1/*
2 * Copyright (c) 1997, 1998 Kenneth D. Merry.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: releng/10.3/lib/libdevstat/devstat.c 279545 2015-03-02 21:00:54Z ken $");
31
32#include <sys/types.h>
33#include <sys/sysctl.h>
34#include <sys/errno.h>
35#include <sys/resource.h>
36#include <sys/queue.h>
37
38#include <ctype.h>
39#include <err.h>
40#include <fcntl.h>
41#include <limits.h>
42#include <stdio.h>
43#include <stdlib.h>
44#include <string.h>
45#include <stdarg.h>
46#include <kvm.h>
47#include <nlist.h>
48
49#include "devstat.h"
50
51int
52compute_stats(struct devstat *current, struct devstat *previous,
53	      long double etime, u_int64_t *total_bytes,
54	      u_int64_t *total_transfers, u_int64_t *total_blocks,
55	      long double *kb_per_transfer, long double *transfers_per_second,
56	      long double *mb_per_second, long double *blocks_per_second,
57	      long double *ms_per_transaction);
58
59typedef enum {
60	DEVSTAT_ARG_NOTYPE,
61	DEVSTAT_ARG_UINT64,
62	DEVSTAT_ARG_LD,
63	DEVSTAT_ARG_SKIP
64} devstat_arg_type;
65
66char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67
68/*
69 * Table to match descriptive strings with device types.  These are in
70 * order from most common to least common to speed search time.
71 */
72struct devstat_match_table match_table[] = {
73	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
74	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
75	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
76	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
77	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
78	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
79	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
81	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
82	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
83	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
84	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
85	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
86	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
87	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
88	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
89	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
90	{NULL,		0,			0}
91};
92
93struct devstat_args {
94	devstat_metric 		metric;
95	devstat_arg_type	argtype;
96} devstat_arg_list[] = {
97	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142};
143
144static const char *namelist[] = {
145#define X_NUMDEVS	0
146	"_devstat_num_devs",
147#define X_GENERATION	1
148	"_devstat_generation",
149#define X_VERSION	2
150	"_devstat_version",
151#define X_DEVICE_STATQ	3
152	"_device_statq",
153#define X_END		4
154};
155
156/*
157 * Local function declarations.
158 */
159static int compare_select(const void *arg1, const void *arg2);
160static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
161static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
162static char *get_devstat_kvm(kvm_t *kd);
163
164#define KREADNL(kd, var, val) \
165	readkmem_nl(kd, namelist[var], &val, sizeof(val))
166
167int
168devstat_getnumdevs(kvm_t *kd)
169{
170	size_t numdevsize;
171	int numdevs;
172
173	numdevsize = sizeof(int);
174
175	/*
176	 * Find out how many devices we have in the system.
177	 */
178	if (kd == NULL) {
179		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
180				 &numdevsize, NULL, 0) == -1) {
181			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
182				 "%s: error getting number of devices\n"
183				 "%s: %s", __func__, __func__,
184				 strerror(errno));
185			return(-1);
186		} else
187			return(numdevs);
188	} else {
189
190		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
191			return(-1);
192		else
193			return(numdevs);
194	}
195}
196
197/*
198 * This is an easy way to get the generation number, but the generation is
199 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
200 * Because this generation sysctl is separate from the statistics sysctl,
201 * the device list and the generation could change between the time that
202 * this function is called and the device list is retreived.
203 */
204long
205devstat_getgeneration(kvm_t *kd)
206{
207	size_t gensize;
208	long generation;
209
210	gensize = sizeof(long);
211
212	/*
213	 * Get the current generation number.
214	 */
215	if (kd == NULL) {
216		if (sysctlbyname("kern.devstat.generation", &generation,
217				 &gensize, NULL, 0) == -1) {
218			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
219				 "%s: error getting devstat generation\n%s: %s",
220				 __func__, __func__, strerror(errno));
221			return(-1);
222		} else
223			return(generation);
224	} else {
225		if (KREADNL(kd, X_GENERATION, generation) == -1)
226			return(-1);
227		else
228			return(generation);
229	}
230}
231
232/*
233 * Get the current devstat version.  The return value of this function
234 * should be compared with DEVSTAT_VERSION, which is defined in
235 * sys/devicestat.h.  This will enable userland programs to determine
236 * whether they are out of sync with the kernel.
237 */
238int
239devstat_getversion(kvm_t *kd)
240{
241	size_t versize;
242	int version;
243
244	versize = sizeof(int);
245
246	/*
247	 * Get the current devstat version.
248	 */
249	if (kd == NULL) {
250		if (sysctlbyname("kern.devstat.version", &version, &versize,
251				 NULL, 0) == -1) {
252			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
253				 "%s: error getting devstat version\n%s: %s",
254				 __func__, __func__, strerror(errno));
255			return(-1);
256		} else
257			return(version);
258	} else {
259		if (KREADNL(kd, X_VERSION, version) == -1)
260			return(-1);
261		else
262			return(version);
263	}
264}
265
266/*
267 * Check the devstat version we know about against the devstat version the
268 * kernel knows about.  If they don't match, print an error into the
269 * devstat error buffer, and return -1.  If they match, return 0.
270 */
271int
272devstat_checkversion(kvm_t *kd)
273{
274	int buflen, res, retval = 0, version;
275
276	version = devstat_getversion(kd);
277
278	if (version != DEVSTAT_VERSION) {
279		/*
280		 * If getversion() returns an error (i.e. -1), then it
281		 * has printed an error message in the buffer.  Therefore,
282		 * we need to add a \n to the end of that message before we
283		 * print our own message in the buffer.
284		 */
285		if (version == -1)
286			buflen = strlen(devstat_errbuf);
287		else
288			buflen = 0;
289
290		res = snprintf(devstat_errbuf + buflen,
291			       DEVSTAT_ERRBUF_SIZE - buflen,
292			       "%s%s: userland devstat version %d is not "
293			       "the same as the kernel\n%s: devstat "
294			       "version %d\n", version == -1 ? "\n" : "",
295			       __func__, DEVSTAT_VERSION, __func__, version);
296
297		if (res < 0)
298			devstat_errbuf[buflen] = '\0';
299
300		buflen = strlen(devstat_errbuf);
301		if (version < DEVSTAT_VERSION)
302			res = snprintf(devstat_errbuf + buflen,
303				       DEVSTAT_ERRBUF_SIZE - buflen,
304				       "%s: libdevstat newer than kernel\n",
305				       __func__);
306		else
307			res = snprintf(devstat_errbuf + buflen,
308				       DEVSTAT_ERRBUF_SIZE - buflen,
309				       "%s: kernel newer than libdevstat\n",
310				       __func__);
311
312		if (res < 0)
313			devstat_errbuf[buflen] = '\0';
314
315		retval = -1;
316	}
317
318	return(retval);
319}
320
321/*
322 * Get the current list of devices and statistics, and the current
323 * generation number.
324 *
325 * Return values:
326 * -1  -- error
327 *  0  -- device list is unchanged
328 *  1  -- device list has changed
329 */
330int
331devstat_getdevs(kvm_t *kd, struct statinfo *stats)
332{
333	int error;
334	size_t dssize;
335	int oldnumdevs;
336	long oldgeneration;
337	int retval = 0;
338	struct devinfo *dinfo;
339	struct timespec ts;
340
341	dinfo = stats->dinfo;
342
343	if (dinfo == NULL) {
344		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
345			 "%s: stats->dinfo was NULL", __func__);
346		return(-1);
347	}
348
349	oldnumdevs = dinfo->numdevs;
350	oldgeneration = dinfo->generation;
351
352	clock_gettime(CLOCK_MONOTONIC, &ts);
353	stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
354
355	if (kd == NULL) {
356		/* If this is our first time through, mem_ptr will be null. */
357		if (dinfo->mem_ptr == NULL) {
358			/*
359			 * Get the number of devices.  If it's negative, it's an
360			 * error.  Don't bother setting the error string, since
361			 * getnumdevs() has already done that for us.
362			 */
363			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364				return(-1);
365
366			/*
367			 * The kern.devstat.all sysctl returns the current
368			 * generation number, as well as all the devices.
369			 * So we need four bytes more.
370			 */
371			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372				 sizeof(long);
373			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374			if (dinfo->mem_ptr == NULL) {
375				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376					 "%s: Cannot allocate memory for mem_ptr element",
377					 __func__);
378				return(-1);
379			}
380		} else
381			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382				 sizeof(long);
383
384		/*
385		 * Request all of the devices.  We only really allow for one
386		 * ENOMEM failure.  It would, of course, be possible to just go
387		 * in a loop and keep reallocing the device structure until we
388		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
389		 * If devices are being added to the system that quickly, maybe
390		 * the user can just wait until all devices are added.
391		 */
392		for (;;) {
393			error = sysctlbyname("kern.devstat.all",
394					     dinfo->mem_ptr,
395					     &dssize, NULL, 0);
396			if (error != -1 || errno != EBUSY)
397				break;
398		}
399		if (error == -1) {
400			/*
401			 * If we get ENOMEM back, that means that there are
402			 * more devices now, so we need to allocate more
403			 * space for the device array.
404			 */
405			if (errno == ENOMEM) {
406				/*
407				 * No need to set the error string here,
408				 * devstat_getnumdevs() will do that if it fails.
409				 */
410				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411					return(-1);
412
413				dssize = (dinfo->numdevs *
414					sizeof(struct devstat)) + sizeof(long);
415				dinfo->mem_ptr = (u_int8_t *)
416					realloc(dinfo->mem_ptr, dssize);
417				if ((error = sysctlbyname("kern.devstat.all",
418				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419					snprintf(devstat_errbuf,
420						 sizeof(devstat_errbuf),
421					    	 "%s: error getting device "
422					    	 "stats\n%s: %s", __func__,
423					    	 __func__, strerror(errno));
424					return(-1);
425				}
426			} else {
427				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428					 "%s: error getting device stats\n"
429					 "%s: %s", __func__, __func__,
430					 strerror(errno));
431				return(-1);
432			}
433		}
434
435	} else {
436		/*
437		 * This is of course non-atomic, but since we are working
438		 * on a core dump, the generation is unlikely to change
439		 */
440		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
441			return(-1);
442		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
443			return(-1);
444	}
445	/*
446	 * The sysctl spits out the generation as the first four bytes,
447	 * then all of the device statistics structures.
448	 */
449	dinfo->generation = *(long *)dinfo->mem_ptr;
450
451	/*
452	 * If the generation has changed, and if the current number of
453	 * devices is not the same as the number of devices recorded in the
454	 * devinfo structure, it is likely that the device list has shrunk.
455	 * The reason that it is likely that the device list has shrunk in
456	 * this case is that if the device list has grown, the sysctl above
457	 * will return an ENOMEM error, and we will reset the number of
458	 * devices and reallocate the device array.  If the second sysctl
459	 * fails, we will return an error and therefore never get to this
460	 * point.  If the device list has shrunk, the sysctl will not
461	 * return an error since we have more space allocated than is
462	 * necessary.  So, in the shrinkage case, we catch it here and
463	 * reallocate the array so that we don't use any more space than is
464	 * necessary.
465	 */
466	if (oldgeneration != dinfo->generation) {
467		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
468			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
469				return(-1);
470			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
471				sizeof(long);
472			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
473							     dssize);
474		}
475		retval = 1;
476	}
477
478	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
479
480	return(retval);
481}
482
483/*
484 * selectdevs():
485 *
486 * Devices are selected/deselected based upon the following criteria:
487 * - devices specified by the user on the command line
488 * - devices matching any device type expressions given on the command line
489 * - devices with the highest I/O, if 'top' mode is enabled
490 * - the first n unselected devices in the device list, if maxshowdevs
491 *   devices haven't already been selected and if the user has not
492 *   specified any devices on the command line and if we're in "add" mode.
493 *
494 * Input parameters:
495 * - device selection list (dev_select)
496 * - current number of devices selected (num_selected)
497 * - total number of devices in the selection list (num_selections)
498 * - devstat generation as of the last time selectdevs() was called
499 *   (select_generation)
500 * - current devstat generation (current_generation)
501 * - current list of devices and statistics (devices)
502 * - number of devices in the current device list (numdevs)
503 * - compiled version of the command line device type arguments (matches)
504 *   - This is optional.  If the number of devices is 0, this will be ignored.
505 *   - The matching code pays attention to the current selection mode.  So
506 *     if you pass in a matching expression, it will be evaluated based
507 *     upon the selection mode that is passed in.  See below for details.
508 * - number of device type matching expressions (num_matches)
509 *   - Set to 0 to disable the matching code.
510 * - list of devices specified on the command line by the user (dev_selections)
511 * - number of devices selected on the command line by the user
512 *   (num_dev_selections)
513 * - Our selection mode.  There are four different selection modes:
514 *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
515 *        selected by the user or devices matching a pattern given by the
516 *        user will be selected in addition to devices that are already
517 *        selected.  Additional devices will be selected, up to maxshowdevs
518 *        number of devices.
519 *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
520 *        explicitly given by the user or devices matching a pattern
521 *        given by the user will be selected.  No other devices will be
522 *        selected.
523 *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
524 *        only.  Basically, this will not de-select any devices that are
525 *        current selected, as only mode would, but it will also not
526 *        gratuitously select up to maxshowdevs devices as add mode would.
527 *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
528 *        explicitly selected by the user or devices matching a pattern
529 *        given by the user will be de-selected.
530 * - maximum number of devices we can select (maxshowdevs)
531 * - flag indicating whether or not we're in 'top' mode (perf_select)
532 *
533 * Output data:
534 * - the device selection list may be modified and passed back out
535 * - the number of devices selected and the total number of items in the
536 *   device selection list may be changed
537 * - the selection generation may be changed to match the current generation
538 *
539 * Return values:
540 * -1  -- error
541 *  0  -- selected devices are unchanged
542 *  1  -- selected devices changed
543 */
544int
545devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
546		   int *num_selections, long *select_generation,
547		   long current_generation, struct devstat *devices,
548		   int numdevs, struct devstat_match *matches, int num_matches,
549		   char **dev_selections, int num_dev_selections,
550		   devstat_select_mode select_mode, int maxshowdevs,
551		   int perf_select)
552{
553	int i, j, k;
554	int init_selections = 0, init_selected_var = 0;
555	struct device_selection *old_dev_select = NULL;
556	int old_num_selections = 0, old_num_selected;
557	int selection_number = 0;
558	int changed = 0, found = 0;
559
560	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
561		return(-1);
562
563	/*
564	 * We always want to make sure that we have as many dev_select
565	 * entries as there are devices.
566	 */
567	/*
568	 * In this case, we haven't selected devices before.
569	 */
570	if (*dev_select == NULL) {
571		*dev_select = (struct device_selection *)malloc(numdevs *
572			sizeof(struct device_selection));
573		*select_generation = current_generation;
574		init_selections = 1;
575		changed = 1;
576	/*
577	 * In this case, we have selected devices before, but the device
578	 * list has changed since we last selected devices, so we need to
579	 * either enlarge or reduce the size of the device selection list.
580	 */
581	} else if (*num_selections != numdevs) {
582		*dev_select = (struct device_selection *)reallocf(*dev_select,
583			numdevs * sizeof(struct device_selection));
584		*select_generation = current_generation;
585		init_selections = 1;
586	/*
587	 * In this case, we've selected devices before, and the selection
588	 * list is the same size as it was the last time, but the device
589	 * list has changed.
590	 */
591	} else if (*select_generation < current_generation) {
592		*select_generation = current_generation;
593		init_selections = 1;
594	}
595
596	if (*dev_select == NULL) {
597		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
598			 "%s: Cannot (re)allocate memory for dev_select argument",
599			 __func__);
600		return(-1);
601	}
602
603	/*
604	 * If we're in "only" mode, we want to clear out the selected
605	 * variable since we're going to select exactly what the user wants
606	 * this time through.
607	 */
608	if (select_mode == DS_SELECT_ONLY)
609		init_selected_var = 1;
610
611	/*
612	 * In all cases, we want to back up the number of selected devices.
613	 * It is a quick and accurate way to determine whether the selected
614	 * devices have changed.
615	 */
616	old_num_selected = *num_selected;
617
618	/*
619	 * We want to make a backup of the current selection list if
620	 * the list of devices has changed, or if we're in performance
621	 * selection mode.  In both cases, we don't want to make a backup
622	 * if we already know for sure that the list will be different.
623	 * This is certainly the case if this is our first time through the
624	 * selection code.
625	 */
626	if (((init_selected_var != 0) || (init_selections != 0)
627	 || (perf_select != 0)) && (changed == 0)){
628		old_dev_select = (struct device_selection *)malloc(
629		    *num_selections * sizeof(struct device_selection));
630		if (old_dev_select == NULL) {
631			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
632				 "%s: Cannot allocate memory for selection list backup",
633				 __func__);
634			return(-1);
635		}
636		old_num_selections = *num_selections;
637		bcopy(*dev_select, old_dev_select,
638		    sizeof(struct device_selection) * *num_selections);
639	}
640
641	if (init_selections != 0) {
642		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
643
644		for (i = 0; i < numdevs; i++) {
645			(*dev_select)[i].device_number =
646				devices[i].device_number;
647			strncpy((*dev_select)[i].device_name,
648				devices[i].device_name,
649				DEVSTAT_NAME_LEN);
650			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
651			(*dev_select)[i].unit_number = devices[i].unit_number;
652			(*dev_select)[i].position = i;
653		}
654		*num_selections = numdevs;
655	} else if (init_selected_var != 0) {
656		for (i = 0; i < numdevs; i++)
657			(*dev_select)[i].selected = 0;
658	}
659
660	/* we haven't gotten around to selecting anything yet.. */
661	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
662	 || (init_selected_var != 0))
663		*num_selected = 0;
664
665	/*
666	 * Look through any devices the user specified on the command line
667	 * and see if they match known devices.  If so, select them.
668	 */
669	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
670		char tmpstr[80];
671
672		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
673			 (*dev_select)[i].device_name,
674			 (*dev_select)[i].unit_number);
675		for (j = 0; j < num_dev_selections; j++) {
676			if (strcmp(tmpstr, dev_selections[j]) == 0) {
677				/*
678				 * Here we do different things based on the
679				 * mode we're in.  If we're in add or
680				 * addonly mode, we only select this device
681				 * if it hasn't already been selected.
682				 * Otherwise, we would be unnecessarily
683				 * changing the selection order and
684				 * incrementing the selection count.  If
685				 * we're in only mode, we unconditionally
686				 * select this device, since in only mode
687				 * any previous selections are erased and
688				 * manually specified devices are the first
689				 * ones to be selected.  If we're in remove
690				 * mode, we de-select the specified device and
691				 * decrement the selection count.
692				 */
693				switch(select_mode) {
694				case DS_SELECT_ADD:
695				case DS_SELECT_ADDONLY:
696					if ((*dev_select)[i].selected)
697						break;
698					/* FALLTHROUGH */
699				case DS_SELECT_ONLY:
700					(*dev_select)[i].selected =
701						++selection_number;
702					(*num_selected)++;
703					break;
704				case DS_SELECT_REMOVE:
705					(*dev_select)[i].selected = 0;
706					(*num_selected)--;
707					/*
708					 * This isn't passed back out, we
709					 * just use it to keep track of
710					 * how many devices we've removed.
711					 */
712					num_dev_selections--;
713					break;
714				}
715				break;
716			}
717		}
718	}
719
720	/*
721	 * Go through the user's device type expressions and select devices
722	 * accordingly.  We only do this if the number of devices already
723	 * selected is less than the maximum number we can show.
724	 */
725	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
726		/* We should probably indicate some error here */
727		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
728		 || (matches[i].num_match_categories <= 0))
729			continue;
730
731		for (j = 0; j < numdevs; j++) {
732			int num_match_categories;
733
734			num_match_categories = matches[i].num_match_categories;
735
736			/*
737			 * Determine whether or not the current device
738			 * matches the given matching expression.  This if
739			 * statement consists of three components:
740			 *   - the device type check
741			 *   - the device interface check
742			 *   - the passthrough check
743			 * If a the matching test is successful, it
744			 * decrements the number of matching categories,
745			 * and if we've reached the last element that
746			 * needed to be matched, the if statement succeeds.
747			 *
748			 */
749			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
750			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
751			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
752			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
753			   || (((matches[i].match_fields &
754				DEVSTAT_MATCH_PASS) == 0)
755			    && ((devices[j].device_type &
756			        DEVSTAT_TYPE_PASS) == 0)))
757			  && (--num_match_categories == 0))
758			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
759			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
760			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
761			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
762			   || (((matches[i].match_fields &
763				DEVSTAT_MATCH_PASS) == 0)
764			    && ((devices[j].device_type &
765				DEVSTAT_TYPE_PASS) == 0)))
766			  && (--num_match_categories == 0))
767			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
768			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
769			  && (--num_match_categories == 0))) {
770
771				/*
772				 * This is probably a non-optimal solution
773				 * to the problem that the devices in the
774				 * device list will not be in the same
775				 * order as the devices in the selection
776				 * array.
777				 */
778				for (k = 0; k < numdevs; k++) {
779					if ((*dev_select)[k].position == j) {
780						found = 1;
781						break;
782					}
783				}
784
785				/*
786				 * There shouldn't be a case where a device
787				 * in the device list is not in the
788				 * selection list...but it could happen.
789				 */
790				if (found != 1) {
791					fprintf(stderr, "selectdevs: couldn't"
792						" find %s%d in selection "
793						"list\n",
794						devices[j].device_name,
795						devices[j].unit_number);
796					break;
797				}
798
799				/*
800				 * We do different things based upon the
801				 * mode we're in.  If we're in add or only
802				 * mode, we go ahead and select this device
803				 * if it hasn't already been selected.  If
804				 * it has already been selected, we leave
805				 * it alone so we don't mess up the
806				 * selection ordering.  Manually specified
807				 * devices have already been selected, and
808				 * they have higher priority than pattern
809				 * matched devices.  If we're in remove
810				 * mode, we de-select the given device and
811				 * decrement the selected count.
812				 */
813				switch(select_mode) {
814				case DS_SELECT_ADD:
815				case DS_SELECT_ADDONLY:
816				case DS_SELECT_ONLY:
817					if ((*dev_select)[k].selected != 0)
818						break;
819					(*dev_select)[k].selected =
820						++selection_number;
821					(*num_selected)++;
822					break;
823				case DS_SELECT_REMOVE:
824					(*dev_select)[k].selected = 0;
825					(*num_selected)--;
826					break;
827				}
828			}
829		}
830	}
831
832	/*
833	 * Here we implement "top" mode.  Devices are sorted in the
834	 * selection array based on two criteria:  whether or not they are
835	 * selected (not selection number, just the fact that they are
836	 * selected!) and the number of bytes in the "bytes" field of the
837	 * selection structure.  The bytes field generally must be kept up
838	 * by the user.  In the future, it may be maintained by library
839	 * functions, but for now the user has to do the work.
840	 *
841	 * At first glance, it may seem wrong that we don't go through and
842	 * select every device in the case where the user hasn't specified
843	 * any devices or patterns.  In fact, though, it won't make any
844	 * difference in the device sorting.  In that particular case (i.e.
845	 * when we're in "add" or "only" mode, and the user hasn't
846	 * specified anything) the first time through no devices will be
847	 * selected, so the only criterion used to sort them will be their
848	 * performance.  The second time through, and every time thereafter,
849	 * all devices will be selected, so again selection won't matter.
850	 */
851	if (perf_select != 0) {
852
853		/* Sort the device array by throughput  */
854		qsort(*dev_select, *num_selections,
855		      sizeof(struct device_selection),
856		      compare_select);
857
858		if (*num_selected == 0) {
859			/*
860			 * Here we select every device in the array, if it
861			 * isn't already selected.  Because the 'selected'
862			 * variable in the selection array entries contains
863			 * the selection order, the devstats routine can show
864			 * the devices that were selected first.
865			 */
866			for (i = 0; i < *num_selections; i++) {
867				if ((*dev_select)[i].selected == 0) {
868					(*dev_select)[i].selected =
869						++selection_number;
870					(*num_selected)++;
871				}
872			}
873		} else {
874			selection_number = 0;
875			for (i = 0; i < *num_selections; i++) {
876				if ((*dev_select)[i].selected != 0) {
877					(*dev_select)[i].selected =
878						++selection_number;
879				}
880			}
881		}
882	}
883
884	/*
885	 * If we're in the "add" selection mode and if we haven't already
886	 * selected maxshowdevs number of devices, go through the array and
887	 * select any unselected devices.  If we're in "only" mode, we
888	 * obviously don't want to select anything other than what the user
889	 * specifies.  If we're in "remove" mode, it probably isn't a good
890	 * idea to go through and select any more devices, since we might
891	 * end up selecting something that the user wants removed.  Through
892	 * more complicated logic, we could actually figure this out, but
893	 * that would probably require combining this loop with the various
894	 * selections loops above.
895	 */
896	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
897		for (i = 0; i < *num_selections; i++)
898			if ((*dev_select)[i].selected == 0) {
899				(*dev_select)[i].selected = ++selection_number;
900				(*num_selected)++;
901			}
902	}
903
904	/*
905	 * Look at the number of devices that have been selected.  If it
906	 * has changed, set the changed variable.  Otherwise, if we've
907	 * made a backup of the selection list, compare it to the current
908	 * selection list to see if the selected devices have changed.
909	 */
910	if ((changed == 0) && (old_num_selected != *num_selected))
911		changed = 1;
912	else if ((changed == 0) && (old_dev_select != NULL)) {
913		/*
914		 * Now we go through the selection list and we look at
915		 * it three different ways.
916		 */
917		for (i = 0; (i < *num_selections) && (changed == 0) &&
918		     (i < old_num_selections); i++) {
919			/*
920			 * If the device at index i in both the new and old
921			 * selection arrays has the same device number and
922			 * selection status, it hasn't changed.  We
923			 * continue on to the next index.
924			 */
925			if (((*dev_select)[i].device_number ==
926			     old_dev_select[i].device_number)
927			 && ((*dev_select)[i].selected ==
928			     old_dev_select[i].selected))
929				continue;
930
931			/*
932			 * Now, if we're still going through the if
933			 * statement, the above test wasn't true.  So we
934			 * check here to see if the device at index i in
935			 * the current array is the same as the device at
936			 * index i in the old array.  If it is, that means
937			 * that its selection number has changed.  Set
938			 * changed to 1 and exit the loop.
939			 */
940			else if ((*dev_select)[i].device_number ==
941			          old_dev_select[i].device_number) {
942				changed = 1;
943				break;
944			}
945			/*
946			 * If we get here, then the device at index i in
947			 * the current array isn't the same device as the
948			 * device at index i in the old array.
949			 */
950			else {
951				found = 0;
952
953				/*
954				 * Search through the old selection array
955				 * looking for a device with the same
956				 * device number as the device at index i
957				 * in the current array.  If the selection
958				 * status is the same, then we mark it as
959				 * found.  If the selection status isn't
960				 * the same, we break out of the loop.
961				 * Since found isn't set, changed will be
962				 * set to 1 below.
963				 */
964				for (j = 0; j < old_num_selections; j++) {
965					if (((*dev_select)[i].device_number ==
966					      old_dev_select[j].device_number)
967					 && ((*dev_select)[i].selected ==
968					      old_dev_select[j].selected)){
969						found = 1;
970						break;
971					}
972					else if ((*dev_select)[i].device_number
973					    == old_dev_select[j].device_number)
974						break;
975				}
976				if (found == 0)
977					changed = 1;
978			}
979		}
980	}
981	if (old_dev_select != NULL)
982		free(old_dev_select);
983
984	return(changed);
985}
986
987/*
988 * Comparison routine for qsort() above.  Note that the comparison here is
989 * backwards -- generally, it should return a value to indicate whether
990 * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
991 * it returns the opposite is so that the selection array will be sorted in
992 * order of decreasing performance.  We sort on two parameters.  The first
993 * sort key is whether or not one or the other of the devices in question
994 * has been selected.  If one of them has, and the other one has not, the
995 * selected device is automatically more important than the unselected
996 * device.  If neither device is selected, we judge the devices based upon
997 * performance.
998 */
999static int
1000compare_select(const void *arg1, const void *arg2)
1001{
1002	if ((((const struct device_selection *)arg1)->selected)
1003	 && (((const struct device_selection *)arg2)->selected == 0))
1004		return(-1);
1005	else if ((((const struct device_selection *)arg1)->selected == 0)
1006	      && (((const struct device_selection *)arg2)->selected))
1007		return(1);
1008	else if (((const struct device_selection *)arg2)->bytes <
1009	         ((const struct device_selection *)arg1)->bytes)
1010		return(-1);
1011	else if (((const struct device_selection *)arg2)->bytes >
1012		 ((const struct device_selection *)arg1)->bytes)
1013		return(1);
1014	else
1015		return(0);
1016}
1017
1018/*
1019 * Take a string with the general format "arg1,arg2,arg3", and build a
1020 * device matching expression from it.
1021 */
1022int
1023devstat_buildmatch(char *match_str, struct devstat_match **matches,
1024		   int *num_matches)
1025{
1026	char *tstr[5];
1027	char **tempstr;
1028	int num_args;
1029	int i, j;
1030
1031	/* We can't do much without a string to parse */
1032	if (match_str == NULL) {
1033		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1034			 "%s: no match expression", __func__);
1035		return(-1);
1036	}
1037
1038	/*
1039	 * Break the (comma delimited) input string out into separate strings.
1040	 */
1041	for (tempstr = tstr, num_args  = 0;
1042	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1043		if (**tempstr != '\0') {
1044			num_args++;
1045			if (++tempstr >= &tstr[5])
1046				break;
1047		}
1048
1049	/* The user gave us too many type arguments */
1050	if (num_args > 3) {
1051		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1052			 "%s: too many type arguments", __func__);
1053		return(-1);
1054	}
1055
1056	if (*num_matches == 0)
1057		*matches = NULL;
1058
1059	*matches = (struct devstat_match *)reallocf(*matches,
1060		  sizeof(struct devstat_match) * (*num_matches + 1));
1061
1062	if (*matches == NULL) {
1063		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1064			 "%s: Cannot allocate memory for matches list", __func__);
1065		return(-1);
1066	}
1067
1068	/* Make sure the current entry is clear */
1069	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1070
1071	/*
1072	 * Step through the arguments the user gave us and build a device
1073	 * matching expression from them.
1074	 */
1075	for (i = 0; i < num_args; i++) {
1076		char *tempstr2, *tempstr3;
1077
1078		/*
1079		 * Get rid of leading white space.
1080		 */
1081		tempstr2 = tstr[i];
1082		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1083			tempstr2++;
1084
1085		/*
1086		 * Get rid of trailing white space.
1087		 */
1088		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1089
1090		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1091		    && (isspace(*tempstr3))) {
1092			*tempstr3 = '\0';
1093			tempstr3--;
1094		}
1095
1096		/*
1097		 * Go through the match table comparing the user's
1098		 * arguments to known device types, interfaces, etc.
1099		 */
1100		for (j = 0; match_table[j].match_str != NULL; j++) {
1101			/*
1102			 * We do case-insensitive matching, in case someone
1103			 * wants to enter "SCSI" instead of "scsi" or
1104			 * something like that.  Only compare as many
1105			 * characters as are in the string in the match
1106			 * table.  This should help if someone tries to use
1107			 * a super-long match expression.
1108			 */
1109			if (strncasecmp(tempstr2, match_table[j].match_str,
1110			    strlen(match_table[j].match_str)) == 0) {
1111				/*
1112				 * Make sure the user hasn't specified two
1113				 * items of the same type, like "da" and
1114				 * "cd".  One device cannot be both.
1115				 */
1116				if (((*matches)[*num_matches].match_fields &
1117				    match_table[j].match_field) != 0) {
1118					snprintf(devstat_errbuf,
1119						 sizeof(devstat_errbuf),
1120						 "%s: cannot have more than "
1121						 "one match item in a single "
1122						 "category", __func__);
1123					return(-1);
1124				}
1125				/*
1126				 * If we've gotten this far, we have a
1127				 * winner.  Set the appropriate fields in
1128				 * the match entry.
1129				 */
1130				(*matches)[*num_matches].match_fields |=
1131					match_table[j].match_field;
1132				(*matches)[*num_matches].device_type |=
1133					match_table[j].type;
1134				(*matches)[*num_matches].num_match_categories++;
1135				break;
1136			}
1137		}
1138		/*
1139		 * We should have found a match in the above for loop.  If
1140		 * not, that means the user entered an invalid device type
1141		 * or interface.
1142		 */
1143		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1144			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1145				 "%s: unknown match item \"%s\"", __func__,
1146				 tstr[i]);
1147			return(-1);
1148		}
1149	}
1150
1151	(*num_matches)++;
1152
1153	return(0);
1154}
1155
1156/*
1157 * Compute a number of device statistics.  Only one field is mandatory, and
1158 * that is "current".  Everything else is optional.  The caller passes in
1159 * pointers to variables to hold the various statistics he desires.  If he
1160 * doesn't want a particular staistic, he should pass in a NULL pointer.
1161 * Return values:
1162 * 0   -- success
1163 * -1  -- failure
1164 */
1165int
1166compute_stats(struct devstat *current, struct devstat *previous,
1167	      long double etime, u_int64_t *total_bytes,
1168	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1169	      long double *kb_per_transfer, long double *transfers_per_second,
1170	      long double *mb_per_second, long double *blocks_per_second,
1171	      long double *ms_per_transaction)
1172{
1173	return(devstat_compute_statistics(current, previous, etime,
1174	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1175	       total_bytes,
1176	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1177	       total_transfers,
1178	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1179	       total_blocks,
1180	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1181	       kb_per_transfer,
1182	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1183	       transfers_per_second,
1184	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1185	       mb_per_second,
1186	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1187	       blocks_per_second,
1188	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1189	       ms_per_transaction,
1190	       DSM_NONE));
1191}
1192
1193
1194/* This is 1/2^64 */
1195#define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1196
1197long double
1198devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1199{
1200	long double etime;
1201
1202	etime = cur_time->sec;
1203	etime += cur_time->frac * BINTIME_SCALE;
1204	if (prev_time != NULL) {
1205		etime -= prev_time->sec;
1206		etime -= prev_time->frac * BINTIME_SCALE;
1207	}
1208	return(etime);
1209}
1210
1211#define DELTA(field, index)				\
1212	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1213
1214#define DELTA_T(field)					\
1215	devstat_compute_etime(&current->field,  	\
1216	(previous ? &previous->field : NULL))
1217
1218int
1219devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1220			   long double etime, ...)
1221{
1222	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1223	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1224	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1225	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1226	long double totalduration, totaldurationread, totaldurationwrite;
1227	long double totaldurationfree, totaldurationother;
1228	va_list ap;
1229	devstat_metric metric;
1230	u_int64_t *destu64;
1231	long double *destld;
1232	int retval;
1233
1234	retval = 0;
1235
1236	/*
1237	 * current is the only mandatory field.
1238	 */
1239	if (current == NULL) {
1240		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1241			 "%s: current stats structure was NULL", __func__);
1242		return(-1);
1243	}
1244
1245	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1246	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1247	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1248	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1249
1250	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1251	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1252	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1253	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1254	totaltransfers = totaltransfersread + totaltransferswrite +
1255			 totaltransfersother + totaltransfersfree;
1256
1257	totalblocks = totalbytes;
1258	totalblocksread = totalbytesread;
1259	totalblockswrite = totalbyteswrite;
1260	totalblocksfree = totalbytesfree;
1261
1262	if (current->block_size > 0) {
1263		totalblocks /= current->block_size;
1264		totalblocksread /= current->block_size;
1265		totalblockswrite /= current->block_size;
1266		totalblocksfree /= current->block_size;
1267	} else {
1268		totalblocks /= 512;
1269		totalblocksread /= 512;
1270		totalblockswrite /= 512;
1271		totalblocksfree /= 512;
1272	}
1273
1274	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1275	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1276	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1277	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1278	totalduration = totaldurationread + totaldurationwrite +
1279	    totaldurationfree + totaldurationother;
1280
1281	va_start(ap, etime);
1282
1283	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1284
1285		if (metric == DSM_NONE)
1286			break;
1287
1288		if (metric >= DSM_MAX) {
1289			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1290				 "%s: metric %d is out of range", __func__,
1291				 metric);
1292			retval = -1;
1293			goto bailout;
1294		}
1295
1296		switch (devstat_arg_list[metric].argtype) {
1297		case DEVSTAT_ARG_UINT64:
1298			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1299			break;
1300		case DEVSTAT_ARG_LD:
1301			destld = (long double *)va_arg(ap, long double *);
1302			break;
1303		case DEVSTAT_ARG_SKIP:
1304			destld = (long double *)va_arg(ap, long double *);
1305			break;
1306		default:
1307			retval = -1;
1308			goto bailout;
1309			break; /* NOTREACHED */
1310		}
1311
1312		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1313			continue;
1314
1315		switch (metric) {
1316		case DSM_TOTAL_BYTES:
1317			*destu64 = totalbytes;
1318			break;
1319		case DSM_TOTAL_BYTES_READ:
1320			*destu64 = totalbytesread;
1321			break;
1322		case DSM_TOTAL_BYTES_WRITE:
1323			*destu64 = totalbyteswrite;
1324			break;
1325		case DSM_TOTAL_BYTES_FREE:
1326			*destu64 = totalbytesfree;
1327			break;
1328		case DSM_TOTAL_TRANSFERS:
1329			*destu64 = totaltransfers;
1330			break;
1331		case DSM_TOTAL_TRANSFERS_READ:
1332			*destu64 = totaltransfersread;
1333			break;
1334		case DSM_TOTAL_TRANSFERS_WRITE:
1335			*destu64 = totaltransferswrite;
1336			break;
1337		case DSM_TOTAL_TRANSFERS_FREE:
1338			*destu64 = totaltransfersfree;
1339			break;
1340		case DSM_TOTAL_TRANSFERS_OTHER:
1341			*destu64 = totaltransfersother;
1342			break;
1343		case DSM_TOTAL_BLOCKS:
1344			*destu64 = totalblocks;
1345			break;
1346		case DSM_TOTAL_BLOCKS_READ:
1347			*destu64 = totalblocksread;
1348			break;
1349		case DSM_TOTAL_BLOCKS_WRITE:
1350			*destu64 = totalblockswrite;
1351			break;
1352		case DSM_TOTAL_BLOCKS_FREE:
1353			*destu64 = totalblocksfree;
1354			break;
1355		case DSM_KB_PER_TRANSFER:
1356			*destld = totalbytes;
1357			*destld /= 1024;
1358			if (totaltransfers > 0)
1359				*destld /= totaltransfers;
1360			else
1361				*destld = 0.0;
1362			break;
1363		case DSM_KB_PER_TRANSFER_READ:
1364			*destld = totalbytesread;
1365			*destld /= 1024;
1366			if (totaltransfersread > 0)
1367				*destld /= totaltransfersread;
1368			else
1369				*destld = 0.0;
1370			break;
1371		case DSM_KB_PER_TRANSFER_WRITE:
1372			*destld = totalbyteswrite;
1373			*destld /= 1024;
1374			if (totaltransferswrite > 0)
1375				*destld /= totaltransferswrite;
1376			else
1377				*destld = 0.0;
1378			break;
1379		case DSM_KB_PER_TRANSFER_FREE:
1380			*destld = totalbytesfree;
1381			*destld /= 1024;
1382			if (totaltransfersfree > 0)
1383				*destld /= totaltransfersfree;
1384			else
1385				*destld = 0.0;
1386			break;
1387		case DSM_TRANSFERS_PER_SECOND:
1388			if (etime > 0.0) {
1389				*destld = totaltransfers;
1390				*destld /= etime;
1391			} else
1392				*destld = 0.0;
1393			break;
1394		case DSM_TRANSFERS_PER_SECOND_READ:
1395			if (etime > 0.0) {
1396				*destld = totaltransfersread;
1397				*destld /= etime;
1398			} else
1399				*destld = 0.0;
1400			break;
1401		case DSM_TRANSFERS_PER_SECOND_WRITE:
1402			if (etime > 0.0) {
1403				*destld = totaltransferswrite;
1404				*destld /= etime;
1405			} else
1406				*destld = 0.0;
1407			break;
1408		case DSM_TRANSFERS_PER_SECOND_FREE:
1409			if (etime > 0.0) {
1410				*destld = totaltransfersfree;
1411				*destld /= etime;
1412			} else
1413				*destld = 0.0;
1414			break;
1415		case DSM_TRANSFERS_PER_SECOND_OTHER:
1416			if (etime > 0.0) {
1417				*destld = totaltransfersother;
1418				*destld /= etime;
1419			} else
1420				*destld = 0.0;
1421			break;
1422		case DSM_MB_PER_SECOND:
1423			*destld = totalbytes;
1424			*destld /= 1024 * 1024;
1425			if (etime > 0.0)
1426				*destld /= etime;
1427			else
1428				*destld = 0.0;
1429			break;
1430		case DSM_MB_PER_SECOND_READ:
1431			*destld = totalbytesread;
1432			*destld /= 1024 * 1024;
1433			if (etime > 0.0)
1434				*destld /= etime;
1435			else
1436				*destld = 0.0;
1437			break;
1438		case DSM_MB_PER_SECOND_WRITE:
1439			*destld = totalbyteswrite;
1440			*destld /= 1024 * 1024;
1441			if (etime > 0.0)
1442				*destld /= etime;
1443			else
1444				*destld = 0.0;
1445			break;
1446		case DSM_MB_PER_SECOND_FREE:
1447			*destld = totalbytesfree;
1448			*destld /= 1024 * 1024;
1449			if (etime > 0.0)
1450				*destld /= etime;
1451			else
1452				*destld = 0.0;
1453			break;
1454		case DSM_BLOCKS_PER_SECOND:
1455			*destld = totalblocks;
1456			if (etime > 0.0)
1457				*destld /= etime;
1458			else
1459				*destld = 0.0;
1460			break;
1461		case DSM_BLOCKS_PER_SECOND_READ:
1462			*destld = totalblocksread;
1463			if (etime > 0.0)
1464				*destld /= etime;
1465			else
1466				*destld = 0.0;
1467			break;
1468		case DSM_BLOCKS_PER_SECOND_WRITE:
1469			*destld = totalblockswrite;
1470			if (etime > 0.0)
1471				*destld /= etime;
1472			else
1473				*destld = 0.0;
1474			break;
1475		case DSM_BLOCKS_PER_SECOND_FREE:
1476			*destld = totalblocksfree;
1477			if (etime > 0.0)
1478				*destld /= etime;
1479			else
1480				*destld = 0.0;
1481			break;
1482		/*
1483		 * Some devstat callers update the duration and some don't.
1484		 * So this will only be accurate if they provide the
1485		 * duration.
1486		 */
1487		case DSM_MS_PER_TRANSACTION:
1488			if (totaltransfers > 0) {
1489				*destld = totalduration;
1490				*destld /= totaltransfers;
1491				*destld *= 1000;
1492			} else
1493				*destld = 0.0;
1494			break;
1495		case DSM_MS_PER_TRANSACTION_READ:
1496			if (totaltransfersread > 0) {
1497				*destld = totaldurationread;
1498				*destld /= totaltransfersread;
1499				*destld *= 1000;
1500			} else
1501				*destld = 0.0;
1502			break;
1503		case DSM_MS_PER_TRANSACTION_WRITE:
1504			if (totaltransferswrite > 0) {
1505				*destld = totaldurationwrite;
1506				*destld /= totaltransferswrite;
1507				*destld *= 1000;
1508			} else
1509				*destld = 0.0;
1510			break;
1511		case DSM_MS_PER_TRANSACTION_FREE:
1512			if (totaltransfersfree > 0) {
1513				*destld = totaldurationfree;
1514				*destld /= totaltransfersfree;
1515				*destld *= 1000;
1516			} else
1517				*destld = 0.0;
1518			break;
1519		case DSM_MS_PER_TRANSACTION_OTHER:
1520			if (totaltransfersother > 0) {
1521				*destld = totaldurationother;
1522				*destld /= totaltransfersother;
1523				*destld *= 1000;
1524			} else
1525				*destld = 0.0;
1526			break;
1527		case DSM_BUSY_PCT:
1528			*destld = DELTA_T(busy_time);
1529			if (*destld < 0)
1530				*destld = 0;
1531			*destld /= etime;
1532			*destld *= 100;
1533			if (*destld < 0)
1534				*destld = 0;
1535			break;
1536		case DSM_QUEUE_LENGTH:
1537			*destu64 = current->start_count - current->end_count;
1538			break;
1539		case DSM_TOTAL_DURATION:
1540			*destld = totalduration;
1541			break;
1542		case DSM_TOTAL_DURATION_READ:
1543			*destld = totaldurationread;
1544			break;
1545		case DSM_TOTAL_DURATION_WRITE:
1546			*destld = totaldurationwrite;
1547			break;
1548		case DSM_TOTAL_DURATION_FREE:
1549			*destld = totaldurationfree;
1550			break;
1551		case DSM_TOTAL_DURATION_OTHER:
1552			*destld = totaldurationother;
1553			break;
1554		case DSM_TOTAL_BUSY_TIME:
1555			*destld = DELTA_T(busy_time);
1556			break;
1557/*
1558 * XXX: comment out the default block to see if any case's are missing.
1559 */
1560#if 1
1561		default:
1562			/*
1563			 * This shouldn't happen, since we should have
1564			 * caught any out of range metrics at the top of
1565			 * the loop.
1566			 */
1567			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1568				 "%s: unknown metric %d", __func__, metric);
1569			retval = -1;
1570			goto bailout;
1571			break; /* NOTREACHED */
1572#endif
1573		}
1574	}
1575
1576bailout:
1577
1578	va_end(ap);
1579	return(retval);
1580}
1581
1582static int
1583readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1584{
1585
1586	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1587		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1588			 "%s: error reading value (kvm_read): %s", __func__,
1589			 kvm_geterr(kd));
1590		return(-1);
1591	}
1592	return(0);
1593}
1594
1595static int
1596readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1597{
1598	struct nlist nl[2];
1599
1600	nl[0].n_name = (char *)name;
1601	nl[1].n_name = NULL;
1602
1603	if (kvm_nlist(kd, nl) == -1) {
1604		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1605			 "%s: error getting name list (kvm_nlist): %s",
1606			 __func__, kvm_geterr(kd));
1607		return(-1);
1608	}
1609	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1610}
1611
1612/*
1613 * This duplicates the functionality of the kernel sysctl handler for poking
1614 * through crash dumps.
1615 */
1616static char *
1617get_devstat_kvm(kvm_t *kd)
1618{
1619	int i, wp;
1620	long gen;
1621	struct devstat *nds;
1622	struct devstat ds;
1623	struct devstatlist dhead;
1624	int num_devs;
1625	char *rv = NULL;
1626
1627	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1628		return(NULL);
1629	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1630		return(NULL);
1631
1632	nds = STAILQ_FIRST(&dhead);
1633
1634	if ((rv = malloc(sizeof(gen))) == NULL) {
1635		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1636			 "%s: out of memory (initial malloc failed)",
1637			 __func__);
1638		return(NULL);
1639	}
1640	gen = devstat_getgeneration(kd);
1641	memcpy(rv, &gen, sizeof(gen));
1642	wp = sizeof(gen);
1643	/*
1644	 * Now push out all the devices.
1645	 */
1646	for (i = 0; (nds != NULL) && (i < num_devs);
1647	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1648		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1649			free(rv);
1650			return(NULL);
1651		}
1652		nds = &ds;
1653		rv = (char *)reallocf(rv, sizeof(gen) +
1654				      sizeof(ds) * (i + 1));
1655		if (rv == NULL) {
1656			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1657				 "%s: out of memory (malloc failed)",
1658				 __func__);
1659			return(NULL);
1660		}
1661		memcpy(rv + wp, &ds, sizeof(ds));
1662		wp += sizeof(ds);
1663	}
1664	return(rv);
1665}
1666