAG_JUMBO)
5047			printf(" - Supports Jumbo Frames\n");
5048		if (sc->bge_flags & BGE_FLAG_PCIX)
5049			printf(" - PCI-X Bus\n");
5050		if (sc->bge_flags & BGE_FLAG_PCIE)
5051			printf(" - PCI Express Bus\n");
5052		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5053			printf(" - No 3 LEDs\n");
5054		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5055			printf(" - RX Alignment Bug\n");
5056	}
5057
5058	return (error);
5059}
5060
5061static int
5062bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5063{
5064	struct bge_softc *sc;
5065	int error;
5066	uint16_t result;
5067	uint32_t val;
5068
5069	result = -1;
5070	error = sysctl_handle_int(oidp, &result, 0, req);
5071	if (error || (req->newptr == NULL))
5072		return (error);
5073
5074	if (result < 0x8000) {
5075		sc = (struct bge_softc *)arg1;
5076		val = CSR_READ_4(sc, result);
5077		printf("reg 0x%06X = 0x%08X\n", result, val);
5078	}
5079
5080	return (error);
5081}
5082
5083static int
5084bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5085{
5086	struct bge_softc *sc;
5087	int error;
5088	uint16_t result;
5089	uint32_t val;
5090
5091	result = -1;
5092	error = sysctl_handle_int(oidp, &result, 0, req);
5093	if (error || (req->newptr == NULL))
5094		return (error);
5095
5096	if (result < 0x8000) {
5097		sc = (struct bge_softc *)arg1;
5098		val = bge_readmem_ind(sc, result);
5099		printf("mem 0x%06X = 0x%08X\n", result, val);
5100	}
5101
5102	return (error);
5103}
5104#endif
5105
5106static int
5107bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5108{
5109
5110	if (sc->bge_flags & BGE_FLAG_EADDR)
5111		return (1);
5112
5113#ifdef __sparc64__
5114	OF_getetheraddr(sc->bge_dev, ether_addr);
5115	return (0);
5116#endif
5117	return (1);
5118}
5119
5120static int
5121bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5122{
5123	uint32_t mac_addr;
5124
5125	mac_addr = bge_readmem_ind(sc, 0x0c14);
5126	if ((mac_addr >> 16) == 0x484b) {
5127		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5128		ether_addr[1] = (uint8_t)mac_addr;
5129		mac_addr = bge_readmem_ind(sc, 0x0c18);
5130		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5131		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5132		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5133		ether_addr[5] = (uint8_t)mac_addr;
5134		return (0);
5135	}
5136	return (1);
5137}
5138
5139static int
5140bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5141{
5142	int mac_offset = BGE_EE_MAC_OFFSET;
5143
5144	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5145		mac_offset = BGE_EE_MAC_OFFSET_5906;
5146
5147	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5148	    ETHER_ADDR_LEN));
5149}
5150
5151static int
5152bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5153{
5154
5155	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5156		return (1);
5157
5158	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5159	   ETHER_ADDR_LEN));
5160}
5161
5162static int
5163bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5164{
5165	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5166		/* NOTE: Order is critical */
5167		bge_get_eaddr_fw,
5168		bge_get_eaddr_mem,
5169		bge_get_eaddr_nvram,
5170		bge_get_eaddr_eeprom,
5171		NULL
5172	};
5173	const bge_eaddr_fcn_t *func;
5174
5175	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5176		if ((*func)(sc, eaddr) == 0)
5177			break;
5178	}
5179	return (*func == NULL ? ENXIO : 0);
5180}
5181